

1 **Post-irradiation examination of low burnup U_3Si_5 and $UN-U_3Si_5$**
2 **composite fuels**

4 William A. Hanson¹, Fabiola. Cappia^{1,*}, Joshua T. White², Kenneth J. McClellan², Jason M. Harp^{1,3}

5 1. *Idaho National Laboratory, Characterization and Advanced Post Irradiation Examination*
6 *Division, P. O. Box 1625, Idaho Falls, ID 83415-6188 U.S.A.*
7 2. *Los Alamos National Laboratory, Materials Science and Technology Division, P.O. Box 1663,*
8 *Los Alamos, NM, 87545, USA*
9 3. *Oak Ridge National Laboratory, Reactor and Nuclear Systems Division, P.O. Box 2008, Oak*
10 *Ridge, TN, 37831, USA*

11 *Corresponding Author: fabiola.cappia@inl.gov

13 **Abstract**

14 This work presents post-irradiation examination data on $UN-U_3Si_5$ and U_3Si_5 fuels at low burnup (i.e.,
15 < 10-15 GWd/tHM) with Kanthal AF® cladding. The results suggest good irradiation performance for
16 both the silicide and nitride-silicide composite pellets. Optical microscopy revealed that pellet-cladding
17 gap is still open, and limited axial cracking was observed only in $UN-U_3Si_5$ pellets. Microcracking was
18 isolated to the U_3Si_5 phase in all cases and was observed in pre-irradiation and depleted pellets, indicating
19 that it was not irradiation induced. The fission gas release was minimal for the calculated fission density
20 achieved ($2.6 - 3.15 \times 10^{20}$ fiss/cm³). No fission gas bubbles were observed in the optical metallography.
21 These results suggest acceptable swelling and fission gas behavior for both the single phase and
22 composite compositions.

23 **1. Introduction**

24 The 2011 Great East Japan Earthquake and Tsunami and resulting Fukushima Daiichi nuclear power
25 plant accident catalyzed a multinational interest in the research and development of advanced nuclear fuel
26 concepts designed for improved safety when subjected to severe accident conditions. As a result, the
27 Department of Energy, Office of Nuclear Energy (DOE-NE) initiated the Accident Tolerant Fuels (ATF)
28 Campaign with the goal of fostering fuel research and development. These new designs must be
29 backwards-compatible with the existing light water reactor (LWR) fleet while improving fuel
30 performance during nominal operations and design basis accident (DBA) and beyond design basis
31 accident (BDBA) conditions. This improved performance is also intended to increase the lifetime of the
32 fuel, reaching higher burnups to increase fuel and plant efficiency and reduce waste [1, 2].

33 An initial screening phase of the ATF campaign irradiated and characterized a broad spectrum of
34 potential, largely unexplored, fuel and cladding candidates to provide early data on their performance
35 under LWR conditions at contained costs. The first such irradiation campaign was the ATF-1 experiment,
36 where several fuel and cladding concepts were subjected to power rating and temperatures, but without
37 coolant contact, to aid in down-selecting candidates for later developmental phases [2, 3]. While all
38 concepts share the common objective of developing an alternative fuel/cladding system with enhanced
39 performance compared to the standard UO_2 -zircaloy system, each of them focuses on different aspects.
40 Some explored only modifications of the cladding, in an attempt to improve upon the limitations that Zr-
41 alloys suffer during DBA and BDBA conditions, while other tests incorporated additives to UO_2 or
42 completely changed the fuel composition, mainly to overcome the limitations of poor thermal properties
43 of the oxide fuel. These experiments represent an extensive collaboration between national laboratories,

45 nuclear industry, and university partners [2]. The complete experiment test matrix is available in previous
46 publications [4].

47 Among the concepts in the ATF-1 experiment, approximately half of the proposed fuel designs are
48 comprised of uranium silicide compounds [4]. Interest in uranium silicide compounds for use as nuclear
49 fuels is not new, with initial research dating back to 1959 [5, 6]. Current applications are focused on
50 research and test reactor use, including a new, recently qualified low-enriched uranium (LEU) fuel [7, 8].
51 A potential benefit of silicide fuels is their increased thermal conductivity compared to UO_2 . Moreover,
52 the silicide's thermal conductivity increases with temperature in contrast to the oxide counterpart, offering
53 a further benefit to thermal performance [9, 10, 11]. This is of particular interest for the ATF campaign as
54 a potential mechanism for transferring decay heat from the fuel during a Loss of Coolant Accident
55 (LOCA) [12]. The primary silicide compound tested is U_3Si_2 , which due to its increased U-density, has an
56 increased ^{235}U -loading without increasing the enrichment. Initial post-irradiation examination (PIE) of
57 U_3Si_2 -Zirlo rodlets showed good performance at low burnups, with limited pellet swelling and fission gas
58 release (FGR) [3].

59 Previously, limited study has been conducted on the U_3Si_5 compound because it has a lower U-
60 density and requires a higher enrichment to match the ^{235}U -loading achieved with UO_2 . However, there is
61 recent interest in U_3Si_5 as a secondary fissile phase in a composite pellet with a more U-dense compound,
62 such as UN, increasing the overall U-loading [11, 13]. The combination with UN could also offer the
63 advantage of an improved thermal conductivity [11, 14]. An added benefit is that sintering of UN with a
64 U-silicide offers the advantage of lowering the temperatures necessary for densification of UN by
65 exploiting “liquid phase sintering”, as silicide compounds have a much lower melting temperature [15].
66 The UN- U_3Si_5 composite is of particular interest because its similar neutronic performance to UO_2 , which
67 would reduce operational changes when transitioning between the oxide and high uranium density fuel
68 and potentially extend the cycle life through increased ^{235}U -loading [11, 16, 13]. Until the ATF-1
69 irradiation experiment, this fuel form was purely theoretical, and little un-irradiated data of either U_3Si_5 or
70 UN- U_3Si_5 was available before the compositions were selected for this campaign by Los Alamos National
71 Laboratory (LANL) [11, 17]. Prior to this experiment only a single, very low dose (0.02 dpa) neutron
72 irradiation test was conducted on U_3Si_5 [18]. The irradiation performance of UN was characterized
73 historically to high burnup and was demonstrated to have good phase and dimensional stability with
74 minimal fission gas release [19, 20, 21]. More recently, PIE was completed for solid solution U(N,C)
75 MiniFuel kernels which showed limited fission product release and swelling; however, this test was only
76 to a low burnup [22]. Additionally, irradiations continue investigating mixed nitride (U,Pu)N fuel [23].
77 The PIE presented in this work represents the first evaluation of the irradiation performance of both the
78 composite fuel concept and U_3Si_5 pellets to low burnup. Additionally, most studies for nitride fuels have
79 focused predominantly on fast reactor application conditions, so the LWR conditions targeted for this
80 work for the composite fuel with a high UN vol% will provide valuable data for the thermal neutron
81 performance of UN.

82 83 84 **2. Materials and Methods**

85 86 **2.1 Experiment Test Matrix**

88 As the primary goal of the ATF-1 campaign is to screen fuel concepts prior to full-size test insertions
89 within a test or commercial reactor coolant loop, an ATR drop-in style experiment was designed to fully
90 contain the experimental rodlets, which mimic a small section of a Pressurized Water Reactor (PWR) fuel

91 pin, within stainless steel capsules that isolate them from the reactor primary coolant. The details of this
92 drop-in experiment design have been described thoroughly in the literature and will not be repeated here
93 [24, 3]. The subjects of this work are three rodlets fabricated by LANL, two of which contain UN-U₃Si₅
94 composite fuel pellets and one of which contains U₃Si₅ pellets. This third rodlet was irradiated to provide
95 baseline data on the pure silicide compound as no previous irradiation data at LWR temperature were
96 published. All three are clad with Kanthal AF®, a commercial ferritic, Fe-Cr-Al-alloy, known for its
97 stability and excellent oxidation resistance [25]. A summary for each rodlet is shown in Table 1.

98

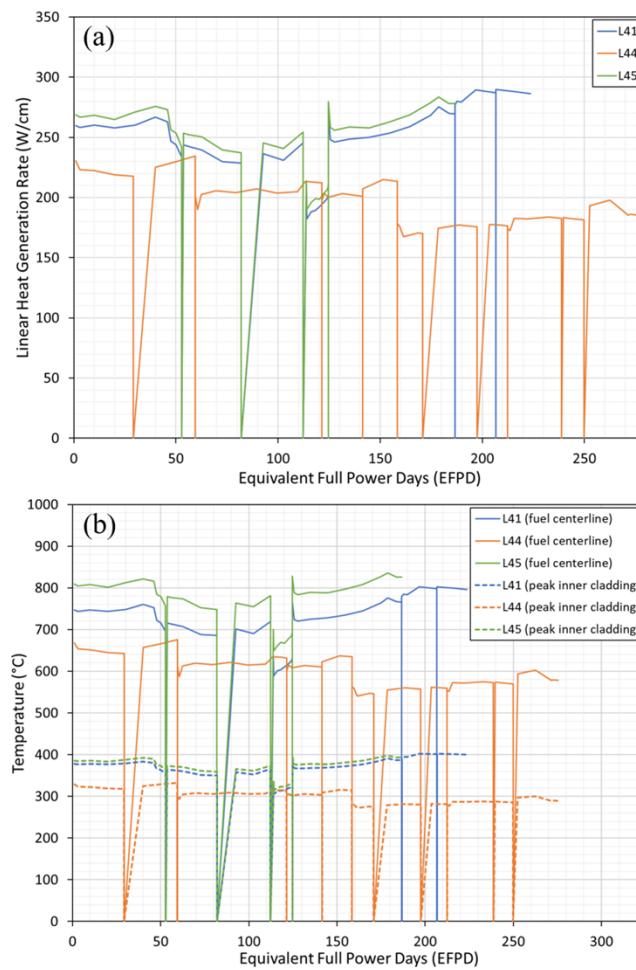
99 Table 1 – Test matrix of the ATF-1 campaign rodlets fabricated at LANL

Rodlet ID	Cladding Material	Fuel Material	UN: ²³⁵ U Enrichment (wt%)	U ₃ Si ₅ : ²³⁵ U Enrichment (wt%)	Average: ²³⁵ U Enrichment (wt%)	Predicted Burnup (GWd/tHM)
L41	Kanthal AF®	UN-U ₃ Si ₅	4.9	8.84	5.27	10
L44	Kanthal AF®	UN-U ₃ Si ₅	2.69	2.69	2.69	7.5
L45	Kanthal AF®	U ₃ Si ₅	–	8.84	8.84	13.2

100

101 The enriched nitride powder was prepared using an oxide feedstock through a standard carbothermic
102 reduction and nitridation route. U₃Si₅ was fabricated via arc melting of enriched U metal with high purity
103 (99.999%) elemental Si weighed to stoichiometric ratios similar to the methods employed in [11].
104 Processing of the U₃Si₅ and UN powders and pellets was conducted in an inert Ar glove box line to
105 minimize exposure to oxygen. Sintering was conducted in a W-mesh element furnace attached to the
106 same glove box line. Furnace profiles for the U₃Si₅ and UN/U₃Si₅ composite material both used similar
107 heating and cooling rates of 5 °C/min, while the dwells for the U₃Si₅ were 1515 °C for 12 h and the
108 composite at 1775 °C for 12 h.

109 The U₃Si₅ and UN-U₃Si₅ pellets were sintered at LANL via conventional powder metallurgical
110 methods. For the UN-U₃Si₅ composite pellets, a target 15 vol% U₃Si₅ was selected with two enrichment
111 designs. For the L41 rodlet, the enrichment for UN was fixed at 4.9 wt% ²³⁵U to match nominal LWR
112 values. To provide a uniform ²³⁵U-density across the pellets, an enrichment of 8.84 wt% ²³⁵U was selected
113 for the lower U-density U₃Si₅ phase. By contrast, a consistent 2.69 wt% ²³⁵U enrichment was selected for
114 both the UN and U₃Si₅ phases for the pellets in the L44 capsule. For the L45 capsule, the same U₃Si₅
115 powder that was blended into the composite L41 pellets was used to fabricate single phase pellets, 8.84
116 wt% ²³⁵U [17].


117 In both the composite rodlets, L41 and L44, a stack of 9 enriched pellets was sandwiched between
118 two depleted pellets for a total of 11 UN-U₃Si₅ pellets within the rodlets. In rodlet L45, a stack of 8
119 enriched U₃Si₅ pellets was sandwiched between two depleted UN-U₃Si₅ pellets. It should be noted that
120 since fuel swelling behavior of these compounds was unknown, a conservative approach was taken, and
121 the rodlets were fabricated with a gap greater than is used in standard PWR rods. The full details on the
122 fabrication of the fuel pellets and experiment rodlets and their pre-irradiation characterization have been
123 released elsewhere [17].

124

125

126 **2.2 Irradiation Conditions**

127 A complete irradiation history of all capsules in the ATF-1 experiment has been reported previously
 128 [4]. The linear heat generation rate (LHGR) in each capsule is calculated using whole ATR core Monte
 129 Carlo (MCNP 6.0) simulations coupled with ORIGEN for depletion. The simplified ATR power history
 130 from each cycle and the initial ATR core loading are used as inputs to these simulations. The heat
 131 generation rates are then supplied to a finite element analysis code (Abaqus) to calculate the temperatures
 132 in the capsule. The axial variation in power is minimal, and temperature is only 10-20°C; therefore, only
 133 maximum centerline temperatures are reported here. The Linear Heat Generation Rate (LHGR), fuel
 134 centerline temperature, and peak inner cladding temperature (PICT) simplified histories are recorded in
 135 Figure 1. It should be noted that the L44 rodlet was inserted in a later cycle than L41 and L45, which is
 136 the reason for the shift in cycles relative to the equivalent full power days (EFPD) [4]. The higher initial
 137 enrichments of rodlets L41 and L45, 5.27 and 8.84 wt% ^{235}U , respectively, are clearly reflected in each of
 138 the subplots in Figure 1, with a respective 26% and 27% increase in the average LHGR in subplot (a), as
 139 compared to the lower enriched L44 rodlet, 2.69 wt% ^{235}U .

140

141 Figure 1 – Irradiation history data for L41, L44 and L45. (a) Linear Heat Generation Rate (LHGR), (b)
 142 Fuel centerline and cladding inner peak temperatures

143

144

145 **2.3 Post-irradiation Examination Techniques**

146 Post-irradiation examination was conducted at the INL Materials and Fuels Complex (MFC) Hot
147 Fuels Examination Facility (HFEF). Non-destructive examination (NDE) PIE of the irradiation capsules
148 was reported in detail previously [24, 26, 27]. In summary, visual examinations, neutron radiography, and
149 axial resolved gamma spectrometry were performed on the irradiated capsules before capsule
150 disassembly.

151 After these analyses confirmed the rodlets appeared intact, the capsules were disassembled, and the
152 standard suite of rodlet NDE PIE was performed, consistent with the PIE performed in previous ATF-1
153 experiments. The methods for these characterizations have been discussed in depth previously and will
154 only be summarized here [3]. Visual examination of the rodlets were performed through the HFEF main-
155 cell windows. Indirect neutron radiography, using both thermal and epithermal energies, was performed
156 using the HFEF NRAD reactor [28]. Dimensional inspections were performed on each rodlet using the
157 BONA4INL measurement bench which utilizes opposing Sony Magnascale probes to measure diameter
158 changes in axial scans with a 3 μm diameter resolution and 20 μm axial accuracy, and a 0.1° rotational
159 accuracy. A total of 36 scans with measurements captured every 0.5 mm were performed in 5° increments
160 about each rodlet. Gamma spectrometry was performed using the HFEF Precision Gamma Scanner (PGS)
161 [29], to gather both axial scans of the individual rodlets and rotational scans at several angles for 2D
162 tomographic reconstruction [3, 29, 30].

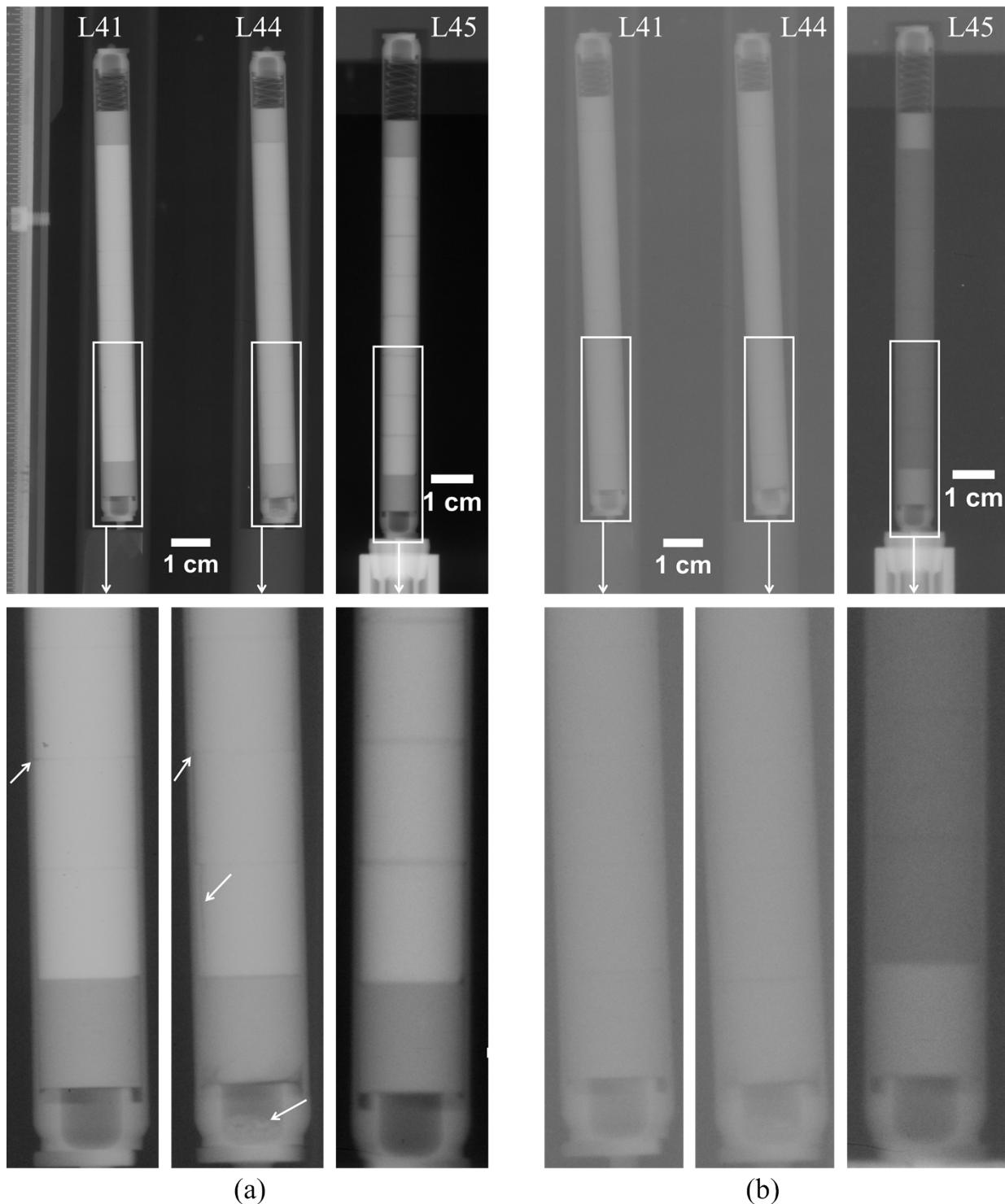
163 Following the NDE PIE, destructive examinations (DE) were performed on the rodlets, consistent
164 with the methodologies used and detailed previously in earlier ATF-1 PIE characterizations [3]. In
165 summary, first a fission gas analysis was performed on the plenum gas, using the HFEF Gas Assay,
166 Sample, and Recharge (GASR) system. The rodlets were punctured using a 150 W Nd-YAG laser system,
167 and the gas was sampled for gas mass spectrometry analysis at Pacific Northwest National Laboratory
168 (PNNL). Pressures were monitored during the initial puncture and during a series of controlled He
169 backfill volume expansions, through the GASR system, to arrive at the initial plenum gas pressure at
170 puncture. Ultimately the fission gas release was determined through this pressure and the gas
171 compositional analysis [26, 3, 29]. The rodlets were then sectioned radially to produce cross-sections of
172 the rodlets at multiple axial heights, which were mounted in epoxy and polished for microstructural
173 analysis and cladding microhardness analysis.

174

175 **3. Results**

176 **3.1 Non-destructive Examination**

177 After receipt of the capsules at HFEF, visual examinations, neutron radiography, and gamma
178 spectrometry was performed in the as-received condition. The capsules appeared intact and neither
179 radiography nor gamma spectrometry revealed unusual features, suggesting the integrity of the rodlets
180 was maintained. After the external capsules were disassembled at HFEF, visual examination was
181 performed on the ATF-1 L41, L44, and L45 rodlets. The rodlets did not present unusual features, and in
182 all cases, the cladding surface still had a lustrous appearance, which is unsurprising given their isolation
183 from reactor primary coolant within the capsules. Darkening was observed at the end-cap weld areas, but
184 this has been observed and well documented in all other ATF-1 rodlets [26, 27].

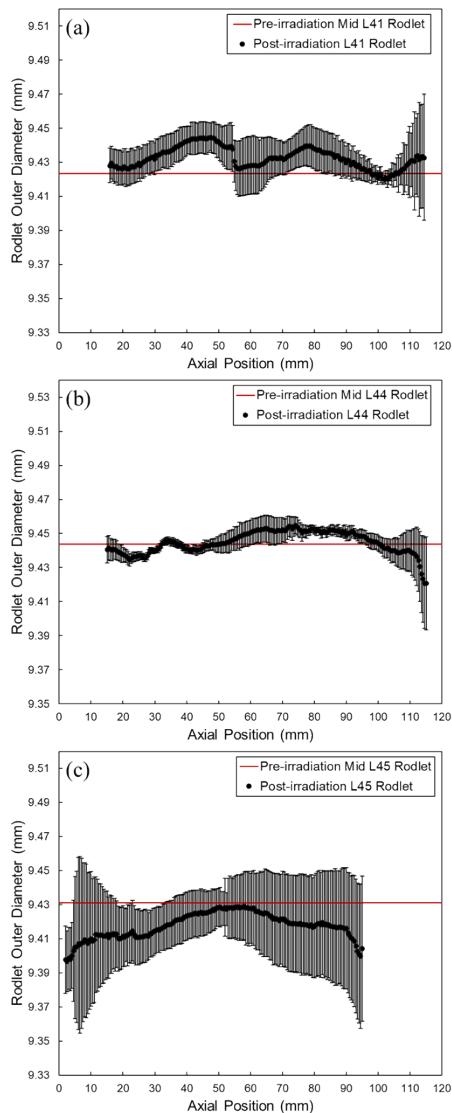

185

186 **3.1.1 Neutron Radiography**

187 Neutron radiographs of all three rodlets are shown in Figure 2, The thermal regime is shown in 2a,
188 where the enriched stack is marked by the brighter contrast, due to the contribution of the induced thermal
189 fissions from ^{235}U . In the epithermal regime in 2b, the uppermost and the lowermost pellets appear

190 brighter instead. This is due to the increased neutron absorption by ^{235}U in the epithermal region and by
191 the drop in the absorption by nitrogen compared to silicon in the composite depleted pellets at the top and
192 bottom of the stack.

193 No evidence of large cracking can be seen any of the rodlets, except for a single case. The bottom
194 enriched pellet in both the L41 and L44 UN- U_3Si_5 rodlets shows an axial crack at the outermost periphery
195 of the pellet. Further cracking also occurred in the bottom depleted UN- U_3Si_5 pellet of the L44 rodlet, and
196 some material has fallen at the bottom of the end cap, as indicated by the arrow in Figure 2a. The last
197 three pellets of L41 and L44 are also slightly misaligned, suggesting that the larger gap between the pellet
198 and cladding remains open and the pellets are free to move inside the cladding tube.


199

200 Figure 2 – Neutron radiography of the L41, L44, and L45 rodlets using (a) thermal neutrons and (b)
201 epithermal neutrons

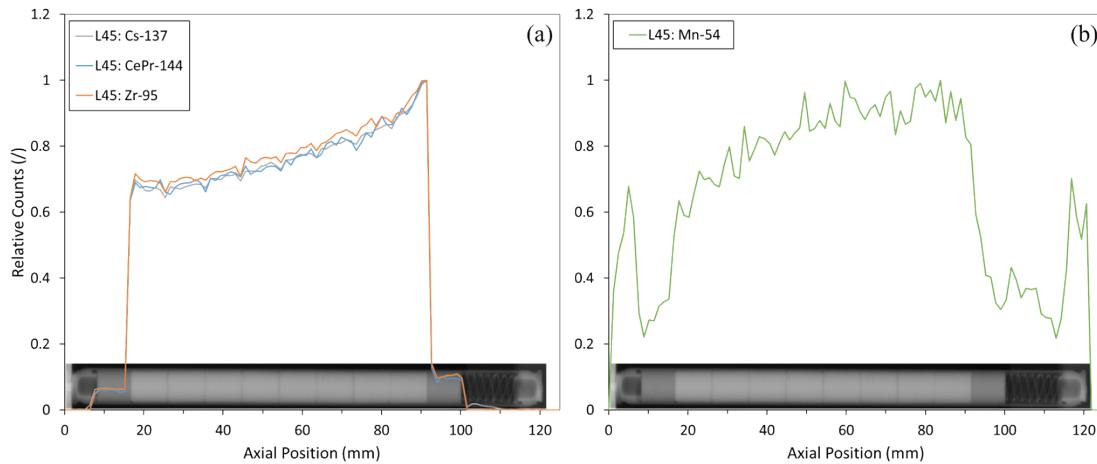
202

203 **3.1.2 Profilometry**

204 The angle averaged post-irradiation rodlet diameter with respect to axial position is plotted for each
205 rodlet in Figure 3, along with the pre-irradiation mid-rodlet diameter. No significant cladding outer
206 diameter change was measured along the entire lengths of rodlets L41 and L44, and the measured
207 cladding outer diameter remains close to the as-fabricated nominal value, see Figure 3a and b. It should
208 be noted that before dimensional inspection could be carried out on rodlet L45, the stub at the bottom of
209 the rodlet, which is used to sustain the rodlet during dimensional scanning, was damaged. The
210 measurements for this rodlet were instead conducted by inserting the rodlet directly in the measurement
211 bench chuck. As can be seen in Figure 3c, the axial alignment of the rodlet during probe scanning is less
212 accurate by this method and results in a measurement drift, visible through the increased uncertainty
213 toward the rodlet ends. Despite this, at mid axial position, approximately at 50 mm in Figure 3c, the
214 measurements appear representative, and considering fabrication uncertainties, no dimensional change
215 was detected in this rodlet either.

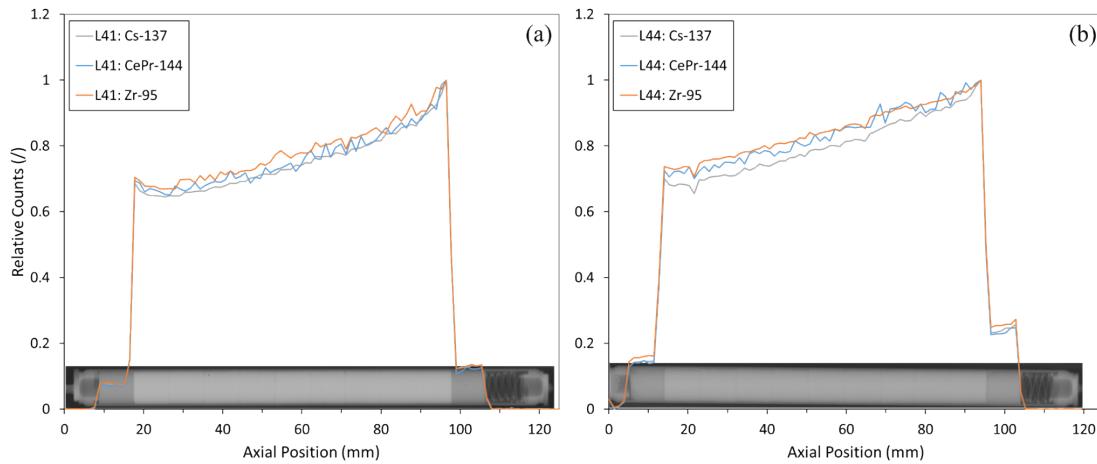
216

217 Figure 3 – Angle averaged diameter vs axial height for the (a) L41, (b) L44, and (c) L45 rodlets. The pre-
218 irradiation mid-rodlet diameter is plotted in each case for reference.


219

220 **3.1.3 Gamma Spectrometry**

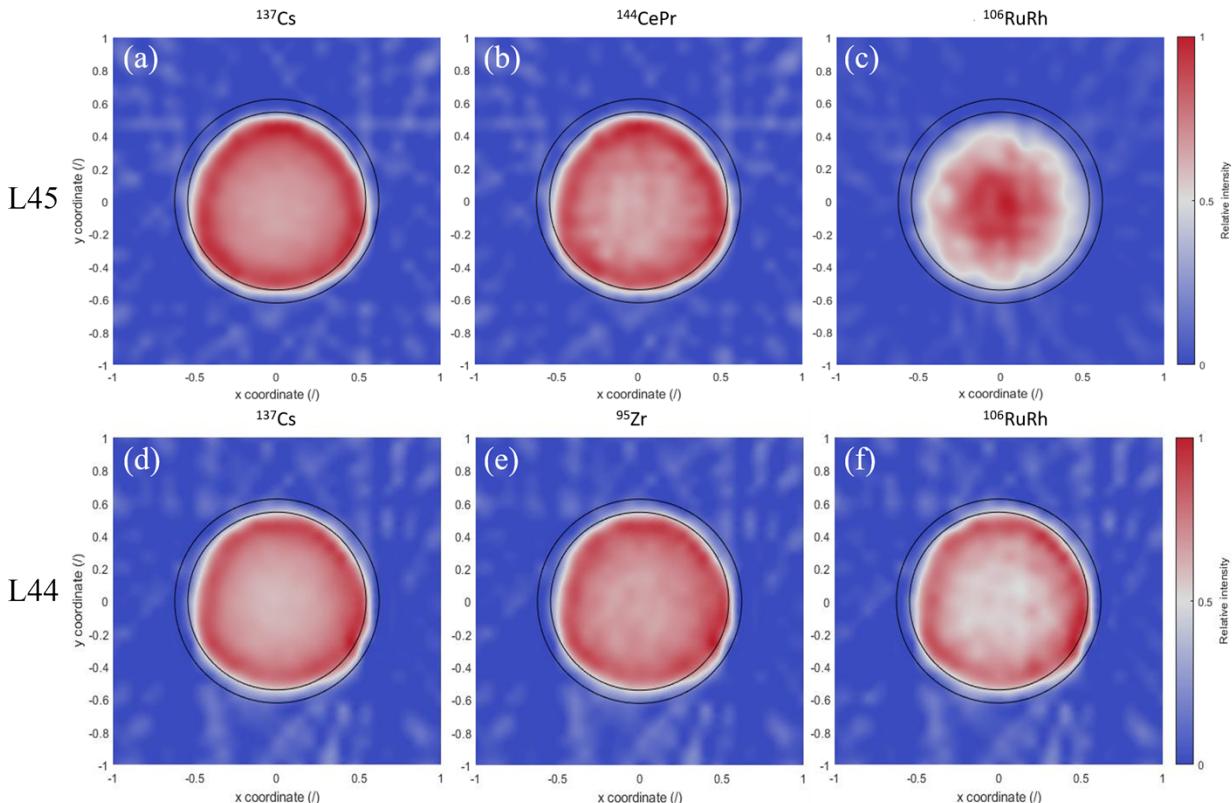
221 The axial gamma spectrometry for rodlet L45 is plotted in Figure 4 with the major fission products
 222 displayed in 4a and the primary cladding activation product shown in 4b. A clear asymmetry is observed
 223 with respect to axial position, showing an increase in both the fission and activation product profiles in
 224 the upper half of the rod. This behavior is also observed in the axial fission product profiles of the L41
 225 and L44 rodlets, see Figure 5, suggesting a consistent behavior. This asymmetry is due to axial variation
 226 within the thermal neutron flux of the ATR core and will be discussed further below. In each case, an
 227 approximately scaled thermal neutron radiograph of the rodlet is included for reference, and enhanced
 228 signal from the fission and activation products is detected at axial positions correlating to the enriched
 229 pellets.


230

231

232

233 Figure 4 – Axial gamma spectra of the L45 rodlet showing (a) major fission products and (b) cladding
 234 activation product. Approximately scaled thermal neutron radiographs included for reference.


235

236 Figure 5 – Axial gamma spectra of the (a) L41 and (b) L44 rodlets showing major fission products.
 237 Approximately scaled thermal neutron radiographs included for reference.

238 2D tomographic reconstruction of the radial distribution of fission products are shown in Figure 6,
 239 generated from rotational gamma spectra gatherer at the center 22.2 mm of the enriched fuel stack for
 240 rodlets L45 and L44. The signals from ^{137}Cs (6a and d), ^{144}Ce - ^{144}Pr (6b), and ^{95}Zr (6e), show increases
 241 along the pellet periphery, consistent with the expected increase in local burnup, due to the self-shielding
 242 effect. In L45, there is an increased signal from ^{106}Ru - ^{106}Rh in the pellet center (6c) while in L44, this
 243 increase is observed in the pellet periphery (6f).

244

245

246

247 Figure 6 – Gamma tomography of selected fission products for the L45 rodlet (a-c) and the L44 rodlet (d-
 248 f)

249

250 3.2 Destructive Examination

251

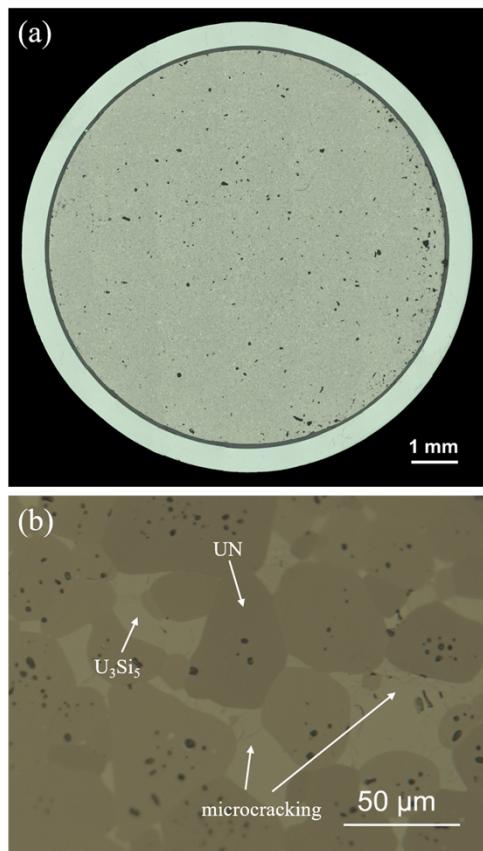
252 3.2.1 Fission Gas Release and Chemical Burnup Analysis

253 After completion of the non-destructive examinations, the rodlets were punctured to measure the
 254 released fission gasses, and the results are summarized in Table 2**Error! Reference source not found.**
 255 for all three rodlets. The measured plenum pressure was translated into estimated fission gas release
 256 (FGR) values based on the gas inventory derived from the calculated fission densities [31]. L41 and L45
 257 have FGR one order of magnitude higher than L44, which can be expected as the average LHGRs of L41
 258 and L45 were 26% and 27% above that of L44, respectively, see Figure 1a.

259

260 Table 2 – Fission gas release data and calculated burnup and fission density for the three LANL rodlets

Rod ID	Calculated burnup (GWd/tHM)	Calculated fission density (fiss/cm ³)	Plenum pressure (MPa)	Plenum pressure uncertainty (%)	Estimated FGR (%)
L41	9.99	3.15E+20	0.105	7.83	0.20
L44	9.46	3.04E+20	0.102	11.03	0.01
L45	13.19	2.60E+20	0.110	6.65	0.64

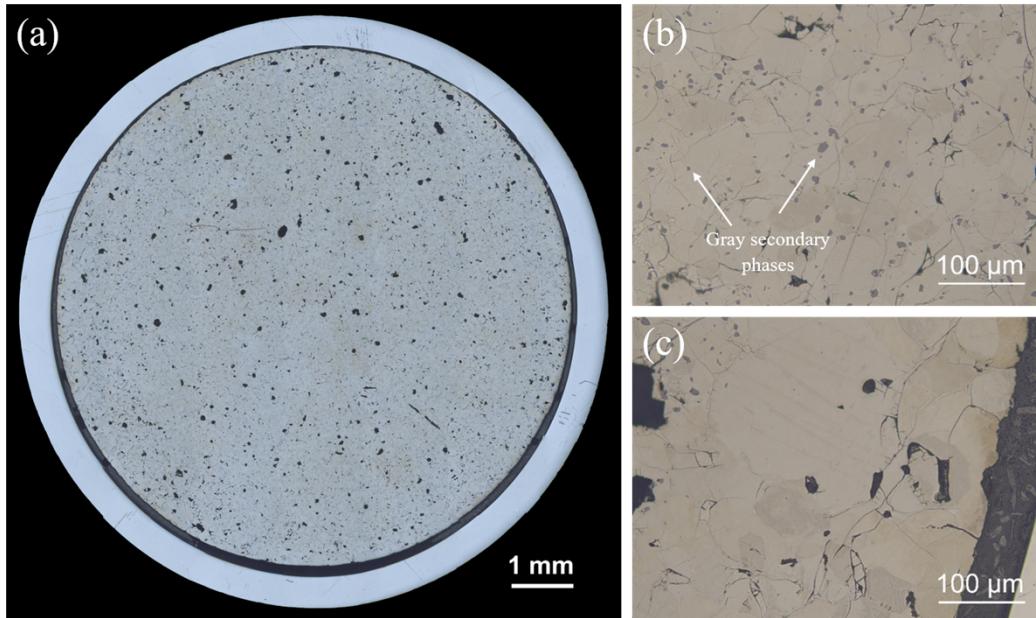

261

262

263 **3.2.2 Optical Microscopy**

264 A radial cross section was taken from the “top” depleted UN-U₃Si₅ pellet in the L45 rodlet, and
 265 optical micrographs are shown in belowFigure 7a, and a high magnification of the composite
 266 microstructure is shown in Figure 7b. A gap is observed between the pellet and cladding in 7a, and the
 267 structure in 7b resembles the as-fabricated microstructure observed previously. The silicide phase is
 268 confined to the grain boundaries of the nitride phase, and the porosity is localized within the UN particles.
 269 Microcracking is visible within the silicide as it was in the pre-irradiated samples [17].

270

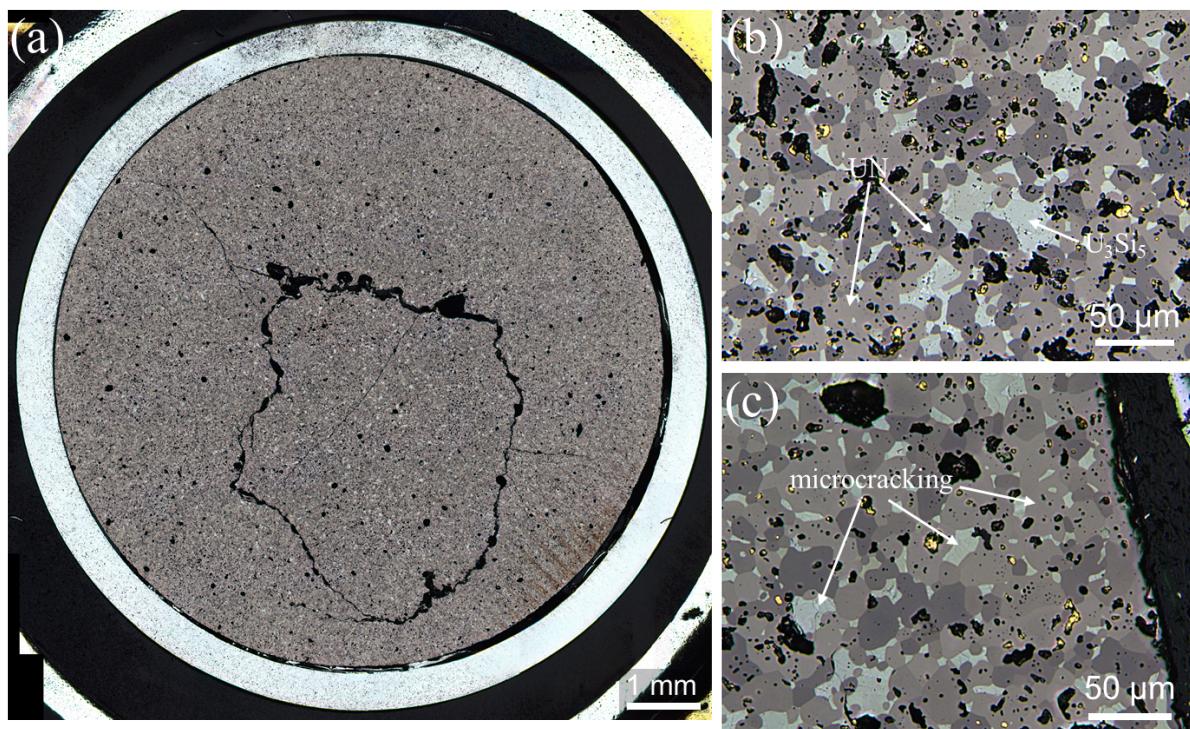


271

272 Figure 7 – Radial cross section micrographs of the UN-U₃Si₅ depleted pellet above the fuel stack of L45
 273 at: (a) low magnification as an overview (50X) and (b) high magnification to show the structure

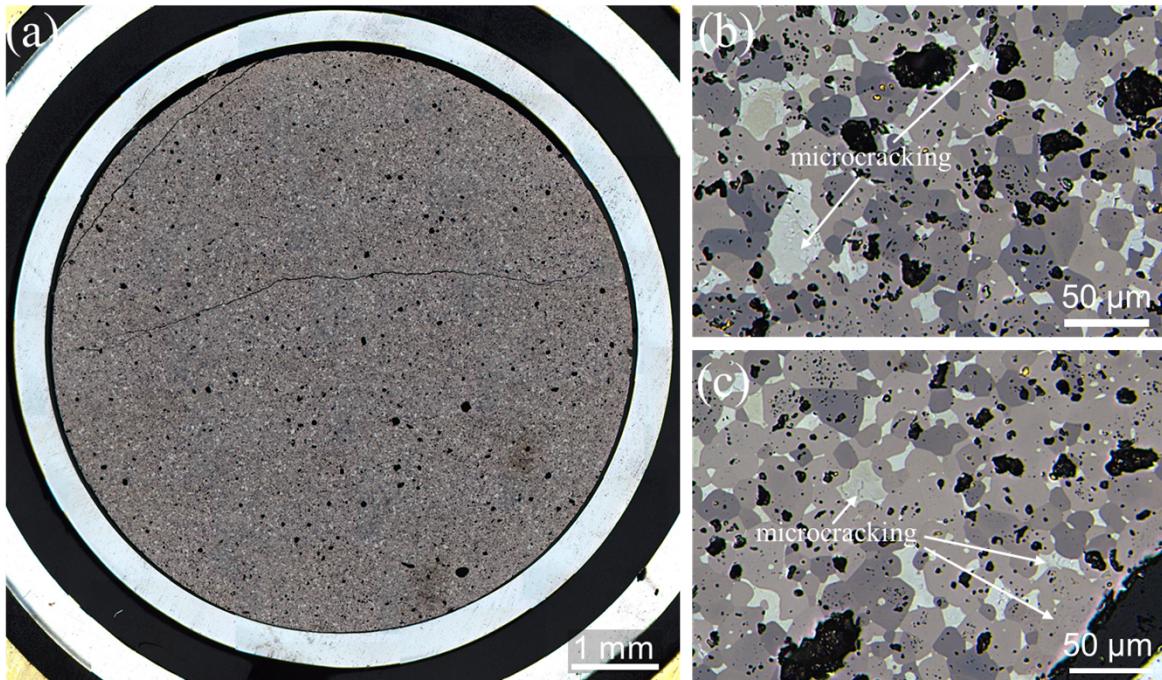
274

275 A radial cross-section was also taken from a U_3Si_5 pellet in the upper half of active U_3Si_5 stack (~87%
276 stack height from the bottom), and optical micrographs are shown in Figure 8. A gap is again observed
277 (8a) between the pellet and cladding and is more apparent in this cross-section than in the depleted pellet.
278 No formation of fission gas bubbles could be observed on the surface, either in the center of the pellet or
279 at the periphery (8b and c). As in the U_3Si_5 phase of the depleted sample, microcracking was observed,
280 which was also present in the as-fabricated structure [17]. Two secondary phases were observed, with one
281 being grey in appearance, see Figure 8b, and the other far less prevalent, lighter in color, and closer in
282 appearance to the matrix, see previous reports for an example [26]. The phases were spread
283 homogenously throughout the microstructure, but absent in the outer 350-400 μm of the pellet periphery,
284 which showed a larger grain structure.



285
286 Figure 8 – Radial cross section of a U_3Si_5 pellet in the upper half of the fuel stack of L45 (87% stack
287 height) at: (a) low magnification as an overview (50X) and high magnification to show the structure at the
288 (b) pellet center and (c) pellet periphery

289
290 A radial cross-section was taken from the mid-axis of both the L41 and L44 rodlets, which are shown
291 in Figure 9 and Figure 10, respectively. As in the L45 rodlet, a gap between the pellet and the cladding is
292 observed for both rodlets (Figure 9(a) and Figure 10(a)). Each cross-section also shows some minor
293 cracking in the pellet. Additionally, the as-fabricated microstructure appears to be retained [17], with the
294 U_3Si_5 phase intergranular to the UN phase. Microcracks are observed predominantly within the silicide
295 phase, but some microcracks are present in the UN phase, and porosity, again, appears localized to this
296 nitride phase. It should be noted that brass contaminants from the microscopy sample holder are


297 embedded in the surface of the L41 and L44 mounts and are the source of the lustrous particles visible in
298 parts (b) and (c) of Figure 9 and Figure 10.

299

300

301 Figure 9 – Radial cross-section of a UN-U₃Si₅ pellet near the mid-axis of the L41 rodlet at: (a) low
302 magnification as an overview (50X) and high magnification to show the structure at the (b) pellet center
303 and (c) pellet periphery

304

305 Figure 10 – Radial cross-section of a UN-U₃Si₅ pellet near the mid-axis of the L44 rodlet at: (a) low
 306 magnification as an overview (50X) and high magnification to show the structure at the (b) pellet center
 307 and (c) pellet periphery

308

309

310 **3.2.3 Cladding Microhardness**

311 Vickers microhardness measurements were performed across the cladding thickness every 100 μm at
 312 room temperature. The average of five measurements for each radial location on the L45 rodlet are
 313 plotted in Figure 11. Little detectable variation is observed in the hardness at each radii.

314

315 Figure 11 – Vickers microhardness profile across the cladding thickness for Kanthal AF® surrounding the
 316 fuel stack for rodlet L45. The average Vickers microhardness for unirradiated Kanthal APMT® is
 317 included for reference [32].

318

319

320 4. Discussion

321 4.1 Low Burnup Swelling and Microstructural Behavior

322 Part of the design of the L41, L44, and L45 rodlets was deliberate outsizing of the pellet-cladding gap
 323 within the rodlet to provide a conservative buffer as the swelling behavior of UN-U₃Si₅ was unknown.
 324 Visual inspection of the rodlets and neutron radiography did not show bulging of the cladding for any of
 325 the rodlets. A slight misalignment of the bottom pellets within L41 and L44 suggests that pellets can
 326 move freely within the cladding. This suggests that there was little contact between the pellet and
 327 cladding, which is also supported by the lack of rodlet diameter change or cladding hoop strain, ignoring
 328 the bias in the top and bottom of the L45 rodlet clarified previously. Optical microscopy confirmed these
 329 NDE analyses, revealing a clear gap between the pellets and the cladding. The porosity in the nitride
 330 phase for the enriched UN-U₃Si₅ pellets appeared consistent with the porosity of both the depleted and as-
 331 fabricated microstructure [17]. Additionally, none of the pellets showed signs of fission gas bubbles,
 332 indicating the fuel is still in a solid fission product swelling regime. Some minor axial cracks were
 333 observed in the optical microscopy of the mid-axis UN-U₃Si₅ pellets, but these were too small to be
 334 resolved with neutron radiography. The minor crack observed in L41 appears isolated to the pellet radial
 335 center and may be due to non-uniform solidification, known as “end-capping”, during the liquid phase
 336 sintering fabrication process. The only axial cracks that were resolvable with radiography were in the
 337 bottom enriched and depleted pellets from the L41 and L44 rodlets. Since these are the lowest burnup of
 338 the enriched UN-U₃Si₅ pellets and no axial cracks were observed in the optical microscopy of the L45
 339 depleted UN-U₃Si₅ pellet, it seems likely that these minor cracks in the bottom pellets were caused during

340 pellets loading and by the contact with the lower end cap. In total, these results suggest that both the U_3Si_5
341 and $UN-U_3Si_5$ fuels have an acceptable swelling behavior at low burnups, approximately 15 and 10
342 GWd/tHM, respectively. Additional testing to higher fission densities will be necessary to confirm a
343 stable and predictable swelling behavior.

344 The extensive micro-cracking, observed in both the U_3Si_5 phase of the depleted and enriched
345 composite pellets and the U_3Si_5 pellet, was attributed to the phase transition occurring at 450°C [11] and
346 were observed in pre-irradiation examinations as well [17]. Previous phase analyses have shown that both
347 U-rich and UO_2 secondary phases can form in U_3Si_5 [11], which could explain the light in appearance
348 phases observed. Further, the pre-irradiation analysis of the as-fabricated microstructure revealed the
349 presence of UN contamination, which presented as a dark-grey phase and bears a similar shape and
350 volume fraction to the grey phase spread through the microstructure of L45, see Figure 8. However, the
351 isolation of the grey precipitates in the U_3Si_5 pellet to regions away from the edges could indicate that
352 they are related to the radial redistribution of ruthenium. No previous study has been published in open
353 literature regarding the behavior of ruthenium in U_3Si_5 that could provide a comparison with the observed
354 microstructure. It should also be noted that the lack of ruthenium radial redistribution in the L41 and L44
355 pellets cannot be used to test the consistency of these observations as optical microscopy cannot
356 distinguish between any similar precipitate phases and the primary UN phase. Energy dispersive x-ray
357 spectroscopy analyses and other advanced PIE technique will be crucial to determine the nature of the
358 precipitates observed.

359 Vickers microhardness was constant across the cladding thickness; however, Vickers microhardness
360 measurements on un-irradiated cladding material are not available for comparison. That said, given the
361 similar composition of Kanthal AF® to Kanthal APMT®, it can be expected that the microhardness for the
362 previous will be similar to the latter. Indeed, hardness values are 230 and 250, respectively [25, 33].
363 Given this assumption, the microhardness values for the L45 rodlet Kanthal AF® cladding may be
364 compared against those measured previously for unirradiated Kanthal APMT® [32], as plotted in Figure
365 11. As would be expected the L45 cladding microhardness appears slightly less than the unirradiated
366 Kanthal APMT®. It should be noted that the slightly higher microhardness average for the L45 rodlet
367 cladding is likely due to fabrication process as the low fast neutron flux for this experiment is unlikely to
368 produce measurable irradiation-induced hardening.

369

370 **4.2 Fission Product Behavior**

371 Comparing axial distribution of major fission products, as measured by gamma scanning, to their
372 respective, approximately scaled thermal neutron radiographs, a clear enhanced signal is observed to
373 correlate with the enriched pellets of each rodlet. It is unsurprising to also see enhanced signal from the
374 ^{54}Fe cladding activation product, ^{54}Mn , at these axial positions, due to the increased local fast fission flux.
375 The axial distribution of each is clearly asymmetric for each rodlet, with signal increasing with axial
376 height along the fuel stacks. However, it is unlikely that redistribution and relocation is responsible for
377 this trend. The maximum fuel temperature observed was in the L45 rodlet and averaged ~800°C, see
378 Figure 1b, which is low to drive Cs redistribution and axial relocation. Additionally, given the rodlets'
379 overall length, the thermal gradient will be negligible, making a thermally-driven asymmetry even more
380 unlikely. Rather, the asymmetry indicates there is increased burnup near the top of the rodlets. There is a
381 known significant axial gradient in the thermal neutron flux profile at the upper and lower edges of the
382 ATR core, and the rodlets were irradiated in the lowest position in the core. Based on neutronic
383 calculations [31], the power at the top of the rodlet is ~120% that of the rodlet average fission power,
384 which explains the observed gamma profile. Further evidence is seen in the secondary burnup monitors of
385 ^{95}Zr and $^{144}Ce-^{144}Pr$, which match this trend, and the trend of the ^{54}Mn cladding activation product, which
386 suggests the fast neutron flux was higher in the top half of the rodlet.

387 Examining the 2D gamma tomography reconstructions, increased signals from ^{137}Cs , ^{144}Ce - ^{144}Pr , and
388 ^{95}Zr in the pellet periphery indicate an increased burnup at the edges, likely due to a self-shielding rim
389 effect. It is interesting to note that the radial temperature gradient was sufficient in the L45 rodlet (U_3Si_5
390 only) to drive thermo-migration of the fission product ruthenium towards the U_3Si_5 pellet center. By
391 contrast, this radial redistribution of Ru is not observed in the L44 pellets (U_3Si_5 -UN composite). In the
392 scanned L44 pellets, there is a sharper increase in the ^{106}Ru - ^{106}Rh signal at the pellet edge than the
393 increase seen for ^{137}Cs or ^{95}Zr . Because ^{106}Ru has a much stronger yield from ^{239}Pu fission than from ^{235}U
394 fission this trend also indicates pellet rim Pu enrichment due to self-shielding. This enhanced rim
395 enrichment behavior was predicted in initial model screening studies [16], and this tomography represents
396 the first experimental evidence of the behavior in UN- U_3Si_5 .

397 FGR remained low and fully contained. Again, the optical microscopy shows no fission gas bubbles,
398 even in the rim regions where the burnup was higher and increased grain growth was observed in the L45
399 pellets. With no precipitated bubbles observed, the release must be driven by recoil events, which could
400 partially explain the scatter observed in the low FGR% values. The centerline temperature remaining
401 relatively low for all rodlets for the duration of the experiment likely contributed to this behavior as a
402 similar centerline temperature for UO_2 would be well below the Vitanza threshold [34]. It should be
403 acknowledged that while this low release behavior is consistent with other fuel systems, the GASR
404 system does have increased uncertainty when measuring very low plenum pressures at puncture as were
405 recorded in this experiment.

406 **4.3 Comparison with other U-Silicides and UN-Compositions**

407 It is appropriate to make some comparison between the U_3Si_5 and UN- U_3Si_5 fuels presented in this
408 effort and the other U-silicide and UN-composite fuels tested to date within the ATF-1 irradiation
409 experiment, specifically U_3Si_2 . Comparing the single phases rodlets, none of the samples presented
410 significant radial swelling as examined by NDE-PIE. Neutron radiography and optical microscopy did
411 reveal some axial cracking in the U_3Si_2 pellets; though, this was at a significantly lower density than has
412 been observed in UO_2 at a comparable LHGR and burnup [3]. In contrast, no cracking was observed in
413 the U_3Si_5 pellets. A high content of Si-rich phases and UO_2 impurities were observed in the U_3Si_2 pellets
414 while the U_3Si_5 pellets only exhibited potential UN contamination in the pellet center and less prevalent
415 suspected U-rich phases or UO_2 impurities [3, 11]. This difference in phase purity may have played a role
416 in the crack behavior. Gamma spectrometry revealed that neither silicide composition exhibited an axial
417 redistribution of fission products, and a similar self-shielding was revealed in their radial distributions.
418 The FGR was low in both cases [3].

419 Since the primary interest in U_3Si_5 is as a secondary fissile phase, consideration should be made of
420 UN- U_3Si_2 composites, which could offer similar advantages to UN- U_3Si_5 composites and be fabricated
421 using similar sintering methods but with even higher U-loading in the silicide phase [14]. To date, two
422 such rodlets from the ATF-1 irradiation experiment have been examined for NDE-PIE. It should be
423 unsurprising to note that the increased U-density from the primary UN phase has the same enhanced self-
424 shielding and neutron spectrum hardening effect, and similarly results in a transuranic build-up in the
425 pellet periphery, detected via 2D tomographic reconstructions of gamma spectra. However, unlike in the
426 UN- U_3Si_5 pellets, radiography again revealed the presence of cracking within the pellets, perpendicular to
427 the axial direction and attributed to loading during thermal expansion. The profilometry also showed
428 evidence of PCMI, resulting in the permanent deformation of the cladding at the pellet-pellet interfaces,
429 likely due to increased localized stresses from pellet hour-glassing [27]. By contrast, the UN- U_3Si_5 rodlets
430 reported here did not show any signs of perpendicular cracking, PCMI, nor pellet hourgassing, and the
431 axial cracking was small enough to only be resolvable with optical microscopy. While it is likely the
432 conservative pellet-cladding gap played a role in this mechanical response [17], it should not be
433 overlooked that the larger axial cracking observed in the single phase U_3Si_2 pellets occurred despite the
434 pellet-cladding gap remaining. However, it must be reiterated that this cracking in both the U_3Si_2 and UN-
435 U_3Si_5 is significantly less than what is typical of UO_2 pellets at comparable conditions [3]. At this time, it

436 remains unclear if apparently higher stability and the increased oxidation resistance of the UN-U₃Si₅
437 composite, warrants the reducing the potential increased U-loading offered by the U₃Si₂ composites [11,
438 16].

439

440 **5. Conclusions**

441 Non-destructive and destructive PIE were performed on U₃Si₅ and UN-U₃Si₅ fueled rodlets from the
442 ATF-1 irradiation experiment to assess their performance under normal LWR conditions to burnups less
443 than 14 GWD/tHM. In general, the results suggest good irradiation performance for both the silicide and
444 nitride-silicide composite pellets. Non-destructive examinations showed no indications of dimensional
445 changes for the rodlets and did not detect any signs of perpendicular cracking, PCMI, nor pellet
446 hourgassing. Subsequent transverse optical microscopy revealed that pellet-cladding gaps remained, and
447 limited axial cracking was observed only in UN-U₃Si₅ pellets at a density significantly reduced as
448 compared to UO₂ pellets subjected to comparable conditions. Microcracking was isolated to the U₃Si₅
449 phase in all cases and was observed in pre-irradiation and depleted pellets, indicating that it was not
450 irradiation induced. Gamma tomography detected a sharp increase in the ¹⁰⁶Ru-¹⁰⁶Rh plutonium monitors
451 in the UN-U₃Si₅ pellet periphery, which provided the first experimental evidence of rim enrichment in
452 this composite fuel. This validated the predictions of initial composition screening models. No fission gas
453 bubbles were observed in the optical metallography and FGR was low with no indications of loss of
454 containment. These results suggest acceptable swelling and fission gas behavior for both the single phase
455 and composite compositions at this burnup. Future microstructural examination with SEM and other
456 materials science techniques will be vital for providing insight into precipitate phase compositions
457 observed in U₃Si₅ as well as inputs to continue to validate fuel performance modeling of U₃Si₅ and UN-
458 U₃Si₅ systems.

459

460 **U.S. Department of Energy Disclaimer**

461 This information was prepared as an account of work sponsored by an agency of the U.S.
462 Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes
463 any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
464 completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents
465 that its use would not infringe privately owned rights. References herein to any specific commercial
466 product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
467 constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency
468 thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
469 U.S. Government or any agency thereof.

470 **Declaration of Competing Interests**

471 The authors declare that they have no known competing interests, whether financial, personal, or
472 relational, that could have or appeared to influence the work reported in this paper.

473

474 **Credit authorship contribution statement**

475 **W. A. Hanson:** Data curation, Writing – original and revised draft. **F. Cappia:** Conceptualization,
476 Data curation, Writing – original and revised draft, **J. White:** Conceptualization, As-fabricated analysis,
477 Writing – review and editing, **K. McClellan:** Conceptualization, As-fabricated analysis, Writing – review
478 and editing, **J.M. Harp:** Conceptualization, Writing – review & editing.

480 **Acknowledgements**

481 This work is supported by the U.S. Department of Energy, under DOE Idaho Operations Office
 482 Contract DE-AC07-05ID14517 and National Nuclear Security Administration contract number
 483 89233218CNA000001. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to
 484 publish or reproduce the published form of this contribution, or allow others to do so, for U.S.
 485 Government purposes. The authors would also like to acknowledge the staff, engineers, and operators of
 486 MFC HFEF for their efforts during the post-irradiation examinations.

488 **6. References**

- [1] J. Carmack, F. Goldner, S. Bragg-Sitton and L. Snead, "Overview of the U.S. DOE Accident Tolerant Fuel Development Program," *Top Fuel 2013, INL/CON-13-29288, Idaho National Laboratory*, September 2013.
- [2] S. Bragg-Sitton, M. Todosow, R. Montgomery, C. Stanek, W. Carmack and R. Montgomery, "Metrics for the technical performance evaluation of light water reactor accident-tolerant fuel," *BNL-113247-2016-JA, Brookhaven National Laboratory*, November 2016, doi:10.13182/NT15-149.
- [3] F. Cappia and J. Harp, "Postirradiation examinations of low burnup U3Si2 fuel for light water reactor applications," *Journal of Nuclear Materials*, vol. 518, pp. 62-79, 2019, doi:10.1016/j.jnucmat.2019.02.047.
- [4] C. Murdock, J. Brookman and C. Xing, "Accident Tolerant Fuels Series 1 (ATF-1) Irradiation Testing FY 2019 Status Report," *INL/EXT-19-55897, Idaho National Laboratory*, September 2019, doi:10.2172/1575381.
- [5] A. Brown and J. Norreys, "Beta-Polymorphs of Uranium and Thorium Disilicides," *Nature*, vol. 183, p. 673, 1959, doi:10.1038/183673a0.
- [6] K. Taylor and C. McMurtry, "SYNTHESIS AND FABRICATION OF REFRACTORY URANIUM COMPOUNDS. Summary Report for May 1959 through December 1960," *Metals, Ceramics, and Materials, ORO-400*, February 1961, doi:10.2172/4843747.
- [7] S. VAN DEN BERGHE, A. LEENAERS, E. KOONEN and L. SANNEN, "From High to Low Enriched Uranium Fuel in Research Reactors," *Advances in Science and Technology*, vol. 73, pp. 78-90, 2010, doi:10.4028/www.scientific.net/AST.73.78.
- [8] Office of Nuclear Reactor Regulation, NUREG-1313, 1988.
- [9] J. White, A. Nelson, D. Byler, J. Valdez and K. McClellan, "Thermophysical properties of U3Si to 1150 K," *Journal of Nuclear Materials*, vol. 452, pp. 304-310, 2014, doi:10.1016/j.jnucmat.2014.05.037.
- [10] J. White, A. Nelson, J. Dunwoody, D. Byler, D. Safarik and K. McClellan, "Thermophysical properties of U3Si2 to 1773 K," *Journal of Nuclear Materials*, vol. 464, pp. 275-280, 2015, doi:10.1016/j.jnucmat.2015.04.031.
- [11] J. White, A. Nelson, D. Byler, D. Safarik, J. Dunwoody and K. McClellan, "Thermophysical properties of U3Si5 to 1773 K," *Journal of Nuclear Materials*, vol. 456, pp. 442-448, 2015, doi:10.1016/j.jnucmat.2014.10.021.
- [12] K. Terrani, D. Wang, L. Ott and R. Montgomery, "The effect of fuel thermal conductivity on the behavior of LWR cores during loss-of-coolant accidents," *Journal of Nuclear Materials*, vol. 448, p. 512–519, 2014, doi:10.1016/j.jnucmat.2013.09.051.

- [13] N. Brown, M. Todosow and A. Cuadra, "Screening of advanced cladding materials and UN–U₃Si₅ fuel," *Journal of Nuclear Materials*, vol. 462, pp. 26-42, 2015, doi:10.1016/j.jnucmat.2015.03.016.
- [14] J. White, A. Travis, J. Dunwoody and A. Nelson, "Fabrication and thermophysical property characterization of UN/U₃Si₂ composite fuel forms," *Journal of Nuclear Materials*, vol. 495, pp. 463-474, 2017, doi:10.1016/j.jnucmat.2017.08.041.
- [15] L. Ortega, B. Blamer, J. Evans and S. McDeavitt, "Development of an accident-tolerant fuel composite from uranium mononitride (UN) and uranium sesquisilicide (U₃Si₂) with increased uranium loading," *Journal of Nuclear Materials*, vol. 471, pp. 116-121, 2016, doi:10.1016/j.jnucmat.2016.01.014.
- [16] N. Brown, A. Aronson, M. Todosow, R. Brito and K. McClellan, "Neutronic performance of uranium nitride composite fuels in a PWR," *Nuclear Engineering and Design*, vol. 275, pp. 393-407, 2014, doi:10.1016/j.nucengdes.2014.04.040.
- [17] S. Vogel, N. Borges, A. Losko, S. Mosby, S. Voit, J. White, D. Byler, J. Dunwoody, A. Nelson and K. McClellan, "Neutron Characterization of Encapsulated ATF-1/LANL-1 Mockup Fuel Capsules," *LA-UR-17-28837, Los Alamos National Laboratory*, September 2017, doi:10.2172/1396105.
- [18] M. Mirandou, R. González, S. Aricó and A. Fortis, "Neutron irradiation of U₃Si₅ and Al₄₃Mo₄U₆ compounds. First results," *Procedia Materials Science*, vol. 9, pp. 404-411, 2015, doi:10.1016/j.mspro.2015.05.010.
- [19] R. Martin, J. Gates, D. Keller, V. Storhok and W. Zielenbach, "Radiation stability of uranium mononitride," Joint U.S. - Euratom Research and Development Program, Report No. BMI-1731, UC-25 Metals, Ceramics, and Materials (TID-4500 44th Ed.), Battelle Memorial Institute, Columbus, OH, 1965.
- [20] Y. Arai, "Chapter 3.02 Nitride Fuel," *Comprehensive Nuclear Materials*, vol. 3, pp. 41-54, 2012, doi:10.1016/B978-0-08-056033-5.00050-1.
- [21] G. J. Youinou and R. S. Sen, "Impact of Accident-Tolerant Fuels and Claddings on the Overall Fuel Cycle: A Preliminary Systems Analysis," *Nuclear Technology*, vol. 188, no. 2, pp. 123-138, 2014, doi:10.13182/NT14-22.
- [22] J. M. Harp, R. N. Morris, C. M. Petrie, J. R. Burns and K. A. Terrani, "Postirradiation examination from separate effects irradiation testing of uranium nitride kernels and coated particles," *Journal of Nuclear Materials*, vol. 544, no. 152696, 2021, doi:10.1016/j.jnucmat.2020.152696.
- [23] F. Kryukov, A. Belyaeva, M. Skupov, L. Zabudko and Y. Mochalov, "Results of post-irradiation examinations of mixed nitride pins with gas and liquid metal sub-layers," *Nuclear Engineering and Design*, vol. 384, no. 111463, 2021, doi:10.1016/j.nucengdes.2021.111463.
- [24] J. Harp, F. Cappia and L. Capriotti, "Postirradiation Examination of the ATF-1 Experiments - 2018 Status," *INL/EXT-18-51497, Idaho National Laboratory*, September 2018, doi:10.2172/1484529.
- [25] "KANTHAL AF: Iron-Base Resistance Heating Alloy," *ASM International, Alloy Digest*, vol. 34, no. 12, ID:Fe-71, 1985, doi:10.31399/asm.ad.fe0071.
- [26] F. Cappia and J. Harp, "Postirradiation Examination of the ATF-1 Experiments - 2019 Status," *INL/EXT-19-55645, Idaho National Laboratory*, September 2019.
- [27] F. Cappia, "Postirradiation Examination of the ATF-1 Experiments - 2020 Status," *INL/EXT-20-59619, Idaho National Laboratory*, September 2020.
- [28] A. Craft, D. Wachs, M. Okuniewski, D. Chichester, W. Williams, G. Papaioannou and A. T. Smolinski, "Neutron Radiography of Irradiated Nuclear Fuel at Idaho National Laboratory," *Physics Procedia*, vol. 69, pp. 483-490, 2015, doi:10.1016/j.phpro.2015.07.068.
- [29] J. Harp, P. Demkowicz, P. Winston and J. W. Sterbentz, "An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques," *Nuclear Engineering and Design*, vol. 278, pp. 395-405, 2014, doi:10.1016/j.nucengdes.2014.07.041.

[30] J. Harp and P. Demkowicz, "Investigation of the Feasibility of Utilizing Gamma Emission Computed Tomography in Evaluating Fission Product Migration in Irradiated TRISO Fuel Experiments," *Proceedings of the HTR 2014, INL/CON-14-31509, Idaho National Laboratory*, October 2014.

[31] B. Curnutt, J. Brookman and S. Hayes, "ATF-1 Power Histories," *TEV-3119 Rev 2, Idaho National Laboratory*, 2019.

[32] R. Rebak, P. Andresen, E. Dolley, S. Huang, Y. Kim, C. Paone, R. Stachowski, R. Fawcett, Y. Lin, K. Ledford, B. Schulz, D. Ellis, S. Maloy, A. Nelson, S. Parker, A. Parkison, G. Was, P. Ahmedabadi, B. Pint, K. Barrett, M. Teague, M. Elbakshwan, S. Gill and L. Ecker, "Ferritic Alloys as Accident Tolerant Fuel Cladding Material for Light Water Reactors," *DE-NE0000568, Final Report Phase 1A FY2013-2014 - ATF FOA General Electric*, 2014, doi:10.2172/1166777.

[33] "KANTHAL APMT: Ferritic Resistance Alloy," *ASM International, Alloy Digest*, vol. 58, no. 6, ID:SS-1037, 2009, doi:10.31399/asm.ad.ss1037.

[34] C. Vitanza, E. Kolstad and U. Graziani, "Fission Gas Release From UO₂ Pellet Fuel at High Burn-Up," in *Proceedings of American Nuclear Society topical meeting on light water reactor fuel performance*, Portland, OR, May 1979.

490

491

492

493