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1. Introduction

This SE296 Capstone Project technical report is being submitted as a final requirement of
the UCSD Master of Science in Structural Engineering with specialization in Structural
Health Monitoring (SHM) and Nondestructive Evaluation (NDE). The Capstone provides
students the opportunity to apply knowledge in their technology areas towards the solution
of an SHM or NDE problem. As an employee of the Lawrence Livermore National
Laboratory and NDE/NCI team member, | chose to apply the SHM design paradigm taught
at UCSD to improve the health monitoring of the X-ray Micro-Computed Tomography
(MCT) system. | would like to thank LLNL’s Dr. Harry Martz for serving as my mentor during
this project and the entire LLNL MCT technical team for answering my questions and
contributing to my knowledge. | would also like to thank Prof. Michael Todd for recruiting

me to the UCSD NDE/SHM program and serving as my graduate advisor.

1.1 Project Background and Motivation

The LLNL Nondestructive Characterization Institute (NCI) under Dr. Harry Martz develops
and supports a portfolio of six MCT X-ray systems for quantitative nondestructive evaluation
and material characterization!. Each MCT system functions as a high precision metrological
instrument and it is critical that measured values stay within quality control bounds. MCT
systems contain sensors that may lose calibration or become damaged through operational
use. This poses an interesting online condition monitoring problem to decide when MCT

system measurements have grown unreliable.

Figure 1 shows the MCT instrument components. The X-ray tube (the large upright cylinder
on the right) radiates a focused and collimated beam through a test specimen (fixed on the
center carousel) which is then measured by an amorphous-silicon flat-panel X-ray detector

(supported by the black panel holder on the left). The carousel is rotated and translated by

! The LLNL NCI website homepage is available online at https://nci.linl.gov/home

4| Page


https://nci.llnl.gov/home

LLNL-TR-847098
high-precision motion stages under computer control. This allows X-ray measurements of

the test sample to be acquired using a "step-and-shoot" procedure over a 360-degree
angular range. A typical computed tomography scan requires 720 different angular
measurements to reconstruct high quality volumetric 3D images for the test sample. Figure
2 shows the data processing steps used to transform the raw MCT measurements into
digital images. The digital images can be interpreted as 2D maps of the linear attenuation

coefficients (LACs) of the materials at the given scan energy.

Figure 1 - The Micro-CT X-ray System is a scientific instrument for characterizing material samples. The
instrument acquires dual-energy measurements which are then reconstructed using X-ray computed tomography
CT algorithms to identify the material composition of a test specimen placed on the center Carousel. Reference
[Martz, 2019].

The LAC value of a material sample changes slightly as a function of the X-ray energy
spectra. As a result, the material composition of the test sample can be characterized by
repeating the measurement and computing an image reconstruction procedure at two
different X-ray energies. This measurement technique is called dual-energy computed

tomography. The MCT system uses X-ray tube measurements of 100 kV and 160 kV.
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Figure 2 - MICT Data processing steps: (a) the test specimen is interrogated using X-rays at 720 angular views or
"projections" resulting in raw digital radiographs; (b) data processing operations are applied to the radiographs
to subtract dark current, normalize for variations in the X-ray flux, and transform using Beer's Law; (c) sinograms
are created by sorting the processed radiographs; (d) CT reconstruction algorithms based on the Radon
transform are applied to create digital images representing slices through the test specimen. Reference [Martz,
2019]

1.1.1 MCT Health Monitoring System

Through repeated operation, the MCT system components become damaged. The damage
manifests as an observed drift in the LAC values and other statistics being monitored. Table
1 identifies the underlying causes of MCT system drift based on conversations with the MCT
technical team. Damage to the X-ray source and X-ray panel detector are suspected to be

the two main contributors of system drift.
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Component | Damage mechanism Other causes of variability

X-ray tube | Damage to the anode, filament or high-voltage | Temperature,
cables or generator can alter beam flux, energy | Warmup procedure used
spectrum, or direction. by operator

X-ray panel | Radiation dose eventually damages the panel Temperature
sensors causing elevated dark current readings,
nonlinear response to incident radiation, or
scintillator browning.

Table 1 - Underlying causes of system drift in MICT system measurements

The MCT instrument has a built-in health monitoring system to assure that reference
measurements remain within acceptable tolerance bands. During normal MCT operation,
measurements of six "ground-truth" reference materials are continuously monitored at the
two X-ray energy levels of 100 kV and 160 kV. Figure 3 shows a series of control charts
produced by the MCT health monitoring system at the lower energy of 100 kV. Excursions
beyond the two horizontal tolerance bands indicate that damage to the MCT instrument has
grown severe enough to cause reference measurements to drift. Note the reference
materials exhibit excursions violating the tolerance bands at different points in time. There
are six additional LAC charts at the higher energy of 160 kV. This complicates the assessment
of MCT system stability as the twelve chart patterns often provide conflicting indications.
Another complication is that an excursion beyond the tolerance band may reverse bringing
the LAC values back within the tolerance bands. An ideal SHM damage indicator should
incorporate all twelve LAC measurements into a single monolithic damage assessment.
Sections 2.2 and 2.3 propose several alternatives to consolidate these measurements in a

principled manner.
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Figure 3 - Example of the control charts used to monitor the linear attenuation coefficient (LAC) values of six
reference materials measured at 100 kV: graphite, Delrin®, water, Teflon®, magnesium and silicon. Not shown
are six additional control charts constructed for the reference materials measured at 160 kV. System health is
confirmed when measurements remain within the quality control bounds (appearing on the chart as horizontal

line pairs).

Figure 4 shows the carousel designed to rotate the test sample through the X-ray beam

during scanning. During normal operation, a two-slit collimator is positioned in front of the

X-ray source. Figure 4 also shows the upper slit that acts as the primary MCT sensor

measuring the test sample. The lower slit acts as a secondary sensor and simultaneously
measures the six reference materials. The MCT health monitoring system has additional

region-of-interest (ROI) sensor areas defined to collect information used for data

normalization and monitoring. Statistics calculated from these ROl areas are monitored as a

secondary indicator of MCT system health. The secondary sensors are discussed further in

Section 2.1.
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(a)

Figure 4 - (a) The carousel holds the test sample during scanning with the reference materials located directly
underneath. (b) Top-down view of the carousel showing the large cylindrical test specimen and six smaller
reference materials.

Due to collimation, only a fraction of the X-ray panel is exposed to radiation during
operation. A simple preventative maintenance procedure called a "panel move" can be used
to restore the system back to health. Specifically, a 3/8" spacer is inserted at the panel base
causing the illuminated regions of the panel to be shifted. This allows the damaged sensor

region to be abandoned and future measurements to be relocated to an undamaged region.
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Figure 5 - (a) X-ray panel detector showing approximate location of upper and lower slits; (b) X-ray radiograph of

carousel and samples without collimator in place; (c) X-ray radiograph with two-slit collimator in place; (d) Plot
of lineout taken along lower slit.
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The damage occurring in the X-ray panel detector plays an important role in the behavior of

the MCT health monitoring data. This will be discussed further in Section 2.1 Data
Acquisition.

1.1.2 Study Goals

This technical report provides an appraisal of the current MCT health monitoring system and
explores how SHM can be applied to make improvements. In support of my SE296 project,
LLNL NCI provided four years of MCT system health monitoring data. This report documents
my findings from working with this dataset as well as my exploratory conversations with
MCT technical team members. Table 2 defines the specific study goals adopted at the start

of the project.

Study Goal Description

Detect MCT system Determine if SHM methods can be used to detect damage when

damage MCT measurements are observed to drift out of quality control
bounds

Locate the damage Determine how SHM methods might pinpoint the cause of system
drift by locating damage to one of the MCT system components
(e.g., X-ray detector or source, or other system components)

Predict remaining | Explore how SHM might use MCT health monitoring data to
useful life RUL predict RUL. The ultimate objective is to devise a decision support
tool to prompt the scheduling of MCT system preventative
maintenance.

for condition-based
maintenance

Table 2 - SE296 Project Study Goals

1.2 The Structural Health Monitoring Design Paradigm

Structural health monitoring (SHM) originated as a term referring to damage detection
strategies using vibration measurements from large sensor arrays deployed to planes,
bridges, buildings, and wind turbines. During the 1990's, Charles Farrar and Ken Worden

began demonstrating a data-driven approach to SHM system design by integrating concepts
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from statistics, signal processing, structural dynamics and pattern recognition. Since that

time, the Farrar-Worden SHM design paradigm has been adapted for condition-based
monitoring of a much wider class of man-made systems, structures and scientific
equipment. The paradigm defines structural health monitoring as "the process of developing
an automated and online damage assessment capability for all types of engineered systems"
[Farrar-Worden, 2021]. This broader definition is adopted for the purposes of this report

which uses SHM, health monitoring, and condition-based monitoring as synonymous terms.

While often employing the interrogation methods of nondestructive evaluation (NDE), SHM
differs from NDE in that the structure typically remains in service throughout the inspection.
NDE methods provide a "snapshot" indication of whether or not damage is present; SHM
methods by comparison provide ongoing time-series measurements monitoring the
progression of damage in man-made structures. However, the distinction between SHM and
NDE is sometimes fuzzy as in the case of in situ inspection methods used for additive

manufacturing quality control.

There are other important distinctions between SHM and NDE. SHM typically generates very
large datasets due to continuous and longstanding measurement. This has caused SHM to
prioritize the development of automated data compression, analysis and interpretation
methods. Second, SHM systems are characteristically made "in the field" necessitating
solutions that can address a wide variation in environmental and operating conditions
(EOC's). For example, daily or seasonal temperature variation may create a serial correlation
in measured data that must be corrected to avoid being misinterpreted as evidence for

damage.

Figure 6 summarizes the SHM design paradigm employed during the SE296 project and
referenced throughout this report. The paradigm was pioneered by Farrar and Worden and
further developed over the last twenty years through a partnership between the UCSD
Jacobs School of Engineering, the Engineering Institute at Los Alamos National Laboratory,
and the University of Sheffield.
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The Statistical Pattern Recognition Paradigm for SHM

1. Operational evaluation

Defines the damage to be detected and
begins to answer questions regarding
implementation issues for a structural health
monitoring system.
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be used in the feature extraction process. + Data Cleansing
3. Feature extraction " B
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Figure 6 — The four-step paradigm for architecting health monitoring solutions [Farrar, 2019]

Some of the key paradigm teaching points include:

e SHM is best approached as an engineering design problem in statistical pattern
recognition using data-driven methods and machine learning. The resulting statistical
models may be further improved by whatever physics-based knowledge is available.

e Some level of damage is always present in any man-made structure or material. What
matters is when the level of damage reaches a critical level where the equipment or
structure being monitored no longer performs at an acceptable level. Therefore,
damage must always be defined relative to some normal operation state or condition.

e Sensors are not capable of measuring damage directly. It is always necessary to
extract damage sensitive features from the measured data using signal processing
and statistical classification. The extracted features are used subsequently by
statistical inference models constructed for the purpose of detecting damage,
locating damage, classifying damage type, assessing damage severity, and ultimately
estimating remaining useful life (RUL).

e A further codification of the general principles accepted by the SHM community is

known as the Fundamental Axioms of Structural Health Monitoring (See Appendix A).
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The earliest SHM applications originated in the structural engineering community using

vibration monitoring to detect incipient damage in structures, vehicles and rotating
machinery. However, | will demonstrate that the paradigm adapts well to the health
monitoring of the MCT X-ray system. This assertion is a key contribution of this report and

applies to the health monitoring of scientific metrology equipment more generally.

| will also compare the classical statistical inference approach currently employed by the
MCT technical team, with the more general SHM paradigm, as a secondary research
contribution. Throughout the report, | support the thesis that the statistical pattern
recognition paradigm offers a much richer framework for attaining the MCT system health

monitoring goals.

1.2.1 Damage identification levels

Table 3 defines five damage identification levels according to the SHM design perspective.
Each level builds progressively on the previous levels. This means that sensors must be
selected, damage sensitive features constructed, and classification models must be built at
each previous level before ascending to the next. SHM systems at the higher damage levels
are more difficult to construct and require the availability of damage state data. Damage
state data is needed to train supervised learning algorithms and must be provided either

experimentally or through simulations paired with a known physics-model.
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damage present?

Damage Level | Damage Applicable Machine Learning Methods and Data
question Requirement

1 Detection Is damage Novelty detection methods can be used when damage
present? state data is unavailable

2 Location Where is the Relies on detection and may be either unsupervised (if

novelty detection is used) or Supervised (if
classification is used)

damage severity

or extent?

3 Classification | What type of Damage state data is required to support supervised
damage is learning
present?

4 Assessment | What is the Relies on Classification and definition of a

monotonically increasing damage indicator.

5 Prognosis

What is remaining

useful life?

Relies on Assessment and requires ability to track
speed of increasing damage

Table 3 - Damage Identification Levels. Levels 3-5 require pattern classification which requires damage data to be
available. Level 2 may be achieved in an unsupervised manner if the sensor is local to the detected damage.
References: [Rytter, 1993], [Farrar, p296]

The Damage ldentification Levels provide a fundamental bound on what health monitoring

goals are achievable given the data available. My SE296 project necessarily prioritized

"Damage Level 1 - Detection" due to the lack of damage state information in the MCT health

monitoring dataset. This level is unique from the higher levels of damage identification in

that it can be undertaken using unsupervised learning [Farrar, p321].

However, developing an optimal damage detector is only the first step towards building an

SHM system capable of achieving the ultimate goal of preventative maintenance. Another

contribution of this technical report is to propose Future Work for progressing through the

higher levels of damage characterization. Recommendations are provided for the damage

state data that must be acquired as a prerequisite.
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1.3 Operational Evaluation (SHM Step One)

Operational Evaluation represents the very first step in SHM system development. It
corresponds to the requirements gathering phase of model-based systems engineering. The
SHM project to be undertaken should be examined in terms of the costs, benefits, and
implementation constraints. However, there are two aspects of Operational Evaluation
making it unique relative to other engineering lifecycles: (a) the emphasis on defining the
damage to be detected and the unique damage sensitive features to be exploited; and (b)
the identification of Environmental and Operational Conditions (EOC’s) that can confound

sensor readings leading to false indications of damage.

Farrar and Worden describe the Operational Evaluation step as an exercise in answering

four types of questions:

e Life-safety and/or economic justification for performing SHM;

e Questions about the type of damage to be detected;

e Environmental conditions (temperature, moisture, radiation fields) and operational
conditions (changes to equipment settings or configurations, loading);

e Constraints on sensors and other data acquisition equipment.

Answers to these four types of questions are compiled below based on conversations with
the MCT technical team. The issues raised during Operational Evaluation inform and guide

the SHM design steps discussed in later sections of this report.

e Performance measures: The purpose of an SHM system is to ensure that the structure

being monitored maintains an adequate level of operational performance. As a
metrological scientific instrument, the two most important measures of the MCT system
are measurement stability and accuracy.

e Economic justification: Recalibration requires a minimum of thirty MCT scans which can

take as long as two months to acquire. This unproductive use of scanner time is both
costly and disruptive to programs depending on timely measurements. It also sometimes
happens that the cause of MCT system instability is misdiagnosed causing further delays.

For example, it is critical to know whether an observed system drift is being caused by
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damage to the X-ray source or panel so that maintenance targets the malfunctioning

component.

Life safety justification: Maintaining MCT data quality is important to national security

programs. This justification could be leveraged for R&D funding and retrofit costs leading
to a more capable health monitoring solution.

Damage definition and priority: System drift is the most readily observed evidence of

damage. It is also an SHM priority because system drift indicates the loss of
measurement stability and accuracy. As discussed in Section 1.1.1, the MCT technical
team monitors system drift using continuous measurements of the LAC coefficient values
for six material references. Control charts show the tendency for the LAC coefficients to
be become unstable after a certain number of scans. Constructing an optimal detector of
system drift is therefore the first SHM step, “Damage Level 1 — Detection”, and the focus
of this SE296 project.

Damage location: As mentioned above, locating damage to the X-ray source or panel is

critical to preventative maintenance “Damage Level 2 — Location”.

Estimation of remaining useful life: “Damage Level 5 — Prognosis”, represents the

ultimate MCT system goal. Preventative maintenance would maintain measurement
fidelity and help mitigate disruptions to program schedules.

Environmental conditions: Radiation has a dual role for the MCT system. It functions as

the interrogating signal for MCT measurements. However, radiation may also be treated
an environmental condition because it damages the X-ray panel and eventually
necessitates the "panel move" procedure discussed in Section 1.1. The effects of
radiation are visible even during normal operating periods. As discussed later,
amorphous silicon X-ray panels are subject to a thermal annealing process that reverses
the effects of radiation damage over time. The damage and its reversal cause
measurements to drift in an oscillatory manner that can be characterized as an
autocorrelation. The autocorrelation confounds statistical measures of system drift and
therefore must be corrected. Section 3.3 applies an SHM data processing technique
called Data Normalization which is often used to correct the confounding effects of
environmental conditions.

Secondary environmental conditions: As with most SHM systems, temperature

fluctuation can introduce variability into MCT system measurements. Temperature can
16 |Page
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alter the flux and spectral output of the X-ray tube. Temperature also influences the rate

of annealing in the X-ray panel which is a suspected cause of measurement drift. High
humidity has been raised as a concern at some MCT system locations as a potential
contributor to X-ray tube failure.

Operator changes: Measurement variability can be accidentally introduced by the

radiography technicians operating the MCT system. Measurement outliers can occur if
the technician changes the standard operating procedures. Examples of procedural
changes known to have occurred in the past include: (a) changes to the X-ray tube
warmup procedure; (b) changes to the data acquisition settings; (c) alignment changes
introduced by a failure to properly position the carousel or X-ray panel.

Operating loads: The MCT system can be subject to "undocumented" scans that may add

equipment operating hours not logged in the scan records. Technicians perform warmup,
alignment and test procedures that can add undocumented time. Also, the MCT system
is occasionally loaned out for nonprogrammatic use.

Data acquisition limitations: Radiation requires shielding or rad-tolerance for any added

sensors or data acquisition equipment. However, the MCT system operates in a
laboratory environment so exposure to weather or other uncontrolled environmental
conditions is not a concern. One disadvantage is that some of the MCT systems are
located in facilities that do not permit wireless equipment. One advantage is that MCT
data acquisition occurs slowly relative to many SHM systems so data may be analyzed

and interpreted in an offline manner.

1.3.1 Damage to be detected

Operational Evaluation begins by identifying the damage to be detected and monitored by

the SHM system. As discussed in Section 1.1.1, the MCT technical team believes there are

two primary damage mechanisms affecting MCT measurements: (a) damage to the X-ray

tube through operational use; and (b) damage to the X-ray detector caused by radiation

dose. Section 2.1.3 will revisit the concern of X-ray tube damage as a potential topic for

future study. As will now be discussed, damage to the X-ray detector is believed to occur on
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a much shorter timeframe and also to be more dominantly manifest in the MCT

measurement data. It is therefore adopted as a focus of the current SE296 study.

Early developers of amorphous silicon (a-Si:H) X-ray panel detectors performed
experimental studies to characterize the effects of radiation damage [Boudry, 1996]. Each
pixel in the 2048x2048 panel detector contains a two-device sensor comprised of a
photodiode coupled to a field-effect transistor (FET). These semiconductor devices exhibit a
leakage current (or "dark current") that varies according to the presence of impurities,
lattice defects, or ambient temperature. While the photodiode was empirically determined
to be relatively immune from radiation [Antonuk 1990], it was determined that radiation
dose increases the leakage current of the FET [Boudry and Antonuk, 1996]. The leakage
current increase can be explained by the tendency of radiation to create dislocation defects
within the FET semiconducting regions. The leakage current increase was also associated
with increased measurement noise. Over time, thermal energy reverses the dislocation
defects resulting in an "annealing" effect which accelerates with increasing temperatures.
Annealing occurring at room temperature was observed to reduce the leakage current
between 10-50% in the first day with a logarithmic decrease in subsequent days [Boudry,
1996]. Although X-ray panel manufacturers have engineered ways to mitigate this effect,
there is evidence of the damage-annealing cycle becoming manifest as an autocorrelation in

the MCT measurement data. This will be revisited in Section 3.3 on data normalization.

1.4 Literature Review

Computed tomography equipment manufacturers have long offered procedures for system-
level performance measurement (e.g., ASTM standard E1695), but the new trend is to
monitor and diagnose system health at the component level to predict against imminent
failures. Medical CT vendors are starting to incorporate health monitoring as a standard
system feature. GE HealthCare advertises? Tube Watch™ using Al and Digital Twin
technology to monitor imminent failures in X-ray tubes. Industrial CT is considered a critical
enabling technology for advanced manufacturing. The European Union's Industry 4.0

initiative is funding the "xCTing" MSCA ITN research program to develop condition

2 https://www.gehealthcare.com/products/tube-watch
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monitoring of in-line CT equipment3. The xCTing website promotes CT as "the only known

technology that can certify nondestructively the quality of internal complex structures, such

as those produced by additive manufacturing or found in assemblies".

There are interesting cases of health monitoring systems designed to detect damage and
anomalous operating behavior in scientific instruments and equipment. Farrar discusses an
SHM system using vibration monitoring to detect damage in a telescope drive mechanism
[Farrar, 2019]. MAINTLET is an NSF-funded project at the University of lllinois seeking to
develop health monitoring solutions for scientific instruments located in campus
laboratories [Nahrstedt]. A sensor network of vibration monitors, water flow meters, and
contact temperature sensors streams data that is assimilated into digital twin simulations to
predict potential instrument failures. An engineer designed a health monitoring system for
radiological equipment used at the Department of Energy Y-12 uranium enrichment facility
in Tennessee [Harrison, 2004]. The system employs a fault detector based on the sequential
probability ratio test SPRT. Section 3.1 discusses results obtained by applying the SPRT to
MCT health monitoring data.

Scientific instruments are carefully calibrated and controlled to produce accurate and
consistent measurements. The loss of calibration or variability in measurements can be
treated as a type of damage known as system drift. Methods for detecting system drift
originated at Bell Laboratories in the 1920's through the work of quality engineer Walter
Shewhart, and have matured into the field of statistical process control SPC.
Venkatasubranmanian [2003] provides a comprehensive literature survey of SPC methods
including a discussion of the Shewhart control charts employed by the MCT health monitoring
system. It warns that the use of univariate control charts can lead to misleading results when
the parameters being monitored are correlated. This point will be revisited in Section 2.2.2.
There are many more publications in the SPC literature that are relevant to the MCT health
monitoring system. Introduction to statistical quality control is considered a standard

reference by SPC practitioners [Douglas, 2020].

More recent work in the process control industry directly converges with SHM data analysis

methods. The TUV SUD National Engineering Laboratory developed a data science

3 https://xcting-itn.eu/

19| Page


https://xcting-itn.eu/

LLNL-TR-847098
framework for the condition-based monitoring CBM of the flowmeters used inside oil

pipelines [Lindsay, 2022]. The TUV SUD framework can predict component failure, detect
calibration drift, and reduce unscheduled downtime. While the framework closely mirrors
the data-driven methods of the Farrar-Worden SHM paradigm, it also emphasizes the
importance of exploratory data analysis (data mining) in the search for data sensitive
features. Another emphasis of the framework is the three-stage progression of SHM design

over time:

e Stage 1- Detect anomalies;
e Stage 2 - Use detected anomalies as input to classify specific fault conditions;
e Stage 3 - Quantify the effects of each fault condition on the overall system measurement

uncertainty.

The close tie between structural health monitoring and uncertainty quantification is of great

importance to the MCT health monitoring system.

Sensor fault detection (SFD) has been widely studied for over 50 years being critical to the
health monitoring of aeronautics, space vehicle, and automotive instrumentation. SFD
provides methods for detecting sensor drift and other anomalous measurements. Many of
these methods employ system identification algorithms. De Silva [2020] proposes an SFD
architecture that combines the Kalman filter with machine learning methods. This approach

will be examined in Section 2.3.

A final body of knowledge that was surveyed is the related field of measurement science
(metrology). Measurement science provides statistical methods for quantifying equipment
precision, accuracy and uncertainty propagation. As discussed in Section 2.2.1, the MCT
technical team employs calibration procedures for statistical tolerance intervals as published

in the NIST Engineering Statistics Handbook.*

4 Available online at https://www.itl.nist.gov/div898/handbook/
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1.5 Contributions

This section summarizes the contributions of this technical project and final report to both

the MCT technical team and the SHM engineering literature.

Contributions to the MCT Technical Team

In February of 2023, UCSD student Michael Skeate gave a tutorial presentation to the MCT
technical team on the Structural Health Monitoring paradigm and recommendations were
provided for using the paradigm to improve the MCT health monitoring system. This

technical report provides additional information on the topics presented including:

e An assessment of the statistical procedures currently used for MCT health monitoring
including statistical control charts and tolerance intervals;

e An evaluation of the method used to specify the ROR and QC tolerance limits and
reasons these limits should be widened: (a) reference given to published k-factor tables
that account for the presence of autocorrelation in MCT data [Knoth]; (b) reference
given to construct multivariate statistical tolerance intervals [Polhemus];

e Spotlighting the damaging aspects of system drift including the invalidation of the MCT
tolerance intervals, and thereby motivating the need for rapid drift detection;

e Integration of an optimal detection algorithm employing sequential hypothesis testing
into the statistical control charts currently used for MCT health monitoring;

e Demonstration of the efficacy of autoregressive models to mitigate the serial
correlation present in the MCT data measurements being monitored, thereby reducing
the false alarm rate during drift detection;

e MATLAB codes providing reference implementations of the sequential probability ratio
test and autoregressive model correction;

e Roadmap for future work intended to evolve the MCT health monitoring system from

Damage Level One to the higher levels in the Rytter-Farrar-Worden damage hierarchy.
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Contributions to the SHM Literature

e Demonstration of applying the SHM paradigm to the health monitoring of scientific
instrumentation in general and X-ray computed tomography equipment in particular;

e Spotlighting the important role that SHM will play in developing online condition
monitoring for scientific equipment, including X-ray equipment used for in situ inspection

and process control for Industry 4.0 and lot-size-one advanced manufacturing.

2 Methods

Section 1 posed the question motivating this SE296 project, "how might SHM methods be
applied to improve the current MCT health monitoring system?" Section 2 discusses topics
addressing this question including theory, models, datasets, key concepts, design methods,

and statistical analysis methods. Section 3 presents the project technical results.

2.1 Data Acquisition (SHM Step Two)

This section discusses step two in the SHM paradigm, Data Acquisition. During this step, the
SHM designer gives attention to aspects of measurement engineering: (a) method of
damage interrogation and sensor excitation; (b) sensor type, location and number; (c)
equipment used for data acquisition; (d) the data collection rate; and (e) required signal
processing. The resulting SHM system must provide the data needed to achieve the

damage detection goals established during Operational Evaluation.

Section 2.1.1 comments on two fundamentally different data acquisition design strategies.
Section 2.1.2 discusses the MCT system health monitoring dataset provided by LLNL for the
benefit of this SE296 project. Section 2.1.3 appraises the quality and completeness of the

available data and makes recommendations for additional data needed for future studies.

2.1.1 SHM Instrumentation Strategies

Data acquisition lies at the foundation of SHM system design [Farrar, p54]. The SHM system
designer must employ sensors that are sensitive to the damage of concern with a high

degree of correlation. This is not to say that the sensors will measure damage directly as
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that would violate the Fundamental Axioms (See Appendix A). It is rather that the chosen

sensors and resulting measurements must enable the extraction of damage sensitive
features through the corrective lens of signal processing, mitigation of environmental and
operational variability (the EOC's), and interpretation by a sufficiently powerful statistical
model. Given all these design factors, it follows that ideally the choice of SHM sensors
should be made as a fundamental design concern of the structure to be inspected. This
integrated approach to SHM or NDE architecture is often referred to as "design for

inspection" [Argyll Ruane, 2023].

As outlined by Farrar p54, the retrofit strategy is by far the most common approach for most
SHM projects. This is also the approach taken in this study given the limited time available to
complete the project. Table 4 contrasts the "Retrofit" instrumentation strategy with the
more comprehensive "Design for Inspection"” approach that would make optimal sensor
choices based on SHM first principles. It is recommended that future studies move towards

the Design for Inspection approach.
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sensitive data
features

using archived sensor data,
trial and error, and ad hoc
algorithms

Design Aspect | Retrofit Strategy “Design for Inspection” Strategy
Sensors Use previously available Chosen sensors on the basis of sufficient
employed sensors and data acquisition sensitivity and correlation to the
equipment postulated damage mechanisms
Sensor Distributed in an ad hoc Placement decided on the basis of
location manner to provide a general analysis, experiments, or past
sampling experience
Damage- Constructed "after the fact" Engineered on the basis of numerical

simulations or experimental validation
for the postulated damage mechanisms

Treatment of
environmental
and operation

No measurement of the
parameters necessary to
correct the effects of EOC's

Addition of secondary sensors to
quantify changing EOC's

One Damage Identification as
the SHM system must rely on
unsupervised learning
methods (novelty detection)

conditions

Excitation Relies on measurements of the | Active sensing employed when it can be
ambient operational exploited for optimal damage detection
environment

Data Lack of damage data relegates | Damage data needed for supervised

coverage retrofitted systems to Level learning methods is provided by

numerical simulations or experiment.
This opens the door to higher levels of
damage identification.

Table 4 - Comparison of SHM Instrumentation Strategies. Reference [Farrar and Worden, 2012]

In spite of its many limitations, Farrar notes that the Retrofit approach can still be made

effective at damage detection especially when a good historical database of measured

system responses and associated damage states is available. Such is the case for this study

which benefitted from the four-year compilation of MCT health monitoring data discussed

next.
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2.1.2 MCT Health Monitoring Dataset

Table 5 describes the MCT dataset provided for this study. More detailed information on the

dataset may be found in [Martz, 2019]. The dataset includes almost four years of MCT

health monitoring data acquired from a single MCT scanner.

Data record

Description

Manifest

The dataset contains a total of 440 complete CT scan sets acquired over 3
years and 9.5 months (starting 11/17/2014 through 8/30/2018. Each scan
set includes radiograph and recon images at both low 100 kV and high 160
kV energies. Including metadata files, the full dataset contains 1824 files
stored in HDF5 format totaling 931 GBytes.

Metadata

A "System Operation Data" spreadsheet records over 40 different data
acquisition settings for all scans. These settings are held constant for the
most part but will have slight variations for some settings (e.g., alignment
parameters, technician acting as system operator). A "System Changes"
spreadsheet contains a dated record of all changes made to the MCT
system including preventative maintenance, equipment repairs, and
software updates.

LAC values

This spreadsheet contains a history of the LAC values of the six reference
materials for all 440 CT scans at both the low 100 kV and high 160 kV X-ray
energies. The spreadsheet also contains the MCT calibration results on
three different dates 11/17/2014, 7/13/2015 and 3/28/2018 including the

tolerance limits QC bounds).

Recon files

There are 440x2 (low and high energy) recon files in HDF5 format. The
content of these files is depicted in Figure 8 and is used to reconstruct the
LAC values.

Radiograph
files

There are 440x2 (low and high energy) radiograph files in HDF5 format.
The content of these files is depicted in Table 6 and are used to calculate
the ROI statistics used as a secondary indicator of MCT system health.

Table 5 — Data records in the MCT Health Monitoring Database provided for the study
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All MCT data measurements originate as radiographic digital images acquired by the X-ray

panel detector. The radiographs are digital 16-bit grayscale images of dimension 2048 pixels
x 2048 pixels. Table 5 depicts the data processing steps converting the radiographs into the
LAC values which are monitored as the primary indicators of MCT system health.

Radiographs
(I; x-ray on and objects in field of view)

Reference .
Reconstructions Control charts of linear

attenuation coefficients

Reference Sinograms

b) (
( ©) (d)

Figure 7 - Data processing steps for MICT Health Monitoring: (a) Measurements originate as radiographic digital
images acquired by the X-ray panel detector; (b) the radiographs are spatially-arranged into digital images called
sinograms; (c) CT reconstruction algorithms reconstruct the sinograms input images into images of the six
reference materials; (d) the reconstructed images are decomposed into the linear coefficient values that are
monitored in the form of control charts.

For a typical SHM project, an array of sensors must be added to the structure being
monitored. The MCT system is unique in that the X-ray panel detector acts as a high-spatial
resolution sensor array. An important benefit afforded by the X-ray panel detector is the
configurability of many different sensor regions. Figure 8 shows examples of the configured
region-of-interest ROI sub images including the postage stamp and copper strip regions that

are located inside the illuminated upper and lower slits discussed in Section 1.1.1.

Full_Panel_Drk Full_Panel_Mid Full_Panel_Lit Location of Region-of-interest (ROI) Sensor Areas

Reconstruction Cu Strip Postage Top Cu
Postage Stamp ROI Stamp ROl  Strip ROI
Collimated Region ROI
Bottom Cu
Strip ROI

Radiographs_Lower_Slit

Radiographs_CuStrip Radiographs_Postage Stamp

Prescan_ROI_Background Prescan_ROI_Drk Postscan_ROI_Background Postscan_ROI_Drk
——— L ]
Figure 8 - Region-of-interest (ROI) data areas extracted from the X-ray panel detector. The ROl regions function
as secondary sensor and are used for data normalization and health monitoring.

26 | Page



LLNL-TR-847098
Table 6 discusses the different properties and dimensions of the ROl data measurements.

These region-of-interest ROl sensor regions are used for data normalization and provide
additional indicators of MCT system health. The ROl sub images therefore function like the
secondary sensor commonly used by SHM designers to correct for variable environmental

and operation conditions.

Name Dim Size Description
Full_Panel_Drk 2 2048x2048 Full-panel image taken with x-ray source off
Full_Panel_Lit 2 2048x2048 | Full-panel image taken at full current
Full_Panel_Mid 2 2048x2048 Full-panel image taken at 2/3 current
Postscan_ROI_Background 2 275x1808 Post-scan ROI image taken at full current
Postscan_ROI_Drk 2 275x1808 Post-scan ROI image with x-ray source off
Prescan_ROI_Background 2 275x1808 Pre-scan ROl image taken at full current
Preschan_ROI_Drk 2 275x1808 Pre-scan ROI image with x-ray source off
Radiographs_CuStrip 3 720x51x344 | Right edge of upper slit (copper strip)
Radiographs_Lower_Slit 3 | 720x157x1808 | Lower half of ROl images

Left edge of the upper slit (used for per-
Radiographs_Postage_Stamp | 3 720x51x250 | radiograph flux normalization)

Table 6 - Region-of-interest dimensions and measurement conditions. The full panel, dark and background
measurements are acquired once per CT scan as a one-time calibration. The copper strip, lower slit and postage
stamp are acquired synchronous with all 720 angular measurements made during a CT scan.

2.1.3 Opportunities for MCT Dataset Data Mining

Data mining is the use of data science methods to find patterns and gains insights into data
that has already been collected [Witten, 2017]. Data mining has been used successfully by
SHM researchers [Gordan, 2022] and is the approach taken during this project.

This section revisits the levels of damage identification introduced in Section 1.2.1. At each
level, an appraisal of the data mining opportunities is made by answering these questions:
(a) what specific MCT damage identification goals can be defined? (b) what is the relevant

data available in the MCT dataset? (c) what patterns might be discovered using data mining
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that can address the MCT damage detection goals? (d) what missing data is needed to

achieve higher levels of damage identification? (e) what new statistical methods and models

could be developed to interpret the data?

Damage Level 1: Damage Detection

SHM Goals: Improve the speed to detect system drift. This task is undertaken during this
SE296 study.

Data Availability: The LAC values provided in the MCT health monitoring dataset is sufficient
for this task.

Expected Data Patterns: System drift can be detected using the novelty detection method
discussed in Section 2.2.1.

Impact of Environmental and Operation Conditions: Radiation dose creates a cycle of
damage and annealing in the X-ray panel detector as discussed in Section 1.3.1. This is
believed to explain the high autocorrelation measured in Section 3.2. The autocorrelation
requires correction using the data normalization technique discussed in Section 3.3.
Statistical Methods and Models: The current MCT health monitoring system uses statistical
control charts with thresholds defined by tolerance intervals. Control charts are an
unsupervised learning method. Section 3.1 demonstrates that the Wald Sequential

Probability Ratio test can help with earlier detection and confirmation of system drift.

Damage Level 2: Damage Location
SHM Goals: Locate damage to either the X-ray panel detector or X-ray source.
Data Availability: The dark current measurements and postage stamp region of interest
data provided in the MCT health monitoring dataset might be sufficient for this task using
unsupervised learning methods.
Expected Data Patterns: The dark current measurements are taken in the absence of an X-
ray signal so any changes observed using novelty detection methods would be an indicator
of X-ray panel detector damage. The postage stamp measurements are known to be good
indicators of changes occurring in the X-ray flux and spectrum.
Impact of Environmental and Operation Conditions: The X-ray tube is known to be sensitive
to temperature fluctuations. Adding temperature probes as a secondary SHM sensor has
been proposed to help monitor these effects. The X-ray tube operator can introduce
variability if he or she does not follow a consistent warmup procedure.
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Statistical Methods and Models: To be confirmed as damage sensitive features, the dark

current and postage stamp measurements must be correlated with damage detected by the
control charts or the more sophisticated Kalman filter anomaly detector discussed in Section
2.3.2.

Damage Levels 3,4 and 5: Damage Classification, Severity, and Prognosis

SHM Goals: Alert the MCT system operator when preventative maintenance is needed
Data Availability: Data required for supervised learning methods needs to be collected by
the MCT technical team. This should include building a database of water scans to help
determine how changes in the material references propagate to the test specimen.
Radiation dose measurements could be used to correlate system drift with damage
occurring in the X-ray panel and could be compared to the expected component life
provided by the panel manufacturer.

Expected Data Patterns: As discussed in Section 2.3.3, damage sensitive features may
manifest as clusters corresponding to different damage states. Ideally, these clusters could
be monitored as indicators of system drift direction, severity and speed. This information
could be used to predict drift dynamics.

Statistical Methods and Models The discovery of effective damage sensitive features should
follow the data mining techniques discussed in Section 2.3.3. The ultimate goal is a unified
health indicator for making preventative maintenance decisions and estimating remaining
useful life. Assessing damage severity requires correlating damage manifesting in the
reference material and ROl measurements to a corresponding drift in the test specimen

measurements. This should be framed as an uncertainty quantification problem.
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2.2 MCT Health Monitoring using Statistical Process Control (Current Approach)

This section provides an appraisal of the current health monitoring approach used by the
MCT technical team. Section 1.1.1 introduced the control charts used as the primary means
for monitoring MCT system stability. The control charts monitor the MCT measurements
LAC values) of six reference materials at two different X-ray energies. Methods for
constructing and interpreting control charts are discussed by practitioners of statistical
process control, or SPC [Montgomery, 2020]. SPC is the use of statistical techniques for
monitoring changes in a measurement process. Control charts can be an effective SHM tool
when the measurements being tracked are highly correlated to the onset of damage [Farrar,
Chapter 10].

2.2.1 Feature Extraction (SHM Step Three)

Step Three of the SHM design paradigm focuses on the extraction of damage sensitive
features. This section identifies the damage sensitive features when control charts are used
for SHM. It also discusses the underlying theory of novelty detection to suggest a potential

improvement to the control charts used for the MCT health monitoring.

Statistical process control charts originated in the quality control community to help
maintain stable processes for the prevention of defects or errors. Control charts monitor a
process over time by plotting the sample means and/or standard deviations. Although
derived from the principles of statistical inference and hypothesis testing, control charts do
not require a formal statistical model. Control charts are easy to use but can be an effective

tool for detecting changes to a process.

Control charts employ a general concept known as novelty detection. In novelty detection, a
discordancy measure is defined using statistics calculated from measurements taken when
the system, structure or equipment is assumed to be operating in an undamaged state. The
discordancy measure is then used to compare each new measurement with a threshold
used to flag which samples are considered to be outliers (discordant or novel). For
univariate data measurements x;, the appropriate discordancy measure is the z-statistic

defined in Equation-1.
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When control charts are used for SHM, the z-statistic functions as a damage sensitive
feature. For the current MCT system, the z-statistic is calculated for each of the derived LAC
values (high and low LAC values for six different reference materials) and twelve different

SPC charts must be interpreted.

The identification of a discordant measurement (i.e., damage) depends on where the
threshold is set in the control plot. The thresholds can be chosen in different ways but the
"three sigma" approach is a common SPC practice that defines the outlier thresholds at the
mean value plus/minus three standard deviations, or x + 3ox. The current MCT health
monitoring system refers to these thresholds as the upper and lower Quality Control (QC)
bounds. As discussed in Section 2.2.2, the QC bounds are computed using statistical

tolerance intervals which yields a similar result to the "three sigma" approach.

In calculating the mean x and standard deviation ox appearing in Equation-1, it is assumed
that the sample size is large enough to ensure that these statistics are computed with a
sufficient confidence level. A well-known practical choice based on statistics theory is to
include a minimum of thirty samples. The MCT team follows this practice by ensuring that
the mean and variance of the LAC values are calculated using a calibration dataset of at least
thirty CT scans after a new MCT system is commissioned or following a repair or software

update.

The discordancy measure for novelty detection can be extended to multivariate data. In
Equation-2, the measured time series data |x;| is an n-dimensional feature vector instead of
a scalar value. Both the nx1 mean feature vector |x,| and the nxn feature covariance
matrix || should be calculated when the system is assumed to be operating in a normal

state.

D* = (lz| — [2)" 2] (|| — |2]) (Eq2)

31| Page



LLNL-TR-847098
The discordancy measure D appearing on the left-hand-side of Equation-2 is known as the

Mahalanobis distance. This could be used as a principled method to consolidate the twelve
MCT control charts into a single chart. For each new CT scan, the twelve LAC values would
be assembled into a feature vector so the Mahalanobis distance could be calculated. The
calculated values can then be plotted in a control chart for monitoring. One complication is
deciding the thresholds to use with this approach. Farrar discusses how to use a Monte
Carlo "bootstrap" method to calculate the thresholds required to achieve the desired
confidence level [Farrar 2020, Chapter 6.10].

2.2.2 Statistical Model (SHM Step Four)

The fourth and final step of the SHM design paradigm focuses on developing the statistical
model which takes as input the damage sensitive features defined in step three. The
purpose of the statistical model is to discriminate between the damaged and undamaged
states of the system, structure or equipment. This section examines the statistical model
employed by the current MCT health monitoring system. However, before discussing the
statistical model, | first review the basics of statistical tolerance intervals and how they are

used to interpret MCT measurement data.

As mentioned in Section 1, the MCT system functions as a metrological instrument used to
certify manufactured material test specimens. The specimens can vary on the basis of their
designed material composition or due to manufacturing process variability. Tolerance
intervals can be used to establish the acceptable statistical range of values for each
measured characteristic of a test specimen. Figure 9 shows how the low- and high-energy
tolerance intervals (for a given test specimen) can be combined into a plot called the "region
of responsibility" or ROR. RORs are constructed to monitor a range of different material
properties including density (p), high- and low-energy linear attenuation coefficients

(Mnighs Hiow), €lectron density (p.), and effective atomic number (Z,). The RORs are
constructed by scanning a small batch of test specimens which have been chosen as
representative of the "ground truth" (i.e., exemplars) by which future test specimens will be

certified.
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graphite
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Figure 9 — Example of the "Quality Control” or QC bounds used for MCT data interpretation. The QC bounds are
drawn using two univariate tolerance intervals (TI’s). The Tl for the low-energy LAC value, i, is drawn along
the y-axis. The Tl for the high-energy LAC value, pp;gp, is drawn along the x-axis. This results in the green box-
shaped region. The red and purple box regions are created in an ad hoc manner to contain the outliers which are
frequently observed. A separate QC bound plot is created for each of the six reference materials. In a similar
fashion, two univariate tolerance intervals for the test specimen are used to draw a plot called the Region of
Responsibility (ROR).

An additional set of tolerance intervals called the "Reference Material Quality Control (QC)
bounds" are constructed for each of the six reference materials in the MCT health
monitoring system. Figure 9 illustrates an example showing the QC bound for graphite. The
QC bounds are used to confirm the MCT scanner is operating normally. For example, when a
test specimen measurement is found to lie outside of its ROR, the question naturally arises
as to whether the specimen is flawed or the MCT system is malfunctioning. The MCT health
monitoring system described in Section 1.1.1 was designed to answer this question. The
reference materials are always being scanned continuously along with each test specimen.
The simple assumption is that the MCT system is operating normally if these reference
measurements fall within the QC bounds. Any ROR outlier measurements may then

confidently be attributed to the test specimen.

The QC bounds are determined by the two-sided tolerance interval formula shown in Figure
10(b). A tolerance interval is a statistical interval that brackets a fixed proportion of the

population (i.e., the coverage value P) at a given confidence level, alpha. The convention is
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to specify the confidence level first and the coverage last, so a 90-95 tolerance interval

would bracket 95% of the population values with a confidence level of [1-alpha], or an alpha
of 10%. The k-factor multiplier appearing in the tolerance interval formula determines the
width of the QC bounds and is a function of the proportion P, sample size n, and confidence
level alpha. The k-factor can be determined using statistical software or using published
reference tables [NIST]. The bounds are drawn in the MCT control charts as the mean LAC
value plus and minus the percent allowed variance. A typical bound may be on the order of
0.5% to 0.75%.

(a) (b)

f(x) f(x)

Tolerance Interval Formula

[xp, xy] = X + ko,

Confidence Interval Formula
Area P within the interval [A, B)

Ox
XXyl =Xt tos—
[l u] .OSﬁ

“k-factor”

90% Confidence Level for statistical mean ¥ = [x;,x,)

90% Tolerance Level for Area P X1, X
A random interval that will bracket ¥ with a 90% confidence level . f s [xz, xu]

A random interval that will bracket [A, B] with a 90% confidence level

Figure 10 — Comparing definitions for the (a) Statistical Confidence Interval and (b) Statistical Tolerance Interval.
The k-factor appearing in the tolerance interval formula is a function of the proportion P, sample size n, and
confidence level alpha.

One of the challenges faced by the MCT technical team is setting thresholds for the RORs
and QC bounds. As shown in Figure 9, the observed measurement variability often exceeds
the range in the published tolerance interval tables. The team has resorted to widening the
thresholds using trial and error, selecting empirically a plus-and-minus percent error bound.
| now mention several references that offer potential explanations and guidelines for
adjusting these thresholds.

Section 3.2 will show that MCT measurements have a high degree of serial correlation.
Knoth [2003] demonstrates that autocorrelation leads to higher variability in the observed
measurements requiring a correction to the published k-factors. Table 7 shows that the
tolerance limits are wider as the amount of serial correlation p increases, and diverges more
for smaller sample sizes N. It needs to be noted that the values published by [Knoth 2003]

apply to the construction of univariate tolerance intervals.
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10 |[3.379 |3.754 4.754

30 |2.549 |2.684 3.093

100 |2.233 |2.280 2.438

Table 7 — K-Factors for two-sided 95-95 tolerance limits for increasing autocorrelation, p. Values taken from
[Montgomery] and [Knoth].

The tolerance intervals used to construct the QC and ROR plots are assumed to be
independently observed, univariate quantities. However, the MCT measured values are in
fact highly correlated, and thus require multivariate treatment. Polhemus [2017] discusses
multivariate tolerance intervals and shows that a further widening of the tolerance limits
may be expected. Figure 11 shows a hypothetical result. Polhemus describes how to use
Monte Carlo simulation to bootstrap the multivariate tolerance region (shown as the purple
ellipse). The Tl will be ellipsoidal if the underlying distribution is approximately multivariate
Gaussian, and extended along a diagonal with a slope proportional to the correlation
coefficient. A second approach discussed by Polhemus is to use the Bonferroni method
shown in red. This does not require simulation but results in a more conservative estimate

of the true bounds.

water

® measurements

Uiow (mm~1) Univariate 99-99 Tl limits

Bonferroni limits

Multivariate 99-99 Tl limits

Hhignh (mm™1)

Figure 11 - Construction of Multivariate Tolerance Intervals for MCT data interpretation. The correlation between
the u-values causes the data to be stretched along the diagonal as shown. This will leave outliers unaccounted
for by the construction of univariate tolerance intervals (green box) but will be accounted for by the multivariate
tolerance intervals (purple ellipsoid).
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| now return to the originally stated goal of this section which is to affirm that the statistical

model employed by the current MCT health monitoring system is none other than the
Gaussian or normal distribution model. The univariate Gaussian model is assumed by the
MCT technical team, but the multivariate Gaussian is the more correct model for the
reasons discussed. The validity of the inferences made from this model depend on how well
the probability density has been estimated from available data. Density estimation is well
known to be one of the most difficult problems in statistical/machine learning. As shown in
Equation-3, the joint probability distribution needed for MCT health monitoring is
realistically a 14-dimensional random vector consisting of the high- and low-u values for six

reference materials and test specimen:

X = (pif, pl, pdl g, wy wl gt wl pl pl pl pl, nee)t  (Eq3)

The direct learning of the joint PDF is referred to as the generative approach in statistical
learning and would require too many sample measurements to be considered tractable.
Discriminative machine learning algorithms represent an alternative approach. These
algorithms rely on supervised learning to make accurate predictions and require far less
data by comparison. Discriminative learning approaches will be discussed in Section 2.3 as a

potential avenue for making improvements to the current MCT health monitoring system.

2.3 MCT Health monitoring using Statistical Pattern Recognition
(Proposed Approach)

Classical statistical inference methods including tolerance intervals rely fundamentally on a
large amount of measurement data to learn the probability density with a high confidence
level. This may be intractable for the MCT health monitoring system given the large number
of variables. These methods also depend on assumptions about the underlying data
distribution (e.g., multivariate Gaussian, independent and identically distributed). In this
section, | explore alternative approaches that can be exploited by the statistical pattern
recognition (SPR) health monitoring paradigm. This includes machine learning algorithms
that can make accurate predictions with far less training data. It is proposed that the SPR

approach offers a richer framework for MCT system diagnosis and prognosis.
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2.3.1 Motivation

The current MCT health monitoring system employs control charts to detect system drift
caused by damage to MCT components. While simple to use, control charts have a number

of limitations:

Control charts:

e Are an unsupervised learning method appropriate for damage detection, but unable to
be used for damage classification or severity assessment;

e Are limited to the monitoring of univariate quantities and are prone to misleading results
when correlated multivariate quantities are monitored;

e Require manual updates to the control limits (decision thresholds) when the process
changes;

e May produce a high false alarm rate when the measurements being monitored are highly
corrupted by noise;

e Monitor primary quantities directly and do not offer a model for incorporating relevant
physics or secondary measurements.

These limitations motivate the development of new statistical models for MCT health

monitoring data interpretation. As discussed in Section 2.1.2, the MCT health monitoring

system collects secondary data that might be exploited for SHM diagnosis and prognosis.

The MCT technical team refers to this secondary dataset collectively as the "region of

interest" statistics. The MCT technical team believes that damage to the X-ray panel may

manifest as subtle changes to the dark current measurements. Damage to the X-ray panel

may manifest in a region of interest referred to as the "postage stamp".

The development of new statistical models to improve the current MCT health monitoring
system is a complex task. It will require more data to be collected, and also a greater time
commitment than the current SE296 project allowed. However, the literature survey
uncovered several statistical modeling approaches that appear promising as the starting

point for future work. These are discussed in the next two sections.
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2.3.2 Statistical Modeling based on General Anomaly Detection

An alternate approach posits that the loss of measurement fidelity can be treated as a
sensor fault detection SFD problem. Automated SFD methods are widely researched due to
the critical role of sensors for monitoring and control in industry. Dynamical systems
researchers at the University of Washington and Boeing demonstrated the robust SFD
architecture shown in Figure 12 [de Silva, 2020]. The architecture combines methods from
system identification (Kalman Filter), data-driven modeling (dynamic mode decomposition)
and machine learning (decision trees). Section 4 provides an outline for how this modeling

approach could be applied to the MCT system.

1. LTI Model Schematic of the Physics-informed anomaly detector
learned from
data - 2. Anomaly 3. Machine
Detector using Learning — prediction = {normal, abnormal}
Operational — Kalman Filter Classifier
data

LTI = linear time invariant

Figure 12 - A general architecture for physics-informed anomaly detection. (a) Dynamic mode decomposition is
used as a data-driven approach to learn the LTI model that the Kalman filter requires for state estimation; (b)
The Kalman filter is used for monitoring and can be an effective algorithm for discriminating between "normal”
and "abnormal" system operating behavior; (c) Decision trees are used to automate the threshold used to decide
between the "normal, or undamaged" and "abnormal, or damaged" system state. Reference: [de Silva, 2020]

The Kalman filter can be used to detect system drift and might overcome the limitations of
control chart as highlighted in Section 2.3.1. The Kalman filter can analyze multivariate data:
the observation data can be of arbitrary dimension and take into account the correlations
between different measurement input variables. The Kalman filter also has a high immunity
to noise relative to control charts. In order to use the Kalman filter, a model is needed to
specify the dynamics and noise present in the system or process being monitored. This
makes the Kalman filter more difficult to use than control charts, but also presents an
opportunity to inject known physical or empirical constraints as well as measurements taken

from secondary sensors.

The general anomaly detection architecture shown in Figure 12 overcomes the limitations of
control charts in two additional ways. The data-driven model used by the Kalman filter can
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be developed using time series methods or more advanced machine learning approaches.

De Silva discusses the use of an algorithm called Dynamic Mode Decomposition that is able
to detect subtle coherent spatial or temporal patterns. If these patterns can be correlated
with damage, they might be effective as damage sensitive features in an SHM system. The
SFD architecture also employs machine learning to adjust the decision thresholds as the
process changes. This overcomes another limitation of control charts where the control

limits must be updated manually.

As discussed in Section 1.2.1, damage state data is needed to employ the supervised
learning methods required to ascend to higher levels of damage identification. Control
charts provide a damage detection mechanism for labelling time periods or epochs where
the system is observed to be operating "normally"” or 'abnormally'. The SFD architecture can
serve the same purpose while at the same time incorporating observational data from more

sensors allowing more damage patterns to be discovered.

2.3.3 Statistical Modeling based on Cluster Detection and Tracking

Farrar and Worden pioneered the treatment of SHM design as a problem in statistical
pattern recognition and machine learning. A preliminary step in machine learning is to
assemble a “data matrix” where each column might contain n measurements (e.g., sensor
data, statistics, or transforms) and each row might contain a time series of these

measurements at m successive instances.

11 12 vee L1m
a1 o9 R Lom

Xpgm = (Eq4)
Tnl Tn2 vee Lopm

Images can be incorporated into this schema by flattening the rxc image data into a tall
and skinny vector of dimension r * c. Each column can in general contain data from multiple
sensors and image detectors fused together and sampled synchronously in a single time
step. Each row represents the measurement of some "feature" that can be correlated to

damage by itself or more generally might be fused with other row measurements to achieve
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the correlation. In either case, the result becomes a damage sensitive feature that can be

incorporated into statistical models for monitoring health state changes.

Assembling data in this manner has the advantage that the dynamical state of the structure
or equipment to be monitored may be treated as patterns or clusters to be detected and
analyzed in an n-dimensional feature space. This opens the door to the mathematical
methods of linear algebra, matrix decomposition, and machine learning. Constructing
damage sensitive features often requires employing multiple data science techniques
including data fusion, matrix transforms, and dimensionality reduction using projections.

This process is referred to as feature engineering.

15

Undamaged (a) Fisher projection (pictured in figure to the left): a supervised
% dimensionality reduction method that maximizes the distance between
10 ey

R two labelled classes
E g q (b) Principal component analysis: an unsupervised dimensionality reduction
- ¥+ Damage method that projects data along the orthogonal axes that maximize the
00 variance
076
é)@\?@ (c) Dynamic Mode Decomposition: a data-driven algorithm to approximate
(. /\ dynamical systems as a superposition of coherent structures (modal
- 0 15 representations) that grow, decay and/or oscillate in time

Figure 13 - Matrix decomposition methods that can be used for feature engineering and the data mining of
damage sensitive features. Figure is derived from [Farrar, 2012]

Figure 13 illustrates the general aspects of how feature engineering is applied to finding
damage sensitive features. The clusters represent measurements taken from a two-
dimensional feature space. As depicted in the figure, it is often necessary to fuse together
and transform data before the damaged and undamaged states of a system can be
discriminated. In the example shown, the damage sensitive feature (DSF) is the Fisher
Projection of the combination of Feature 1 and Feature 2. The resulting DSF could be used

as input to a diagnostic or prognostic statistical model.

The association of damage states with clustering introduces a new interpretation of system
drift: "drift is a gradual change in the distribution of patterns that is mainly caused by an
incipient fault” [Chammas]. If the detection and monitoring of changes to the distribution

parameters is possible, the drift speed, direction and severity can all be characterized. This
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would enable the development of a complete health monitoring solution, not only one with

the capability of classifying damage, but one capable of prognosis and the estimation of

remaining useful life.

3  Results

This section presents the results of the exploratory data analysis performed on the MCT

system data provided by the LLNL Nondestructive Characterization Institute.

3.1 Optimal detection using the Wald SPRT

This section reviews the theory underlying the Wald sequential hypothesis testing method
and demonstrates how it can be used to enhance the diagnostic value of the control charts
used by the MCT team.

3.1.1 Outline of algorithm used for sequential hypothesis test

The Wald sequential probability ratio test SPRT is the optimal algorithm for sequential
hypothesis testing [Wald, 2004]. As with standard hypothesis testing, two hypotheses are
considered with at a certain confidence level (1 - a) and power (1 - B). Figure 10 depicts the

sampling distributions of two possible hypotheses to be tested.

Hypothesis Testing

Figure 14 - Standard hypothesis testing as a tradeoff comparison of the null hypothesis HO with mean value u0
and the alternate hypothesis H1 with mean value ul. The probability of Type 1 error (or False positive rate) is
determined by parameter a which is also referred to as the significance level. The probability of Type 2 error (or
False negative rate) is determined by the parameter 8. These parameters require the statistician to make a
tradeoff between the two types of error. This is done by choosing the p-value, which is the decision boundary
location represented by the vertical line in the figure.
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With standard hypothesis testing, the number of measurement samples needed to achieve

the desired Type 1 and Type 2 errors is fixed. This is not the case with sequential testing as
the number of measurement samples will vary depending on the measurement sequence.
Wald demonstrated that sequential testing could be decided on the basis of a likelihood

ratio as explained below.

The Sequential Probability Ratio Test is based on the likelihood ratio:

Llpdx) _ 1l p(X3)
LlpolX)  IIiziPo(Xi)

Assuming one performs a fully specified hypothesis test and the data follows a normal
distribution Xi~ N (u, 02), the log-likelihood has the form:

log(A(X:)) (Z X 20;”’ 0)) (Z S 202” 1)) (Eq6)

AX;) =

(Eq5)

This is equivalent to updating the ongoing sum for every new sample i, Si= Si-1 + log(/Ai).

Wald 2004 shows that if one defines upper and lower decision thresholds given by:

B

1—
b=l
l—«o o9

a = log

(EqT)
It follows that the hypothesis test can then be decided using the following decision rules:

S; > b: Accept the alternative hypothesis H;
S; < a : Accept the null hypothesis H,
a < 8; < b: the test remains inconclusive so continue monitoring

Wald also proved the optimality of the SPRT algorithm in the sense of requiring the fewest
measurements before a hypothesis decision is reached. On average, the Wald SPRT requires
half as many measurements when compared to classical hypothesis testing at the same

significance levels.
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3.1.2 Results

MATLAB codes were developed to explore application of the SPRT algorithm to MCT LAC
data (see “Detect_Drift Using_SPRT” in the Appendix). The MCT data is assumed to be
Gaussian distributed for all likelihood calculations. Also, the MCT system is assumed to be
operating normally during the calibration period. The calibration period corresponds to the
first thirty LAC measurements and these measurements are used to calculate the mean and
standard deviation statistics. To use the SPRT as a drift detector for the LAC measurement
values, one must formulate both the null and alternate hypothesis. The null hypothesis is set
with a distribution mean value equal to the calibration mean. To test for an upward system
drift, the alternate hypothesis is set with a distribution mean value equal to the calibration
mean plus one standard deviation. A second hypothesis test is used to test for downward

system drift with the alternate hypothesis located one standard deviation below the mean.

Figure 15 shows the results of the sequential test for all six reference materials. In each plot,
the upper and lower Wald decision boundaries are shown as horizontal lines. The red

vertical line shows the date when the MCT system is observed to be operating abnormally.

Each point in the plot represents the likelihood sum. In accordance with sequential testing,
each test begins with a zero-value. With each new measurement, the log-likelihood is
calculated and summed until one of the decision boundaries is reached. Coloration has been
added to help interpret the state of the sequential test. Blue points indicate that the
sequential test has not yet reached a decision. Green points indicate confirmation of the null
hypothesis meaning that no system drift is detected. Red points indicate confirmation of the
alternate hypothesis meaning that system drift has been detected. Each time a decision
boundary is reached, the likelihood sum is reset to zero and a new sequential hypothesis

test is started.
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SPRT Hypothesis Test for [alpha, beta]=[0.01,0.10]: HO=mean steady, Hi=mean decreasing
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Figure 15 - Sequential Probability Ratio Test for downward drift in the LAC 100 kV measurements from July 2014
through July 2017. The plots for all six reference materials are shown, (top row): graphite, Delrin, water; (bottom
row): Teflon, magnesium, silicon.

Figure 16 demonstrates how to integrate the SPRT calculation with the LAC control charts
already in use by the MCT technical team. Each LAC measurement sample is colored to
reflect the SPRT prediction at each time step. This provides additional diagnostic
information to help decide if the MCT system measurements are starting to drift. The SPRT
predictions could be incorporated into the QC bounds chart by combining the results from

the 100 kV and 160 kV SPRT calculation.
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Figure showing SPRT hypothesis test integrated with the
run charts used to monitor drift in MCT measurement data
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Note that the SPRT starts alarming before the lower QAC bound is conclusively violated

Figure 16 - Plot showing SPRT hypothesis test integrated with the LAC control chart for graphite. The LAC control
charts are used to monitor drift in MCT measurement data

3.1.3 Discussion

The a and B parameters can be adjusted to move the Wald decision boundaries. This
adjustment alters the tradeoff between Type 1 and Type 2 errors. The SPRT charts were
observed to have an elevated false alarm rate due to the autocorrelation present in the MCT

system data. This complication is addressed in Section 3.3.

3.2 Evaluation of statistical assumptions

The serial correlation observed in the LAC control charts can be quantified by applying
statistical measures of autocorrelation to MCT data. MATLAB code was developed to
measure the autocorrelation. The presence of serial correlation greater than 0.2 will cause
many false alarms in control charts [Montgomery, 2015]. Table 8 shows that the

autocorrelation present in the LAC data far exceeds this threshold over many time lags.
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Autocorrelation coefficients (lags 1-10) for the low-energy LAC values
lag Graphite Delrin Water Teflon Magnesium Silicon
1 0.58159 0.63809 0.459121 0.91174 0.91432 .60521
2 0.55509 0.81373 0.46708 0.86173 0.88471 0.58191
3 0.52921 0.58559 0.4431¢ 0.80074 0.85057 0.55488
4 0.50185 0.55591 0.41317 0.74515 0.815865 0.52783
5 0.4€854 0.53078 0.38917 0.69083 0.78297 0.50325
€ 0.43972 0.5009¢ 0.36237 0.€4067 0.75312 0.47908
7 0.40801 0.47277 0.33721 0.58772 0.72391 0.4586
8 0.3897¢6 0.44833 0.31443 0.53728 0.693¢€¢6 0.43378
S 0.35443 0.41791 0.28588 0.484¢64 0.6€482 0.41178
10 0.33025 0.3%9687 0.27577 0.454¢ 0.63825 0.3%9394

Table 8 - Calculated autocorrelation between MCT values at different time lags. The table was created using
MATLAB code “Calculate_AutoCorrelation_Function.m” provided in Appendix B.

3.3 Data normalization

This section demonstrates that the autocorrelation (trending patterns) present in the MCT
LAC value data are the likely cause of the high false alarm rate observed in the Wald SPRT
detector. Farrar discusses a data normalization algorithm that uses an autoregressive (AR)
model to mitigate autocorrelation. Section 3.3.1 presents measurements of the partial
autocorrelation coefficient needed to construct the model. Section 3.3.2 then presents the
results following the method discussed by Farrar [2021, Chapter 10.5.1] and [Entezami,
2021].

3.3.1 Procedure for choosing autoregressive model order

Montgomery [2015] advises that the partial autocorrelation function (PACF) should be
used when building autoregressive models. This function measures autocorrelation at a
given time lag after removing the measured autocorrelation of all previous time lags. As
shown in Table 9, the calculated coefficients suggest that using an AR(1) or AR(2)

autoregression model would correct most of the autocorrelation present in the MCT data.
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Partial Autocorrelation coefficients (lags 1-5) for the low-energy LAC values

Graphite  Delrin Water  Teflon Magnesium Silicon
:-0-5-8 1590 0.638092 0491210 0911744 0914317 -0-6-05265-: Most of the serial correlation
I occurs in lags 1 and 2
1 0327676_0348441 0297605 0180489 _ _0.297091 0340275 ¢, yesting the use of an
0.205835 0.207529 0.196451 -0.047091  0.069225 0.208087  AR(1) or AR(2) autoregressive
del.
0.130270 0.123333 0.123833 -0.017683 -0001818 0.130525

0.070529 0.080341 0.084887 -0.013611 -0.002661 0.085396

Table 9 - Calculated partial autocorrelation coefficients between MCT values at different time lags. The
coefficients were calculated using the Minitab Statistical Software package.

3.3.2 Results

MATLAB codes were developed to explore how an AR model might be used to mitigate the
autocorrelation present in MCT data. Figure 17 shows the form of the model used for each

of the twelve LAC time series (six reference materials at both low and high energies).

AR model:
,'

x(t)=a+ Y a;x(t— j)+ &)
j=1 A

residuals

Figure 17 - AR model used for the correction of autocorrelation

Plots of the residual error between the MCT LAC measurement values and the
autoregressive model estimates are shown in Figure 18. Both the AR (1) and AR (2) models
were applied to the data with similar results. The plot shows that the AR model effectively
removes the trending patterns. The result is a damage sensitive feature that appears as
white noise during the normal period of MCT operation, but changes markedly to become
one-sided when the MCT operation enters the abnormal period of operation. This

information may be exploited to lower the false alarm rate in the LAC control charts.
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X-Bar Control Chart of AR(1) Residual Errors for Reference LAC values at 100kV
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Figure 18 - Plots of the residuals resulting from the AR (1) corrected models are shown for the six reference
materials at 100 kV. The residuals show a “white noise” pattern when the LAC values are in control. The residuals
show a markedly one-sided pattern once the LAC values begin to drift out of control.

4 Discussion

Section 2.2 provided an appraisal of the current MCT health monitoring systems which uses
statistical control charts and tolerance intervals. These tools rely on the classical theory of
statistical inference and hypothesis testing. The limitations of these tools were also outlined
in light of the correlations and nonstationary effects present in MCT data. While these tools
may be capable of detecting system drift (i.e., Level 1 - Damage Detection), they are not

capable of achieving higher levels of damage identification.

Improving the current MCT health monitoring system will require two next steps: (a)
collecting damage state data that can be used for supervised learning; (b) developing more
sophisticated statistical methods and models to interpret all the data collected.
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The MCT technical team plans to gather secondary measurements that may prove useful for

supervised learning methods. A database of "water scan" data is being collected. This
involves performing a CT scan where the test specimen is a "ground truth" water sample.
This information will enable the correlation between system drift occurring in the material
reference LAC values and ROl measurements to be studied. Radiation dose measurements
are also starting to be collected at different locations in the X-ray panel detector as a
function of collimation and X-ray source settings. The collection of temperature data is also
being considered.

New statistical methods and models will be needed to make sense of all the data being
collected. It may be the case that damage cannot be discriminated using the LAC values of a
single reference material. The damage sensitive features may require some combination of
reference material data, data extracted from the ROl sensor regions, and/or statistical
transforms of these feature combinations. This would require using the techniques
described in Section 2.3.3 including data fusion, dimensionality reduction, and other matrix

transformations.

In Section 3.3, it was shown that the residuals are an effective indicator of sensor drift. The
anomaly detection model discussed in Section 2.3.2 might be used to exploit a generalized
version of this effect: the variance of the innovations matrix for a linear-time-invariant
model of the MCT system measurements. Figure 19 provides a schematic of the proposed
approach. The anomaly detector would allow all twelve of the LAC value measurements to
be incorporated into a single damage model. The model would also allow experimentation
with the ROl sensor data to see if incorporating these into the damage model could lead to a
better prediction of system drift. The objective would be to identify which ROI data might

be effective candidates for constructing damage sensitive features.
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Figure 19 - Proposed use of the General Anomaly Detector as the MCT Statistical Model: (a) A linear-time-
invariant (LTI) model of “normal” operating behavior is learned from the set of thirty MCT calibration scans; (b)
the twelve LAC values and secondary ROl sensors serve as inputs to the Kalman filter anomaly detector; (c)
abnormal behavior manifests as sustained high variance in the innovations matrix; (d) decision trees can be used
as a machine learning algorithm to adjust the threshold between normal and abnormal variances; (e) the final
damage decision is made based on the variances levels relative to the decision threshold.

5 Conclusion

During this SE296 independent study project | have applied the SHM paradigm to appraise
the current MCT health monitoring system and to explore ideas for improvement. | have
written MATLAB codes implementing an optimal detector for the onset of drift in MCT
system measurements. | have outlined the strengths and weaknesses of using statistical
process control charts which are limited to the monitoring of univariate quantities. | have
examined the confounding effects of correlation and shown how to mitigate using an SHM
data normalization technique. | have demonstrated that treating health monitoring as a
problem in statistical pattern recognition introduces new models and methods for MCT
damage diagnosis and prognosis. | have completed a literature survey to create a roadmap
for future work. These contributions carryover to the health monitoring of scientific and

metrological instruments more generally.
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Appendix A: Fundamental Axioms of Structural Health

Monitoring

The Fundamental Axioms appear in the standard reference for SHM design engineering,
Structural health monitoring: a machine learning perspective [Farrar & Worden, 2012]. The
axioms encapsulate general design principles that have come to be accepted throughout the
SHM research community. The axioms are referenced throughout this report and are

reproduced here for the benefit of the reader.
Axiom |. All materials have inherent flaws or defects.
Axiom Il. Damage assessment requires a comparison between two system states.

Axiom lll. Identifying the existence and location of damage can be done in an unsupervised
learning mode, but identifying the type of damage present and the damage severity can

generally only be done in a supervised learning mode.

Axiom IVa. Sensors cannot measure damage. Feature extraction through signal processing

and statistical classification are necessary to convert sensor data into damage information.

Axiom IVb. Without intelligent feature extraction, the more sensitive a measurement is to

damage, the more sensitive it is to changing operational and environmental conditions.

Axiom V. The length and time scales associated with damage initiation and evolution dictate

the required properties of the SHM sensing system.

Axiom VI. There is a trade-off between the sensitivity to damage of an algorithm and its

noise rejection capability.

Axiom VII. The size of damage that can be detected from changes in system dynamics is

inversely proportional to the frequency range of excitation.

Axiom VIII. Damage increases the complexity of a structure.
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Appendix B: MATLAB Codes

This Appendix publishes the core MATLAB source codes developed during the SE296 project.

The intent is to provide reference implementations for various statistical calculations that

will be of general technical interest. All of the project source codes will be transferred to

the LLNL MCT technical team including those utility functions omitted from this Appendix.

Main.m
1 [E % main.m - generate plots for SE296 MCT Study
2 % Plot @ - Recreate Code provided with MCT Presentation
3 LAC_Figure("MCT Data\LAC_141117_180830.x1sx");
4 %% 1A - Utility function: Import LAC Spreadsheet into MCTData.mat
5 clc; close all; clear;
6 % SKEATE; modified spreadsheet sdate so MATLAB could read it
7 Import_MCT_Dataset("MCT Data\LAC_141117_180830.x1sx", "MCT Data\system_141117 180830 _SKEATE.x1sx");
8
9 [E % sampleNumbers 443x1, LAC100 443x6, LAC160 443x6, References 1x6, Tolerancesl00 2x6,
10 % Tolerances16@ 2x6, Timestamps 443x1, TDelta 443x1
11 load("MCTData.mat");
12
13 disp(“done");
14 %% 2. Plot Multiple Control Charts with Sample # along X-Axis and Time Since Last Scan as an Overlay
15 clc; close all; clear; load("MCTData.mat"); % reset environment
16
17 dataRange = 1:6;
18
19 % Plot 2a Control Chart with Time Difference between Samples as an Overlay
20 H = Plot_Control Chart("Control Chart for References at 180kV", sampleNumbers, LAC100(:,dataRange),
21 References(dataRange));
22 Overlay TDelta (H, samplelumbers, TDelta);
23
24 %% 2.1 Plot Single or Multiple Control Charts with Scan date along X-Axis
25 clc; close all; clear; load("MCTData.mat"); % reset environment
26
27 % Shared settings
28 dataDomain = 1:size(LAC100,1); plotIndices = 1:6; numplots = size(plotIndices,2);
29 datal®@_upper = [0.0338 0.0305 ©.0231 0.9494 0.0646 0.106];
30 datal®9_lower = [0.03365 0.0303 0.9229 0.049 ©.0635 0.104];
31 datal6O_upper = [0.0271 0.023 9.017 9.0324 0.0309 9.0448];
32 datal60_lower = [0.0269 0.0228 ©.01685 0.0321 0.0306 0.0446]ﬂ
33
34
35 % Plot 2a Control Chart with Time Difference between Samples as an Overlay
36 H1 = Create_Chart_v2("Control Chart for Reference LAC values at 180kV", numplots);
37 Plot_Control_Chart_v2(H1, TimeStamps, LAC1@@, References, Tolerancesl0@, dataDomain,
38 plotIndices, datal®@_upper, datal®@_lower);
39 Plot LAC Bounds(H1, LAC100(1:30, :), plotIndices); % use samples 1:30 to calculate LAC bounds
49 Add_Operating State To Plot(H1);
41
42 H2 = Create_Chart_v2("Control Chart for Reference LAC values at 160kV", numplots);
43 Plot_Control_Chart_v2(H2, TimeStamps, LAC16@, References, Tolerancesl6@,dataDomain,
a4 plotIndices, datal6@_upper, datal6@_lower);
45 Plot_LAC_Bounds(H2, LAC160(1:30, :), plotIndices); % use samples 1:30 to calculate LAC bounds
46 Add_Operating State To Plot(H2);
a7
48
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Main.m (continued)

49 %% Plot 2.3 Plot Individual Charts with an Overlay of Days Since Last Operation

5 clc; close all; clear; load("MCTData.mat"); ¥ reset environment

51

52 for i = 1:6

53 H = Plot_Control_Chart("Control Chart for References at 100kV", sampleNumbers, LAC180(:,i), References(i));
54 Overlay_TDelta (H, sampleNumbers, TDelta);

55 end

56

57 %% Plot 2 - xMR Chart: use first 200 samples to set limits (based on Control Chart)

58 clc; close all; clear; load("MCTData.mat"); % reset environment

59

60 ylimits_low = [0.0336];

61 ylimits_high = [0.0338];

62

63 dataRange = 1:1;

64

65 % Plot 2b xMR Chart: use first 200 samples to set limits (based on Control Chart)

66 [H,H2] = Plot_xMR_Chart("mR", sampleNumbers, LAC10@(:,dataRange), References(dataRange), Tolerancesl19@(:,dataRange), ...
67 ylimits_low, ylimits_high);

68 Overlay_TDelta (H, sampleNumbers, TDelta);

69 Overlay_TDelta (H2, sampleNumbers, TDelta);

70

71 %% Plot 3 - Wald Sequential Probability Ratio Test (SPRT)

72 clc; close all; clear; load("MCTData.mat"); ¥ reset environment

73

74 % Calculate mean and standard deviation over the calibration period (first 3@ measurements)

75 calibration_samples = 1:3@; ¥ graphite mu = 0.0337468

76 mu_HO = mean(LAC10@(calibration_samples,:),1); % first 200 values are in control

77 sigma = std(LAC100(calibration_samples,:),1);

78

79 % Experiment with different decision thresholds

80 % alpha=08.05; beta=0.2; % [a:-1.558, b:2.773] original 17Dec22

81 % alpha=8.05; beta=0.1; % [a:-2.251, b:2.890)]

82 alpha=0.01; beta=0.1; % [a:-2.293, b:4.500

83 % alpha=0.91; beta=0.2; % [a:-1.599, b:4.382], baseline 18Dec22

84

85 deviation = [111111];

86

87 % Hl: mu > mu_©®. Test for mean is drifting higher

88 mu_Hl = mu_HO + (deviation .* sigma);

89

90 dataRange = 1:314; % index 314 corresponds to Jan 2018 (post Abnormal operation)

91

92 [result, a, b] = Detect_Drift_Using_SPRT(LAC1@2(dataRange,:),mu_HO, sigma, mu_H1l, alpha, beta);

93 titleString = sprintf("SPRT Hypothesis Test for [alpha, beta]=[%@.2f,%0.2f]: HO=mean steady, Hl=mean increasing”, alpha, beta);
94 plotHandle = Plot_SPRT_Chart(TimeStamps(dataRange), result, a, b, titleString, References, mu_H@, deviation, sigma, Tolerances10@(2,:));
95 Add_Operating_State_To_Plot(plotHandle);

96

97 % H1: mu < mu_B1 Test for mean is drifting lower

98 mu_H1 = mu_HO - (deviation .* sigma);

99
100 [result, a, b] = Detect_Drift_Using_SPRT(LAC19@(dataRange,:),mu_H®, sigma, mu_H1l, alpha, beta);
101 titleString = sprintf("SPRT Hypothesis Test for [alpha, beta]=[%e.2f,%0.2f]: Ho=mean steady, Hl=mean decreasing", alpha, beta);
102 plotHandle = Plot_SPRT_Chart(TimeStamps(dataRange), result, a, b, titleString, References, mu_H@, -deviation, sigma, Tolerances1@0(1,:));
103 Add_Operating_State_To_Plot(plotHandle);
104
105 disp(“done");
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Main.m (continued)

106 %% Plot 4 - Overlay SPRT Alarms on Control Chart (combine 2.1 and 3)

107 clc; close all; clear; load("MCTData.mat"); % reset environment

108

109 % Calculate alarms

110 calibration_samples = 1:30;

111 [mu_He,sigma] = Calculate_Data_Statistics(LAC10@(calibration_samples, :));

112 alpha=08.81; beta=0.1; % [a:-2.293, b:4.500

113 deviation = [111111];

114 % H1: mu < mu_0

115 mu_H1 = mu_H® - (deviation .* sigma);

116 [result, a, b] = Detect_Drift_Using_SPRT(LAC18@(:,:),mu_H@, sigma, mu_Hl, alpha, beta);
117

118 % Plot 2a Control Chart with Time Difference between Samples as an Overlay

119 dataRange = 1:size(LAC10@,1); plotIndices = 1:6; numplots = size(plotIndices,2);

120 datal@@_upper = [0.9338 9.03846 ©.9231 9.9494 2.0646 0.106];

121 datal@@_lower = [0.03365 2.2303 ©.02298 ©.049 0.0639 0.10246];

122

123 dataRange = 1:314; % index 314 corresponds to Jan 2018 (post Abnormal operation)

124

125 H1l = Create_Chart_v2("Control Chart for Reference LAC values at 100kV", numplots);

126 Plot_Control_Chart_v2(H1l, TimeStamps(dataRange), LAC10@(dataRange,:), References, Tolerancesl@@, dataRange, plotlndices,
127 datal@e_upper, datalOO_lower);|

128 ? %Plot_LAC_Bounds(H1, LACl@@(dataRange, :), plotIndices); % use samples 1:30 to calculate LAC bounds
129 % ylim(H1,[-1 1]);

130

131 Highlight_Alarms(H1, TimeStamps(dataRange), LAC1@@(dataRange, :), result(dataRange,:,:), datal®d_upper, datalBd_lower);
132 Add_Operating_State_To_Plot(Hl);

133

134 disp("done");

135

136 %% Plot 5 - Scatter plot showing autocorrelation

137 clc; close all; clear; load("MCTData.mat"); ¥ reset environment

138

139 dataDomain = 1:size(LAC10@,1); plotIndices = 1:6; numplots = size(plotIndices,2);

149 datal@@_upper = [0.0338 9.9385 9.08231 9.8494 0.0646 0.106];

141 datal@@_lower = [0.03365 ©.2303 ©.9229 9.049 2.0635 ©.104];

142 datal6@_upper = [@.9271 .823 ©.217 0.9324 0.0309 0.0448];

143 datalé@_lower = [0.9269 ©.0228 0.01685 ©.0321 ©.9306 0.0446];

144

145 H1l = Create_Chart_v2("Scatter Plot for Reference LAC values at 100kV", numplots);

146 lag = 2;

147 Plot_Scatter_Chart_v1(H1, lag, LAC18@, References, plotIndices, TDelta, datal@@_upper, datal@d_lower);
148

149 %% Compute Autocorrelation coefficients at K=50 lags

150 clc; close all; clear; load("MCTData.mat"); % reset environment

151 xdata=LAC100; K=50;

152 rho = calculate_AutoCorrelation_Function (xdata, K);

153 % rho = calculate_AutoCorrelation_Function (xdata(80:110,:), K);

154 T = array2table(horzcat((1:1length(rho))' , rho),'VariableNames',horzcat('lag',References));
155 disp(T)
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156 %% Compute Autocorrelation coefficient at k=1 over rolling window of 30

157 clc; close all; clear; load("MCTData.mat"); % reset environment

158

159 % remove outliers

160 LAC100(31,1) = LAC100(29,1);

161 LAC100(35,1) = LAC10e(32,1);

162 LAC100(36,1) = LAC10@(33,1);

163 LAC100(37,1) = LAC108(34,1);

164

165 xdata=LAC1@8; K=59;

166

167 calculate_AutoCorrelation_Function_window = @(wstart) calculate_AutoCorrelation_Function (xdata(wstart:(wstart+50),1),1);
168

169 rho = arrayfun(calculate_AutoCorrelation_Function_window, 1:343);

170 plot(rho);|

171 %% Plot residuals for AR(1) model; run previous section to compute rho

172 close all;

173 dataRange = 1:312; % index 314 corresponds to Jan 2018 (post Abnormal operation)
174

175 % remove outliers

176 LAC100(31,1) = LAC108(29,1);

177 LAC180(35,1) = LAC10e(32,1);

178 LAC100(36,1) = LAC100(33,1);

179 LAC100(37,1) = LAC10@(34,1);

180

181 % AR(1)

182 a=(1-rho(1,:)) .* mean(LAC100(1:200,:));

183 estimates = a + rho(1,:) .* LAC1@@(1l:end-1,:);

184 residuals_all = LAC100(2:end,:) - estimates;

185 residuals = residuals_all(dataRange,:);

186 residuals_smooth = movmean(residuals, 5, 2);

187

188 % AR(2)

189 %a=(1-rho(1,:) - rho(2,:)) .* mean(LAC100(1:200,:)) ;

190 % estimates = a + rho(1,:) .* LAC108(2:end-1,:) + rho(2,:) .* LAC1@8(1:end-2,:);
191 % residuals_all = LAC108(3:end,:) - estimates;

192 % residuals = residuals_all(dataRange,:);

193

194 TimeStamps = 1:443; % plots show better detail

195 H1l = Create_Chart_v2("X-Bar Control Chart of AR(1) Residual Errors for Reference LAC values at 1@9kV", 6);
196

197 %sqr = @(i) stem(H1(i), TimeStamps(2:length(residuals)+1), residuals(:,i),"|");
198 sqr = @(1i) stem(H1(i), TimeStamps(2:length(residuals_smooth)+1), residuals_smooth(:,i),"|");
199 addTitles =@(i) title(H1(i,1), References(i));

200

201 %sqr(2, H1);

202 arrayfun(sqgr, 1:6);

203 %Plot_LAC_Bounds(H1, residuals(1:30,:), 1:6, 6);

204 Plot_LAC_Bounds(H1l, residuals_smooth(1:30,:), 1:6, 6);

205 arrayfun(addTitles, 1:6);

206 Add_Operating_State_To_Plot(Hl, false);
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Detect_Drift_Using_SPRT.m
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function [result, a, b] = Detect_Drift_Using_SPRT(X,mu_H@,sigma, mu_Hl, alpha, beta)

% Detect system drift using Wald Sequential Probability Ratio Test

% Inputs:

% X: N x 6, time series of LAC measurement values for the six reference materials

% mu_HO 1x6, mu_Hl 1x6: mean of LAC calibration values (for six references) used for null H@® and alternate H1 hypothesis
% sigma 1x6: standard deviation of LAC calibration values (for six references)

% alpha 1x1: significance level or probability of Type 1 error

% beta 1x1: probabililty of Type 2 error

% Ouputs:

% result, Nx2 x 6

% result(:,1,:) = sum of likelihoods since last alarm for all time series measurements and all six references
% result(:,2,:) =1 if H1 alarm, -1 if H@ alarm, otherwise @

% a,b: Wald decision boundaries, both scalar 1x1

% Wald upper and lower decision boundaries

a = log(beta / (1 - alpha)); % Accept null, reject Hl

b = log((1 - beta) / alpha); % Accept H1l, Reject null

fprintf("Optimal bounds: [a:%.3f, b:%.3f]", a,b)
nsamples = size(X,1); % N, the number of measurement samples in the time series
nreferences = size(X,2); % 6, the number of reference materials

result = zeros(size(X,1),2,size(X,2)); % [SPRT_sum , alarm (1,@,-1) , Reference]
likelihood_count_index = ones(nreferences,1); % start all counts at 1

for i=1:nsamples
for j=l:nreferences
% Calculate rslt = sum of likelihoods since last alarm
rslt = calculate_LoglLikelihood(X(likelihood_count_index(j,1):i,3),mu_HB(3), sigma(j), mu_H1(j));
result(i,1,j) = rsit;
if rslt >=b
result(i,2,j) = 1; % record Hl alarm
likelihood_count_index(j) = i + 1; ¥ restart likelihood count on next sample
elseif rslt <=a
result(i,2,j) = -1; % record H@® alarm
likelihood_count_index(j) = i + 1; ¥ restart likelihood count on next sample
end
end

end

end

calculate_LoglLikelihood.m

00 NI O B W N e

function loglikelihood = calculate_LoglLikelihood(X, mu_H@, sigma, mu_H1)
% Calculate log-likelihood used in the computation of the Wald sequential probability ratio test
% Assumes the statistical test is fully specified and X is Gaussian distributed

sum_HO = sum((X - mu_H0)."2,1);

sum_H1 = sum((X - mu_H1).42,1);

loglLikelihood = (sum_H® - sum_H1) ./ (2*sigma.”2);
end
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Plot_SPRT_Chart.m
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% In
func

% H
nump
H=

puts: timeStamps, SPRT result, Wald a and b decision boundaries, etc
tion [H] = Plot_SPRT_Chart(timeStamps, result, a, b, chartTitle, References, mu_H®@, deviation, sigmas, tolerances)

= Create_Chart(chartTitle, sampleNumbers, X, References);
lots = 6;
Create_Chart_v2(chartTitle, numplots);

% Calculate tolerance band in sigmas
tolerance_bound_in_sigmas = (tolerances - mu_H@) ./ sigmas;

for

end

end

i=1:size(H,1)

clip_result = min(result(:,1,i), 5); % clip outliers to make better use of plot real estate
clip_result = max(clip_result, -5); % clip outliers to make better use of plot real estate

plot(H(i),timeStamps,clip_result,'o"', 'MarkerSize"',3, 'LineWidth', .5, 'MarkerEdgeColor','d',...
‘MarkerFaceColor','b');

hold(H(i));

alarm_H1 = result(:,2,i) > @;

scatter(H(i),timeStamps(alarm_H1)',clip_result(alarm_H1,1),'r");

alarm_H@ = result(:,2,i) < @;
scatter(H(i),timeStamps(alarm_H@)',clip_result(alarm_H@,1),'g");

yline(H(i), @);

yline(H(i), [b al], '--', {'Accept H1', 'Accept H@'}, 'LabelHorizontalAlignment', 'left'); % yline(H(i), a, 'Accept HQ');
ylim(H(i),[-5.5 5.51);

chartTitle = sprintf("%s HO:[%¥B8.7F] H1 at %0.1f sigma Tolerance at %@.2f sigma", References(i), mu_H@(i),deviation(i), ...

tolerance_bound_in_sigmas(i));
title(H(i,1), chartTitle); % need to add title here as ylim seems to erase if done in Create_Chart

Calculate_Data_Statistics.m

(VI S WV N ]

% C
fun
ms=

alc mean and sdev then plot bounds at +- 3 sdev
ction [m,sdev] = Calculate_Data_Statistics(data)
mean(data, 1);

sdev = std(data,l);

end
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rho =

% x =

on rho = calculate_AutoCorrelation_Function (xdata, K)
zeros(K,size(xdata,2));

xdata(1+lag: end, :);

% xlag = xdata(l:end-lag, :);
% numerator = (x-m) .* (xlag-m);

m = mean(xdata); % m = sum(xdata) / length(xdata);

numera

% lags

tor = @(lag) sum((xdata(l+lag: end, :) - m) .* (xdata(l:end-lag, :) - m));

= 1:K3

% numerators = numerator(1l);

denomi

for 1la
rho(

nator = sum((xdata-m) .* (xdata-m));
g = 1:K
lag,:) = numerator(lag) ./ denominator;

var(xdata);
sum((xdata - m).~2) / (length(xdata)-1);

sum((xdata - m).~2) ;
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