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1. Introduction 

This SE296 Capstone Project technical report is being submitted as a final requirement of 

the UCSD Master of Science in Structural Engineering with specialization in Structural 

Health Monitoring (SHM) and Nondestructive Evaluation (NDE). The Capstone provides 

students the opportunity to apply knowledge in their technology areas towards the solution 

of an SHM or NDE problem. As an employee of the Lawrence Livermore National 

Laboratory and NDE/NCI team member, I chose to apply the SHM design paradigm taught 

at UCSD to improve the health monitoring of the X-ray Micro-Computed Tomography 

(MCT) system. I would like to thank LLNL’s Dr. Harry Martz for serving as my mentor during 

this project and the entire LLNL MCT technical team for answering my questions and 

contributing to my knowledge. I would also like to thank Prof. Michael Todd for recruiting 

me to the UCSD NDE/SHM program and serving as my graduate advisor. 

1.1 Project Background and Motivation 

The LLNL Nondestructive Characterization Institute (NCI) under Dr. Harry Martz develops 

and supports a portfolio of six MCT X-ray systems for quantitative nondestructive evaluation 

and material characterization1. Each MCT system functions as a high precision metrological 

instrument and it is critical that measured values stay within quality control bounds. MCT 

systems contain sensors that may lose calibration or become damaged through operational 

use. This poses an interesting online condition monitoring problem to decide when MCT 

system measurements have grown unreliable. 

Figure 1 shows the MCT instrument components. The X-ray tube (the large upright cylinder 

on the right) radiates a focused and collimated beam through a test specimen (fixed on the 

center carousel) which is then measured by an amorphous-silicon flat-panel X-ray detector 

(supported by the black panel holder on the left). The carousel is rotated and translated by 

 
1 The LLNL NCI website homepage is available online at https://nci.llnl.gov/home  

https://nci.llnl.gov/home
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high-precision motion stages under computer control. This allows X-ray measurements of 

the test sample to be acquired using a "step-and-shoot" procedure over a 360-degree 

angular range. A typical computed tomography scan requires 720 different angular 

measurements to reconstruct high quality volumetric 3D images for the test sample. Figure 

2 shows the data processing steps used to transform the raw MCT measurements into 

digital images. The digital images can be interpreted as 2D maps of the linear attenuation 

coefficients (LACs) of the materials at the given scan energy. 

 

 

Figure 1 - The Micro-CT X-ray System is a scientific instrument for characterizing material samples. The 
instrument acquires dual-energy measurements which are then reconstructed using X-ray computed tomography 
CT algorithms to identify the material composition of a test specimen placed on the center Carousel. Reference 
[Martz, 2019]. 

The LAC value of a material sample changes slightly as a function of the X-ray energy 

spectra. As a result, the material composition of the test sample can be characterized by 

repeating the measurement and computing an image reconstruction procedure at two 

different X-ray energies. This measurement technique is called dual-energy computed 

tomography. The MCT system uses X-ray tube measurements of 100 kV and 160 kV. 
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Figure 2 - MCT Data processing steps: (a) the test specimen is interrogated using X-rays at 720 angular views or 
"projections" resulting in raw digital radiographs; (b) data processing operations are applied to the radiographs 
to subtract dark current, normalize for variations in the X-ray flux, and transform using Beer's Law; (c) sinograms 
are created by sorting the processed radiographs; (d) CT reconstruction algorithms based on the Radon 
transform are applied to create digital images representing slices through the test specimen. Reference [Martz, 
2019] 

 

1.1.1 MCT Health Monitoring System 

Through repeated operation, the MCT system components become damaged. The damage 

manifests as an observed drift in the LAC values and other statistics being monitored. Table 

1 identifies the underlying causes of MCT system drift based on conversations with the MCT 

technical team. Damage to the X-ray source and X-ray panel detector are suspected to be 

the two main contributors of system drift. 
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Component Damage mechanism Other causes of variability 

X-ray tube Damage to the anode, filament or high-voltage 

cables or generator can alter beam flux, energy 

spectrum, or direction. 

Temperature,  

Warmup procedure used 

by operator 

X-ray panel Radiation dose eventually damages the panel 

sensors causing elevated dark current readings, 

nonlinear response to incident radiation, or 

scintillator browning. 

Temperature 

 

Table 1 - Underlying causes of system drift in MCT system measurements 

 

The MCT instrument has a built-in health monitoring system to assure that reference 

measurements remain within acceptable tolerance bands. During normal MCT operation, 

measurements of six "ground-truth" reference materials are continuously monitored at the 

two X-ray energy levels of 100 kV and 160 kV. Figure 3 shows a series of control charts 

produced by the MCT health monitoring system at the lower energy of 100 kV. Excursions 

beyond the two horizontal tolerance bands indicate that damage to the MCT instrument has 

grown severe enough to cause reference measurements to drift. Note the reference 

materials exhibit excursions violating the tolerance bands at different points in time. There 

are six additional LAC charts at the higher energy of 160 kV. This complicates the assessment 

of MCT system stability as the twelve chart patterns often provide conflicting indications. 

Another complication is that an excursion beyond the tolerance band may reverse bringing 

the LAC values back within the tolerance bands. An ideal SHM damage indicator should 

incorporate all twelve LAC measurements into a single monolithic damage assessment. 

Sections 2.2 and 2.3 propose several alternatives to consolidate these measurements in a 

principled manner. 
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Figure 3 - Example of the control charts used to monitor the linear attenuation coefficient (LAC) values of six 
reference materials measured at 100 kV: graphite, Delrin®, water, Teflon®, magnesium and silicon. Not shown 
are six additional control charts constructed for the reference materials measured at 160 kV. System health is 
confirmed when measurements remain within the quality control bounds (appearing on the chart as horizontal 
line pairs). 

 

Figure 4 shows the carousel designed to rotate the test sample through the X-ray beam 

during scanning. During normal operation, a two-slit collimator is positioned in front of the 

X-ray source. Figure 4 also shows the upper slit that acts as the primary MCT sensor 

measuring the test sample. The lower slit acts as a secondary sensor and simultaneously 

measures the six reference materials. The MCT health monitoring system has additional 

region-of-interest (ROI) sensor areas defined to collect information used for data 

normalization and monitoring. Statistics calculated from these ROI areas are monitored as a 

secondary indicator of MCT system health. The secondary sensors are discussed further in 

Section 2.1. 
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Figure 4 - (a) The carousel holds the test sample during scanning with the reference materials located directly 
underneath. (b) Top-down view of the carousel showing the large cylindrical test specimen and six smaller 
reference materials. 

Due to collimation, only a fraction of the X-ray panel is exposed to radiation during 

operation. A simple preventative maintenance procedure called a "panel move" can be used 

to restore the system back to health. Specifically, a 3/8" spacer is inserted at the panel base 

causing the illuminated regions of the panel to be shifted. This allows the damaged sensor 

region to be abandoned and future measurements to be relocated to an undamaged region. 

 

Figure 5 - (a) X-ray panel detector showing approximate location of upper and lower slits; (b) X-ray radiograph of 
carousel and samples without collimator in place; (c) X-ray radiograph with two-slit collimator in place; (d) Plot 
of lineout taken along lower slit. 
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The damage occurring in the X-ray panel detector plays an important role in the behavior of 

the MCT health monitoring data. This will be discussed further in Section 2.1 Data 

Acquisition. 

1.1.2 Study Goals 

This technical report provides an appraisal of the current MCT health monitoring system and 

explores how SHM can be applied to make improvements. In support of my SE296 project, 

LLNL NCI provided four years of MCT system health monitoring data. This report documents 

my findings from working with this dataset as well as my exploratory conversations with 

MCT technical team members. Table 2 defines the specific study goals adopted at the start 

of the project. 

 

Study Goal Description 

Detect MCT system 

damage 

Determine if SHM methods can be used to detect damage when 

MCT measurements are observed to drift out of quality control 

bounds 

Locate the damage Determine how SHM methods might pinpoint the cause of system 

drift by locating damage to one of the MCT system components 

(e.g., X-ray detector or source, or other system components) 

Predict remaining 

useful life RUL 

for condition-based 

maintenance 

Explore how SHM might use MCT health monitoring data to 

predict RUL. The ultimate objective is to devise a decision support 

tool to prompt the scheduling of MCT system preventative 

maintenance. 

Table 2 - SE296 Project Study Goals 

 

1.2 The Structural Health Monitoring Design Paradigm 

Structural health monitoring (SHM) originated as a term referring to damage detection 

strategies using vibration measurements from large sensor arrays deployed to planes, 

bridges, buildings, and wind turbines. During the 1990's, Charles Farrar and Ken Worden 

began demonstrating a data-driven approach to SHM system design by integrating concepts 
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from statistics, signal processing, structural dynamics and pattern recognition. Since that 

time, the Farrar-Worden SHM design paradigm has been adapted for condition-based 

monitoring of a much wider class of man-made systems, structures and scientific 

equipment. The paradigm defines structural health monitoring as "the process of developing 

an automated and online damage assessment capability for all types of engineered systems" 

[Farrar-Worden, 2021]. This broader definition is adopted for the purposes of this report 

which uses SHM, health monitoring, and condition-based monitoring as synonymous terms. 

While often employing the interrogation methods of nondestructive evaluation (NDE), SHM 

differs from NDE in that the structure typically remains in service throughout the inspection. 

NDE methods provide a "snapshot" indication of whether or not damage is present; SHM 

methods by comparison provide ongoing time-series measurements monitoring the 

progression of damage in man-made structures. However, the distinction between SHM and 

NDE is sometimes fuzzy as in the case of in situ inspection methods used for additive 

manufacturing quality control. 

There are other important distinctions between SHM and NDE. SHM typically generates very 

large datasets due to continuous and longstanding measurement. This has caused SHM to 

prioritize the development of automated data compression, analysis and interpretation 

methods. Second, SHM systems are characteristically made "in the field" necessitating 

solutions that can address a wide variation in environmental and operating conditions 

(EOC's). For example, daily or seasonal temperature variation may create a serial correlation 

in measured data that must be corrected to avoid being misinterpreted as evidence for 

damage. 

Figure 6 summarizes the SHM design paradigm employed during the SE296 project and 

referenced throughout this report. The paradigm was pioneered by Farrar and Worden and 

further developed over the last twenty years through a partnership between the UCSD 

Jacobs School of Engineering, the Engineering Institute at Los Alamos National Laboratory, 

and the University of Sheffield. 
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Figure 6 – The four-step paradigm for architecting health monitoring solutions [Farrar, 2019] 

Some of the key paradigm teaching points include: 

• SHM is best approached as an engineering design problem in statistical pattern 

recognition using data-driven methods and machine learning. The resulting statistical 

models may be further improved by whatever physics-based knowledge is available. 

• Some level of damage is always present in any man-made structure or material. What 

matters is when the level of damage reaches a critical level where the equipment or 

structure being monitored no longer performs at an acceptable level. Therefore, 

damage must always be defined relative to some normal operation state or condition. 

• Sensors are not capable of measuring damage directly. It is always necessary to 

extract damage sensitive features from the measured data using signal processing 

and statistical classification. The extracted features are used subsequently by 

statistical inference models constructed for the purpose of detecting damage, 

locating damage, classifying damage type, assessing damage severity, and ultimately 

estimating remaining useful life (RUL).   

• A further codification of the general principles accepted by the SHM community is 

known as the Fundamental Axioms of Structural Health Monitoring (See Appendix A). 
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The earliest SHM applications originated in the structural engineering community using 

vibration monitoring to detect incipient damage in structures, vehicles and rotating 

machinery. However, I will demonstrate that the paradigm adapts well to the health 

monitoring of the MCT X-ray system. This assertion is a key contribution of this report and 

applies to the health monitoring of scientific metrology equipment more generally. 

I will also compare the classical statistical inference approach currently employed by the 

MCT technical team, with the more general SHM paradigm, as a secondary research 

contribution. Throughout the report, I support the thesis that the statistical pattern 

recognition paradigm offers a much richer framework for attaining the MCT system health 

monitoring goals. 

1.2.1 Damage identification levels 

Table 3 defines five damage identification levels according to the SHM design perspective. 

Each level builds progressively on the previous levels.  This means that sensors must be 

selected, damage sensitive features constructed, and classification models must be built at 

each previous level before ascending to the next. SHM systems at the higher damage levels 

are more difficult to construct and require the availability of damage state data. Damage 

state data is needed to train supervised learning algorithms and must be provided either 

experimentally or through simulations paired with a known physics-model. 
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Damage Level Damage 

question 

Applicable Machine Learning Methods and Data 

Requirement 

1 Detection Is damage 

present? 

Novelty detection methods can be used when damage 

state data is unavailable 

2 Location Where is the 

damage present? 

Relies on detection and may be either unsupervised (if 

novelty detection is used) or Supervised (if 

classification is used) 

3 Classification What type of 

damage is 

present? 

Damage state data is required to support supervised 

learning 

4 Assessment What is the 

damage severity 

or extent? 

Relies on Classification and definition of a 

monotonically increasing damage indicator. 

5 Prognosis What is remaining 

useful life? 

Relies on Assessment and requires ability to track 

speed of increasing damage 

Table 3 - Damage Identification Levels. Levels 3-5 require pattern classification which requires damage data to be 
available. Level 2 may be achieved in an unsupervised manner if the sensor is local to the detected damage. 
References: [Rytter, 1993], [Farrar, p296] 

The Damage Identification Levels provide a fundamental bound on what health monitoring 

goals are achievable given the data available. My SE296 project necessarily prioritized 

"Damage Level 1 - Detection" due to the lack of damage state information in the MCT health 

monitoring dataset. This level is unique from the higher levels of damage identification in 

that it can be undertaken using unsupervised learning [Farrar, p321]. 

However, developing an optimal damage detector is only the first step towards building an 

SHM system capable of achieving the ultimate goal of preventative maintenance. Another 

contribution of this technical report is to propose Future Work for progressing through the 

higher levels of damage characterization. Recommendations are provided for the damage 

state data that must be acquired as a prerequisite. 
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1.3 Operational Evaluation (SHM Step One) 

Operational Evaluation represents the very first step in SHM system development. It 

corresponds to the requirements gathering phase of model-based systems engineering. The 

SHM project to be undertaken should be examined in terms of the costs, benefits, and 

implementation constraints. However, there are two aspects of Operational Evaluation 

making it unique relative to other engineering lifecycles: (a) the emphasis on defining the 

damage to be detected and the unique damage sensitive features to be exploited; and (b) 

the identification of Environmental and Operational Conditions (EOC’s) that can confound 

sensor readings leading to false indications of damage. 

Farrar and Worden describe the Operational Evaluation step as an exercise in answering 

four types of questions:  

• Life-safety and/or economic justification for performing SHM;  

• Questions about the type of damage to be detected;   

• Environmental conditions (temperature, moisture, radiation fields) and operational 

conditions (changes to equipment settings or configurations, loading);  

• Constraints on sensors and other data acquisition equipment.  

Answers to these four types of questions are compiled below based on conversations with 

the MCT technical team. The issues raised during Operational Evaluation inform and guide 

the SHM design steps discussed in later sections of this report. 

• Performance measures: The purpose of an SHM system is to ensure that the structure 

being monitored maintains an adequate level of operational performance. As a 

metrological scientific instrument, the two most important measures of the MCT system 

are measurement stability and accuracy. 

• Economic justification: Recalibration requires a minimum of thirty MCT scans which can 

take as long as two months to acquire. This unproductive use of scanner time is both 

costly and disruptive to programs depending on timely measurements. It also sometimes 

happens that the cause of MCT system instability is misdiagnosed causing further delays. 

For example, it is critical to know whether an observed system drift is being caused by 
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damage to the X-ray source or panel so that maintenance targets the malfunctioning 

component. 

• Life safety justification: Maintaining MCT data quality is important to national security 

programs. This justification could be leveraged for R&D funding and retrofit costs leading 

to a more capable health monitoring solution. 

• Damage definition and priority: System drift is the most readily observed evidence of 

damage. It is also an SHM priority because system drift indicates the loss of 

measurement stability and accuracy. As discussed in Section 1.1.1, the MCT technical 

team monitors system drift using continuous measurements of the LAC coefficient values 

for six material references. Control charts show the tendency for the LAC coefficients to 

be become unstable after a certain number of scans. Constructing an optimal detector of 

system drift is therefore the first SHM step, “Damage Level 1 – Detection”, and the focus 

of this SE296 project. 

• Damage location: As mentioned above, locating damage to the X-ray source or panel is 

critical to preventative maintenance “Damage Level 2 – Location”. 

• Estimation of remaining useful life: “Damage Level 5 – Prognosis”, represents the 

ultimate MCT system goal. Preventative maintenance would maintain measurement 

fidelity and help mitigate disruptions to program schedules.  

• Environmental conditions: Radiation has a dual role for the MCT system. It functions as 

the interrogating signal for MCT measurements. However, radiation may also be treated 

an environmental condition because it damages the X-ray panel and eventually 

necessitates the "panel move" procedure discussed in Section 1.1. The effects of 

radiation are visible even during normal operating periods. As discussed later, 

amorphous silicon X-ray panels are subject to a thermal annealing process that reverses 

the effects of radiation damage over time. The damage and its reversal cause 

measurements to drift in an oscillatory manner that can be characterized as an 

autocorrelation. The autocorrelation confounds statistical measures of system drift and 

therefore must be corrected. Section 3.3 applies an SHM data processing technique 

called Data Normalization which is often used to correct the confounding effects of 

environmental conditions. 

• Secondary environmental conditions: As with most SHM systems, temperature 

fluctuation can introduce variability into MCT system measurements. Temperature can 
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alter the flux and spectral output of the X-ray tube. Temperature also influences the rate 

of annealing in the X-ray panel which is a suspected cause of measurement drift. High 

humidity has been raised as a concern at some MCT system locations as a potential 

contributor to X-ray tube failure. 

• Operator changes: Measurement variability can be accidentally introduced by the 

radiography technicians operating the MCT system. Measurement outliers can occur if 

the technician changes the standard operating procedures. Examples of procedural 

changes known to have occurred in the past include: (a) changes to the X-ray tube 

warmup procedure; (b) changes to the data acquisition settings; (c) alignment changes 

introduced by a failure to properly position the carousel or X-ray panel. 

• Operating loads: The MCT system can be subject to "undocumented" scans that may add 

equipment operating hours not logged in the scan records. Technicians perform warmup, 

alignment and test procedures that can add undocumented time. Also, the MCT system 

is occasionally loaned out for nonprogrammatic use. 

• Data acquisition limitations: Radiation requires shielding or rad-tolerance for any added 

sensors or data acquisition equipment. However, the MCT system operates in a 

laboratory environment so exposure to weather or other uncontrolled environmental 

conditions is not a concern. One disadvantage is that some of the MCT systems are 

located in facilities that do not permit wireless equipment. One advantage is that MCT 

data acquisition occurs slowly relative to many SHM systems so data may be analyzed 

and interpreted in an offline manner. 

 

1.3.1 Damage to be detected 

Operational Evaluation begins by identifying the damage to be detected and monitored by 

the SHM system. As discussed in Section 1.1.1, the MCT technical team believes there are 

two primary damage mechanisms affecting MCT measurements: (a) damage to the X-ray 

tube through operational use; and (b) damage to the X-ray detector caused by radiation 

dose. Section 2.1.3 will revisit the concern of X-ray tube damage as a potential topic for 

future study. As will now be discussed, damage to the X-ray detector is believed to occur on 
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a much shorter timeframe and also to be more dominantly manifest in the MCT 

measurement data. It is therefore adopted as a focus of the current SE296 study. 

Early developers of amorphous silicon (a-Si:H) X-ray panel detectors performed 

experimental studies to characterize the effects of radiation damage [Boudry, 1996]. Each 

pixel in the 2048x2048 panel detector contains a two-device sensor comprised of a 

photodiode coupled to a field-effect transistor (FET). These semiconductor devices exhibit a 

leakage current (or "dark current") that varies according to the presence of impurities, 

lattice defects, or ambient temperature. While the photodiode was empirically determined 

to be relatively immune from radiation [Antonuk 1990], it was determined that radiation 

dose increases the leakage current of the FET [Boudry and Antonuk, 1996]. The leakage 

current increase can be explained by the tendency of radiation to create dislocation defects 

within the FET semiconducting regions. The leakage current increase was also associated 

with increased measurement noise. Over time, thermal energy reverses the dislocation 

defects resulting in an "annealing" effect which accelerates with increasing temperatures. 

Annealing occurring at room temperature was observed to reduce the leakage current 

between 10-50% in the first day with a logarithmic decrease in subsequent days [Boudry, 

1996]. Although X-ray panel manufacturers have engineered ways to mitigate this effect, 

there is evidence of the damage-annealing cycle becoming manifest as an autocorrelation in 

the MCT measurement data. This will be revisited in Section 3.3 on data normalization. 

1.4 Literature Review 

Computed tomography equipment manufacturers have long offered procedures for system-

level performance measurement (e.g., ASTM standard E1695), but the new trend is to 

monitor and diagnose system health at the component level to predict against imminent 

failures. Medical CT vendors are starting to incorporate health monitoring as a standard 

system feature. GE HealthCare advertises2 Tube Watch™ using AI and Digital Twin 

technology to monitor imminent failures in X-ray tubes. Industrial CT is considered a critical 

enabling technology for advanced manufacturing. The European Union's Industry 4.0 

initiative is funding the "xCTing" MSCA ITN research program to develop condition 

 
2 https://www.gehealthcare.com/products/tube-watch 

https://www.gehealthcare.com/products/tube-watch
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monitoring of in-line CT equipment3. The xCTing website promotes CT as "the only known 

technology that can certify nondestructively the quality of internal complex structures, such 

as those produced by additive manufacturing or found in assemblies". 

There are interesting cases of health monitoring systems designed to detect damage and 

anomalous operating behavior in scientific instruments and equipment. Farrar discusses an 

SHM system using vibration monitoring to detect damage in a telescope drive mechanism 

[Farrar, 2019]. MAINTLET is an NSF-funded project at the University of Illinois seeking to 

develop health monitoring solutions for scientific instruments located in campus 

laboratories [Nahrstedt]. A sensor network of vibration monitors, water flow meters, and 

contact temperature sensors streams data that is assimilated into digital twin simulations to 

predict potential instrument failures. An engineer designed a health monitoring system for 

radiological equipment used at the Department of Energy Y-12 uranium enrichment facility 

in Tennessee [Harrison, 2004]. The system employs a fault detector based on the sequential 

probability ratio test SPRT. Section 3.1 discusses results obtained by applying the SPRT to 

MCT health monitoring data. 

Scientific instruments are carefully calibrated and controlled to produce accurate and 

consistent measurements. The loss of calibration or variability in measurements can be 

treated as a type of damage known as system drift. Methods for detecting system drift 

originated at Bell Laboratories in the 1920's through the work of quality engineer Walter 

Shewhart, and have matured into the field of statistical process control SPC. 

Venkatasubranmanian [2003] provides a comprehensive literature survey of SPC methods 

including a discussion of the Shewhart control charts employed by the MCT health monitoring 

system. It warns that the use of univariate control charts can lead to misleading results when 

the parameters being monitored are correlated. This point will be revisited in Section 2.2.2. 

There are many more publications in the SPC literature that are relevant to the MCT health 

monitoring system. Introduction to statistical quality control is considered a standard 

reference by SPC practitioners [Douglas, 2020]. 

More recent work in the process control industry directly converges with SHM data analysis 

methods. The TÜV SÜD National Engineering Laboratory developed a data science 

 
3 https://xcting-itn.eu/ 

https://xcting-itn.eu/
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framework for the condition-based monitoring CBM of the flowmeters used inside oil 

pipelines [Lindsay, 2022]. The TÜV SÜD framework can predict component failure, detect 

calibration drift, and reduce unscheduled downtime. While the framework closely mirrors 

the data-driven methods of the Farrar-Worden SHM paradigm, it also emphasizes the 

importance of exploratory data analysis (data mining) in the search for data sensitive 

features. Another emphasis of the framework is the three-stage progression of SHM design 

over time:  

• Stage 1 - Detect anomalies;  

• Stage 2 - Use detected anomalies as input to classify specific fault conditions;  

• Stage 3 - Quantify the effects of each fault condition on the overall system measurement 

uncertainty.  

The close tie between structural health monitoring and uncertainty quantification is of great 

importance to the MCT health monitoring system. 

Sensor fault detection (SFD) has been widely studied for over 50 years being critical to the 

health monitoring of aeronautics, space vehicle, and automotive instrumentation. SFD 

provides methods for detecting sensor drift and other anomalous measurements. Many of 

these methods employ system identification algorithms. De Silva [2020] proposes an SFD 

architecture that combines the Kalman filter with machine learning methods. This approach 

will be examined in Section 2.3. 

A final body of knowledge that was surveyed is the related field of measurement science 

(metrology). Measurement science provides statistical methods for quantifying equipment 

precision, accuracy and uncertainty propagation. As discussed in Section 2.2.1, the MCT 

technical team employs calibration procedures for statistical tolerance intervals as published 

in the NIST Engineering Statistics Handbook.4  

  

 
4 Available online at https://www.itl.nist.gov/div898/handbook/  

https://www.itl.nist.gov/div898/handbook/
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1.5 Contributions 

This section summarizes the contributions of this technical project and final report to both 

the MCT technical team and the SHM engineering literature. 

Contributions to the MCT Technical Team  

In February of 2023, UCSD student Michael Skeate gave a tutorial presentation to the MCT 

technical team on the Structural Health Monitoring paradigm and recommendations were 

provided for using the paradigm to improve the MCT health monitoring system. This 

technical report provides additional information on the topics presented including: 

• An assessment of the statistical procedures currently used for MCT health monitoring 

including statistical control charts and tolerance intervals;  

• An evaluation of the method used to specify the ROR and QC tolerance limits and 

reasons these limits should be widened: (a) reference given to published k-factor tables 

that account for the presence of autocorrelation in MCT data [Knoth]; (b) reference 

given to construct multivariate statistical tolerance intervals [Polhemus]; 

• Spotlighting the damaging aspects of system drift including the invalidation of the MCT 

tolerance intervals, and thereby motivating the need for rapid drift detection; 

• Integration of an optimal detection algorithm employing sequential hypothesis testing 

into the statistical control charts currently used for MCT health monitoring; 

• Demonstration of the efficacy of autoregressive models to mitigate the serial 

correlation present in the MCT data measurements being monitored, thereby reducing 

the false alarm rate during drift detection; 

• MATLAB codes providing reference implementations of the sequential probability ratio 

test and autoregressive model correction; 

• Roadmap for future work intended to evolve the MCT health monitoring system from 

Damage Level One to the higher levels in the Rytter-Farrar-Worden damage hierarchy. 
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Contributions to the SHM Literature 

• Demonstration of applying the SHM paradigm to the health monitoring of scientific 

instrumentation in general and X-ray computed tomography equipment in particular; 

• Spotlighting the important role that SHM will play in developing online condition 

monitoring for scientific equipment, including X-ray equipment used for in situ inspection 

and process control for Industry 4.0 and lot-size-one advanced manufacturing. 

2 Methods 

Section 1 posed the question motivating this SE296 project, "how might SHM methods be 

applied to improve the current MCT health monitoring system?" Section 2 discusses topics 

addressing this question including theory, models, datasets, key concepts, design methods, 

and statistical analysis methods. Section 3 presents the project technical results. 

2.1 Data Acquisition (SHM Step Two) 

This section discusses step two in the SHM paradigm, Data Acquisition. During this step, the 

SHM designer gives attention to aspects of measurement engineering: (a) method of 

damage interrogation and sensor excitation; (b) sensor type, location and number; (c) 

equipment used for data acquisition; (d) the data collection rate; and (e) required signal 

processing. The resulting SHM system must provide the data needed to achieve the 

damage detection goals established during Operational Evaluation. 

Section 2.1.1 comments on two fundamentally different data acquisition design strategies. 

Section 2.1.2 discusses the MCT system health monitoring dataset provided by LLNL for the 

benefit of this SE296 project. Section 2.1.3 appraises the quality and completeness of the 

available data and makes recommendations for additional data needed for future studies. 

2.1.1 SHM Instrumentation Strategies 

Data acquisition lies at the foundation of SHM system design [Farrar, p54]. The SHM system 

designer must employ sensors that are sensitive to the damage of concern with a high 

degree of correlation. This is not to say that the sensors will measure damage directly as 
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that would violate the Fundamental Axioms (See Appendix A). It is rather that the chosen 

sensors and resulting measurements must enable the extraction of damage sensitive 

features through the corrective lens of signal processing, mitigation of environmental and 

operational variability (the EOC's), and interpretation by a sufficiently powerful statistical 

model. Given all these design factors, it follows that ideally the choice of SHM sensors 

should be made as a fundamental design concern of the structure to be inspected. This 

integrated approach to SHM or NDE architecture is often referred to as "design for 

inspection" [Argyll Ruane, 2023]. 

As outlined by Farrar p54, the retrofit strategy is by far the most common approach for most 

SHM projects. This is also the approach taken in this study given the limited time available to 

complete the project. Table 4 contrasts the "Retrofit" instrumentation strategy with the 

more comprehensive "Design for Inspection" approach that would make optimal sensor 

choices based on SHM first principles. It is recommended that future studies move towards 

the Design for Inspection approach. 
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Design Aspect Retrofit Strategy “Design for Inspection” Strategy 

Sensors 

employed 

Use previously available 

sensors and data acquisition 

equipment 

Chosen sensors on the basis of sufficient 

sensitivity and correlation to the 

postulated damage mechanisms 

Sensor 

location 

Distributed in an ad hoc 

manner to provide a general 

sampling 

Placement decided on the basis of 

analysis, experiments, or past 

experience 

Damage- 

sensitive data 

features 

Constructed "after the fact" 

using archived sensor data, 

trial and error, and ad hoc 

algorithms 

Engineered on the basis of numerical 

simulations or experimental validation 

for the postulated damage mechanisms 

Treatment of 

environmental 

and operation 

conditions 

No measurement of the 

parameters necessary to 

correct the effects of EOC's 

Addition of secondary sensors to 

quantify changing EOC's 

Excitation Relies on measurements of the 

ambient operational 

environment 

Active sensing employed when it can be 

exploited for optimal damage detection 

Data 

coverage 

Lack of damage data relegates 

retrofitted systems to Level 

One Damage Identification as 

the SHM system must rely on 

unsupervised learning 

methods (novelty detection) 

Damage data needed for supervised 

learning methods is provided by 

numerical simulations or experiment. 

This opens the door to higher levels of 

damage identification. 

Table 4 - Comparison of SHM Instrumentation Strategies. Reference [Farrar and Worden, 2012] 

In spite of its many limitations, Farrar notes that the Retrofit approach can still be made 

effective at damage detection especially when a good historical database of measured 

system responses and associated damage states is available. Such is the case for this study 

which benefitted from the four-year compilation of MCT health monitoring data discussed 

next. 
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2.1.2 MCT Health Monitoring Dataset 

Table 5 describes the MCT dataset provided for this study. More detailed information on the 

dataset may be found in [Martz, 2019]. The dataset includes almost four years of MCT 

health monitoring data acquired from a single MCT scanner. 

 

Data record  Description 

Manifest The dataset contains a total of 440 complete CT scan sets acquired over 3 

years and 9.5 months (starting 11/17/2014 through 8/30/2018. Each scan 

set includes radiograph and recon images at both low 100 kV and high 160 

kV energies. Including metadata files, the full dataset contains 1824 files 

stored in HDF5 format totaling 931 GBytes. 

Metadata A "System Operation Data" spreadsheet records over 40 different data 

acquisition settings for all scans. These settings are held constant for the 

most part but will have slight variations for some settings (e.g., alignment 

parameters, technician acting as system operator). A "System Changes" 

spreadsheet contains a dated record of all changes made to the MCT 

system including preventative maintenance, equipment repairs, and 

software updates. 

LAC values This spreadsheet contains a history of the LAC values of the six reference 

materials for all 440 CT scans at both the low 100 kV and high 160 kV X-ray 

energies. The spreadsheet also contains the MCT calibration results on 

three different dates 11/17/2014, 7/13/2015 and 3/28/2018 including the 

tolerance limits QC bounds). 

Recon files There are 440x2 (low and high energy) recon files in HDF5 format. The 

content of these files is depicted in Figure 8 and is used to reconstruct the 

LAC values. 

Radiograph 

files 

There are 440x2 (low and high energy) radiograph files in HDF5 format. 

The content of these files is depicted in Table 6 and are used to calculate 

the ROI statistics used as a secondary indicator of MCT system health. 

Table 5 – Data records in the MCT Health Monitoring Database provided for the study 
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All MCT data measurements originate as radiographic digital images acquired by the X-ray 

panel detector. The radiographs are digital 16-bit grayscale images of dimension 2048 pixels 

x 2048 pixels. Table 5 depicts the data processing steps converting the radiographs into the 

LAC values which are monitored as the primary indicators of MCT system health.  

 

Figure 7 - Data processing steps for MCT Health Monitoring: (a) Measurements originate as radiographic digital 
images acquired by the X-ray panel detector; (b) the radiographs are spatially-arranged into digital images called 
sinograms; (c) CT reconstruction algorithms reconstruct the sinograms input images into images of the six 
reference materials; (d) the reconstructed images are decomposed into the linear coefficient values that are 
monitored in the form of control charts.  

For a typical SHM project, an array of sensors must be added to the structure being 

monitored. The MCT system is unique in that the X-ray panel detector acts as a high-spatial 

resolution sensor array. An important benefit afforded by the X-ray panel detector is the 

configurability of many different sensor regions. Figure 8 shows examples of the configured 

region-of-interest ROI sub images including the postage stamp and copper strip regions that 

are located inside the illuminated upper and lower slits discussed in Section 1.1.1. 

 

 

Figure 8 - Region-of-interest (ROI) data areas extracted from the X-ray panel detector. The ROI regions function 
as secondary sensor and are used for data normalization and health monitoring. 
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Table 6 discusses the different properties and dimensions of the ROI data measurements. 

These region-of-interest ROI sensor regions are used for data normalization and provide 

additional indicators of MCT system health. The ROI sub images therefore function like the 

secondary sensor commonly used by SHM designers to correct for variable environmental 

and operation conditions. 

 

Table 6 - Region-of-interest dimensions and measurement conditions. The full panel, dark and background 
measurements are acquired once per CT scan as a one-time calibration. The copper strip, lower slit and postage 
stamp are acquired synchronous with all 720 angular measurements made during a CT scan. 

2.1.3 Opportunities for MCT Dataset Data Mining 

Data mining is the use of data science methods to find patterns and gains insights into data 

that has already been collected [Witten, 2017]. Data mining has been used successfully by 

SHM researchers [Gordan, 2022] and is the approach taken during this project. 

This section revisits the levels of damage identification introduced in Section 1.2.1. At each 

level, an appraisal of the data mining opportunities is made by answering these questions: 

(a) what specific MCT damage identification goals can be defined? (b) what is the relevant 

data available in the MCT dataset? (c) what patterns might be discovered using data mining 
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that can address the MCT damage detection goals? (d) what missing data is needed to 

achieve higher levels of damage identification? (e) what new statistical methods and models 

could be developed to interpret the data? 

Damage Level 1: Damage Detection  

SHM Goals: Improve the speed to detect system drift. This task is undertaken during this 

SE296 study.  

Data Availability: The LAC values provided in the MCT health monitoring dataset is sufficient 

for this task.  

Expected Data Patterns: System drift can be detected using the novelty detection method 

discussed in Section 2.2.1.  

Impact of Environmental and Operation Conditions: Radiation dose creates a cycle of 

damage and annealing in the X-ray panel detector as discussed in Section 1.3.1. This is 

believed to explain the high autocorrelation measured in Section 3.2. The autocorrelation 

requires correction using the data normalization technique discussed in Section 3.3.  

Statistical Methods and Models: The current MCT health monitoring system uses statistical 

control charts with thresholds defined by tolerance intervals. Control charts are an 

unsupervised learning method. Section 3.1 demonstrates that the Wald Sequential 

Probability Ratio test can help with earlier detection and confirmation of system drift. 

Damage Level 2: Damage Location  

SHM Goals: Locate damage to either the X-ray panel detector or X-ray source.  

Data Availability: The dark current measurements and postage stamp region of interest 

data provided in the MCT health monitoring dataset might be sufficient for this task using 

unsupervised learning methods.  

Expected Data Patterns: The dark current measurements are taken in the absence of an X-

ray signal so any changes observed using novelty detection methods would be an indicator 

of X-ray panel detector damage. The postage stamp measurements are known to be good 

indicators of changes occurring in the X-ray flux and spectrum. 

Impact of Environmental and Operation Conditions: The X-ray tube is known to be sensitive 

to temperature fluctuations. Adding temperature probes as a secondary SHM sensor has 

been proposed to help monitor these effects. The X-ray tube operator can introduce 

variability if he or she does not follow a consistent warmup procedure.  



LLNL-TR-847098 

  29 | P a g e  
 

Statistical Methods and Models: To be confirmed as damage sensitive features, the dark 

current and postage stamp measurements must be correlated with damage detected by the 

control charts or the more sophisticated Kalman filter anomaly detector discussed in Section 

2.3.2. 

Damage Levels 3,4 and 5: Damage Classification, Severity, and Prognosis  

SHM Goals: Alert the MCT system operator when preventative maintenance is needed 

Data Availability: Data required for supervised learning methods needs to be collected by 

the MCT technical team. This should include building a database of water scans to help 

determine how changes in the material references propagate to the test specimen. 

Radiation dose measurements could be used to correlate system drift with damage 

occurring in the X-ray panel and could be compared to the expected component life 

provided by the panel manufacturer.  

Expected Data Patterns: As discussed in Section 2.3.3, damage sensitive features may 

manifest as clusters corresponding to different damage states. Ideally, these clusters could 

be monitored as indicators of system drift direction, severity and speed. This information 

could be used to predict drift dynamics.  

Statistical Methods and Models The discovery of effective damage sensitive features should 

follow the data mining techniques discussed in Section 2.3.3. The ultimate goal is a unified 

health indicator for making preventative maintenance decisions and estimating remaining 

useful life. Assessing damage severity requires correlating damage manifesting in the 

reference material and ROI measurements to a corresponding drift in the test specimen 

measurements. This should be framed as an uncertainty quantification problem. 
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2.2 MCT Health Monitoring using Statistical Process Control (Current Approach) 

This section provides an appraisal of the current health monitoring approach used by the 

MCT technical team. Section 1.1.1 introduced the control charts used as the primary means 

for monitoring MCT system stability. The control charts monitor the MCT measurements 

LAC values) of six reference materials at two different X-ray energies. Methods for 

constructing and interpreting control charts are discussed by practitioners of statistical 

process control, or SPC [Montgomery, 2020]. SPC is the use of statistical techniques for 

monitoring changes in a measurement process. Control charts can be an effective SHM tool 

when the measurements being tracked are highly correlated to the onset of damage [Farrar, 

Chapter 10]. 

2.2.1 Feature Extraction (SHM Step Three) 

Step Three of the SHM design paradigm focuses on the extraction of damage sensitive 

features. This section identifies the damage sensitive features when control charts are used 

for SHM. It also discusses the underlying theory of novelty detection to suggest a potential 

improvement to the control charts used for the MCT health monitoring. 

Statistical process control charts originated in the quality control community to help 

maintain stable processes for the prevention of defects or errors. Control charts monitor a 

process over time by plotting the sample means and/or standard deviations. Although 

derived from the principles of statistical inference and hypothesis testing, control charts do 

not require a formal statistical model. Control charts are easy to use but can be an effective 

tool for detecting changes to a process. 

Control charts employ a general concept known as novelty detection. In novelty detection, a 

discordancy measure is defined using statistics calculated from measurements taken when 

the system, structure or equipment is assumed to be operating in an undamaged state. The 

discordancy measure is then used to compare each new measurement with a threshold 

used to flag which samples are considered to be outliers (discordant or novel). For 

univariate data measurements 𝑥𝑡, the appropriate discordancy measure is the z-statistic 

defined in Equation-1. 
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When control charts are used for SHM, the z-statistic functions as a damage sensitive 

feature. For the current MCT system, the z-statistic is calculated for each of the derived LAC 

values (high and low LAC values for six different reference materials) and twelve different 

SPC charts must be interpreted. 

The identification of a discordant measurement (i.e., damage) depends on where the 

threshold is set in the control plot. The thresholds can be chosen in different ways but the 

"three sigma" approach is a common SPC practice that defines the outlier thresholds at the 

mean value plus/minus three standard deviations, or x ± 3σx. The current MCT health 

monitoring system refers to these thresholds as the upper and lower Quality Control (QC) 

bounds. As discussed in Section 2.2.2, the QC bounds are computed using statistical 

tolerance intervals which yields a similar result to the "three sigma" approach. 

In calculating the mean 𝑥̅ and standard deviation σx appearing in Equation-1, it is assumed 

that the sample size is large enough to ensure that these statistics are computed with a 

sufficient confidence level. A well-known practical choice based on statistics theory is to 

include a minimum of thirty samples. The MCT team follows this practice by ensuring that 

the mean and variance of the LAC values are calculated using a calibration dataset of at least 

thirty CT scans after a new MCT system is commissioned or following a repair or software 

update. 

The discordancy measure for novelty detection can be extended to multivariate data. In 

Equation-2, the measured time series data |𝑥𝑡| is an n-dimensional feature vector instead of 

a scalar value. Both the 𝑛𝑥1 mean feature vector  |𝑥̅𝑡| and the 𝑛𝑥𝑛 feature covariance 

matrix |Σ| should be calculated when the system is assumed to be operating in a normal 

state. 
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The discordancy measure 𝐷 appearing on the left-hand-side of Equation-2 is known as the 

Mahalanobis distance. This could be used as a principled method to consolidate the twelve 

MCT control charts into a single chart. For each new CT scan, the twelve LAC values would 

be assembled into a feature vector so the Mahalanobis distance could be calculated. The 

calculated values can then be plotted in a control chart for monitoring. One complication is 

deciding the thresholds to use with this approach.   Farrar discusses how to use a Monte 

Carlo "bootstrap" method to calculate the thresholds required to achieve the desired 

confidence level [Farrar 2020, Chapter 6.10]. 

2.2.2 Statistical Model (SHM Step Four) 

The fourth and final step of the SHM design paradigm focuses on developing the statistical 

model which takes as input the damage sensitive features defined in step three. The 

purpose of the statistical model is to discriminate between the damaged and undamaged 

states of the system, structure or equipment. This section examines the statistical model 

employed by the current MCT health monitoring system. However, before discussing the 

statistical model, I first review the basics of statistical tolerance intervals and how they are 

used to interpret MCT measurement data. 

As mentioned in Section 1, the MCT system functions as a metrological instrument used to 

certify manufactured material test specimens. The specimens can vary on the basis of their 

designed material composition or due to manufacturing process variability. Tolerance 

intervals can be used to establish the acceptable statistical range of values for each 

measured characteristic of a test specimen.  Figure 9 shows how the low- and high-energy 

tolerance intervals (for a given test specimen) can be combined into a plot called the "region 

of responsibility" or ROR. RORs are constructed to monitor a range of different material 

properties including density (ρ), high- and low-energy linear attenuation coefficients 

(𝜇ℎ𝑖𝑔ℎ, 𝜇𝑙𝑜𝑤), electron density (𝜌𝑒), and effective atomic number (𝑍𝑒). The RORs are 

constructed by scanning a small batch of test specimens which have been chosen as 

representative of the "ground truth" (i.e., exemplars) by which future test specimens will be 

certified.  
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Figure 9 – Example of the "Quality Control” or QC bounds used for MCT data interpretation.  The QC bounds are 
drawn using two univariate tolerance intervals (TI’s).  The TI for the low-energy LAC value,  𝜇𝑙𝑜𝑤, is drawn along 
the y-axis. The TI for the high-energy LAC value,  𝜇ℎ𝑖𝑔ℎ, is drawn along the x-axis. This results in the green box-

shaped region. The red and purple box regions are created in an ad hoc manner to contain the outliers which are 
frequently observed. A separate QC bound plot is created for each of the six reference materials. In a similar 
fashion, two univariate tolerance intervals for the test specimen are used to draw a plot called the Region of 
Responsibility (ROR).  

An additional set of tolerance intervals called the "Reference Material Quality Control (QC) 

bounds" are constructed for each of the six reference materials in the MCT health 

monitoring system. Figure 9 illustrates an example showing the QC bound for graphite. The 

QC bounds are used to confirm the MCT scanner is operating normally. For example, when a 

test specimen measurement is found to lie outside of its ROR, the question naturally arises 

as to whether the specimen is flawed or the MCT system is malfunctioning. The MCT health 

monitoring system described in Section 1.1.1 was designed to answer this question. The 

reference materials are always being scanned continuously along with each test specimen. 

The simple assumption is that the MCT system is operating normally if these reference 

measurements fall within the QC bounds. Any ROR outlier measurements may then 

confidently be attributed to the test specimen. 

The QC bounds are determined by the two-sided tolerance interval formula shown in Figure 

10(b). A tolerance interval is a statistical interval that brackets a fixed proportion of the 

population (i.e., the coverage value P) at a given confidence level, alpha. The convention is 
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to specify the confidence level first and the coverage last, so a 90-95 tolerance interval 

would bracket 95% of the population values with a confidence level of [1-alpha], or an alpha 

of 10%. The k-factor multiplier appearing in the tolerance interval formula determines the 

width of the QC bounds and is a function of the proportion P, sample size n, and confidence 

level alpha. The k-factor can be determined using statistical software or using published 

reference tables [NIST].  The bounds are drawn in the MCT control charts as the mean LAC 

value plus and minus the percent allowed variance. A typical bound may be on the order of 

0.5% to 0.75%. 

 

Figure 10 – Comparing definitions for the (a) Statistical Confidence Interval and (b) Statistical Tolerance Interval. 
The k-factor appearing in the tolerance interval formula is a function of the proportion P, sample size n, and 
confidence level alpha.  

One of the challenges faced by the MCT technical team is setting thresholds for the RORs 

and QC bounds. As shown in Figure 9, the observed measurement variability often exceeds 

the range in the published tolerance interval tables. The team has resorted to widening the 

thresholds using trial and error, selecting empirically a plus-and-minus percent error bound. 

I now mention several references that offer potential explanations and guidelines for 

adjusting these thresholds. 

Section 3.2 will show that MCT measurements have a high degree of serial correlation. 

Knoth [2003] demonstrates that autocorrelation leads to higher variability in the observed 

measurements requiring a correction to the published k-factors. Table 7 shows that the 

tolerance limits are wider as the amount of serial correlation ρ increases, and diverges more 

for smaller sample sizes N. It needs to be noted that the values published by [Knoth 2003] 

apply to the construction of univariate tolerance intervals. 
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N ρ = 0 ρ = 0.3 ρ = 0.6 

10 3.379 3.754 4.754 

30 2.549 2.684 3.093 

100 2.233 2.280 2.438 

 

Table 7 – K-Factors for two-sided 95-95 tolerance limits for increasing autocorrelation, 𝜌. Values taken from 
[Montgomery] and [Knoth]. 

The tolerance intervals used to construct the QC and ROR plots are assumed to be 

independently observed, univariate quantities. However, the MCT measured values are in 

fact highly correlated, and thus require multivariate treatment. Polhemus [2017] discusses 

multivariate tolerance intervals and shows that a further widening of the tolerance limits 

may be expected. Figure 11 shows a hypothetical result. Polhemus describes how to use 

Monte Carlo simulation to bootstrap the multivariate tolerance region (shown as the purple 

ellipse). The TI will be ellipsoidal if the underlying distribution is approximately multivariate 

Gaussian, and extended along a diagonal with a slope proportional to the correlation 

coefficient. A second approach discussed by Polhemus is to use the Bonferroni method 

shown in red. This does not require simulation but results in a more conservative estimate 

of the true bounds.  

 

Figure 11 - Construction of Multivariate Tolerance Intervals for MCT data interpretation. The correlation between 
the μ-values causes the data to be stretched along the diagonal as shown. This will leave outliers unaccounted 
for by the construction of univariate tolerance intervals (green box) but will be accounted for by the multivariate 
tolerance intervals (purple ellipsoid). 
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I now return to the originally stated goal of this section which is to affirm that the statistical 

model employed by the current MCT health monitoring system is none other than the 

Gaussian or normal distribution model. The univariate Gaussian model is assumed by the 

MCT technical team, but the multivariate Gaussian is the more correct model for the 

reasons discussed. The validity of the inferences made from this model depend on how well 

the probability density has been estimated from available data. Density estimation is well 

known to be one of the most difficult problems in statistical/machine learning. As shown in 

Equation-3, the joint probability distribution needed for MCT health monitoring is 

realistically a 14-dimensional random vector consisting of the high- and low-μ values for six 

reference materials and test specimen:  

 

The direct learning of the joint PDF is referred to as the generative approach in statistical 

learning and would require too many sample measurements to be considered tractable. 

Discriminative machine learning algorithms represent an alternative approach. These 

algorithms rely on supervised learning to make accurate predictions and require far less 

data by comparison. Discriminative learning approaches will be discussed in Section 2.3 as a 

potential avenue for making improvements to the current MCT health monitoring system. 

2.3 MCT Health monitoring using Statistical Pattern Recognition 

(Proposed Approach) 

Classical statistical inference methods including tolerance intervals rely fundamentally on a 

large amount of measurement data to learn the probability density with a high confidence 

level. This may be intractable for the MCT health monitoring system given the large number 

of variables. These methods also depend on assumptions about the underlying data 

distribution (e.g., multivariate Gaussian, independent and identically distributed). In this 

section, I explore alternative approaches that can be exploited by the statistical pattern 

recognition (SPR) health monitoring paradigm. This includes machine learning algorithms 

that can make accurate predictions with far less training data. It is proposed that the SPR 

approach offers a richer framework for MCT system diagnosis and prognosis. 
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2.3.1 Motivation 

The current MCT health monitoring system employs control charts to detect system drift 

caused by damage to MCT components. While simple to use, control charts have a number 

of limitations: 

Control charts: 

• Are an unsupervised learning method appropriate for damage detection, but unable to 

be used for damage classification or severity assessment; 

• Are limited to the monitoring of univariate quantities and are prone to misleading results 

when correlated multivariate quantities are monitored; 

• Require manual updates to the control limits (decision thresholds) when the process 

changes; 

• May produce a high false alarm rate when the measurements being monitored are highly 

corrupted by noise; 

• Monitor primary quantities directly and do not offer a model for incorporating relevant 

physics or secondary measurements. 

These limitations motivate the development of new statistical models for MCT health 

monitoring data interpretation. As discussed in Section 2.1.2, the MCT health monitoring 

system collects secondary data that might be exploited for SHM diagnosis and prognosis. 

The MCT technical team refers to this secondary dataset collectively as the "region of 

interest" statistics. The MCT technical team believes that damage to the X-ray panel may 

manifest as subtle changes to the dark current measurements. Damage to the X-ray panel 

may manifest in a region of interest referred to as the "postage stamp". 

The development of new statistical models to improve the current MCT health monitoring 

system is a complex task. It will require more data to be collected, and also a greater time 

commitment than the current SE296 project allowed. However, the literature survey 

uncovered several statistical modeling approaches that appear promising as the starting 

point for future work. These are discussed in the next two sections. 
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2.3.2 Statistical Modeling based on General Anomaly Detection 

An alternate approach posits that the loss of measurement fidelity can be treated as a 

sensor fault detection SFD problem. Automated SFD methods are widely researched due to 

the critical role of sensors for monitoring and control in industry. Dynamical systems 

researchers at the University of Washington and Boeing demonstrated the robust SFD 

architecture shown in Figure 12 [de Silva, 2020]. The architecture combines methods from 

system identification (Kalman Filter), data-driven modeling (dynamic mode decomposition) 

and machine learning (decision trees). Section 4 provides an outline for how this modeling 

approach could be applied to the MCT system. 

 

 

Figure 12 - A general architecture for physics-informed anomaly detection. (a) Dynamic mode decomposition is 
used as a data-driven approach to learn the LTI model that the Kalman filter requires for state estimation; (b) 
The Kalman filter is used for monitoring and can be an effective algorithm for discriminating between "normal" 
and "abnormal" system operating behavior; (c) Decision trees are used to automate the threshold used to decide 
between the "normal, or undamaged" and "abnormal, or damaged" system state. Reference: [de Silva, 2020] 

The Kalman filter can be used to detect system drift and might overcome the limitations of 

control chart as highlighted in Section 2.3.1. The Kalman filter can analyze multivariate data: 

the observation data can be of arbitrary dimension and take into account the correlations 

between different measurement input variables. The Kalman filter also has a high immunity 

to noise relative to control charts. In order to use the Kalman filter, a model is needed to 

specify the dynamics and noise present in the system or process being monitored. This 

makes the Kalman filter more difficult to use than control charts, but also presents an 

opportunity to inject known physical or empirical constraints as well as measurements taken 

from secondary sensors. 

The general anomaly detection architecture shown in Figure 12 overcomes the limitations of 

control charts in two additional ways. The data-driven model used by the Kalman filter can 



LLNL-TR-847098 

  39 | P a g e  
 

be developed using time series methods or more advanced machine learning approaches. 

De Silva discusses the use of an algorithm called Dynamic Mode Decomposition that is able 

to detect subtle coherent spatial or temporal patterns. If these patterns can be correlated 

with damage, they might be effective as damage sensitive features in an SHM system. The 

SFD architecture also employs machine learning to adjust the decision thresholds as the 

process changes. This overcomes another limitation of control charts where the control 

limits must be updated manually. 

As discussed in Section 1.2.1, damage state data is needed to employ the supervised 

learning methods required to ascend to higher levels of damage identification. Control 

charts provide a damage detection mechanism for labelling time periods or epochs where 

the system is observed to be operating "normally" or 'abnormally'. The SFD architecture can 

serve the same purpose while at the same time incorporating observational data from more 

sensors allowing more damage patterns to be discovered. 

2.3.3 Statistical Modeling based on Cluster Detection and Tracking 

Farrar and Worden pioneered the treatment of SHM design as a problem in statistical 

pattern recognition and machine learning. A preliminary step in machine learning is to 

assemble a “data matrix” where each column might contain n measurements (e.g., sensor 

data, statistics, or transforms) and each row might contain a time series of these 

measurements at m successive instances.  

 

Images can be incorporated into this schema by flattening the 𝑟𝑥𝑐  image data into a tall 

and skinny vector of dimension r ∗ c. Each column can in general contain data from multiple 

sensors and image detectors fused together and sampled synchronously in a single time 

step. Each row represents the measurement of some "feature" that can be correlated to 

damage by itself or more generally might be fused with other row measurements to achieve 
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the correlation. In either case, the result becomes a damage sensitive feature that can be 

incorporated into statistical models for monitoring health state changes. 

 

Assembling data in this manner has the advantage that the dynamical state of the structure 

or equipment to be monitored may be treated as patterns or clusters to be detected and 

analyzed in an n-dimensional feature space.  This opens the door to the mathematical 

methods of linear algebra, matrix decomposition, and machine learning. Constructing 

damage sensitive features often requires employing multiple data science techniques 

including data fusion, matrix transforms, and dimensionality reduction using projections.  

This process is referred to as feature engineering. 

 

Figure 13 - Matrix decomposition methods that can be used for feature engineering and the data mining of 
damage sensitive features. Figure is derived from [Farrar, 2012] 

Figure 13 illustrates the general aspects of how feature engineering is applied to finding 

damage sensitive features. The clusters represent measurements taken from a two-

dimensional feature space. As depicted in the figure, it is often necessary to fuse together 

and transform data before the damaged and undamaged states of a system can be 

discriminated. In the example shown, the damage sensitive feature (DSF) is the Fisher 

Projection of the combination of Feature 1 and Feature 2. The resulting DSF could be used 

as input to a diagnostic or prognostic statistical model. 

The association of damage states with clustering introduces a new interpretation of system 

drift: "drift is a gradual change in the distribution of patterns that is mainly caused by an 

incipient fault” [Chammas]. If the detection and monitoring of changes to the distribution 

parameters is possible, the drift speed, direction and severity can all be characterized. This 
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would enable the development of a complete health monitoring solution, not only one with 

the capability of classifying damage, but one capable of prognosis and the estimation of 

remaining useful life. 

3 Results 

This section presents the results of the exploratory data analysis performed on the MCT 

system data provided by the LLNL Nondestructive Characterization Institute. 

3.1 Optimal detection using the Wald SPRT 

This section reviews the theory underlying the Wald sequential hypothesis testing method 

and demonstrates how it can be used to enhance the diagnostic value of the control charts 

used by the MCT team. 

3.1.1 Outline of algorithm used for sequential hypothesis test 

The Wald sequential probability ratio test SPRT is the optimal algorithm for sequential 

hypothesis testing [Wald, 2004]. As with standard hypothesis testing, two hypotheses are 

considered with at a certain confidence level (1 − α) and power (1 − β). Figure 10 depicts the 

sampling distributions of two possible hypotheses to be tested. 

 

Figure 14 - Standard hypothesis testing as a tradeoff comparison of the null hypothesis H0 with mean value μ0 
and the alternate hypothesis H1 with mean value μ1. The probability of Type 1 error (or False positive rate) is 
determined by parameter α which is also referred to as the significance level. The probability of Type 2 error (or 
False negative rate) is determined by the parameter β. These parameters require the statistician to make a 
tradeoff between the two types of error. This is done by choosing the p-value, which is the decision boundary 
location represented by the vertical line in the figure. 
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With standard hypothesis testing, the number of measurement samples needed to achieve 

the desired Type 1 and Type 2 errors is fixed. This is not the case with sequential testing as 

the number of measurement samples will vary depending on the measurement sequence. 

Wald demonstrated that sequential testing could be decided on the basis of a likelihood 

ratio as explained below. 

The Sequential Probability Ratio Test is based on the likelihood ratio:  

  
Assuming one performs a fully specified hypothesis test and the data follows a normal 

distribution Xi ∼ N (μ, σ2), the log-likelihood has the form:  

 

This is equivalent to updating the ongoing sum for every new sample i, Si = Si−1 + log(Λi). 

Wald 2004 shows that if one defines upper and lower decision thresholds given by:  

 

It follows that the hypothesis test can then be decided using the following decision rules:  

 

 

Wald also proved the optimality of the SPRT algorithm in the sense of requiring the fewest 

measurements before a hypothesis decision is reached. On average, the Wald SPRT requires 

half as many measurements when compared to classical hypothesis testing at the same 

significance levels. 
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3.1.2 Results 

MATLAB codes were developed to explore application of the SPRT algorithm to MCT LAC 

data (see “Detect_Drift_Using_SPRT” in the Appendix). The MCT data is assumed to be 

Gaussian distributed for all likelihood calculations. Also, the MCT system is assumed to be 

operating normally during the calibration period. The calibration period corresponds to the 

first thirty LAC measurements and these measurements are used to calculate the mean and 

standard deviation statistics. To use the SPRT as a drift detector for the LAC measurement 

values, one must formulate both the null and alternate hypothesis. The null hypothesis is set 

with a distribution mean value equal to the calibration mean. To test for an upward system 

drift, the alternate hypothesis is set with a distribution mean value equal to the calibration 

mean plus one standard deviation. A second hypothesis test is used to test for downward 

system drift with the alternate hypothesis located one standard deviation below the mean. 

Figure 15 shows the results of the sequential test for all six reference materials. In each plot, 

the upper and lower Wald decision boundaries are shown as horizontal lines. The red 

vertical line shows the date when the MCT system is observed to be operating abnormally. 

Each point in the plot represents the likelihood sum. In accordance with sequential testing, 

each test begins with a zero-value. With each new measurement, the log-likelihood is 

calculated and summed until one of the decision boundaries is reached. Coloration has been 

added to help interpret the state of the sequential test. Blue points indicate that the 

sequential test has not yet reached a decision. Green points indicate confirmation of the null 

hypothesis meaning that no system drift is detected. Red points indicate confirmation of the 

alternate hypothesis meaning that system drift has been detected. Each time a decision 

boundary is reached, the likelihood sum is reset to zero and a new sequential hypothesis 

test is started. 
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Figure 15 - Sequential Probability Ratio Test for downward drift in the LAC 100 kV measurements from July 2014 
through July 2017. The plots for all six reference materials are shown, (top row): graphite, Delrin, water; (bottom 
row): Teflon, magnesium, silicon. 

Figure 16 demonstrates how to integrate the SPRT calculation with the LAC control charts 

already in use by the MCT technical team. Each LAC measurement sample is colored to 

reflect the SPRT prediction at each time step. This provides additional diagnostic 

information to help decide if the MCT system measurements are starting to drift. The SPRT 

predictions could be incorporated into the QC bounds chart by combining the results from 

the 100 kV and 160 kV SPRT calculation. 
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Figure 16 - Plot showing SPRT hypothesis test integrated with the LAC control chart for graphite. The LAC control 
charts are used to monitor drift in MCT measurement data 

3.1.3 Discussion 

The α and β parameters can be adjusted to move the Wald decision boundaries. This 

adjustment alters the tradeoff between Type 1 and Type 2 errors. The SPRT charts were 

observed to have an elevated false alarm rate due to the autocorrelation present in the MCT 

system data. This complication is addressed in Section 3.3. 

3.2 Evaluation of statistical assumptions 

The serial correlation observed in the LAC control charts can be quantified by applying 

statistical measures of autocorrelation to MCT data.  MATLAB code was developed to 

measure the autocorrelation. The presence of serial correlation greater than 0.2 will cause 

many false alarms in control charts [Montgomery, 2015].  Table 8 shows that the 

autocorrelation present in the LAC data far exceeds this threshold over many time lags.  
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Table 8 - Calculated autocorrelation between MCT values at different time lags. The table was created using 
MATLAB code “Calculate_AutoCorrelation_Function.m” provided in Appendix B.  

3.3 Data normalization 

This section demonstrates that the autocorrelation (trending patterns) present in the MCT 

LAC value data are the likely cause of the high false alarm rate observed in the Wald SPRT 

detector. Farrar discusses a data normalization algorithm that uses an autoregressive (AR) 

model to mitigate autocorrelation.  Section 3.3.1 presents measurements of the partial 

autocorrelation coefficient needed to construct the model. Section 3.3.2 then presents the 

results following the method discussed by Farrar [2021, Chapter 10.5.1] and [Entezami, 

2021].    

3.3.1 Procedure for choosing autoregressive model order 

Montgomery [2015] advises that the partial autocorrelation function (PACF) should be 

used when building autoregressive models. This function measures autocorrelation at a 

given time lag after removing the measured autocorrelation of all previous time lags.  As 

shown in Table 9, the calculated coefficients suggest that using an AR(1) or AR(2) 

autoregression model would correct most of the autocorrelation present in the MCT data.  
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Table 9 - Calculated partial autocorrelation coefficients between MCT values at different time lags. The 
coefficients were calculated using the Minitab Statistical Software package. 

3.3.2 Results 

MATLAB codes were developed to explore how an AR model might be used to mitigate the 

autocorrelation present in MCT data. Figure 17 shows the form of the model used for each 

of the twelve LAC time series (six reference materials at both low and high energies). 

 

Figure 17 - AR model used for the correction of autocorrelation 

Plots of the residual error between the MCT LAC measurement values and the 

autoregressive model estimates are shown in Figure 18.  Both the AR (1) and AR (2) models 

were applied to the data with similar results. The plot shows that the AR model effectively 

removes the trending patterns. The result is a damage sensitive feature that appears as 

white noise during the normal period of MCT operation, but changes markedly to become 

one-sided when the MCT operation enters the abnormal period of operation. This 

information may be exploited to lower the false alarm rate in the LAC control charts.  
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Figure 18 - Plots of the residuals resulting from the AR (1) corrected models are shown for the six reference 
materials at 100 kV. The residuals show a “white noise” pattern when the LAC values are in control. The residuals 
show a markedly one-sided pattern once the LAC values begin to drift out of control. 

4 Discussion 

Section 2.2 provided an appraisal of the current MCT health monitoring systems which uses 

statistical control charts and tolerance intervals. These tools rely on the classical theory of 

statistical inference and hypothesis testing. The limitations of these tools were also outlined 

in light of the correlations and nonstationary effects present in MCT data. While these tools 

may be capable of detecting system drift (i.e., Level 1 - Damage Detection), they are not 

capable of achieving higher levels of damage identification. 

Improving the current MCT health monitoring system will require two next steps: (a) 

collecting damage state data that can be used for supervised learning; (b) developing more 

sophisticated statistical methods and models to interpret all the data collected. 
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The MCT technical team plans to gather secondary measurements that may prove useful for 

supervised learning methods. A database of "water scan" data is being collected. This 

involves performing a CT scan where the test specimen is a "ground truth" water sample. 

This information will enable the correlation between system drift occurring in the material 

reference LAC values and ROI measurements to be studied. Radiation dose measurements 

are also starting to be collected at different locations in the X-ray panel detector as a 

function of collimation and X-ray source settings. The collection of temperature data is also 

being considered. 

New statistical methods and models will be needed to make sense of all the data being 

collected. It may be the case that damage cannot be discriminated using the LAC values of a 

single reference material. The damage sensitive features may require some combination of 

reference material data, data extracted from the ROI sensor regions, and/or statistical 

transforms of these feature combinations. This would require using the techniques 

described in Section 2.3.3 including data fusion, dimensionality reduction, and other matrix 

transformations. 

In Section 3.3, it was shown that the residuals are an effective indicator of sensor drift. The 

anomaly detection model discussed in Section 2.3.2 might be used to exploit a generalized 

version of this effect: the variance of the innovations matrix for a linear-time-invariant 

model of the MCT system measurements.  Figure 19 provides a schematic of the proposed 

approach. The anomaly detector would allow all twelve of the LAC value measurements to 

be incorporated into a single damage model. The model would also allow experimentation 

with the ROI sensor data to see if incorporating these into the damage model could lead to a 

better prediction of system drift.  The objective would be to identify which ROI data might 

be effective candidates for constructing damage sensitive features.  
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Figure 19 - Proposed use of the General Anomaly Detector as the MCT Statistical Model: (a) A linear-time-
invariant (LTI) model of “normal” operating behavior is learned from the set of thirty MCT calibration scans; (b) 
the twelve LAC values and secondary ROI sensors serve as inputs to the Kalman filter anomaly detector; (c) 
abnormal behavior manifests as sustained high variance in the innovations matrix; (d) decision trees can be used 
as a machine learning algorithm to adjust the threshold between normal and abnormal variances; (e) the final 
damage decision is made based on the variances levels relative to the decision threshold.  

 

5 Conclusion 

During this SE296 independent study project I have applied the SHM paradigm to appraise 

the current MCT health monitoring system and to explore ideas for improvement. I have 

written MATLAB codes implementing an optimal detector for the onset of drift in MCT 

system measurements. I have outlined the strengths and weaknesses of using statistical 

process control charts which are limited to the monitoring of univariate quantities. I have 

examined the confounding effects of correlation and shown how to mitigate using an SHM 

data normalization technique. I have demonstrated that treating health monitoring as a 

problem in statistical pattern recognition introduces new models and methods for MCT 

damage diagnosis and prognosis. I have completed a literature survey to create a roadmap 

for future work. These contributions carryover to the health monitoring of scientific and 

metrological instruments more generally. 
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Appendix A: Fundamental Axioms of Structural Health 

Monitoring 

The Fundamental Axioms appear in the standard reference for SHM design engineering, 

Structural health monitoring: a machine learning perspective [Farrar & Worden, 2012]. The 

axioms encapsulate general design principles that have come to be accepted throughout the 

SHM research community. The axioms are referenced throughout this report and are 

reproduced here for the benefit of the reader. 

Axiom I. All materials have inherent flaws or defects. 

Axiom II. Damage assessment requires a comparison between two system states. 

Axiom III. Identifying the existence and location of damage can be done in an unsupervised 

learning mode, but identifying the type of damage present and the damage severity can 

generally only be done in a supervised learning mode. 

Axiom IVa. Sensors cannot measure damage. Feature extraction through signal processing 

and statistical classification are necessary to convert sensor data into damage information. 

Axiom IVb. Without intelligent feature extraction, the more sensitive a measurement is to 

damage, the more sensitive it is to changing operational and environmental conditions. 

Axiom V. The length and time scales associated with damage initiation and evolution dictate 

the required properties of the SHM sensing system. 

Axiom VI. There is a trade-off between the sensitivity to damage of an algorithm and its 

noise rejection capability. 

Axiom VII. The size of damage that can be detected from changes in system dynamics is 

inversely proportional to the frequency range of excitation. 

Axiom VIII. Damage increases the complexity of a structure. 
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Appendix B: MATLAB Codes 

This Appendix publishes the core MATLAB source codes developed during the SE296 project.  

The intent is to provide reference implementations for various statistical calculations that 

will be of general technical interest.  All of the project source codes will be transferred to 

the LLNL MCT technical team including those utility functions omitted from this Appendix.   

Main.m 
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Main.m (continued) 
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Main.m (continued) 
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Main.m (continued) 
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Detect_Drift_Using_SPRT.m 

  

calculate_LogLikelihood.m 
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Plot_SPRT_Chart.m 

 

Calculate_Data_Statistics.m 
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calculate_AutoCorrelation_Function.m 

 

 

 

 


