

LA-UR-23-23315

Approved for public release; distribution is unlimited.

Title: The Aftermath of a Black Hole Eating a Neutron Star

Author(s): Miller, Jonah Maxwell

Intended for: Report

Issued: 2023-03-31

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA00001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

The Aftermath of a Black Hole Eating a Neutron Star

Density (left) and electron fraction (right) of neutron star stuff leftover after a black hole eats the neutron star. Events like this one are believed to power gamma ray bursts, some of the most energetic events in the universe, and be the source of heavy elements like gold and platinum. Simulation by Jonah Miller, analysis by Sanjana Curtis.