

LA-UR-20-30376

Accepted Manuscript

Warming increased bark beetle-induced tree mortality by 30% during an extreme drought in California

Robbins, Zachary James; Xu, Chonggang; Chitra-Tarak, Rutuja; Fettig, Christopher; Mortenson, Leif; Goulden, Michael; Goodisman, Devin; Madakumbura, Gavin Dayanga; Kueppers, Lara M.; Buotte, Polly; Koven, Charlie; Aukema, Brian; Hall, Alexander; Scheller, Robert

Provided by the author(s) and the Los Alamos National Laboratory (2023-04-07).

To be published in: Global Change Biology

DOI to publisher's version: 10.1111/gcb.15927

Permalink to record:

<http://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-20-30376>

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

1
2 MR. ZACHARY JAMES ROBBINS (Orcid ID : 0000-0001-5904-8277)
3 DR. POLLY CATHERINE BUOTTE (Orcid ID : 0000-0002-6572-2878)
4
5
6 Article type : Primary Research Articles
7
8

9 **Title: Warming Increased Bark Beetle-Induced Tree Mortality by 30% During an Extreme Drought in**
10 **California**

11
12 **Running title: Warming increased tree death by bark beetles**

13 **Authors:** Zachary J. Robbins^{1,2*}, Chonggang Xu¹, Brian H. Aukema³, Polly C. Buotte⁴, Rutuja Chitra-
14 Tarak², Christopher J. Fettig⁵, Michael L. Goulden⁶, Devin W. Goodson⁷, Alexander D. Hall⁸, Charles
15 D. Koven⁹, Lara M. Kueppers⁴, Gavin D. Madakumbura⁸, Leif A. Mortenson⁵, James A. Powell¹⁰, Robert
16 M. Scheller²

17 **ORCID:** Zachary J. Robbins 0000-0001-5904-8277, Chonggang Xu 0000-0002-0937-5744, Brian H.
18 Aukema 0000-0003-4370-0499, Polly C. Buotte 0000-0002-6572-2878, Rutuja Chitra-Tarak 0000-0001-
19 9714-7524, Christopher J. Fettig 0000-0002-3560-976X, Michael L. Goulden 0000-0002-9379-3948,
20 Devin W. Goodson 0000-0003-1935-5779, Alexander D. Hall 0000-0003-4973-8500, Charles D.
21 Koven 0000-0002-3367-0065, Lara M. Kueppers 0000-0002-8134-3579, Gavin D. Madakumbura
22 0000-0002-0092-4153, James A. Powell 0000-0002-0594-0136, Robert M. Scheller 0000-0002-
23 7507-4499.

24 **Affiliation:**

25 **(1) Los Alamos National Laboratory, Earth and Environmental Sciences Division (EES-14) MS J495. Los**
26 **Alamos, NM 87545, USA**

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the [Version of Record](#). Please cite this article as [doi: 10.1111/GCB.15927](https://doi.org/10.1111/GCB.15927)

This article is protected by copyright. All rights reserved

27 **(2) Department of Forestry and Environmental Resources, North Carolina State University. Raleigh, NC**
28 **27607, USA**
29 **(3) Department of Entomology, University of Minnesota. St. Paul, MN 55108, USA.**
30 **(4) Energy and Resources Group, University of California Berkeley. Berkeley, CA 94720, USA**
31 **(5) Pacific Southwest Research Station, USDA Forest Service. Davis, CA 95618, USA**
32 **(6) Department of Earth System Science, University of California. Irvine, CA 92697, USA**
33 **(7) Canadian Forest Service, Natural Resources Canada. Victoria, BC V8Z 1M5, Canada**
34 **(8) Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095, USA**
35 **(9) Lawrence Berkeley National Laboratory, Climate and Ecosystem Sciences Division. Berkeley, CA**
36 **94720, USA**
37 **(10) Mathematics and Statistics Department, Utah State University, Logan, UT 84322, USA**

38 *Corresponding author. Available at (253) 205 6300, zjrobbin@NCSU.edu

39 **Abstract**

40 Quantifying the responses of forest disturbances to climate warming is critical to our understanding of
41 carbon cycles and energy balances of the Earth system. The impact of warming on bark beetle outbreaks
42 is complex as multiple drivers of these events may respond differently to warming. Using a novel model
43 of bark beetle biology and host tree interactions, we assessed how contemporary warming affected
44 western pine beetle (*Dendroctonus brevicomis*) populations and mortality of its host, ponderosa pine
45 (*Pinus ponderosa*), during an extreme drought in the Sierra Nevada, California, United States. When
46 compared with field data, our model captured the western pine beetle flight timing and rates of
47 ponderosa pine mortality observed during the drought. In assessing the influence of temperature on
48 western pine beetles, we found that contemporary warming increased the development rate of the
49 western pine beetle and decreased the overwinter mortality rate of western pine beetle larvae leading
50 to increased population growth during periods of lowered tree defense. We attribute a 29.9% (95% CI:
51 29.4%-30.2%) increase in ponderosa pine mortality during drought directly to increases in western pine
52 beetle voltinism (i.e., associated with increased development rates of western pine beetle) and, to a
53 much lesser extent, reductions in overwintering mortality. These findings, along with other studies,
54 suggest each degree ($^{\circ}\text{C}$) increase in temperature may have increased the number of ponderosa pine
55 killed by upwards of 35-40% $^{\circ}\text{C}^{-1}$ if the effects of compromised tree defenses (15-20%) and increased
56 western pine beetle populations (20%) are additive. Due to warmings ability to considerably increase
57 mortality through the mechanism of bark beetle populations, models need to consider climate's

58 influence on both host tree stress and the bark beetle population dynamics when determining future
59 levels of tree mortality.

60 **Key words:**

61 Climate impacts, forest dynamics, bark beetles, tree mortality, drought, modeling.

62

63 **Introduction**

64 Tree mortality has increased rapidly across the Western United States in recent decades (Hicke,
65 Meddens and Kolden, 2016; Fettig et al., 2021) and represents a large potential release of carbon to the
66 atmosphere (7-25 Tg C year $^{-1}$) that needs to be considered in projections of future carbon emissions
67 (Hicke et al., 2013). Disturbance regimes of forests have likely already changed due to warming climate
68 (resulting in increased area burned by fire, increased wind severity, more extensive droughts, and
69 outbreaks of certain insects), and thus have reduced forest resilience and the ability to provide
70 continued ecosystem services (Seidel et al., 2016). Forests experiencing altered disturbance regimes
71 may shift into chronic disequilibrium, preventing the ecosystem from returning to its prior state
72 (McDowell et al., 2020; Serra-Diaz et al., 2018). The resulting losses from productivity shifts may cause
73 forests to act as carbon sources to the atmosphere for decades (Dore et al., 2008). However, intensified
74 disturbances may lead to replacement of susceptible tree species with those more adapted to current
75 and future climates, leading to increases or decreases in the productivity of forests long term (Reyer et
76 al., 2017). Therefore, a mechanistic understanding of interactions among climate, forests, and
77 disturbances is necessary to plan forest management actions and to forecast effects of climate change
78 on biological systems.

79 Bark beetles are a major cause of mature tree mortality in many conifer forests worldwide, with
80 up to two percent of bark beetle species capable of landscape-level outbreaks (Bentz and Jönsson, 2015;
81 Raffa et al., 2008). Many of these are what are termed “aggressive” bark beetles, those that can kill live
82 hosts. During outbreaks, aggressive bark beetles kill host trees through synchronized mass attacks
83 mediated by aggregation pheromones by chewing through the bark to feed and reproduce in the
84 subcortical layer (Raffa et al., 2008). Under most conditions, host tree defenses constrain bark beetle
85 populations at endemic levels, but conditions such as drought facilitate bark beetle attacks on better-
86 defended and larger-diameter hosts (Boone et al., 2011). Such hosts yield exponentially more bark
87 beetle offspring, resulting in positive feedbacks that lead to more widespread bark beetle outbreaks
88 (Raffa et al., 2008). Outbreaks collapse when bark beetles exhaust susceptible host pools, or when

89 acutely cold temperatures or predators and parasitoids collapse bark beetle populations (Wermelinger,
90 2002; Sambaraju et al., 2012).

91 Understanding interactions among climate, forests, and disturbances is crucial to global
92 vegetation dynamics as climate change is expected to increase tree mortality attributed to bark beetles
93 in mid-latitude conifer forests over the next century (Weed, Ayres, and Hicke, 2013). Quantifying bark
94 beetle outbreaks and their sensitivity to climate becomes increasingly important as bark beetles spread
95 to higher latitudes and new locations (Weed, Ayres, and Hicke, 2013). Climate change may disrupt bark
96 beetle and host interactions, changing rates of host tree mortality through several mechanisms. First,
97 warming may reduce the time required for bark beetles to develop from eggs to adults and reduce
98 levels of overwintering mortality; these dynamics may increase their population success and thus
99 increase tree mortality (Bentz et al., 2010). Second, increased drought frequency and intensity under
100 climate change may alter interactions among bark beetles and hosts (Williams et al., 2015). Regional
101 drought often acts as a catalyst for bark beetle outbreaks, as water-stressed trees have lower rates of
102 growth and carbon assimilation, which may compromise host defenses (Kolb et al., 2016) and result in
103 large amounts of tree mortality over short periods of time (Fettig, 2019).

104 Many challenges exist in attempting to model these interactions. First, warming temperatures
105 can have complex effects on bark beetle populations. While warming may aid in host procurement by
106 increasing voltinism (the number of generations within a year) (Bentz et al., 2010; Raffa et al., 2015),
107 warmer temperatures can also result in maladaptive life cycles in which the bark beetle's flight
108 synchrony is disrupted, or crucial life stages become misaligned with seasonal temperatures (Lombardo
109 et al., 2018; Bentz et al., 2010). Second, modeling the transition from endemic to epidemic stages of
110 bark beetle populations in a manner that captures both high-severity outbreaks and recovery of tree
111 host populations post-outbreak is difficult (Raffa et al., 2008; Huang et al., 2020). This is because
112 dynamics between host and beetle populations are highly nonlinear and small uncertainties in initial
113 condition or parameterizations can cause a large difference in the timing of the transition from the
114 endemic stage to the epidemic stage (Raffa et al., 2008). Finally, interactions between bark beetles and
115 tree hosts can be altered by changing climatic conditions, affecting both bark beetle population
116 dynamics (development and mortality) and host tree defenses. For example, warming can exacerbate
117 the effects of drought, further compromising host tree defenses, and increasing beetle attack success
118 (Franceschi et al., 2005; Kolb et al., 2016).

119 Vegetation models often assume that bark beetle attacks are contained within background
120 mortality or arise from the plant vulnerability under stressed conditions (Huang et al., 2020; Fisher et al

121 2015). These models may miss the timing and severity of tree mortality, as each measure (tree host
122 defense and bark beetle populations) responds to climate differently with highly non-linear interactions.
123 Accurate forecasts of bark beetle-induced tree mortality should therefore account for the influence of
124 climate on both populations of bark beetles and the defenses of host trees (Anderegg et al., 2015).

125 Much work has been done to forecast bark-beetle-induced tree mortality by using models that
126 simulate the temperature-dependent development and mortality of bark beetles (Bentz and Jönsson,
127 2015). These models can capture beetle population responses to climate and allow for forecasting of
128 annual and decadal fluctuations in bark beetle populations under future climates. The PHENIPS model of
129 European spruce beetle (*Ips typographus* (L.)) (Baier, Pennerstorfer, Schopf, 2007) has been shown to
130 effectively capture bark beetle flight and development. This model has been used to estimate the
131 number of beetle generations annually in various efforts to assess the response of beetle-caused tree
132 mortality to warming and drought (Seidl et al., 2007; Seidl et al., 2017; Netherer et al., 2019). PHENIPS
133 relies on the cumulative sum of degree days since April 1st to track development stage and the number
134 of European spruce beetle generations. Tree mortality and damage is calculated as a function of the
135 number of beetle generations (Seidl et al., 2007). Bark beetles develop as a cohort within a given host,
136 and all disperse once the conditions necessary for development and flight are met. However, treating
137 bark beetles as a single cohort may fail to capture the phenological asynchrony that can occur within
138 host trees or at the landscape scale which may lead to diminished attack (Lombardo et al., 2018).
139 Furthermore, treating a whole generation as synchronous may fail to capture the effects of temperature
140 on the mortality and development of various life stages of the bark beetles. Individual-based models of
141 the development of mountain pine beetle (*Dendroctonus ponderosae*) have illustrated that non-linear
142 effects of temperature on the development of different life stages can mediate bark beetle population
143 success (Régnière et al., 2012). This work suggests the need for life-stage-specific phenological details
144 and overwinter mortality rates (Régnière et al., 2012). However, individual-based models often are too
145 computationally intensive to be applied at larger scales. Integral projection models used for stochastic
146 rate simulation can simulate a population's advancement through the crucial stages of development
147 with associated variability at a reasonable computational cost (Powell and Bentz 2009, Goodsman et al.,
148 2018). As far as we know, however, no models have accurately incorporated this level of bark beetle
149 phenology and mortality with stress-dependent host defense into a single model (Huang et al., 2020).

150 In order to quantify the impact of climate warming on bark beetle population dynamics and the
151 resulting tree mortality, we tested the contribution of two mechanisms influenced by warming
152 temperature (voltinism and overwintering mortality) on levels of host ponderosa pine (*Pinus*

153 *ponderosa*) mortality in the Sierra Nevada resulting from western pine beetle outbreaks (WPB,
154 *Dendroctonus brevicomis*) during the 2012-2015 drought in California. We developed a model of bark
155 beetles' development and interactions among climate, and host defense, comparing historical and
156 contemporary temperature cases and host tree mortality when tree stress was held constant.
157 Specifically, we aimed to test two hypotheses: H1) higher contemporary temperatures increased WPB-
158 induced tree mortality during the drought ; H2) the higher tree host mortality results primarily from
159 shorter WPB generation times (increased voltnism) and not overwintering mortality, as the winter
160 temperatures are not low enough to cause significant mortality of overwintering WPB.

161 **Methods**

162 **Study area**

163 Our study area encompasses the Eldorado, Stanislaus, Sierra, and Sequoia National Forests,
164 Kings Canyon, Sequoia, and Yosemite National Parks, and areas of the Sierra Nevada among them in
165 California, United States (Fig. 1). To differentiate the spatial variability in climate conditions, the total
166 study area was divided into North and South regions along 37.5° latitude (approximately the midpoint)
167 and two elevation bands, determined by the 90th percentile of the host PP range as estimated from the
168 USDA Forest Service Forest Inventory and Analysis Program (hereafter FIA, Bechtold and Patterson,
169 2005) (Fig. 1). These are hence referred to as the four sub-regions.

170 This area is classified as Sierra Nevada mixed conifer consisting of predominantly of PP, sugar
171 pine (*Pinus lambertiana*), incense cedar (*Calocedrus decurrens*), canyon live oak (*Quercus chrysolepis*),
172 California black oak (*Quercus kelloggii*) and white fir (*Abies concolor*). PP are found at elevations from
173 400m, representing the lowest elevations of the mixed conifer forests of the western slope of the Sierra
174 Nevada, up to 2,200m. The Stanislaus Tuolumne Experimental Forests (located near the center of our
175 study area, at an elevation of 1590-1950m) receives on average 940 mm of precipitation, more than half
176 falling as winter snow (Adams, Loughry, and Plaugher, 2004). Precipitation is seasonal, generally with an
177 extended dry period during the summer (June- September) and cool, moist winters typical of a
178 Mediterranean climate type. Air temperatures range from -7° to 7 °C during January and 6° to 27 °C in
179 July.

180 During 2012-2015, an extreme drought initiated bark beetle-caused tree mortality throughout
181 the study area. This drought was among the strongest on record for California and has in part been
182 attributed to climate warming characterized by elevated potential evapotranspiration (Williams et al.,
183 2015). While tree mortality was widespread throughout the central and southern Sierra Nevada, it was
184 not uniform either spatially or by tree species and tree size (Fettig et al., 2019). PP suffered the highest

185 levels of mortality, primarily due to the multivoltine (multiple generations yr^{-1}) WPB, for which PP is the
186 only host in the region. In some areas, mortality of PP exceeded 90%, with greater mortality observed in
187 larger PP size classes ($> 31.8 \text{ cm dbh}$, diameter at 1.37 m in height) (Fettig et al., 2019).

188 **Model Description**

189 We constructed a combined model of bark beetle phenology, population dynamics, and attack
190 on trees to test the contribution of warming on WPB outbreaks (Fig. 2, Sup. 1). As an overview of the
191 process, the first aspect of this is an insect mortality and phenology model (IMAP) which uses daily
192 minimum and maximum temperature to calculate sub-cortical temperatures and calculates WPB growth
193 based on the vital rates of five development stages (Goodisman et al., 2018). It further calculates WPB
194 behaviors such as oviposition and flight initiation for a WPB population. We parameterized IMAP using
195 published phenology of WPB and validated its performance against field data on flight timing and
196 observations of WPB biology (Table S1, Sup. 2). We incorporated IMAP into the tree death and insect
197 attack model (TDIA). The TDIA accounts for the number of bark beetles in flight, the number and size of
198 hosts available, and the drought state during a daily time step to determine the likelihood of tree death.
199 When bark beetles successfully kill a tree host through attack, a proportional number of new egg-laying
200 adult WPB are introduced into the IMAP beetle population model. The TDIA was parameterized based
201 on field data of tree stand age-structure and composition (and tree mortality), along with measured
202 drought surrogates, and validated against the FIA record of tree mortality. Lastly, we ran the combined
203 IMAP/TDIA model under contemporary and historical temperatures to understand how an increase in
204 temperature impacted WPB development and the ultimate level of host tree mortality.

205 The WPB life cycle includes eight stages: egg, four larval instars, pupa, teneral adult, and finally
206 adult (see Miller and Keen, 1960 and the references therein). As adults, WPB aggregate and mass attack;
207 if successful, adults oviposit in egg galleries constructed in the phloem (inner bark). Once the eggs hatch,
208 emerging larvae feed outward towards the outer bark. In the later larval stages, particular temperature
209 thresholds are necessary to begin pupation (the transformation into adults). Before emerging as adults,
210 the bark beetle's exoskeleton hardens in the teneral adult stage. Under bark temperature plays a role in
211 determines the rate of development, while external temperatures play a role in the timing of emergence
212 and flight synchrony (Miller and Keen, 1960; Gaylord et al., 2008).

213 **Insect mortality and phenology model (IMAP)**

214 In order to accommodate the difference between air and under bark (phloem) temperature, we
215 use a statistical model to estimate phloem temperature from air temperature (minimum and maximum
216 daily) (see Sup. 3.2). The statistical model is based on previous phloem temperature models (Lewis,

217 2011; Powell and Bentz, 2009), interpolating between the maximum and minimum temperature using a
 218 sine curve and then corrects for the difference between mean air temperature and mean phloem
 219 temperature. Specifically,

220
$$T_i = \beta_{0j} + \beta_{1j}(\mu_t + \left(\frac{\Delta_t \sin(\theta_j)}{2}\right)), \quad (1)$$

221
 222 where θ_j is the discretized circular angle in radians, which can be one of 7 regularly spaced values in the
 223 set $\{-\frac{\pi}{2}, -\frac{\pi}{4}, \dots, \pi, \frac{5\pi}{4}\}$ following the cycle from daily minimum to daily maximum, Δ_t is the daily
 224 temperature range and μ_t is the mean daily temperature. The constants β_{0j} and β_{1j} are regression
 225 parameters relating phloem and air temperature at time j . This function considers the period between
 226 minimum and maximum temperatures of the first day and then the maximum temperature of the first
 227 day and minimum temperature of the next day, generating eight three-hour periods for which the daily
 228 median rate of development is calculated. The median rate of development for WPB (R_i) is calculated
 229 based on a temperature and stage-dependent rate equation (Hilbert and Logan, 1983) as follows:

230

231
$$R_i = R_{0i} \left(\frac{(T - T_{0i})^2}{(T - T_{0i})^2 + k_i} \right) - e^{\frac{T_{mi} - (T - T_{0i})}{d_i}}, \quad (2)$$

232 where R_{0i} is a parameter scaling the development rate at temperature (T) for development state i . The
 233 minimum development temperature (°C) in the stage is T_0 , the maximum survivable temperature at a
 234 given stage is T_m . The parameters k_i and d_i are estimated shape-parameters. The stochastic rate, r_j , at a
 235 specific time step j , t_j , is assumed to follow a lognormal distribution with median rate, $R_i(T(t_j))$, given in
 236 eq.2 as follows,

237
$$p(r_j; \mu_j, \sigma_s^2) = \frac{1}{r_j \sqrt{2\pi\sigma_s^2}} e^{\frac{-(\ln(r_j) - \mu_j)^2}{2\sigma_s^2}}, \quad (3)$$

238 where

239
$$\mu_j = \ln(R_j[T(t_j)]\Delta t),$$

240 σ_s^2 is the scale parameter in the lognormal, $T(t_j)$ is the temperature during the time step, and the aging
 241 increment for a particular individual during the time interval is $r_j \Delta t$. The distribution of developmental
 242 ages across individuals at the next time step is updated based on the distribution of rates at the current
 243 time step (eq. 3) and the current distribution of developmental ages using convolution.

244 Overwintering mortality of WPB larvae is based on the coldest winter temperature (°C) for a
 245 given year. The surviving larvae (S_L) are calculated as follows,

246

$$S_L = \frac{n_l}{1 + e^{\frac{-(T_{\min} + \alpha)}{b}}}, \quad (4)$$

247 where n_l is the number of larvae, α and b are parameters fit to empirical data, and T_{\min} is the minimum
 248 winter temperature (°C). Overwintering mortality for the other WPB life stages is defined as threshold
 249 temperatures below which a proportion of the population is removed.

250 After WPB reaches adulthood, a proportion of the adult population takes flight at each time
 251 step, based on the daily maximum temperature. The proportion of the population to take flight (P_f) was
 252 determined by a nonlinear function (McCambridge, 1971) defined as,

253

$$P_f = x_0 + x_1 T + x_2 T^2, \quad (5)$$

254 where T is the maximum daily temperature (°C), P_f is the proportion of the WPB population to initiate
 255 flight and $0 \leq P_f \leq 1$, P_f is zero when below and above set breakpoints for minimum and maximum flight
 256 temperature and x_0, x_1, x_2 are estimated from empirical data. See Goodsman et al. (2018) for a more
 257 detailed description of IMAP.

258 Tree defense and insect attack model

259 The tree defense and insect attack (TDIA) model determines attack success rate based on host
 260 tree density for different host tree size classes, the attack preference of WPB for host tree size classes
 261 and the impact of drought stress and tree size on host defense. We divided PP into two size classes (10-
 262 31.8 and >31.8 cm dbh) due to WPB's preference for colonizing larger PP (Fettig et al., 2019, Stephenson
 263 et al., 2019), and based on data (see Section S2.3) that showed clear differences in mortality between
 264 these two size classes of PP. We did not consider PP < 10 cm dbh as they generally would not serve as
 265 hosts for WPB (Miller and Keen, 1960, Fettig et al., 2019). The WPB that successfully colonize PP become
 266 the parents in the next generation within the IMAP model. WPB that do not successfully colonize a PP
 267 die.

268 Once WPB reach flight, as estimated by IMAP, their likelihood of successful attack is calculated
 269 based on the density of PP, the amount of drought stress experienced by PP, and the density of WPB in
 270 flight at a given time. If we begin with the mean expected number of successful attacks per PP (a_t) as
 271 follows,

272

$$a_t = \frac{k b_i}{N_t}, \quad (6)$$

273 where b_i is the density of WPB in flight (beetles/ha) attracted to a given PP host class and N_t is the
 274 potential number of hosts (PP/ha) in each host size class. The approach for calculating b_i is discussed
 275 below in equations (12- 14). We assume a spatially implicit representation of dispersal efficiency to
 276 determine the fraction of the WPB population that can successfully attack susceptible PP. Specifically,
 277 the term k represents the aggregation efficiency of WPB to attack PP, accounting for some amount of
 278 WPB loss during dispersal and aggregation.

279 Given the expected number of WPB attacks per PP (a_t), the resulting rate of tree mortality,
 280 $F(\varphi; a_t)$, is calculated as follows

$$281 \quad F(\varphi; a_t) = \frac{a_t}{\varphi}, \quad (7)$$

282 where φ is the critical number of attacking WPB needed to overcome a single PP's defenses and $0 \leq$
 283 $F(\varphi; a_t) \leq 1$. The remaining PP host density is calculated as follows,

$$284 \quad N_{t+1} = N_t(1 - F(\varphi; a_t)). \quad (8)$$

285 The resulting WPB parents (P_{t+1}) from this attack for each PP size class are represented as follows,

$$286 \quad P_{t+1} = \varphi N_t F(\varphi; a_t). \quad (9)$$

287 The resulting parents of each PP size classes are combined and used in the IMAP model to initiate the
 288 next WPB generation.

289 As stated in eq. (7), φ is the critical number of attacking WPB needed to overcome a single PP's
 290 defense. As φ increases, the probability of PP survival increases and the WPB in flight become
 291 ineffective in reproducing. We related φ and the influence of drought and PP size as a logarithmic
 292 equation

$$293 \quad \log(\varphi) = \beta_0 + \beta_1 C_t + \beta_2 S, \quad (10)$$

294 where β_0 represents a baseline number of WPB needed to kill a PP; β_1 reflects the influence of drought
 295 on stress C_t ; and β_2 is the reflects the influence of the PP size class (S) (binary 1 or 0). Parameterization
 296 of equation (10) is described further in Sup. 3.9.

297 The influence of drought on PP stress, C_t , for each time step is the 4-year standard precipitation index
 298 calculated as

$$299 \quad C_t = \frac{p_{(4\text{year sum})} - \mu_{\text{normal}}}{\sigma_{\text{normal}}}, \quad (11)$$

300 where μ_{normal} and σ_{normal} are the mean and standard deviation of the 4-year rolling sum of
 301 precipitation (cm) for the period of 1995-2005, calculated for each site and $p_{(4\text{year sum})}$ is the sum of

302 precipitation (cm) in the previous 4 years. See Sup. 2.1 for more information.

303 We included a sub-model to calculate the number of WPB drawn to each PP size classes. We
 304 found further evidence for this decision in our tree mortality data (Sup. 2.3). Before the drought, the
 305 mortality rate of large PP to insects or drought was about half that of small PP to insects or drought;
 306 however, during the drought, the mortality rate of large PP was ~ 2.6 times that of small PP (Fig. S3). To
 307 accommodate this, we calculated the proportion of WPB that attack the larger(preferred) PP size class
 308 (H) as

309
$$H = F(\varphi; a_t)^\rho, \quad (12)$$

310 where $F(\varphi; a_t)$ is the rate of mortality (in proportion of host trees), if all WPB were to attack the
 311 preferred size class, ρ is an estimated parameter, and $0 \leq H \leq 1$.

312 The number of WPB that attack the larger PP size class is calculated as follows,

313
$$b_p = H b_{fl}, \quad (13)$$

314 where b_{fl} is the total number of WPB in flight. The number of WPB that attack the smaller host size class
 315 (less preferred) is calculated as follows

316
$$b_s = b_{fl} - b_p. \quad (14)$$

317 These are used as b_i for each size class in equation (6).

318 Data description

319 Daily climate drivers (precipitation (cm), minimum temperature ($^{\circ}\text{C}$) and maximum temperature
 320 ($^{\circ}\text{C}$) were gathered for each study area from DAYMET (Thorton et al., 2014) for 2001-2018, with the first
 321 five years used to initialize the model (Sup. 2.1). Initial tree density (2005-2006) and tree mortality data
 322 (2007-2018) used for model initialization and calibration were derived from FIA plots within our study
 323 areas (Sup. 2.2). PP density per plot was aggregated to represent the density at a given diameter class in
 324 each patch using the plot level adjustment factors and was then scaled to a per hectare basis. Data from
 325 2005-2006 were used to calculate initial conditions for the stands in 2006, using the mean density (Sup.
 326 2.2).

327 To calculate tree mortality, we isolated the host species and only kept entries for which
 328 mortality was linked to insects or drought (Fig. S2). We included both mortality that was classified as
 329 drought or insect as the FIA dataset does not specify mortality attributed to WPB. Without a clear
 330 method of attribution in individual plot level data, it was necessary to attribute all PP mortality to WPB,
 331 which may overestimate the total amount of WPB mortality. Fettig et al., (2019) determined that 89.8

332 % of large PP (> 31.8 cm) and 77.0 % of smaller host PP (10-31.8 cm) were killed by WPB. We observed a
333 very similar pattern in the FIA-based mortality data to those of the more extensively censused plots of
334 Fettig et al., (2019) in Sup. 2.2. Given WPB is not known to colonize trees after death like other bark
335 beetles, we assumed that all PP colonized by WPB were not killed prior to attack (Miller and Keen, 1960;
336 Fettig et al., 2019). While there were other bark beetle species killing during the drought event, a vast
337 majority of PP mortality throughout the region during the drought were attributed to WPB (Fettig et al.,
338 2019).

339 **Model calibration**

340 To parameterize the IMAP model, we synthesized data found in Miller and Keen (1960). This
341 seminal work provides summaries of many studies conducted by the USDA Forest Service and others on
342 the ecology and management of WPB (Sup. 3). The data presented provide estimates of the
343 development rates for eggs, larvae, late larvae, pupae, teneral adults and adults under various
344 temperatures (Sup. 3.4, 5). Miller and Keen, (1960) also provides mortality thresholds for different life
345 stages of WPB and average population statistics on background brood mortality necessary for
346 simulation.

347 We used a Markov Chain Monte-Carlo sampler to parameterize TDIA against the observed tree
348 mortality (N = 45,000 model runs) (Sup. 3.10). We used a multivariate lognormal proposed distribution
349 based on a pre-model sampling run. For the TDIA parameters ($k, \beta_0, \beta_1, \beta_2, \rho$), estimates of mortality
350 were determined using the attack model and biological parameters. Within the attack model, k
351 determines the aggregation effectiveness of the WPB to PP (eq. 6). $\beta_0, \beta_1, \beta_2$ determine the defenses of
352 trees in relation to drought (β_1) and tree size class (β_2) (eq. 10). The parameter ρ determines the
353 relative influence of the size class preference (eq. 12). Parameter values that resulted in less than
354 biologically feasible WPB successful attack numbers were also removed (< 500 WPB attacking the larger
355 host size class). A range was provided for the parameters of the initial population of endemic WPB,
356 calculated from survival rates and flight records.

357 **Model Validation**

358 We validated WPB rate of development and flight initiation by comparing modeled runs with
359 field capture data. We compared IMAP projections against WPB flight data for a research site (Eldorado
360 National Forest) containing multiple traps within our study area (Hayes, Fettig, and Merrill, 2009). The
361 model was run using the minimum and maximum daily temperature drivers for the area and time
362 surveyed and compared the relative flight for the days in which capture data were available. Model runs
363 for flight validation were started the previous fall (Oct 15th) to account for overwintering development.

364 For validation of the TDIA model, we tested how well the underlying model captured the
365 dynamics using leave-one-site cross validation. We fit the model four times removing one subregion
366 from each. Next, for each, we predicted the subregion that had been removed and assessed accuracy of
367 the predictions.

368 **Hypothesis testing**

369 To test the contribution of climate warming to PP mortality caused by WPB, we removed the
370 amount of climate warming observed over the last century and held precipitation at observed levels. We
371 measured climate warming by finding the difference in the monthly means between our study period
372 (2001-2018) and historical conditions (1895-1945) for both the maximum and minimum daily
373 temperature (Sup. 4.1,4.2). The mean for both maximum and minimum daily temperature was
374 subtracted from the observed maximum and minimum daily temperature for each month.

375 This new climate driver was then used to test H1 by comparing PP mortality between historical
376 and contemporary temperature simulations. We further ran simulations wherein either the
377 development rate of WPB, or the overwinter mortality, was changed to historical conditions. To test H2,
378 we compared these runs against the contemporary simulations to understand the relative contribution
379 of each mechanism. The 95 % confidence interval of all simulation runs was used to determine the WPB-
380 induced PP mortality difference between scenarios. We additionally analyzed the mean development
381 rate under each climate driver, and the number of mortality events for different life stages of the WPB
382 population (Sup. 4.3, 4.4).

383 **Results**

384 **Model calibration**

385 The final acceptance rate for the Mark Chain Monte-Carlo sampler was 25.4% and the greatest
386 autocorrelation was in the β_0 , which remained above 0.1 for approximately 100 samples. We thinned
387 the resulting chain to every 100 samples to account for autocorrelation. The model correctly simulated
388 the temporal pattern of the WPB outbreak at the regional scale, remaining in the endemic stage (<1 PP
389 killed ha^{-1}) before the drought, the building stage ($1-5$ PP killed ha^{-1}) at the beginning of the drought, and
390 the epidemic stage (>10 PP killed ha^{-1}) after three years of drought (Fig. S14). The predicted mortality
391 was able to explain 73% of the variance in the observed mortality data (Fig. S14). The estimated values
392 for each parameter and the 95% confidence interval were used in the scenario simulations (Table 1).
393 These parameters produced tree defense values for ϕ that are $\sim 300-63,000$ for the smaller size class and
394 $\sim 550-104,000$ for the larger size class (Fig. S13) and with mortality occurring commonly within the
395 expected range of beetles necessary to kill a tree (Miller and Keen, 1960).

396 **Model validation**

397 Our phenology and flight model captures the general timing of annual flight when tested over
398 three separate years using a Kolmogorov–Smirnov test. Only one of the traps in any of the years tested
399 was determined to be significantly different ($p > 0.05$ for all other traps tested). Comparing the mean
400 observed rate suggests we fail to reject the null hypothesis that the simulated and observed data are
401 similarly distributed (Fig. 3). This suggests good correspondence between model flight timing and data
402 collected in the field (Hayes, Fettig, and Merrill, 2009).

403 In validating the TDIA model using leave-one-site cross validation, we found the model captured
404 91.28 of the variability in the resulting PP population at any time step and captured 70.59% of the
405 variability in the amount of PP mortality at any time step (Fig. S15). While this is lower than the initial
406 parameterization runs ($R^2 = 0.71$ vs $R^2 = 0.73$) it seems the underlying method is consistent even with
407 single sub-regions not included in the calibration, and that the model is capturing the underlying
408 interaction between PP stress and WPB populations well.

409 **Impact of warming on WPB population dynamics**

410 Warmer contemporary temperatures increased WPB voltinism as simulated through the mean
411 rate of development across the four subregions. During the drought period voltinism increased an
412 average of 1.46 generations per sub-region (~ 0.36 generations yr^{-1}) when comparing contemporary and
413 historical temperatures (Fig. 4a). At the same time, warmer contemporary temperatures slightly
414 reduced overwintering mortality (Fig. 4b). Under contemporary temperatures, overwintering mortality
415 rates of larvae averaged 2.67 % compared to 3.33 % for historical temperatures (Fig. 4b). These two
416 mechanisms resulted in an increase in WPB flight per year during the years of peak PP mortality (Fig. 4c).
417 During the contemporary climate simulations, the number of WPB reaching flight was 35.1% higher at
418 the initiation of the drought and remained elevated (37.4-45.4%) during the drought years when
419 compared to the historical simulations (Fig. 4c).

420 **Impact of warming on levels of WPB-caused tree mortality**

421 PP mortality resulting from WPB attacks increased 29.9% (95% CI [29.4%-30.2%]) under warmer
422 contemporary temperatures when compared to historical temperatures during the same period (Fig. 5).
423 The largest increase in PP mortality aligns with the years where PP mortality was highest, an increase of
424 5.86 trees ha^{-1} during peak mortality. Due to the preference of WPB for colonizing large-diameter PP
425 (>31.8 cm dbh), this equates to a loss of ~ 45.6 % of PP biomass (Sup. 4.5). This result supports our
426 proposed H1. Simulations isolating the mechanisms (WPB development and overwinter mortality) that

427 could increase PP mortality showed distinct effects (Fig. 6). Reductions in overwintering mortality
428 slightly increased PP mortality (6.4%), while increases in voltnism increased PP mortality by 26.9%. This
429 result supports our proposed H2.

430 **Discussion**

431 In our study, contemporary warming increased positive feedbacks between WPB populations
432 and drought-stressed hosts contributing to the high levels of PP mortality observed during the drought
433 period (Fig. 5). This affirms H1, that higher contemporary temperatures increase WPB-induced tree
434 mortality during the drought. In our simulation, the WPB outbreak began following multiple years of
435 drought as tree defenses weakened and the number of WPB required to kill individual PP decreased.
436 Warmer contemporary temperatures led to an increase in WPB population during this period (through
437 the mechanisms of increased voltnism and decreased overwintering mortality) (Fig. 4), ultimately
438 leading to ~30% higher PP mortality than under historical temperatures. As WPB attack efficiency
439 decreased, due to the absence of drought and loss of most of the suitable tree hosts, WPB populations
440 returned to endemic levels (Fig. 4).

441 The difference between the two mechanisms (increased voltnism and decreased overwintering
442 mortality) suggests that the increasing development rate played a greater role in increasing host
443 mortality. This affirms H2, that higher PP mortality mainly results from shorter WPB generation times, as
444 the winter temperatures are normally not critically low enough to limit WPB populations in the Sierra
445 Nevada. The increase in WPB voltnism accounted for a large majority of the increase in PP mortality,
446 though a slight reduction in levels of overwintering mortality of WPB larvae was observed (Fig. 4 and Fig
447 6). Further, our results suggest that only minor increases in the voltnism (~ 0.36 generations yr⁻¹) can
448 substantially increase the population levels of multivoltine species, such as WPB. Of note, both
449 projections of WPB voltnism (historically and contemporary) are within the range reported for WPB in
450 the Sierra Nevada (i.e., 2-4 generations yr⁻¹, Miller and Keen, 1960). In our simulations, neither the
451 contemporary nor the cooler historical winter temperatures were sufficiently cold to collapse WPB
452 populations. This reflects our understanding of WPB population dynamics in the Sierra Nevada, where
453 historically, only rarely did high levels of overwintering mortality occur (Keen and Furniss, 1937; Miller
454 and Keen, 1960).

455 Over the next century, tree mortality from bark beetles will become increasingly important to
456 forest dynamics (Bentz et al., 2010; Buotte et al., 2017). Bark beetle outbreaks have increased over the
457 past two decades leading to tree mortality across ~4.3 million hectares in the U.S. (Raffa et al., 2008;
458 Hicke et al., 2020) and are threatening the suitability of some forests (Fettig et al., 2021). Many, though

459 not all, of these outbreaks, appear to be driven by warming temperatures, drought, and elevated host
460 stress, trends likely to increase across the next century (Weed, Ayres and Hicke, 2013). Our results
461 suggest that warming and drought each had unique effects on levels of PP mortality during the extreme
462 drought event in the Sierra Nevada. We find that each degree ($^{\circ}\text{C}$) of mean annual warming across the
463 study area led to an increase in the number of PP killed by WPB by $\sim 20\%$ solely through the effect of
464 warming on WPB populations (study region mean annual temperature increase of $1.4\text{ }^{\circ}\text{C}$). Similar results
465 could occur in areas where bark beetle species have yet to hit their developmental maxima (Deutch et
466 al., 2007). A study of the same tree mortality event (Goulden and Bales, 2019) focused on the separate
467 mechanism of tree moisture-stress (mediated by evapotranspiration.) found warming to increase tree
468 mortality by $\sim 15\text{--}20\text{ }^{\circ}\text{C}^{-1}$. This suggests that each degree ($^{\circ}\text{C}$) increase in temperature may have
469 increased the number of PP killed by upwards of $35\text{--}40\text{ }^{\circ}\text{C}^{-1}$ if the effects of compromised tree
470 defenses ($15\text{--}20\%$) and increased bark beetle (WPB) populations (20%) are additive. There is a possibility
471 that some portion of the increase would be host trees susceptible to both conditions (thus not additive),
472 however given the non-linear effect drought has on initiating bark beetle mortality events there is a
473 further possibility these effects would create a greater than additive feedback. However, further study
474 would be necessary to determine that effect. Of note, WPB was not the only bark beetle species causing
475 significant levels of tree mortality during the drought period, though it alone was implicated in most of
476 the PP mortality (Fettig et al., 2019). Mountain pine beetle (*Dendroctonus ponderosae*), for example,
477 killed many sugar pine (*Pinus lambertiana*) during the drought. While tree mortality attributed to bark
478 beetles is an inherent part of many coniferous forests, massive bark beetle attacks of the magnitude
479 observed in the Sierra Nevada can fundamentally shift the ecological function and structure of these
480 forests (Fettig et al., 2019; Stephens et al., 2018). Further, species-specific mortality can facilitate forest
481 type conversion (Fettig et al., 2019; Stephens et al., 2018).

482 Our results suggest an increase in future bark beetle disturbance due to increased voltinism.
483 Similar simulations of *Ips typographus* bark beetles in the forests of Austria found that the land area
484 disturbed by bark beetles is projected to increase 684% under a warming of 4°C (Seidl et al., 2017).
485 Similar increases in voltinism were modeled for the behavior of spruce beetle (*Dendroctonus rufipennis*)
486 in Colorado, moving from primarily semi-voltine (less than one generation a year) to univoltine (one
487 generation a year) (Temperli et al., 2015). While increases in temperature may increase the severity and
488 frequency of outbreaks, this may dampen subsequent outbreaks by severely reducing hosts (Foster et
489 al., 2018).

490 Our study provides a framework to connect the unique relationships among drought, vegetation

491 dynamics, and resulting tree mortality for individual host and beetle relationships (Restiano et al., 2019).
492 Models of future change that consider only changes in tree physiology in response to climate or consider
493 insect mortality as included in background mortality will misrepresent the mortality on the landscape, as
494 both beetle populations and tree moisture stress mediate host mortality levels (Anderegg et al., 2015).
495 McDowell and Allen, (2015), posit that tall conifers with isohydric traits are increasingly susceptible to
496 increased drought stress; this may be further compounded when these trees are the preferred hosts of
497 bark beetles. As these species are required to close their stoma earlier during the drought, their ability
498 to continually defend themselves against bark beetle attack will decrease. This type of dual susceptibility
499 illustrates the importance of accounting for both the pressure of attacking beetle populations and the
500 response of host defenses to the climate.

501 Our model represents a step forward for mechanistic simulation of bark beetle populations and
502 the mortality they inflict in tree hosts. Previous beetle-caused tree mortality models simulated the
503 phenology of beetles as a uniform cohort often at a uniform rate, calculating the necessary thermal
504 units need to finish as cohort or to initiate flight (Seidel et al., 2007, Temperli et al., 2015). We feel the
505 inclusion of the stage dependent temperature response is crucial to determine the temperature
506 response of the beetles to warming, as much of their successes is determined by the synchrony of
507 crucial life states and not just the accumulation of thermal units (Bentz and Jönsson 2011, Logan and
508 Powell, 2001; Powell and Logan, 2005).

509 While our model advances understanding of mechanistic insect disturbances, there are several
510 avenues for improvement. Dynamics that affect host defenses such as tree host proportion, evaporative
511 demand, and the role of non-structural carbon, which we here have simplified to a regional drought
512 index (4-year SPI), all determine host stress (Koontz et al., 2021; Goulden and Bales, 2019; Huang et al.,
513 2020; Madakumbura et al., 2020). The inclusion of additional host defense dynamics would likely
514 improve the model's performance in situations where drought is not the dominant driver of host
515 defenses and where there are varied levels of defense for multiple hosts. Beetle attack is often the
516 critical last step in the mortality of conifers; however, as seen in field data from Fettig et al. (2019),
517 occasionally severely weakened larger trees are capable of defending themselves against beetle attack.

518 Several beetle phenology models have been incorporated within vegetation demography
519 models to better capture the response of trees to nutrient limitation, forest and host density, and
520 drought measures (soil moisture, vapor pressure deficit, precipitation, etc) (Foster et al., 2018; Seidl and
521 Rammer, 2017; Temperli et al., 2015). Many of these use a statistical or hazard ranking system to
522 simulate tree defense (Foster et al., 2018, Seidl and Rammer, 2017), while others use a fixed number of

523 beetles necessary to kill a tree (Fahse and Heurich, 2011; Goodisman et al., 2016). We feel that these
524 approaches are best synthesized through an understanding of the beetle pressure necessary to kill a
525 tree, as informed by the stress that the tree is experiencing. This approach provides the opportunity to
526 directly relate bark beetle pressure to measures of host tree stress already utilized with tree physiology
527 models such as carbon starvation or loss of hydraulic conductance (McDowell et al., 2013).

528 Including further bark beetle dynamics could also improve the ability to track outbreaks.
529 Incorporating finer scale host and bark beetle densities and beetle migration would improve our
530 understanding of the emergent properties of outbreaks (Anderegg et al., 2015). The inclusion of density
531 (both of host and bark beetle) specific aggregation has been a predictive measure of bark beetle attack
532 (Powell and Bentz, 2014), and range of aggregation pheromones can help to inform the migration of
533 bark beetles both to aggregate at tree hosts and deter additional bark beetles when populations within
534 a host are too high (Fahse and Heurich, 2011). We did not include the presence of antagonists with our
535 model owing to limited data on antagonist in the study area and because they are believed to play a
536 minor role when compared to host susceptibility in the WPB and PP system (Bellows, 1998). However, it
537 has been shown to be an important component in the *Ips typographus* system and the inclusion of a
538 more mechanistic density dependent mortality would likely improve the model (Fahse and Heurich,
539 2011).

540 Data on beetle processes and history of outbreak is often a limiting factor in beetle model
541 development. A limited number of bark beetle phenological models are available due to limitations in
542 our understanding of the ecology of most bark beetle species (Bentz and Jönsson, 2015). Additionally,
543 quantifying the indirect effects of climate on the host tree physiology, host tree distribution and the
544 community of organisms that interact during a bark beetle's life cycle may be necessary (Bentz et al.,
545 2010). We included tree mortality attributed to drought or insects in our calibration data, owing to the
546 uncertainty of attribution in the sampling method by the FIA. This data overall aligned with the more
547 intensive attribution gathered from Fettig et al., (2019), and is likely a conservative estimate of PP
548 mortality (Sup. 2.2.). However, the uncertainty of FIA attribution may overestimate the amount of
549 mortality attributed to WPB. This may explain the model's difficulty in accurately capturing mortality
550 within the smaller tree host size class for the years immediately during the drought (Fig. S14), as these
551 may be records of host trees succumbing to other causes of death.

552 Given the projections of future drought globally, the resilience of many forests will likely decline
553 without intervention to reduce insect outbreaks (Seidl, 2014, Seidel et al., 2017, Pokhrel et al., 2021). A
554 wide array of tools and tactics are available to reduce the severity and extent of bark beetle infestations

555 when applied properly at appropriate spatial and temporal scales (Fettig et al., 2007, Fettig and
556 Hilszczanksi, 2015). Efforts to decrease susceptibility of forest stands focus on reducing tree densities
557 and increasing tree species and stand age diversities, while landscape management focuses on
558 configuration and composition of susceptible stands to foster greater disaggregation of hosts to prevent
559 broad-scale impacts (Honkaniemi, Rammer, and Seidl, 2020). Reducing tree density is also a prevalent
560 management prescription to mitigate more extensive fire disturbance, although, fire prevention
561 management focuses primarily on the understory, while bark beetle prevention would require removing
562 hosts in the overstory (Agee and Skinner, 2005). Limiting the impact of bark beetles through the
563 increased harvesting of conifers in some systems may prove ineffective as overall risk increases under a
564 warming climate and this may have deleterious effects on carbon storage and biodiversity (Zimova et al.,
565 2020). As seen in the 2012-2015 Sierra Nevada, the conditions presented by extreme droughts may
566 introduce higher-level regulation into the bark beetle-host system, with high levels of mortality even
567 under much lower host densities (Koontz et al., 2021). Concerted management to mitigate both
568 wildfires and bark beetle outbreaks may require allowing both disturbances to occur, which will create
569 the condition that prevents them from rising to such extreme intensities (Hessburg et al., 2019).
570 Prioritization of management responses will become increasingly important due to constraints imposed
571 by limitations in resources, infrastructure, and markets, among other factors. For example, tree
572 populations at the lower margins of elevational and latitudinal constraints are likely to experience
573 higher levels of mortality (as demonstrated for PP during this extreme drought event, Fettig et al., 2019),
574 and thus these areas likely justify increased surveillance and management.

575 **Conclusion**

576 Capturing bark beetle population dynamics is crucial to determining host tree mortality under drought.
577 We created a framework to examine tree mortality in response to temperature by including beetle
578 phenology, beetle overwintering mortality and host stress. We found that contemporary warming
579 increased the development rate of WPB and decreased the overwintering mortality rate of WPB larvae
580 leading to increased population growth during periods of lowered tree defense. Furthermore, warming
581 enhanced the feedback between drought and WPB populations and increased PP mortality in the 2012-
582 2015 Sierra Nevada drought. Due to the insect- and host- specific nature of herbivory, process-based
583 models need to include climate dynamics affecting both participants to accurately predict tree mortality
584 levels.

585 **Acknowledgements:**

586 UC National Laboratory Fees Research Program (Z.R., C.X., L.K., P.B., A.H.)(LA-UR-20-30376)
587 Support from McIntire-Stennis project MIN-17-095. (B.A.)
588 Grants from the Pacific Southwest Research Station Climate Change Competitive Grant Program (C.F.)
589 (PSW-2016-03, PSW-2017-02).
590 NCSU Chancellor's Faculty Excellence Program (Z.R., R.S.)

591 **Author contributions:**

592 Z.R. C.X., R.C. designed the study, with input from P.B., C.F., M.G., C.K., L.K., L.M.
593 B.A, J.P., L.M., C.F., Z.R, C.X, D.G. designed the biological western pine beetle model and the beetle
594 attack and host defense model.
595 Z.R., C.X, D.G, designed the computational framework.
596 C.F., L.M. provided field data on beetle induced tree mortality and beetle flight.
597 J.P. provided data on phloem temperature.
598 A.H., G.M., M.G., provided input into climate data and attribution methods.
599 Z.R. and C.X. conducted the simulations.
600 Z.R. analyzed model outputs, with input from other authors.
601 All authors aided in interpreting the results and contributed to the manuscript.

602 **Competing interests:**

603 The authors declare no competing interests.

604 **Data Availability:**

605 Data for this analysis or code to run simulations that support the findings of this study are available from
606 the corresponding author upon reasonable request. Data and code will be available in online repository
607 prior to publication at https://github.com/ZacharyRobbins/IMAP_TDIA_Warming

608 **References**

609 Adams, M. B., Loughry, L., & Plaugher, L. (2004). *Experimental Forests and Ranges of the USDA Forest*
610 *Service*. USDA Forest Service Northeastern Research Station.

611 Agee, J. K., & Skinner, C. N. (2005). Basic principles of forest fuel reduction treatments. *Forest Ecology*
612 *and Management*, 211(1), 83–96. <https://doi.org/10.1016/j.foreco.2005.01.034>

613 Anderegg, W. R. L., Hicke, J. A., Fisher, R. A., Allen, C. D., Aukema, J., Bentz, B., Hood, S., Lichstein, J. W.,
614 Macalady, A. K., McDowell, N., Pan, Y., Raffa, K., Sala, A., Shaw, J. D., Stephenson, N. L., Tague, C., &

615 Zeppel, M. (2015). Tree mortality from drought, insects, and their interactions in a changing climate.
616 *New Phytologist*, 208(3), 674–683. <https://doi.org/10.1111/nph.13477>

617 Baier, P., Pennerstorfer, J., & Schopf, A. (2007). PHENIPS—A comprehensive phenology model of *Ips*
618 *typographus* (L.) (Col., Scolytinae) as a tool for hazard rating of bark beetle infestation. *Forest Ecology*
619 *and Management*, 249(3), 171–186. <https://doi.org/10.1016/j.foreco.2007.05.020>

620 Bechtold, W. A., & Patterson, P. L. (2015). *The Enhanced Forest Inventory and Analysis Program* ↗
621 *National Sampling Design and Estimation Procedures* (SRS-GTR-80; p. SRS-GTR-80). U.S. Department of
622 Agriculture, Forest Service, Southern Research Station. <https://doi.org/10.2737/SRS-GTR-80>

623 Bellows, T. S. (1998). *Biological Control of Arthropod Forest Pests of the Western United States: A Review*
624 *and Recommendations*. USDA Forest Service, Forest Health Technology Enterprise Team.

625 Bentz, B. J., & Jönsson, A. M. (2015). Modeling Bark Beetle Responses to Climate Change. In *Bark Beetles*
626 (pp. 533–553). Elsevier. <https://doi.org/10.1016/B978-0-12-417156-5.00013-7>

627 Bentz, B. J., Régnière, J., Fettig, C. J., Hansen, E. M., Hayes, J. L., Hicke, J. A., Kelsey, R. G., Negrón, J. F., &
628 Seybold, S. J. (2010). Climate Change and Bark Beetles of the Western United States and Canada: Direct
629 and Indirect Effects. *BioScience*, 60(8), 602–613. <https://doi.org/10.1525/bio.2010.60.8.6>

630 Boone, C. K., Aukema, B. H., Bohlmann, J., Carroll, A. L., & Raffa, K. F. (2011). Efficacy of tree defense
631 physiology varies with bark beetle population density: A basis for positive feedback in eruptive species.
632 *Canadian Journal of Forest Research*, 41(6), 1174–1188. <https://doi.org/10.1139/x11-041>

633 Buotte, P. C., Hicke, J. A., Preisler, H. K., Abatzoglou, J. T., Raffa, K. F., & Logan, J. A. (2017). Recent and
634 future climate suitability for whitebark pine mortality from mountain pine beetles varies across the
635 western US. *Forest Ecology and Management*, 399, 132–142.
636 <https://doi.org/10.1016/j.foreco.2017.05.032>

637 Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R.
638 (2008). Impacts of climate warming on terrestrial ectotherms across latitude. *Proceedings of the*
639 *National Academy of Sciences*, 105(18), 6668–6672. <https://doi.org/10.1073/pnas.0709472105>

640 Dore, S., Kolb, T. E., Montes-Helu, M., Sullivan, B. W., Winslow, W. D., Hart, S. C., Kaye, J. P., Koch, G. W.,
641 & Hungate, B. A. (2008). Long-term impact of a stand-replacing fire on ecosystem CO₂ exchange of a

642 ponderosa pine forest. *Global Change Biology*, 14(8), 1801–1820. <https://doi.org/10.1111/j.1365-2486.2008.01613.x>

644 Fahse, L., & Heurich, M. (2011). Simulation and analysis of outbreaks of bark beetle infestations and
645 their management at the stand level. *Ecological Modelling*, 222(11), 1833–1846.
646 <https://doi.org/10.1016/j.ecolmodel.2011.03.014>

647 Fettig, C. J. (2019). Socioecological Impacts of the Western Pine Beetle Outbreak in Southern California:
648 Lessons for The Future. *Journal of Forestry*, 117(2), 138–143. <https://doi.org/10.1093/jofore/fvy029>

649 Fettig, C. J., & Hilszczański, J. (2015). Chapter 14—Management Strategies for Bark Beetles in
650 Conifer Forests. In F. E. Vega & R. W. Hofstetter (Eds.), *Bark Beetles* (pp. 555–584). Academic Press.
651 <https://doi.org/10.1016/B978-0-12-417156-5.00014-9>

652 Fettig, C. J., Klepzig, K. D., Billings, R. F., Munson, A. S., Nebeker, T. E., Negrón, J. F., & Nowak, J. T.
653 (2007). The effectiveness of vegetation management practices for prevention and control of bark beetle
654 infestations in coniferous forests of the western and southern United States. *Forest Ecology and
655 Management*, 238(1), 24–53. <https://doi.org/10.1016/j.foreco.2006.10.011>

656 Fettig, C. J., Mortenson, L. A., Bulaon, B. M., & Foulk, P. B. (2019). Tree mortality following drought in the
657 central and southern Sierra Nevada, California, U.S. *Forest Ecology and Management*, 432, 164–178.
658 <https://doi.org/10.1016/j.foreco.2018.09.006>

659 Fettig, C. J., Progar, R. A., Paschke, J., & Satio, F. J. (2021). Forest Insects. In: Robertson, G., and T.
660 Barrett, Eds. *Disturbance and Sustainability in Forests of the Western United States.*, Portland, OR: U.S.
661 Department of Agriculture, Forest Service, Pacific Northwest Research Station. (Gen. Tech Rep. PNW-
662 GTR-992.), 81-121.

663 Fisher, R. A., Muszala, S., Verteinstein, M., Lawrence, P., Xu, C., McDowell, N. G., Knox, R. G., Koven, C.,
664 Holm, J., Rogers, B. M., Spessa, A., Lawrence, D., & Bonan, G. (2015). Taking off the training wheels: The
665 properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED). *Geoscientific Model
666 Development*, 8(11), 3593–3619. <https://doi.org/10.5194/gmd-8-3593-2015>

667 Foster, A. C., Shuman, J. K., Shugart, H. H., & Negron, J. (2018). Modeling the interactive effects of
668 spruce beetle infestation and climate on subalpine vegetation. *Ecosphere*, 9(10), e02437.
669 <https://doi.org/10.1002/ecs2.2437>

670 Franceschi, V. R., Krokene, P., Christiansen, E., & Krekling, T. (2005). Anatomical and chemical defenses
671 of conifer bark against bark beetles and other pests: Tansley review. *New Phytologist*, 167(2), 353–376.
672 <https://doi.org/10.1111/j.1469-8137.2005.01436.x>

673 Gaylord, M. L., Williams, K. K., Hofstetter, R. W., McMillin, J. D., Degomez, T. E., & Wagner, M. R. (2008).
674 Influence of Temperature on Spring Flight Initiation for Southwestern Ponderosa Pine Bark Beetles
675 (Coleoptera: Curculionidae, Scolytinae). *Environmental Entomology*, 37(1), 57–69.
676 [https://doi.org/10.1603/0046-225X\(2008\)37\[57:TOTOSF\]2.0.CO;2](https://doi.org/10.1603/0046-225X(2008)37[57:TOTOSF]2.0.CO;2)

677 Goodsman, D. W., Aukema, B. H., McDowell, N. G., Middleton, R. S., & Xu, C. (2018). Incorporating
678 variability in simulations of seasonally forced phenology using integral projection models. *Ecology and*
679 *Evolution*, 8(1), 162–175. <https://doi.org/10.1002/ece3.3590>

680 Goulden, M. L., & Bales, R. C. (2019). California forest die-off linked to multi-year deep soil drying in
681 2012–2015 drought. *Nature Geoscience*, 12(8), 632–637. <https://doi.org/10.1038/s41561-019-0388-5>

682 Hayes, C. J., Fettig, C. J., & Merrill, L. D. (2009). Evaluation of Multiple Funnel Traps and Stand
683 Characteristics for Estimating Western Pine Beetle-Caused Tree Mortality. *Journal of Economic*
684 *Entomology*, 102(6), 2170–2182. <https://doi.org/10.1603/029.102.0621>

685 Hessburg, P. F., Miller, C. L., Parks, S. A., Povak, N. A., Taylor, A. H., Higuera, P. E., Prichard, S. J., North,
686 M. P., Collins, B. M., Hurteau, M. D., Larson, A. J., Allen, C. D., Stephens, S. L., Rivera-Huerta, H., Stevens-
687 Rumann, C. S., Daniels, L. D., Gedalof, Z., Gray, R. W., Kane, V. R., ... Salter, R. B. (2019). Climate,
688 Environment, and Disturbance History Govern Resilience of Western North American Forests. *Frontiers*
689 *in Ecology and Evolution*, 7. <https://doi.org/10.3389/fevo.2019.00239>

690 Hicke, J. A., Meddens, A. J. H., Allen, C. D., & Kolden, C. A. (2013). Carbon stocks of trees killed by bark
691 beetles and wildfire in the western United States. *Environmental Research Letters*, 8(3), 035032.
692 <https://doi.org/10.1088/1748-9326/8/3/035032>

693 Hicke, J. A., Meddens, A. J. H., & Kolden, C. A. (2016). Recent Tree Mortality in the Western United
694 States from Bark Beetles and Forest Fires. *Forest Science*, 62(2), 141–153.
695 <https://doi.org/10.5849/forsci.15-086>

696 Hicke, J. A., Xu, B., Meddens, A. J. H., & Egan, J. M. (2020). Characterizing recent bark beetle-caused tree
697 mortality in the western United States from aerial surveys. *Forest Ecology and Management*, 475,
698 118402. <https://doi.org/10.1016/j.foreco.2020.118402>

699 Hilbert, D. W., & Logan, J. A. (1983). Empirical Model of Nymphal Development for the Migratory
700 Grasshopper, *Melanoplus sanguinipes* (Orthoptera: Acrididae) 1. *Environmental Entomology*, 12(1), 1–5.
701 <https://doi.org/10.1093/ee/12.1.1>

702 Honkaniemi, J., Rammer, W., & Seidl, R. (2020). Norway spruce at the trailing edge: The effect of
703 landscape configuration and composition on climate resilience. *Landscape Ecology*, 35(3), 591–606.
704 <https://doi.org/10.1007/s10980-019-00964-y>

705 Huang, J., Kautz, M., Trowbridge, A. M., Hammerbacher, A., Raffa, K. F., Adams, H. D., Goodsman, D. W.,
706 Xu, C., Meddens, A. J. H., Kandasamy, D., Gershenson, J., Seidl, R., & Hartmann, H. (2020). Tree defence
707 and bark beetles in a drying world: Carbon partitioning, functioning and modelling. *New Phytologist*,
708 225(1), 26–36. <https://doi.org/10.1111/nph.16173>

709 Keen, F. P., & Furniss, R. L. (1937). Effects of Subzero Temperatures on Populations of Western Pine
710 Beetle *Dendroctonus brevicomis* Lec. *Journal of Economic Entomology*, 30(3), 482–504.

711 Kolb, T. E., Fettig, C. J., Ayres, M. P., Bentz, B. J., Hicke, J. A., Mathiasen, R., Stewart, J. E., & Weed, A. S.
712 (2016). Observed and anticipated impacts of drought on forest insects and diseases in the United States.
713 *Forest Ecology and Management*, 380, 321–334. <https://doi.org/10.1016/j.foreco.2016.04.051>

714 Koontz, M. J., Latimer, A. M., Mortenson, L. A., Fettig, C. J., & North, M. P. (2019). *Cross-scale interaction*
715 *of host tree size and climatic water deficit governs bark beetle-induced tree mortality* [Preprint].
716 EcoEvoRxiv. <https://doi.org/10.32942/osf.io/jz964>

717 Lewis, M. J. (2011). *Modeling Phloem Temperatures Relative to Mountain Pine Beetle Phenology*
718 [Dissertation, Utah State University]. <https://digitalcommons.usu.edu/gradreports/60>

719 Logan, J. A., & Powell, J. A. (2001). Ghost forests, global warming, and the mountain pine beetle
720 (Coleoptera: Scolytidae). *American Entomologist*, 47(3), 160–173.

721 Lombardo, J. A., Weed, A. S., Aoki, C. F., Sullivan, B. T., & Ayres, M. P. (2018). Temperature affects
722 phenological synchrony in a tree-killing bark beetle. *Oecologia*, 188(1), 117–127.
723 <https://doi.org/10.1007/s00442-018-4164-9>

724 Madakumbura, G. D., Goulden, M. L., Hall, A., Fu, R., Moritz, M. A., Koven, C. D., Kueppers, L. M., Norlen,
725 C. A., & Randerson, J. T. (2020). Recent California tree mortality portends future increase in drought-

726 driven forest die-off. *Environmental Research Letters*, 15(12), 124040. <https://doi.org/10.1088/1748-9326/abc719>

727

728 McCambridge, W. F. (1971). Temperature Limits of Flight of the Mountain Pine Beetle, *Dendroctonus*
729 *ponderosae*1. *Annals of the Entomological Society of America*, 64(2), 534–535.

730 <https://doi.org/10.1093/aesa/64.2.534>

731 McDowell, N. G., & Allen, C. D. (2015). Darcy's law predicts widespread forest mortality under climate
732 warming. *Nature Climate Change*, 5(7), 669–672. <https://doi.org/10.1038/nclimate2641>

733 McDowell, N. G., Allen, C. D., Anderson-Teixeira, K., Aukema, B. H., Bond-Lamberty, B., Chini, L., Clark, J.,
734 S., Dietze, M., Grossiord, C., Hanbury-Brown, A., Hurtt, G. C., Jackson, R. B., Johnson, D. J., Kueppers, L.,
735 Lichstein, J. W., Ogle, K., Poulter, B., Pugh, T. A. M., Seidl, R., ... Xu, C. (2020). Pervasive shifts in forest
736 dynamics in a changing world. *Science*, 368(6494), eaaz9463. <https://doi.org/10.1126/science.aaz9463>

737 McDowell, N. G., Fisher, R. A., Xu, C., Domec, J. C., Hölttä, T., Mackay, D. S., Sperry, J. S., Boutz, A.,
738 Dickman, L., Gehres, N., Limousin, J. M., Macalady, A., Martínez-Vilalta, J., Mencuccini, M., Plaut, J. A.,
739 Ogée, J., Pangle, R. E., Rasse, D. P., Ryan, M. G., ... Pockman, W. T. (2013). Evaluating theories of
740 drought-induced vegetation mortality using a multimodel–experiment framework. *New Phytologist*,
741 200(2), 304–321. <https://doi.org/10.1111/nph.12465>

742 Miller, J. M., & Keen, F. P. (1960). *Biology and control of the western pine beetle: A summary of the first*
743 *50 years of research*. <https://digitalcommons.usu.edu/barkbeetles/163>

744 Netherer, S., Panassiti, B., Pennerstorfer, J., & Matthews, B. (2019). Acute Drought Is an Important
745 Driver of Bark Beetle Infestation in Austrian Norway Spruce Stands. *Frontiers in Forests and Global*
746 *Change*, 2, 39. <https://doi.org/10.3389/ffgc.2019.00039>

747 Pokhrel, Y., Felfelani, F., Satoh, Y., Boulange, J., Burek, P., Gädeke, A., Gerten, D., Gosling, S. N., Grillakis,
748 M., Gudmundsson, L., Hanasaki, N., Kim, H., Koutroulis, A., Liu, J., Papadimitriou, L., Schewe, J., Müller
749 Schmied, H., Stacke, T., Telteu, C.-E., ... Wada, Y. (2021). Global terrestrial water storage and drought
750 severity under climate change. *Nature Climate Change*, 11(3), 226–233.

751 <https://doi.org/10.1038/s41558-020-00972-w>

752 Powell, J. A., & Bentz, B. J. (2009). Connecting phenological predictions with population growth rates for
753 mountain pine beetle, an outbreak insect. *Landscape Ecology*, 24(5), 657–672.

754 <https://doi.org/10.1007/s10980-009-9340-1>

755 Powell, J. A., & Bentz, B. J. (2014). Phenology and density-dependent dispersal predict patterns of
756 mountain pine beetle (*Dendroctonus ponderosae*) impact. *Ecological Modelling*, 273, 173–185.
757 <https://doi.org/10.1016/j.ecolmodel.2013.10.034>

758 Powell, J. A., & Logan, J. A. (2005). Insect seasonality: Circle map analysis of temperature-driven life
759 cycles. *Theoretical Population Biology*, 67(3), 161–179. <https://doi.org/10.1016/j.tpb.2004.10.001>

760 Raffa, K. F., Aukema, B. H., Bentz, B. J., Carroll, A. L., Hicke, J. A., & Kolb, T. E. (2015). Responses of tree-
761 killing bark beetles to a changing climate. *Climate Change and Insect Pests*, 173–201.

762 Raffa, K. F., Aukema, B. H., Bentz, B. J., Carroll, A. L., Hicke, J. A., Turner, M. G., & Romme, W. H. (2008).
763 Cross-scale Drivers of Natural Disturbances Prone to Anthropogenic Amplification: The Dynamics of Bark
764 Beetle Eruptions. *BioScience*, 58(6), 501–517. <https://doi.org/10.1641/B580607>

765 Régnière, J., Powell, J., Bentz, B., & Nealis, V. (2012). Effects of temperature on development, survival
766 and reproduction of insects: Experimental design, data analysis and modeling. *Journal of Insect
767 Physiology*, 58(5), 634–647. <https://doi.org/10.1016/j.jinsphys.2012.01.010>

768 Restaino, C., Young, D. J. N., Estes, B., Gross, S., Wuenschel, A., Meyer, M., & Safford, H. (2019). Forest
769 structure and climate mediate drought-induced tree mortality in forests of the Sierra Nevada, USA.
770 *Ecological Applications*, 29(4), e01902. <https://doi.org/10.1002/eap.1902>

771 Reyer, C. P. O., Bathgate, S., Blennow, K., Borges, J. G., Bugmann, H., Delzon, S., Faias, S. P., Garcia-
772 Gonzalo, J., Gardiner, B., Gonzalez-Olabarria, J. R., Gracia, C., Hernández, J. G., Kellomäki, S., Kramer, K.,
773 Lexer, M. J., Lindner, M., Maaten, E. van der, Maroschek, M., Muys, B., ... Hanewinkel, M. (2017). Are
774 forest disturbances amplifying or canceling out climate change-induced productivity changes in
775 European forests? *Environmental Research Letters*, 12(3), 034027. [https://doi.org/10.1088/1748-9326/aa5ef1](https://doi.org/10.1088/1748-
776 9326/aa5ef1)

777 Seidl, R. (2014). The Shape of Ecosystem Management to Come: Anticipating Risks and Fostering
778 Resilience. *BioScience*, 64(12), 1159–1169. <https://doi.org/10.1093/biosci/biu172>

779 Seidl, R., Baier, P., Rammer, W., Schopf, A., & Lexer, M. J. (2007). Modelling tree mortality by bark beetle
780 infestation in Norway spruce forests. *Ecological Modelling*, 206(3–4), 383–399.
781 <https://doi.org/10.1016/j.ecolmodel.2007.04.002>

782 Seidl, R., & Rammer, W. (2017). Climate change amplifies the interactions between wind and bark beetle
783 disturbances in forest landscapes. *Landscape Ecology*, 32(7), 1485–1498.
784 <https://doi.org/10.1007/s10980-016-0396-4>

785 Seidl, R., Spies, T. A., Peterson, D. L., Stephens, S. L., & Hicke, J. A. (2016). REVIEW: Searching for
786 resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services. *Journal*
787 *of Applied Ecology*, 53(1), 120–129. <https://doi.org/10.1111/1365-2664.12511>

788 Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr,
789 M., Honkaniemi, J., Lexer, M. J., Trotsiuk, V., Mairotta, P., Svoboda, M., Fabrika, M., Nagel, T. A., & Reyer,
790 C. P. O. (2017). Forest disturbances under climate change. *Nature Climate Change*, 7(6), 395–402.
791 <https://doi.org/10.1038/nclimate3303>

792 Serra-Diaz, J. M., Scheller, R. M., Syphard, A. D., & Franklin, J. (2015). Disturbance and climate
793 microrefugia mediate tree range shifts during climate change. *Landscape Ecology*, 30(6), 1039–1053.
794 <https://doi.org/10.1007/s10980-015-0173-9>

795 Stephens, S. L., Collins, B. M., Fettig, C. J., Finney, M. A., Hoffman, C. M., Knapp, E. E., North, M. P.,
796 Safford, H., & Wayman, R. B. (2018). Drought, Tree Mortality, and Wildfire in Forests Adapted to
797 Frequent Fire. *BioScience*, 68(2), 77–88. <https://doi.org/10.1093/biosci/bix146>

798 Stephenson, N. L., Das, A. J., Ampersee, N. J., Bulaon, B. M., & Yee, J. L. (2019). Which trees die during
799 drought? The key role of insect host-tree selection. *Journal of Ecology*, 107(5), 2383–2401.
800 <https://doi.org/10.1111/1365-2745.13176>

801 Temperli, C., Bugmann, H., & Elkin, C. (2013). Cross-scale interactions among bark beetles, climate
802 change, and wind disturbances: A landscape modeling approach. *Ecological Monographs*, 83(3), 383–
803 402. <https://doi.org/10.1890/12-1503.1>

804 THORNTON, P. E., THORNTON, M. M., MAYER, B. W., WILHELM, N., WEI, Y., DEVARAKONDA, R., &
805 COOK, R. B. (2014). *Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 2*.
806 315612.646437 MB. <https://doi.org/10.3334/ORNLDAA/1219>

807 Weed, A. S., Ayres, M. P., & Hicke, J. A. (2013). Consequences of climate change for biotic disturbances
808 in North American forests. *Ecological Monographs*, 83(4), 441–470. <https://doi.org/10.1890/13-0160.1>

809 Wermelinger, B. (2002). Development and distribution of predators and parasitoids during two
810 consecutive years of an *Ips typographus* (Col., Scolytidae) infestation. *Journal of Applied Entomology*,
811 126(10), 521–527. <https://doi.org/10.1046/j.1439-0418.2002.00707.x>

812 Williams, A. P., Seager, R., Abatzoglou, J. T., Cook, B. I., Smerdon, J. E., & Cook, E. R. (2015). Contribution
813 of anthropogenic warming to California drought during 2012–2014. *Geophysical Research Letters*,
814 42(16), 6819–6828. <https://doi.org/10.1002/2015GL064924>

815 Zimová, S., Dobor, L., Hlásny, T., Rammer, W., & Seidl, R. (2020). Reducing rotation age to address
816 increasing disturbances in Central Europe: Potential and limitations. *Forest Ecology and Management*,
817 475, 118408. <https://doi.org/10.1016/j.foreco.2020.118408>

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839 **Tables**

840

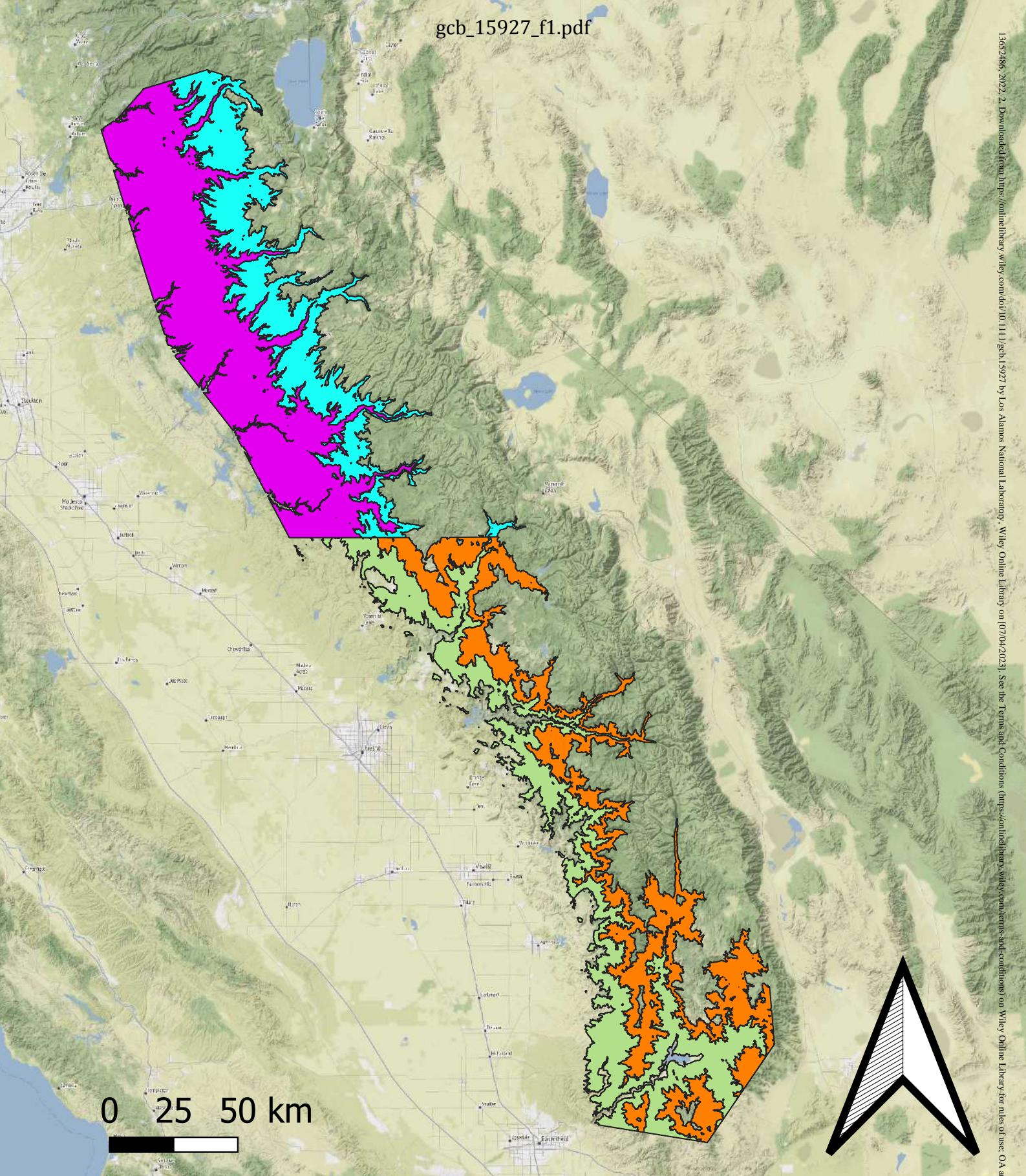
841 **Table 1. Parameter values and confidence intervals estimated for the TDIA model.**

Parameter	Median (95% CI)
k	0.2009 (0.1971-0.2052)
β_0	10.03 (10.00-10.15)
β_1	1.545 (1.527-1.550)
β_2	0.506 (0.500-0.523)
Initial Population	840 (726-870)
ρ	0.051 (0.049-0.053)

842 **Figures**

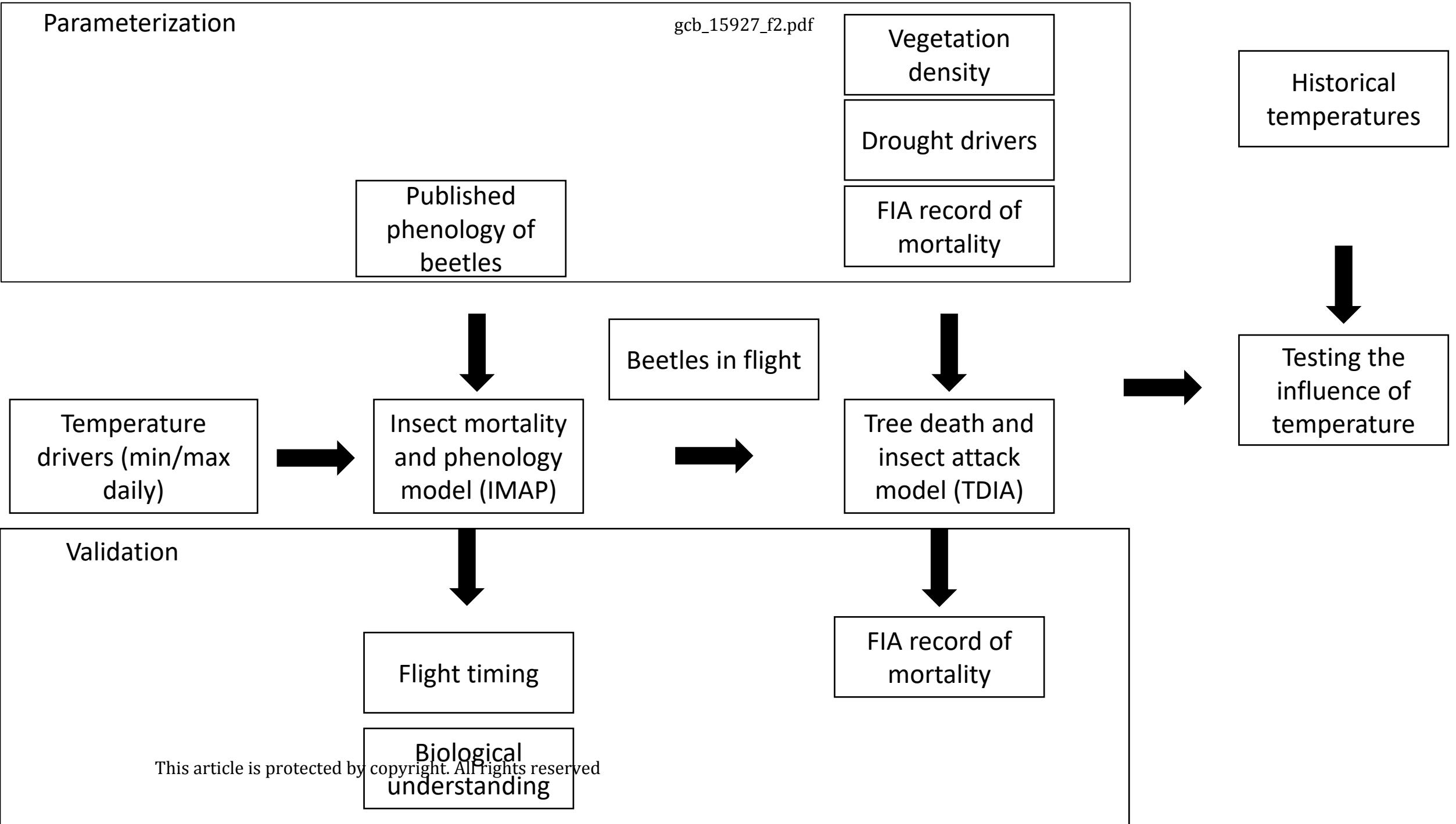
843 **Fig. 1:** Study area: California, United States. These four sub-regions (represented by different colors) were
 844 used in the calculation of climate, vegetation, and tree mortality variables.

845 **Fig 2:** Overview of the model structure, parameterization, and validation.

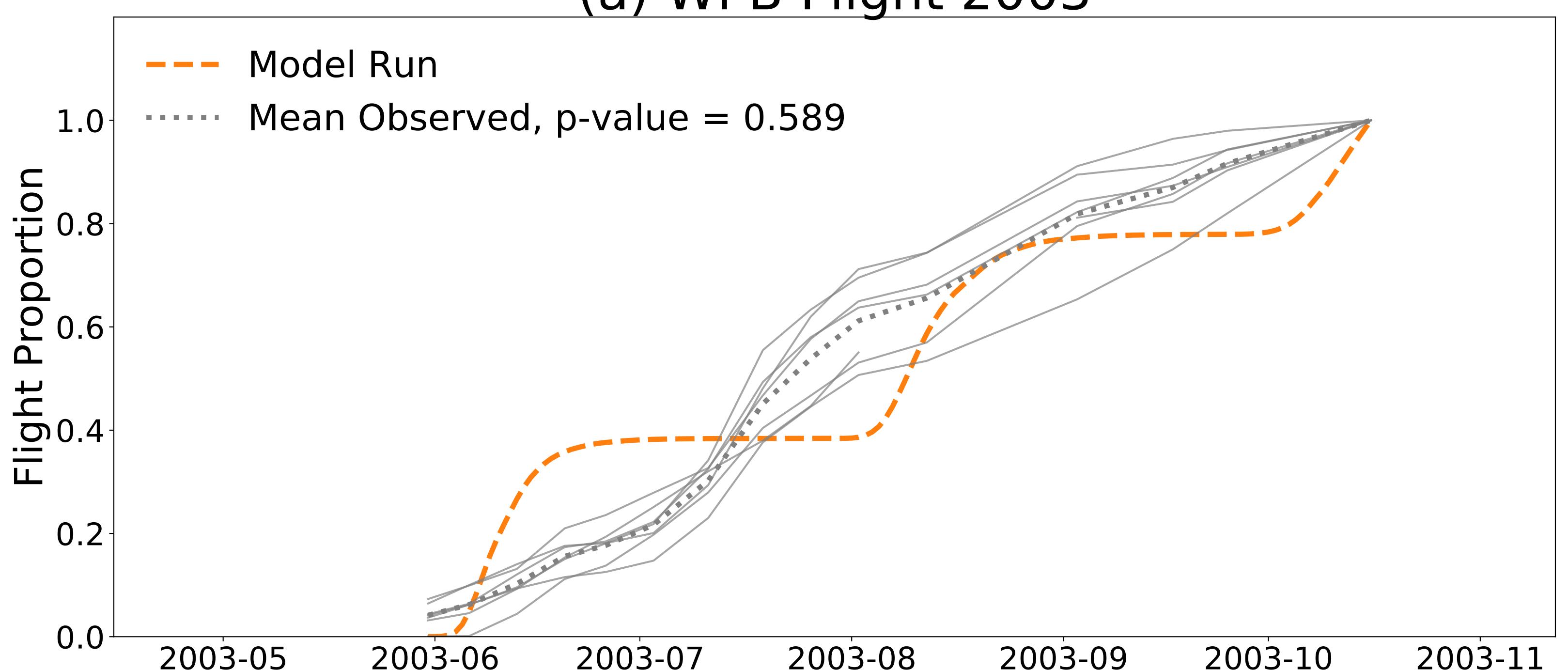

846 **Fig. 3:** Comparison of proportion of western pine beetle (WPB) flight per time step of modeled runs
 847 against field data from Hayes, Fettig and Merrill, 2009 for three years (a) 2003, (b) 2004 and (c) 2005.
 848 Each plot was sampled approximately every 7 days. Models were run from the previous fall (Oct. 15th) to
 849 account for the development of the prior overwintering generation. Solid grey lines represent individual
 850 traps

851 **Fig 4:** Mechanisms of warming influence on western pine beetle (WPB). (a) Cumulative number of WPB
 852 generations completed in the simulation under historical and contemporary climate. (b) Expected annual
 853 mean larval mortality rate under historical and contemporary climate. (c) Mean number of WPB in flight
 854 under historical and contemporary climate. Drought period refers to the overlapping years of
 855 meteorological drought (2012-2015) and lagged PP responses (2014-2016). Error bars represent the 95%
 856 confidence interval.

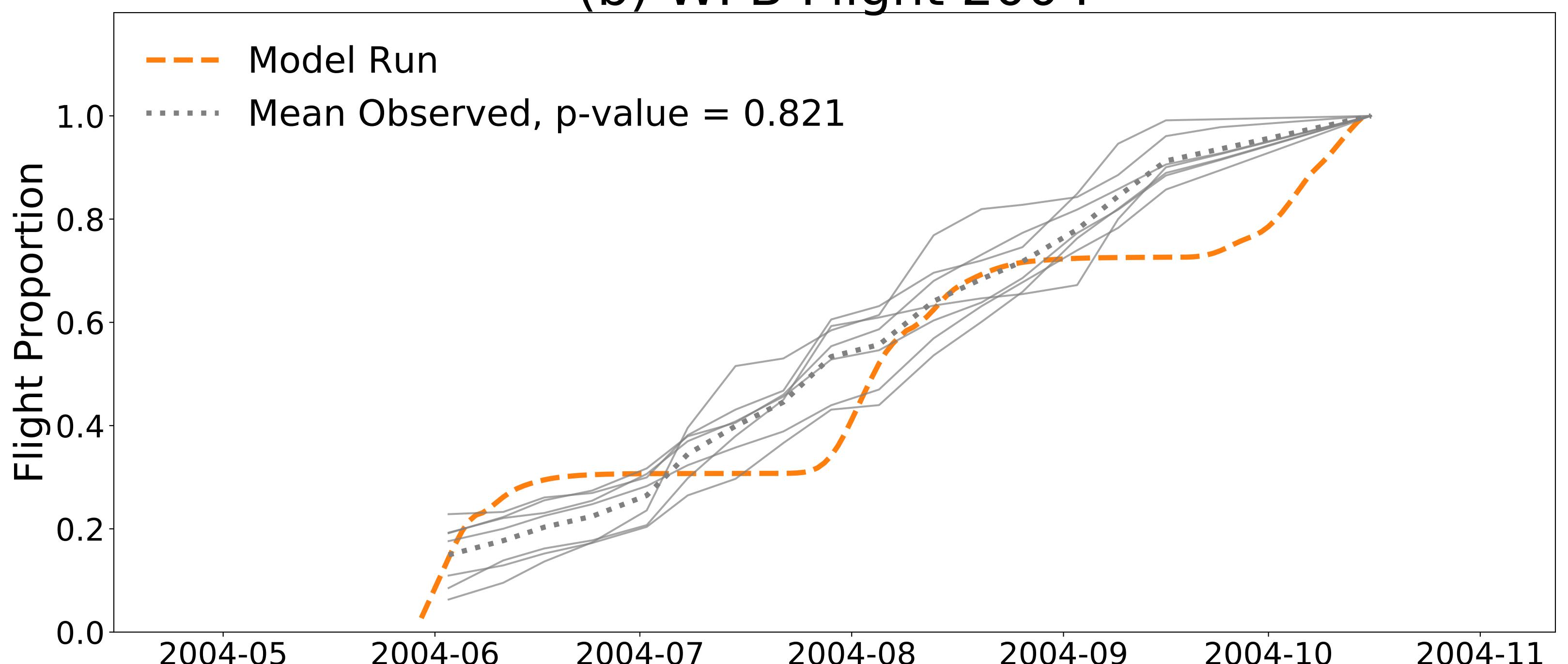
857 **Fig 5:** Impacts of warming on mortality of Ponderosa Pine (PP) attributed to western pine beetle (WPB)
 858 during drought; (a) Simulated PP mortality under contemporary and historical temperatures for small
 859 hosts (10-31.8cm dbh) and large hosts (>31.8 cm dbh); and (b) Simulated PP mortality under


860 *contemporary and historical temperatures for the drought and non-drought periods. Drought years*
861 *refers to the overlapping years of meteorological drought (2012-2015) and lagged PP responses (2014-*
862 *2016). Error bars represent the 95% confidence interval.*

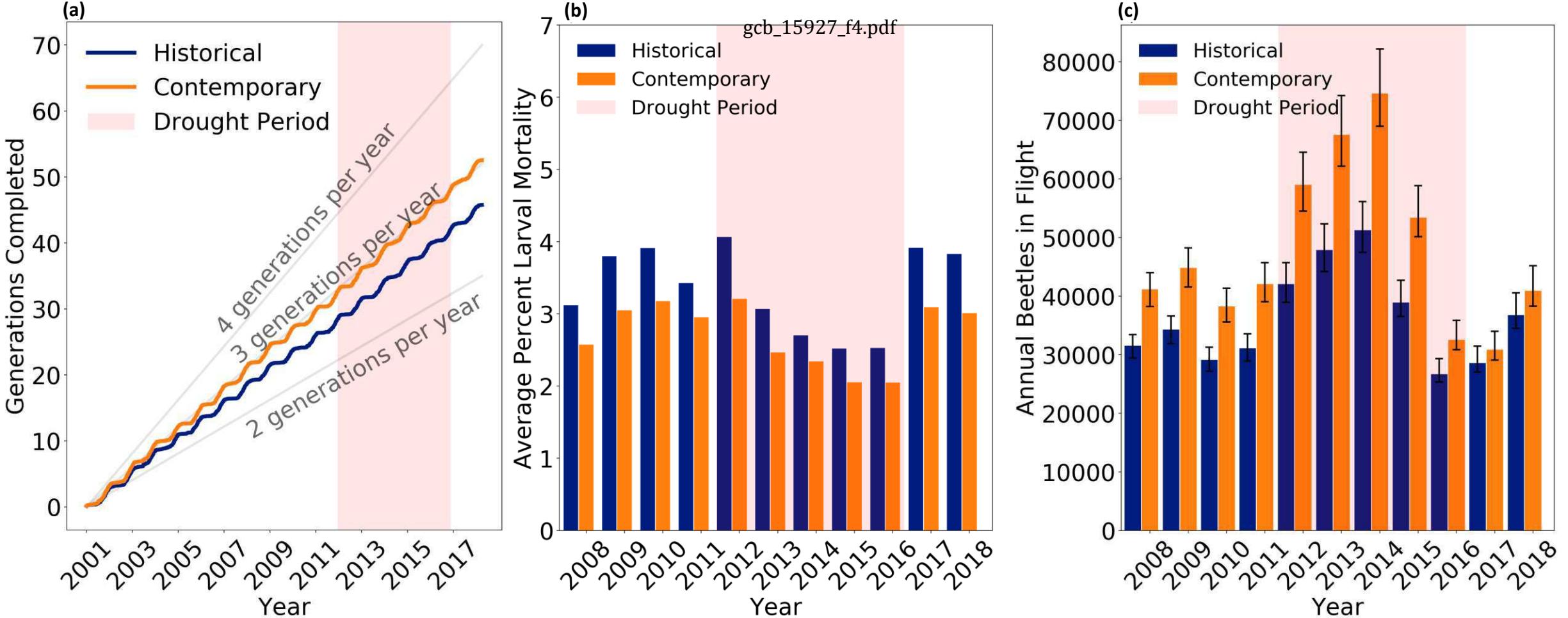
863 **Fig 6:** *The relative influences of separate mechanisms of WPB response to warming on ultimate PP*
864 *mortality. Number of PP killed per hectare under four simulations, with altered climate drivers impacting*
865 *WPB development and overwintering mortality. Drought period refers to the overlapping years of*
866 *meteorological drought (2012-2015) and lagged PP responses (2014-2016). Error bars represent the 95%*
867 *confidence interval.*

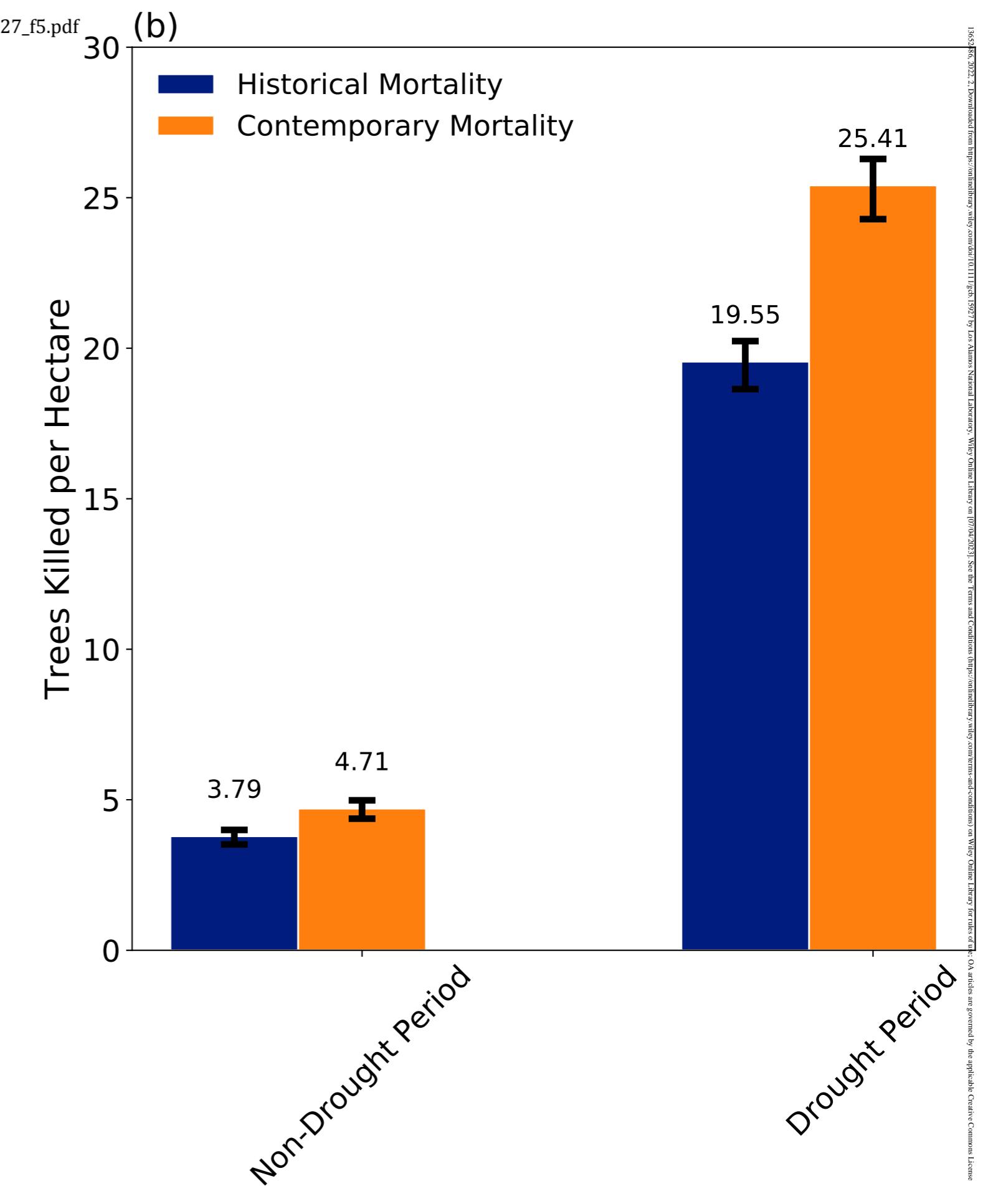
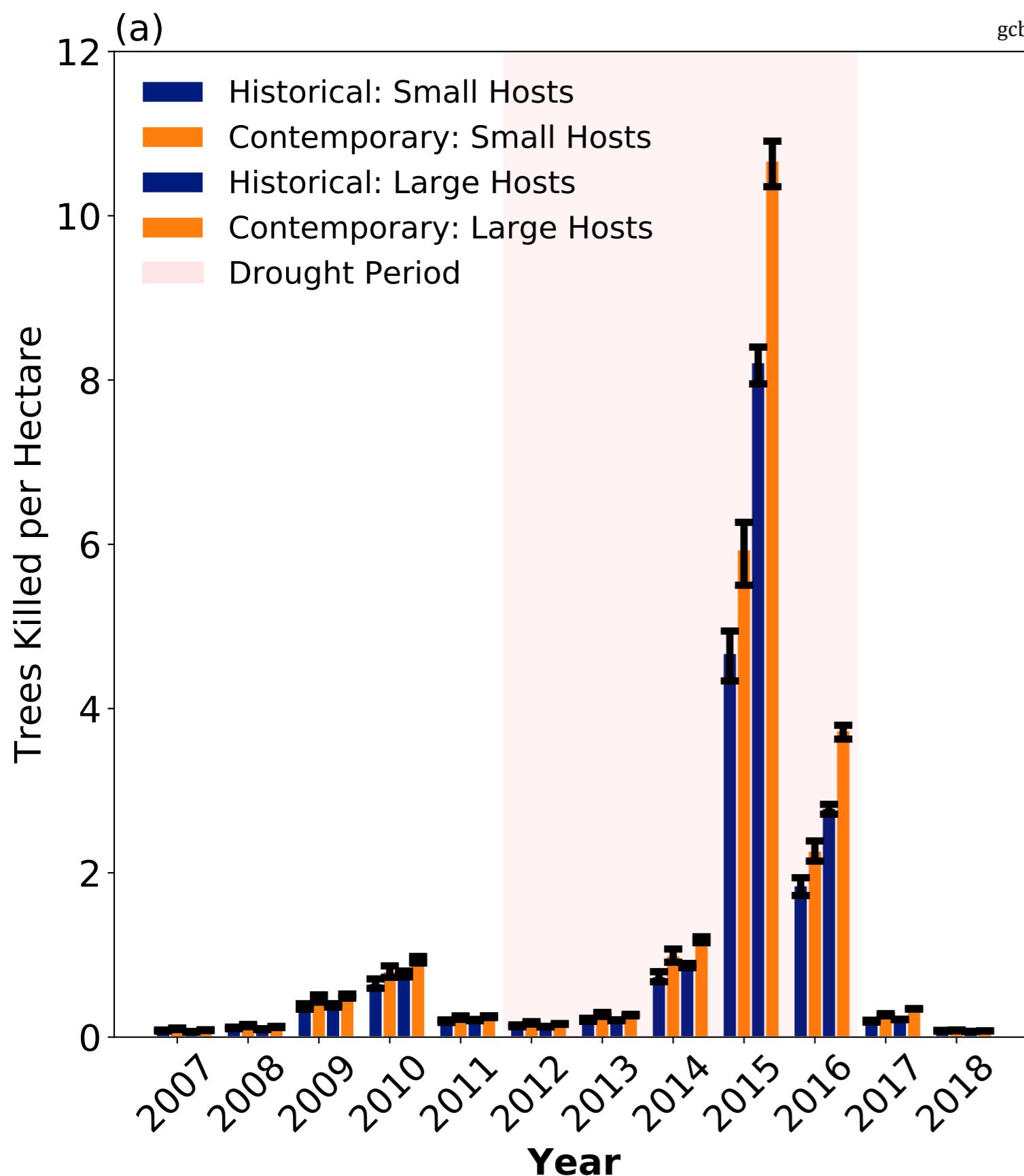


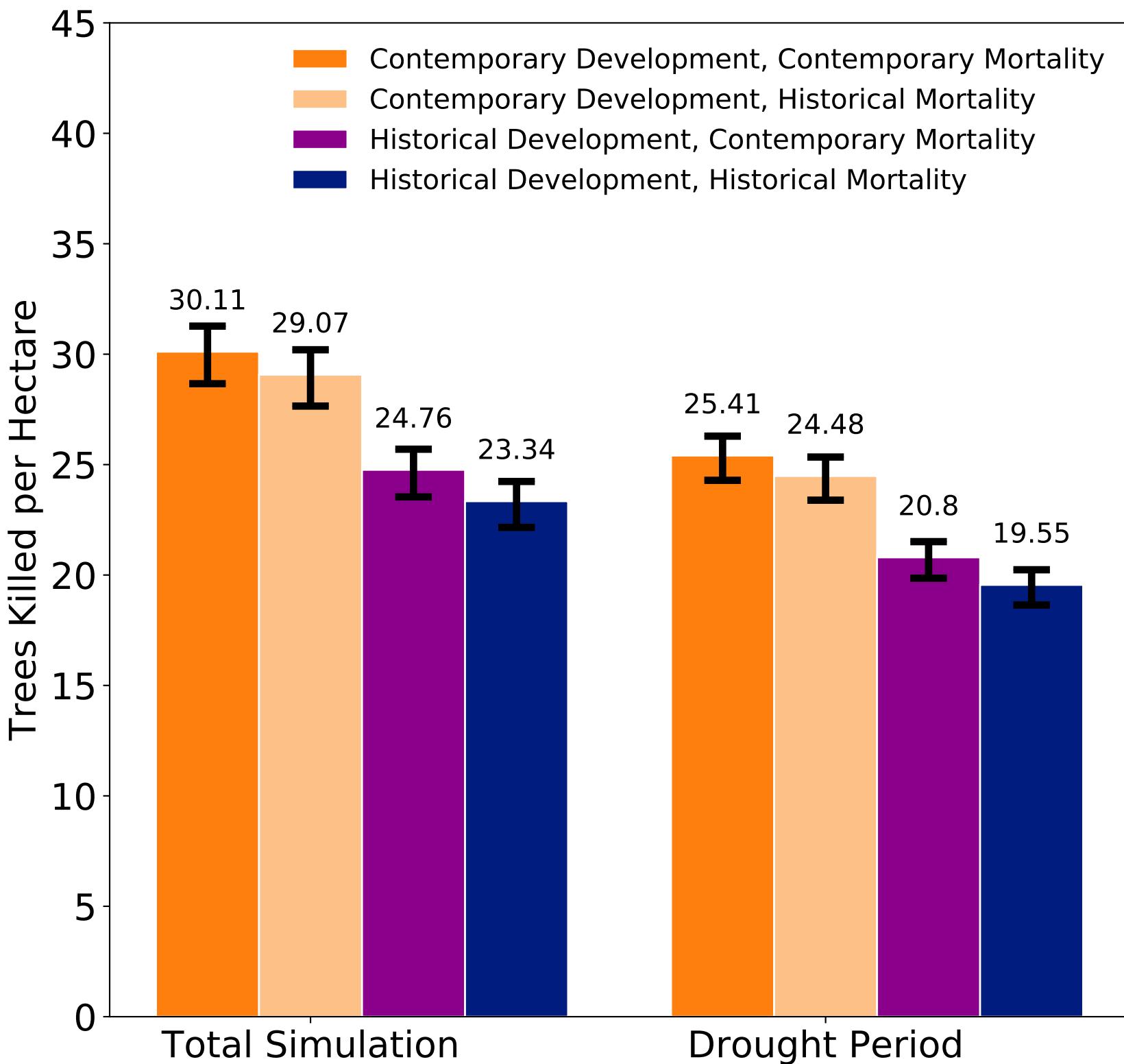
- █ Latitude < 37.5, Elev. 800-1499m
- █ Latitude < 37.5, Elev. 1500-2200m
- █ Latitude \geq 37.5, Elev. 400-1399m
- █ Latitude \geq 37.5, Elev. 1400-2000m


This article is protected by copyright. All rights reserved


(a) WPB Flight 2003





(b) WPB Flight 2004



(c) WPB Flight 2005

