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ABSTRACT

Phosphorus pentoxide (P20s) is investigated as an acid scavenger to remove the acidic
impurities in a commercial lithium hexafluorophosphate (LiPFe) carbonate electrolyte
to improve the electrochemical properties of Li metal batteries. Nuclear magnetic
resonance (NMR) measurements reveal the detailed reaction mechanisms of P,Os with
the LiPF¢ electrolyte and its impurities, which removes hydrogen fluoride (HF) and
difluorophosphoric acid (HPOF2) and produces phosphorous oxyfluoride (POF3),
OF,P-O-PFs™ anions, and ethyl difluorophosphate (CoHsOPOF,) as new electrolyte
species. The P,Os-modified LiPFs electrolyte is chemically compatible with a Li metal
anode and LiNipsMnp2C00202 (NMC622) cathode, generating a POxFy-rich solid
electrolyte interphase (SEI) that leads to highly reversible Li electrodeposition, while
eliminating transition metal dissolution and cathode particle cracking. The excellent
electrochemical properties of the P»Os-modified LiPFs electrolytes are demonstrated
on Li|[NMC622 pouch cells with 0.4 Ah capacity, 50-um Li anode, 3 mAh cm™
NMC622 cathode, and 3 g Ah'!' electrolyte/capacity ratio. The pouch cells can be
galvanostatically cycled at C/3 for 230 cycles with 87.7% retention.
Introduction

High-energy-density lithium-ion batteries are arguably the most critical component
in society’s quest to electrify transportation. Li metal anodes hold the greatest promise
for significantly increasing their energy density. However, Li metal anodes present
fundamental challenges that have hindered commercialization such as dendrite

formation and low cycling stability. One strategy to mitigate these challenges are to pair



them with solid- or semi-solid-state electrolytes, but low conductivities, various
interfacial stabilities, high impedances, and difficulty in scale-up have been steep
challenges for solid-state electrolytes.!> On the other hand, liquid electrolytes have the
advantages of high conductivity, facile charge transfer, and ease of integration into
large-scale battery assembly and manufacturing lines. To date, the majority of liquid
electrolytes demonstrating good performance in Li metal batteries are composed of
fluorinated solvents and high concentrations of lithium salts containing weakly
coordinating imide anions, including lithium bis(fluorosulfonyl)imide (LiFSI) and its
derivates due to their high degree of dissociation.*!? A potential challenge for these
electrolytes is the large costs of fluorinated solvents and high salt concentrations. In
addition, many of the fluorinated solvents are not readily available and their long-term
environmental and health impact are not clear.!!"!> LiFSI-based electrolytes may also
corrode aluminum (Al) current collectors.'®!” Therefore, it would be tremendously
beneficial if Li metal batteries could be built using commercial Li-ion electrolytes
containing lithium hexafluorophosphate (LiPFs) and organic carbonate solvents, as
commonly used in today’s Li-ion batteries.

However, researchers have long known that LiPFs electrolytes are not compatible
with Li metal anodes due to autocatalytic side reactions originating from trace amount
of water in the electrolyte: a series of hydrolysis reactions starting from phosphorus
pentafluoride (PFs), which is formed during disproportionation of LiPFe into LiF and
PFs, generates hydrogen fluoride (HF).!®2! HF passivates the Li anode surface,

resulting in high overpotential and non-uniform deposition structure.’> More



importantly, HF reacts with the SEI on the lithium metal to produce water, thus
triggering the hydrolysis of PFs to form more HF and re-initiating the cycle. *>**
Furthermore, HF also reacts with the transition metal cathode materials, causing the

2326 and cathode particle cracking. %’

dissolution of transition metals

We hypothesize that the key detrimental property of commercial LiPF¢ electrolytes
that prohibit their use in Li metal batteries is the presence of HF; therefore, a reagent
that can scavenge HF and break the deleterious autocatalytic cycle should vastly
improve electrochemical performance. Although HF scavenger materials has been
previously studied, 2*3° there is no existing work that demonstrates superior cell
performance in realistic Li metal pouch cells coupled with a detailed molecular-level
study. Here, we validate this hypothesis by using phosphorus pentoxide (P20s), a widely
available acid scavenger with a strong hygroscopic nature,’! to modify a commercial 1
M LiPFs electrolyte in mixed ethylene carbonate/diethyl carbonate solvent (EC/DEC,
50/50 volume ratio). The modification is simple: 5 wt.% of P,Os was stirred in the
commercial electrolyte for 24 hours at room temperature, followed by centrifugation
and filtration to remove the remaining solid content. During this process the P>Os
scavenges water and HF, while reacting with electrolyte species to form soluble
phosphorous-containing compounds that stabilize the lithium metal SEI, as shown
below. Note that residual P»>Os is removed during the centrifugation step.
Li||LiNip.sMno2C00202 (NMC622) pouch cells with 0.4 Ah capacity were then

assembled and tested to compare the performance between the commercial and P>Os-

modifed electrolytes. The pouch cells used a Li anode coated on both sides of a copper



current collector (50-um on each side), a NMC622 cathode coated on both sides of an
Al current collector (areal capacity of 3 mAh cm™ on each side), and a lean
electrolyte/capacity ratio of 3 g Ah™! (1.2 g electrolyte per cell). All cells were cycled at
C/10 in the first three cycles (activation) and subsequently charged at C/10 and
discharged at C/3 in the following cycles.

Experimental Methods

Materials: The commercial electrolyte of 1 M LiPFs in a mixture of EC/DEC (50/50
volume ratio), battery grade, was purchased from Sigma-Aldrich. P2Os (=99.99%, trace
metal basis, Sigma-Aldrich) was dried under vacuum at 80°C inside an argon-filled
glovebox for 24 hours prior to use. The LiNig.sMno.2C00202 (NMC622) cathode powder

was purchased from Targray Technology International, Inc.

Electrodes preparation: The lab-made thin Li foil (50 um in thickness) was prepared
using a previously reported method.?? The double-sided Li metal anode was prepared
by sandwiching a copper foil (9 um, MTI Corporation) with two pieces of lab-made Li
metal foil and pressed with a mechanical roller. The cathode slurry was prepared by
mixing 90 wt.% NMC622, 5 wt.% carbon black (Supper C65), and 5 wt.%
polyvinylidene fluoride (PVDEF, Sigma-Aldrich, Mw~534,000) in N-methyl-2-
pyrrolidone (NMP, anhydrous, 99.5%, Sigma-Aldrich) with a centrifugal mixer (Thinky,
AR-100) for 15 min. All the materials in the slurry preparation, except NMP, were dried
under vacuum at 70 °C for 24 hours prior to use. NMP was dried with 3 A molecular
sieves prior to use. The mass ratio of liquid to solid in the slurry was 1.65. The slurry

was coated with an automatic tape casting coater (MTI corporation) on to an aluminum
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current collector (16 um, Gelon LIB Group) with the film applicator set to 300 pm,
which made a 3 mAh cm? NMC622 cathode sheet. The coated electrodes were
transferred into the glovebox and dried at room temperature for 12 hours. Then, the
electrodes were dried under vacuum inside glovebox at 120 °C for 12 hours prior to use.
The thickness of electrodes (90 um for single side) was controlled by calendaring with
a mechanic roller. Single-sided and double-sided cathodes were prepared for coin cells

and pouch cells, respectively.

Cell assembly and electrochemical experiments: Pouch cells were assembled inside
an argon-filled glovebox. Celgard-2400 was used as the separator. The amount of
electrolyte in the pouch cells was kept at 3 g Ah™!. A lab-made pouch cell holder was
used during cycling. The cycling experiments were performed with Neware battery
testers under initial pressure loading of 10 psi using force sensitive resistor calibrated
by Arduino microcontroller as shown in Figure S1 in the supporting Information. A
constant-current-constant-voltage charging protocol was used for all the Li||[NMC622
cells: they were galvanostatically charged to 4.3 V and then held at 4.3 V until the
current dropped to less than C/30 (1 C is defined as 1 mA cm™?). For discharge, all cells
were galvanostatically discharged to 2.5 V. The C rate for formation cycles (the first
three cycles) was kept at C/20 for charging and discharging. After formation cycles,

C/10 was used for charging and C/3 was used for discharging.

EIS analysis: EIS analysis was performed after the 10™, 20", and 30™ cycles of the
Li||[NMC622 full cells. For the EIS measurement at each specific cycle, two identical

cells were cycled at the same conditions. After cycling, these two cells were
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disassembled and the same electrodes were reassembled to make Li|Li and
NMC622|[INMC622 symmetric cells with fresh separator and replenished
electrolyte.’>** The EIS measurements were conducted using a Gamry potentiostat
Interface 1000, scanning over the frequency range from 10° Hz to 0.01 Hz with a 2 mV

amplitude.

Average coulombic efficiency measurement: CR-2016 type coin cells were used to
measure the average coulombic efficiency (CE) of Li deposition and stripping: a lab-
made Li foil with the thickness around 50 pm was first weighed and then pressed to a
Cu substrate as the working electrode. An identical Li electrode was used as the counter
electrode without weighing. Galvanostatic stripping was first applied to the working
electrode under certain current for a certain period of time, followed by deposition with
the same current and same period of time to complete one cycle. After a set number of
cycles, any remaining Li on the working electrode was completely stripped using a 0.5
mA cm current until the stripping cutoff potential (1 V) was reached. The average CE

is calculated from the following equation:**

- C(Tex]+nxCo) X A
Average ™ p X Q+nx Co X A

where n isthe cycle number; Cc is the cycling capacity; T isthe time to completely
strip the working electrode; ] is the current to complete stripping (0.5 mA cm™), A is
the area of the working electrode (1.266 cm™), and my; is the initial mass of the Li
working electrode. Q is the theoretical capacity of Li (3.86 mAh mg™). The CE is the

average of seven individual measurements.



SEM, EDS, and FIB characterizations: The surface morphology and the thickness of
the Li deposition were characterized using a scanning electron microscope (SEM, Nova
Nano S450, 10 kV). The samples were retrieved from the cells in an argon-filled
glovebox and washed with dimethyl carbonate thoroughly to remove any residual
electrolyte. Prior to the SEM characterization, the samples were dried at room
temperature for 24 hours inside the argon-filled glovebox. The samples were then
transported to the SEM facility inside a stainless-steel tube with KF-flange sealing. The
samples were loaded in the SEM using a glove-bag with argon purging gas without
exposing to ambient environment. The elemental mapping of the samples was collected
using an Energy Dispersive X-ray (EDX) spectrometer coupled with the SEM. A
focused ion beam (Quanta™ 3D 200i with Ga liquid metal ion source) was used to
precisely prepare the cross-sectional image of the NMC622 cathode particles. The ion
gun voltage was set to 30 kV, and the current was 30 nA and 7 nA for bulk milling and

polishing, respectively.

XPS: X-ray photoelectron spectroscopy (XPS) spectra were collected using Kratos
AXIS Supra (Al Ka=1486.7 e¢V) at UC Irvine Materials Research Institute (IMRI). The
samples were prepared following the same procedure for SEM samples. The samples
were transported to the XPS facility inside a stainless-steel tube with KF flange sealing
filled with argon. Finally, the samples were loaded in the sample chamber in the
glovebox integrated with Kratos AXIS Supra for XPS analysis. All peaks of XPS data
were analyzed by Casa XPS and calibrated with the reference peak of C 1s at 284.6 eV

(the adventitious carbon).** The relative atomic ratio was calculated using the following
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equation:

A.
_ l/Si

= ZAi/Sl.

RA; x 100%

RA:;: relative atomic ratio of component 1

Ai: Area of the deconvoluted peak of component i

Si: relative sensitivity factor for component 1

The relative sensitivity factors for Kratos AXIS are:

Cls Ols F s S 2p N s Lils
0.278 0.736 1 0.723 0.477 0.025

NMR spectroscopy: Liquid-state 'H, *'P, and '3C NMR experiments were performed
on a Bruker Avance III HD 600 NMR spectrometer with a 14.1 T superconducting
magnet equipped with a Bruker 5-mm Triple Resonance Inverse Probe TXI (600S3 H-
P/C-D-05 Z-gradient) operating at 600.13, 242.94, and 150.90 MHz for 'H, 3'P, and 13C
nuclei, respectively. Liquid-state '’F NMR experiments were performed on a Bruker
Avance III HD 700 NMR spectrometer with a 16.4 T super-conducting magnet
equipped with a 5 mm QCI-F cryoprobe (CP QCI 700S4 H/F-C/N-D-05 Z-gradient),
operating at 658.78 MHz for '°F nuclei. All liquid-state 1D single-pulse NMR spectra
were acquired under quantitative conditions using 26, 21, 10, and 18 kHz rf field
strengths for 'H, 'F, 3!P, and '*C nuclei, respectively, as well as recycle delays of 12,
10, 25, and 30 s, after which all spins relaxed to thermal equilibrium. Liquid-state 2D
19F 3P} heteronuclear multiple-quantum correlation (HMQC) NMR experiments were

performed on a Bruker Avance III 700 NMR spectrometer with a 16.4 T super-



conducting magnet equipped with a PAQXI probe (‘H/'F, 3'P, 13C, N Z-gradient),
operating at 658.78 MHz and 283.42 MHz for '°F and *'P nuclei, respectively, using 10

and 6 kHz rf field strengths.

DEMS: Difterential electrochemical mass spectrometry (DEMS) experiment setup was
reported in a previous study.>® A commercially available GC-MS instrument (Shimadzu
GCMS-QP2020 NX) was used. A glass capillary tube (Polymicro 1068150019) without
any stationary phase on the inner wall was first sealed in the pouch cell using hot melt
adhesive, and then the other end of the capillary tube was connected to the MS. The ion

signals were quantified using standard gases.

Results and Discussion

As displayed in Figure 1a, the P,Os-modified LiPFs electrolyte strikingly improves
the cycling stability of the Li||[NMC622 pouch cells from less than 30 cycles to more
than 200 cycles with an 87.7% capacity retention after 230 cycles. The pouch cell with
the commercial LiPFs electrolyte experiences rapidly increasing charge-discharge
hysteresis during cycling (Figure 1b), while the voltage profiles in the cells using the
P>0Os-modified electrolyte remain virtually unchanged throughout the same number of
cycles (Figure 1c¢). The differential capacity profiles (dQ/dV) versus voltage (Figure
S2 in the Supporting Information) support the observation that the charge-discharge

hysteresis of the cell with the P.Os-modified electrolyte does not change during cycling.
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Figure 1. (a) Cycling performance of Li||[NMC622 pouch cells with 0.4 Ah capacity
(50-um Li on each side of the anode, 3 mAh cm NMC622 on each side of the cathode)
in lean electrolyte (electrolyte to capacity ratio of 3 g Ah™!) with the commercial (grey
square) or P,Os-modified (blue triangle) 1M LiPFg electrolyte in EC/DEC (50/50 v/v).
Inset: photograph of a representative Li|[NMC622 pouch cell. Voltage profiles at
representative cycles in (b) commercial or (c) P2Os-modified electrolyte.

The excellent Li|[NMC622 pouch cell performance is clearly rooted from the electrolyte
modification by P,Os. Liquid-state '°F, *'P, 'H, and '*C nuclear magnetic resonance
(NMR) measurements were performed on the commercial and P>Os-modified
electrolytes to understand how P,Os affects electrolyte reaction products and speciation.
Quantitative single-pulse '°F and *'P NMR spectra of the commercial LiPF¢ electrolyte
(black spectra, Figure 2) reveal not only the presence of PFs anions, as expected, but
HF and difluorophosphoric acid (HPOF,, species B) as degradation products.
Integration of the '°F signal intensities indicate that the molar ratio of HF to PF¢ is 3.8

x 107, yielding an HF concentration of approximately 3.8 mM as the PF¢” concentration
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will only be perturbed from 1 M due to electrolyte reactions. Upon reaction with P>Os,
the '°F and *'P NMR spectra (red spectra, Figure 2) establish that both HF and HPO,F»
have been completely consumed. New species including phosphorous oxyfluoride
(POF3), the oxygen-bridged OF,;P-O-PFs anion, and ethyl difluorophosphate
(C2HsOPOF,) (species C, D, and E, respectively) are formed in the modified electrolyte.
Integration of the 3'P NMR signals of the P,Os-modifed electrolyte indicate that the
molar ratios of OPF3, C;HsOPOF,, and OF,P-O-PFs™ to PF¢ are approximately 0.01,
0.01 and 0.03, respectively. All '°F and *'P NMR isotropic shifts and J-couplings are

listed in Table 1, whose values are consistent with their signal assignments.
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Figure 2. Liquid-state (a) '°F and (b) 'P single-pulse NMR spectra of commercial
(black) or P,Os-modified (red) 1 M LiPFs electrolyte in EC/DEC (50/50 v/v). Chemical
structures of the major electrolyte species are labelled above the spectra, where their
F and *'P moieties are indicated in the corresponding NMR spectra.

Table 1. Key electrolyte species and their '°F and 3'P NMR isotropic chemical shifts
and J-couplings.

F Isotropic Shift (ppm) & 31P Isotropic Shift (ppm) &
Species J-coupling (Hz) Label (Fig. 2)
Splitting Pattern Splitting Pattern
HF -190.8 doublet - - 472 (Jrn) HF
LiPFs -74.2 doublet -144.5 septet 709 (‘J.p) A
HPOF, -84.7 doublet -19.2 triplet 930 ('Jrp) B
POF; -89.5 doublet -34.7 quartet 1068 (Jr-p) C
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-85.7* doublet -31.1° triplet* 973*

OF%P*0-P°(F®)4F¢ -61.1° doublet ca.-146° singlet® 7530, 750¢ D
817 doublet ()

C>HsOPOF> -86.0 doublet -20.8 triplet 1006 ('Jr.p) E

Additional NMR experiments aided signal assignments: a single-pulse '°F NMR
spectrum of the commercial electrolyte acquired with 'H decoupling (Figure S3 in the
Supporting Information) causes the collapse of the '°F doublet at -190.8 ppm to a singlet,
confirming the '°F moiety is covalently bonded to one proton and thus its assignment
to HF. A 2D YF{3!P} through-bond correlation NMR experiment on the P,Os-modifed
electrolyte (Figure S4 in the Supporting Information) reveals *'P environments near -
146 ppm (otherwise obscured by the intense LiPFq *'P signal at 144.5 ppm) and at -31.1
ppm, which are covalently bonded to their '°F equatorial F4° moieties at -61.1 ppm and
F>* moieties at -85.7 ppm (Table 1), respectively, thus confirming the formation of
OF,P-O-PFs anion. Note that the liquid-state *'P NMR measurements also establish
that no soluble P,Os species are present within the electrolyte. Interestingly, quantitative
single-pulse 'H and '*C NMR spectra of the P,Os-modifed electrolyte (Figure S5 in the
Supporting Information) reveal that Co;HsOPOF, is produced from the reaction with

DEC, while EC is stable.
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Scheme 1. Electrolyte reaction mechanisms: (I) Decomposition of LiPFs electrolyte
induced by H>O to produce HF and HPO:F»; (II) HF scavenging reaction of P2Os; (I1I)
Reactions of products from (II) with P>Os and electrolyte species.

The reaction mechanisms due to electrolyte modification by P>Os are illustrated in
Scheme 1. LiPF¢ degrades to generate HF and HPO-F, in the commercial electrolyte
(Reaction 1).*” By introducing P»Os, it reacts with HF to generate HPO,F, and
monofluorophosphoric acid (H,PO3F) (Reaction II). HPO,F; undergoes dehydration
induced by P>Os to form the corresponding acid anhydride, while the generated water
is absorbed by excess P,Os (Reaction I11).%® Then, the OF2P-O-PF5- anion and POF; are
formed via the reaction between the acid anhydride and PFs anion (top branch,
Reaction III), while the acid anhydride also reacts to DEC to form CoHsOPOF,. Any
oligomerized anhydride of H,POs;F,** or H,O-absorbed P,Os were removed by
centrifugation during electrolyte preparation. Thus, P>Os scavenges H,O and HF, while
reacting with mono- and di-fluorophosphoric acids, and the carbonate species in the

electrolyte to form additional soluble phosphorous-containing compounds that play a
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critical role in stabilizing the lithium metal SEI, as shown below.
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Figure 3. (a) Li Is, (b) F 1s, and (c) P 2p XPS spectra of the Li metal surface after
immersion in the commercial (top) or P.Os-modified (bottom) LiPFs electrolyte for 48
hours. (d) Li 1s, (e) F 1s, and (f) P 2p XPS spectra of the Li surface after a 10-hour
galvanostatic deposition (0.3 mA cm?) in the commercial (top) or P,Os-modified
(bottom) electrolyte.

The chemical compatibility between the Li anode and the LiPFs electrolyte is
significantly improved by P>Os modification. As displayed in Figure 3a, the Li 1s X-
ray photoelectron spectroscopy (XPS) spectra detect significant amount of Li-
containing passivation layer on the Li surface after immersion in the commercial
electrolyte for 48 hours, using the metallic Li peak (54.8 eV) as the reference.***! On
the contrary, the Li-containing passivation layer on the Li surface in the P,Os-modified
LiPFs electrolyte decreased significantly. The F 1s XPS spectra in Figure 3b suggest
that a major component of the passivation layer from the commercial electrolyte is
LiF,?**? while the LiF content on the Li surface from the P,Os-modified electrolyte is

drastically lower. This observation indicates that the side reaction between HF and Li
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metal is significantly alleviated in the P.Os-modifed electrolyte. The C 1s and O 1s XPS
spectra (Figure S6 in the Supporting Information) also indicate the existence of Li
carbonate (Li2CO3) and Li hydroxide in the passivation layer. The P 2p XPS spectra in
Figure 3¢ show minimal P-containing species on the Li surface from the commercial
electrolyte, which can be assigned to residual LiPF¢ and phosphoryl species (POx).
Interestingly, a P-rich interphase is formed on the Li surface immersed in the electrolyte
modified by P>Os. The deconvolution of the P 2p XPS spectrum identifies
fluorophosphate (POxFy) as the dominant species,**** followed by POx. Although the
precise speciation of the POxFy-rich interphase needs further determination, clearly the
P-rich SEI is formed by reactions between the Li metal anode and the new P-containing
species in the P.Os-modified electrolyte. Intermittent EIS analysis (Figure S7 in the
Supporting Information) during the chemical stability test reveals continuously
increasing interfacial resistance on the Li surface in the commercial electrolyte, while
the resistance in the one modified by P,Os remains low and constant.

The SEI formed during the Li deposition was also analyzed via XPS after a 10-
hour galvanostatic deposition at 0.3 mA cm™. The comparison of Li 1s spectra (Figure
3d) indicates thicker SEI formation on the Li surface from the commercial electrolyte,
using the intensity of Li metal as the reference. The F 1s spectra (Figure 3e) identify
LiF as a major compound in the SEI formed in the P.Os-modified electrolyte, and it is
likely derived from the electrochemical reduction of the new species generated in the
electrolyte including C;HsOPOF; and OF,P-O-PF5 anion (Scheme 1). In addition,
PO.Fy and POy, which may be either anionic or neutral species, are identified in the SEI

16



formed in the P,Os-modified electrolyte but POxFy absent from the SEI formed in the
commercial one. The C Is and O 1s XPS spectra (Figure S8 in the Supporting
Information) also indicate that the Li>CO3 content is reduced in the SEI formed in the
P>0Os-modified electrolyte. Overall, chemical analysis on the chemically formed
interphase and the SEI formed during Li deposition unambiguously demonstrate that
the critical difference in the P>Os-modified electrolyte is the P-rich layer on the Li anode
containing the POxFy species, which is the key component for forming a stable SEI. The
average CE of Li deposition and stripping in the P,Os-modified electrolyte is 97.6%,
which is significantly higher than that of 96.0% in the pristine LiPFs electrolyte (Figure

S9 in the Supporting Information).

Figure 4. Top view SEM images of Li galvanostatically deposited on Li metal (0.3 mA
cm™) for (a, d) 1 hour and (b, e) 10 hours in the (a, b) commercial and (d, e) P2Os-
modified LiPFs electrolyte. Cross-sectional SEM images of Li galvanostatically
deposited (0.3 mA cm?) for 10 hours in the (c) commercial and (f) P,Os-modified
electrolyte.

The superior Li electrodeposition in the P>Os-modified LiPFs electrolyte is
visualized via the SEM measurements. The top-view SEM images of Li deposition on

a pure Li metal substrate from the commercial LiPF¢ electrolyte after 1 hour and 10
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hours at 0.3 mA cm™ are shown in Figures 4a and 4b, respectively. Clearly, Li
nucleation and deposition is not uniform due to severe Li surface passivation. Typical
whisker-like Li deposits form due to side reactions during electrodeposition (insets).**"
48 After 10-hour of deposition (3 mAh cm™ areal capacity), the thickness of the Li layer
is approximately 48 um (Figure 4¢), which is much higher than the calculated thickness
of 3 mAh cm™ Li deposition, which is 15 pum. In stark contrast, Li nucleation density
in the P>Os-modified electrolyte is significantly enhanced (Figure 4d). The Li
deposition after 10-hour deposition (3 mAh cm™ capacity) is uniform and dense
(Figure 4e), while the thickness of the Li layer is only 18 um, which is very close to
the calculated thickness. SEM characterization thus provides clear evidence that the
PO«Fy-rich SEI plays an essential role in stabilizing Li deposition. The comparison of

the Li morphology in the early stage of deposition is shown in Figure S10 in the

Supporting Information.
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Figure 5. EIS Nyquist plots of the NMC622 cathode acquired after different cycle
numbers in Li||[NMC622 cells using the (a) commercial or (b) P.Os-modified LiPFe
electrolyte. (c) The interfacial and charge transfer resistances of the NMC622 cathode
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after every 10™ cycle in the P,Os-modified electrolyte. (d) EDS spectra of Li metal
anode after 30 cycles in the commercial (black) or P, Os-modified (red) electrolyte. FIB-
SEM images of the NMC622 particles after 30 cycles in the (e) commercial and (f)
P>,0s-modified electrolyte.

The presence of HF in the commercial LiPFs electrolyte is not only detrimental to
the Li anode but also impairs the NMC622 cathode, as shown in Figure 5. EIS analyses
indicate that both the interfacial and charge transfer resistances of the NMC622 cathode
in the Li||[NMC622 cells using the commercial electrolyte continuously increase during
cycling (Figure 5a, c¢). On the other hand, the interfacial and charge transfer resistances
of the NMC622 cathode in the P,Os-modified electrolyte remain almost constant during
cycling (Figure 5b, ¢). The increasing resistance at the NMC622 cathode contributes
to the increasing charge-discharge voltage hysteresis observed during cycling.
Furthermore, cathode transition metal (TM) dissolution due to the TM>* (TM = Co, Ni,
and Mn) leaching by HF may contribute to the hystersis.* Energy- dispersive X-ray
spectroscopy (EDS) analysis of the Li anode after 30 cycles in the Li||[NMC622 full
cells using commercial LiPF¢ electrolyte detected significant transition metal content,
including Mn, Co and Ni. Clearly, these metals are leaching out of the NMC622 cathode
then diffusing and migrating to the anode, which would worsen Li deposition
behavior.”® In contrast, the EDS spectrum of the Li anode after 30 cycles in the P»Os.
modified LiPFs electrolyte shows the distinct absence of Mn, Co, and Ni signals. This
result proves that eliminating HF from the electrolyte through modification by P>Os, as
determined via NMR spectroscopy (Figure 2a), eliminates leaching of transition metals.
Particle cracking is also a common problem for high-Ni cathode materials due to the

precipitation of transition metal fluorides on the exposed cracking surface,?’ leading to
19



increasing cell impedance and continuous loss of active material. A focused ion beam
SEM (FIB-SEM) image of a cross-section of NMC622 particles after 30 cycles in the
Li|[NMC622 pouch cell reveals that that they are cracked when using the commercial
LiPFs electrolyte (Figure Sd), while the NMC622 particles remain crack-free in the
P>Os-modified LiPFs electrolyte (Figure Se). Another known problem for NMC
cathode materials is releasing highly reactive oxygen (O.) from the layered oxide lattice
at high voltage, and large amount of carbon dioxide (CO;) can be generated due to the
oxidation of carbonate solvents.’’>> Gas analysis from the pouch cells using the
electrolytes with and without P>Os modification is investigated with the differential
electrochemical mass spectrometry.®® The results (Figure S11 in the Supporting
Information) clearly show that CO> and O» generated during the charging process is
greatly reduced in the P,Os-modified electrolyte comparing to the commercial one. We
believe that the lower charge overpotential and eliminating transition metal dissolution
in the P,Os-modified electrolyte put much less stress on the cathode lattice, resulting in

reduced Oz release and CO» generation.>

Conclusion

In summary, we revealed that commercial LiPFs carbonate electrolytes can be
significantly improved for use in Li metal batteries via a simple modification with P>Os.
The results indicate that adding P>Os removes HF from the electrolyte and generates
PO.Fy species which form a favorable SEI. The new electrolyte is also capable of
eliminating transition metal leaching and particle cracking of a NMC622 cathode.

Excellent electrochemical performance of Li||[NMC622 pouch cells with realistic cell
20



parameters demonstrate the effectiveness of this simple and scalable approach. The
precise speciation of the POxFy-rich SEI and effects of electrolyte aging are underway

to gain a better understanding of this promising new electrolyte.
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