

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-JRNL-841545

Seismoacoustic Explosion Yield and Depth Estimation: Insights from the Large Surface Explosion Coupling Experiment

K. Kim, M. E. Pasyanos

October 21, 2022

Bulletin of Seismological Society of America

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

1 **Seismoacoustic Explosion Yield and Depth Estimation: Insights from the Large Surface**
2 **Explosion Coupling Experiment**

3
4 **Keehoon Kim and Michael E. Pasanos**

5
6 Lawrence Livermore National Laboratory, Livermore, CA, USA

7 Corresponding author: Keehoon Kim (kim84@llnl.gov)

8
9 **Declaration of Competing Interests**

10 The authors acknowledge there are no conflicts of interest recorded.

11
12 **Abstract**

13 The Large Surface Explosion Coupling Experiment (LSECE) is a chemical explosion experiment
14 conducted in Yucca Flat at the Nevada National Security Site (NNSS) in 2020. The experiment included
15 two surface detonations of approximately 1000 kg Trinitrotoluene equivalent. The main goal of the
16 experiment was to provide the ground-truth data for seismoacoustic wave excitation by large chemical
17 explosions near the ground surface. The seismic and acoustic energy partitioning between the surface is
18 strongly governed by the depth or height of explosions, and either seismic or acoustic-only analysis may
19 have inherent ambiguity in determining explosion yield and depth simultaneously. Previous studies
20 suggested that joint seismoacoustic analysis can resolve the tradeoff and reduce the uncertainty of yield
21 and depth estimation dramatically. We demonstrate the capability of seismoacoustic analysis to improve
22 the accuracy of explosion yield and depth estimation with the LSECE data. Local acoustic wave
23 propagation in the atmosphere can be substantially affected by constantly varying weather conditions.
24 Consisting of two detonations before dawn and in the afternoon, LSECE provides unique data to evaluate
25 the model accuracy of acoustic wave propagation and seismoacoustic energy partitioning depending on
26 local atmospheric conditions. We quantitatively evaluate the accuracy of yield and depth estimation
27 depending on atmospheric variability and the improvement achieved by the joint seismoacoustic
28 approach.

29
30 **1. Introduction**

31
32 Seismology and geophysical acoustics play an important role in explosion monitoring, including event
33 detection and discrimination. The International Monitoring System (IMS) of Comprehensive Nuclear-

34 Test-Ban Treaty Organization (CTBTO), which is designed to detect any nuclear explosion in the
35 atmosphere, in the oceans, and underground, includes both seismic and acoustic sensors in the network.
36 Determining the yield of explosions and its depth is critical part of the explosion monitoring. In
37 general, seismic and acoustic techniques for the explosion yield estimation have been independently
38 applied, with seismic methods used for deeply-buried explosions and acoustic methods used for near-
39 surface explosions. Because of strong tradeoffs between yield and depth/height, there are large
40 uncertainties in the determination of the explosion yield and depth simultaneously either by seismic or
41 acoustic waves (Ford et al., 2014). This problem is particularly exacerbated for near-surface explosions
42 as small changes of explosion depth and height near the Earth's surface have drastic impact on seismic
43 and acoustic waves amplitudes.

44

45 Recently, joint seismoacoustic analysis has received interest for explosion monitoring as an increasing
46 number of regional infrasound (low-frequency acoustic waves) networks effectively complement
47 seismic observations (Arrowsmith et al., 2010; Bonner et al., 2013; Stump et al., 2022). Ford et al.
48 (2014) collected local seismic and overpressure data from the near-surface explosions with various
49 yields and depth-of-burial/height-of-burst and quantitatively determined seismoacoustic energy
50 partitioning depending on their depths, hereafter referred as F14. Although the F14 model provides
51 quantitative predictions for seismic motions and atmospheric pressures near the source, it cannot be
52 applicable to distant observations which are governed by complex propagation path effects. Later,
53 Pasyanos and Ford (2015) used the seismic waveform envelope method (Pasyanos et al., 2012) for
54 near-surface explosions by incorporating F14 in the explosion source model. Seismic wave propagation
55 effects through the media are corrected by accounting for anelastic attenuation and site effects. For
56 acoustic yield estimation, Kim and Rodgers (2016) proposed a similar approach. They accounted for
57 acoustic wave propagation in the atmosphere by using a physics-based propagation simulation and
58 incorporated F14 into the acoustic source model for yield estimation. Pasyanos and Kim (2019)
59 performed joint seismoacoustic analysis for the yield and depth estimation and demonstrated that the
60 joint approach can improve the depth constraint substantially.

61

62 Although the seismoacoustic approach showed promising results for simultaneous determination of
63 yield and depth, they might need to be evaluated with more data. The Earth's atmosphere has distinct
64 diurnal variation. On a clear day, the Earth's surface is heated by the sun, and the atmospheric boundary
65 layer (ABL) near the surface has unstable stratification due to buoyancy. Conversely, on a clear night,
66 buoyantly stable stratification is developed in the ABL due to cooling of the ground. Although this

67 diurnal change of near-surface atmosphere is not critical to seismic waves in the solid Earth, acoustic
68 wave generation and propagation by near-surface explosions can be substantially affected (Wilson et
69 al., 2015). Many empirical models were developed to address explosion-generated acoustic waves.
70 However, those models were generally determined by the limited data collected from explosion
71 experiments in the daytime, and it is possible that those acoustic data were biased by the characteristic
72 stratification of atmosphere in daytime. Although acoustic wave propagation in nighttime has been
73 reported and investigated before (Fee and Garces, 2007; Blom and Waxler, 2012), the ground-truth data
74 measured from known sources and quantitative analysis are rare for yield estimation.

75

76 In this study, we evaluate the seismoacoustic yield estimation technique with unique seismic and
77 acoustic data obtained from the comparison of two surface explosions at different times of a day. This
78 chemical explosion experiment, called the Large Surface Explosion Coupling Experiment (LSECE),
79 includes a detonation at the dawn before the ABL develops unstable stratification and provides a unique
80 dataset to characterize acoustic wave propagation in this atmospheric condition. We focus on acoustic
81 signal analysis, which strongly depends on atmospheric conditions, and quantitatively compare the
82 acoustic signals with existing dataset obtained in daytime. This analysis provides a rare opportunity to
83 evaluate the empirical model developed from the data in daytime. Finally, we extend the analysis for
84 seismoacoustic yield estimation by incorporating seismic data and analyze the uncertainty of yield
85 estimates due to the characteristic weather conditions at the dawn.

86

87 **2. Data**

88

89 LSECE is a chemical explosion experiment conducted in Yucca Flat at the Nevada National Security
90 Site (NNSS) in October 2020. The main goal of the experiment was to provide the ground-truth data
91 for acoustic and seismic wave coupling generated by large chemical explosions (Vorobiev and Ford,
92 2022). The experiment consisted of two surface explosions of 992.05 and 991.5 kg Trinitrotoluene
93 (TNT) equivalent. The first shot (LSECE-1) was conducted on 27 October 2020 at 6:37 am local time
94 (13:37 UTC) before the sunrise in Nevada. The second shot (LSECE-2) was conducted on 29 October
95 at 3:35 pm local time (22:35 UTC) during the daytime. The atmospheric temperature profiles in the
96 ABL were distinctly different due to the shot time, and the experiment produced a unique dataset to
97 exhibit the sensitivity of acoustic wave excitation and propagation in the different weather conditions.
98 The geology of the test site in this region is characterized by alluvium layers which can affect the
99 seismoacoustic partitioning between the atmosphere and subsurface. The LSECE experiment took

100 place at the same location of the Source Physics Experiment (SPE) Phase II in Dry Alluvium Geology
101 (DAG) which consisted of four buried explosions (Berg and Poppeliers, 2022). Hence, the LSECE
102 seismic and acoustic signals in addition to the SPE DAG provide the ground truth data to understand
103 seismoacoustic energy partitioning for surface and buried explosions across dry alluvium.

104

105 LSECE included 30 overpressure sensors deployed near the source for non-linear blast measurements
106 (Vorobiev and Ford, 2022) and 54 acoustic/infrasonic sensors located between 1 to 9 km from the
107 source. In this study, we used the linear infrasound array with 12 sensors deployed in the north-south
108 direction for yield estimation (Figure 1). This linear array captured gradual waveform evolution
109 depending on propagation distances, which is suitable for quantitative analysis of excited acoustic
110 energy and its propagation near the ground. These stations consisted of a single Hyperion IFS5000
111 sensor with a flat frequency response between 0.01 – 100 Hz.

112

113 Local weather conditions were also measured by launching a radiosonde before the detonations. Figure
114 2 shows background temperatures, and meridional (northerly) wind profiles obtained by the radiosonde
115 sounding. Both temperature and meridional winds affect the local acoustic propagation by contributing
116 to effective sound speed profiles in air. The two temperature profiles measured before the dawn and in
117 the daytime show drastically different gradients with respect to the elevation. Atmospheric temperature
118 gradients are generally negative in the daytime due to higher temperature of the ground surface, which
119 leads to negative sound speed gradient with respect to increasing elevation (Wilson et al., 2015). In the
120 negative sound speed gradient, acoustic waves near the ground refract upward and result in reduced
121 amplitudes near the ground (Rayleigh, 1896; Kim and Rodgers, 2017). Conversely, positive or neutral
122 gradient of sound speeds can be produced before the dawn, and acoustic wave amplitudes increase near
123 the ground by enhancing downward refraction or suppressing upward refraction (Blom and Waxler,
124 2012).

125

126 The impact of different temperature profiles is observed in the LSECE data. Figure 3 shows the peak
127 overpressures measurements for LSECE-1 (blue circles) and 2 (green). The peak overpressures and
128 observation distances are scaled for 1kg TNT explosion and compared with the other dataset (gray
129 circles) which were collected from previous explosion experiments in daytime. These data were used
130 by Schnurr et al. (2020) to develop the average peak overpressure model (denoted by red line) and its
131 statistical variation (red vertical error bars). A semi-empirical model developed for a homogeneous
132 atmosphere (KG85) is also shown as a black line (Kinney and Graham, 1985). The peak overpressure

133 amplitudes for LSECE-2 suffer larger attenuation than the homogeneous KG85 model as the
134 propagation distance increases. This is attributed to the negative temperature gradient leading to
135 upward refraction of acoustic waves near the ground. This attenuation rate for LSECE-2 follows almost
136 exactly the mean model of previous dataset as they have similar sound speed structures in daytime.
137 However, the peak amplitudes for LSECE-1 have larger than the mean model over one standard-
138 deviation amplitude, indicating the LSECE-1 amplitudes are significantly different from those observed
139 in daytime. These higher amplitudes are attributed to the combination of atmospheric temperature and
140 wind conditions. During LSECE-1, the background temperature profile showed a very weak gradient
141 against elevations, which would not cause effective upward refraction of sound. In addition, strong
142 wind jet from north to south was observed at 1 km above the ground (Figure 2). The effective sound
143 speed profile is determined by the wind speed added to the sound speed of air (Figure 2), and this
144 strong wind at 1 km altitude created an effective waveguide below. Propagating acoustic waves near
145 the ground is trapped in this waveguide, and their amplitudes undergo less attenuation or even increase
146 at certain distances due to downward refraction. The LSECE data indicate that this characteristic sound
147 speed structures observed before the dawn have great impact on the local acoustic wave propagation,
148 and the existing data and model obtained from daytime explosions cannot account for the observations
149 for LSECE-1.

150
151 The explosions were well-recorded by dozens of stations at local distance. For our analysis, however,
152 we preferentially select stations close enough to have good signal-to-noise, but distant enough for the
153 coda to be well-formed. We also want to use a station which has been calibrated for local site effects
154 using earthquakes. For the seismic yield analysis, we use station TPNV (Topopah Spring, NV), a long
155 running and well-calibrated station in the U.S. National Seismic Network located 24 km southwest of
156 ground zero. In contrast to the acoustic signal, the seismic waves from the two explosions were very
157 similar, despite the presence of a crater created by the first shot for the second one. Figure 4 shows the
158 seismic signals of the two explosions. We observe significantly larger ground-coupled acoustic waves
159 for the first explosion (in red) at TPNV than the second explosion (in blue). While the two seismic
160 signals are nearly identical, there are some small differences in the pre-event noise and the coda, which
161 is reflected in small differences in the coda envelopes.

162

163 **3. Acoustic Yield Estimation**

164

165 **3.1. Acoustic Inversion**

166

167 We perform the acoustic yield estimation based on a Bayesian approach (Modrak et al., 2010; Blom et
 168 al., 2018; Kim et al., 2021). The posterior distribution of yields ($P(W|E)$) at the given data (E) is written
 169 as follows.

170

171
$$P(W|E) = \frac{P(E|W)P(W)}{c} \quad (1)$$

172

173 The probability distribution of yield is determined based on the likelihood of acoustic energy (E) at a
 174 given yield (W), and the normalization constant of the distribution is denoted by c . $P(W)$ is the prior
 175 distribution of yields and assumed to be uniform in this study. The likelihood $P(E|W)$ is assumed
 176 Gaussian distribution as

177
$$P(E|W) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \frac{-1}{2} \left(\frac{E_p(W) - E(W)}{\sigma} \right)^2, \quad (2)$$

178

179 The variance (σ^2) governs the uncertainty of the yield estimate $P(W|E)$. In this study, we determined
 180 the variance of acoustic energy from the other dataset obtained by various explosions. This will be
 181 discussed in Section 3.3.

182

183 We measure the acoustic energy (E) in the frequency domain between a frequency f_1 and f_2 . The
 184 predicted acoustic energy (E_p) is measured from the predicted spectrum as

185

186
$$E_p(W, x) = \int_{f_1}^{f_2} \| S(w, f, x_0) T(f, x; x_0) \|^2 df. \quad (3)$$

187

188 We predict acoustic spectrum by multiplying acoustic source spectrum ($S(W, f, x_0)$) at a position x_0 by
 189 the transmission loss (T) from x_0 to x . There may be various ways to calculate the transmission loss. In
 190 this study, we used physics-based numerical simulations to obtain the transmission loss and explained
 191 the processes in Section 3.2. The source model for the acoustic source spectrum is also discussed in
 192 Section 3.3.

193

194 **3.2. Acoustic Propagation Simulations**

195

196 The accuracy of yield estimation in Equation 1 strongly depends on the accurate calculation of the
197 transmission loss in Equation 3. It has been reported that local acoustic wave propagation can have
198 large variations depending on the weather conditions in the ABL (Fee and Garces, 2007; Blom and
199 Waxler, 2012; Kim and Rodgers, 2017; Kim et al., 2018). Our data from LSECE-1 and 2 also
200 demonstrate that an empirical model determined in a certain weather condition may not account for the
201 amplitude variations in different conditions. In this study, we perform a physics-based numerical
202 simulation to account for the acoustic wave propagation and amplitude variation due to the weather
203 variability. We use the finite-difference code, ElAc, to calculate numerical Green's functions from the
204 source to the receivers. ElAc is a seismoacoustic code developed by Lawrence Livermore National
205 Laboratory (Petersson and Sjogreen, 2018) and used for full-waveform simulation of acoustic waves in
206 the atmosphere (Kim and Rodgers, 2017; Kim et al., 2018). ElAc solves the Linearized Euler Equation
207 in the atmosphere with 6th order finite-difference scheme which satisfies the summation-by-parts
208 principle and guarantees the stability of solutions (Strand, 1994). It also adopts curvilinear grids
209 following surface topography. This terrain-following grid defines smooth surface boundary removing
210 artificial scattering of waves due to the staircase approximation of interface boundary in rectangular
211 grids.

212
213 The numerical simulations are performed in the spatial domain over 20 km in the north-south and 7 km
214 in the east-west direction. The vertical extent of the domain is 4 km above the ground. The ground
215 surface elevation (Figure 1) is specified by the US national digital elevation model with a 10 m spatial
216 resolution. The grid spacing of finite-difference stencil is 3 m which satisfies the requirement of eight
217 grid points per wavelengths and minimize artificial dispersion up to 10 Hz. For numerical source time
218 functions, we used a Gaussian-type function with a corner frequency of 10 Hz. The numerical Green's
219 functions with this configuration are valid up to 10 Hz, providing the transmission loss in Equation 3.
220

221 The background condition of atmosphere for the simulation is specified by the local radiosonde
222 sounding data. The temperature, wind, and pressure profiles obtained before the shots were used for the
223 simulations. Since we have only one profile at a single position, the atmosphere is defined as 1-D,
224 horizontally stratified layers. Although the Earth's atmosphere is generally characterized by stratified
225 layers due to the gravity, the ABL near the ground can be highly turbulent by diurnal heating/cooling
226 and complex topography of the ground (Kim et al., 2018). In that case, the 1-D atmosphere model in
227 the simulations may underestimate the lateral variability of the ABL and produce large prediction errors
228 for wave amplitudes.

229

230 The modeling results are shown in Figure 5 for LSECE-1. The images of acoustic wave propagation
231 are captured in a vertical cross-section in the north-south direction from the source. In the beginning of
232 simulations, the acoustic waves propagate spherically near the source, but the overall wavefront starts
233 undergoing distortion by the atmospheric sound speed structure at further distances. As we expected
234 from the temperature and wind profiles in Figure 2, the acoustic waves are trapped in the waveguide
235 below 1km to the south, and their amplitudes are much larger than waves traveling to the north. This is
236 due to the directional wind. The strong wind to the south created the waveguide but reduced the
237 effective sound speed gradient to the north, resulting in lower amplitudes in the north direction.

238

239 Figure 6 and 7 show the quantitative comparison of numerical simulation and observations for LSECE-
240 1. Figure 6 compares the observed signal at 1 km south from the source with the numerical simulation
241 results and empirical model. The waveform data and predicted models are aligned with respect to their
242 peak amplitudes for relative amplitude comparison. The empirical waveform was obtained from the
243 acoustic source model proposed by Kim et al (2021), hereafter called K21. The K21 model was scaled
244 for 992 kg TNT explosion, and the amplitude attenuation to the observation distance was calculated by
245 the geometric spreading (inversely proportional to the distance) in a homogeneous atmosphere. At the
246 relatively close distance from the source, both the empirical and finite-difference models show good
247 agreement with the observations indicating that the propagation effects due to atmospheric variation are
248 not significant. However, the predictions from the two models are completely different at the distance
249 of 7 km in Figure 7. The observed amplitudes are considerably larger than the prediction by the
250 homogeneous K21 model. The observed acoustic signals are enhanced by the waveguide near the
251 ground, but the empirical model with a homogeneous atmosphere cannot account for this effect and
252 results in significantly underestimated amplitudes at 7 km. However, the finite-difference model takes
253 into account the sound speed profile near the ground and predicted comparable amplitudes to the
254 observation. These apparent acoustic source model and linear propagation simulation are intended to
255 predict acoustic energy attenuation in the far field out of the nonlinear shock regime (Kim et al., 2021;
256 Kim and Pasyanos, 2022). The linear acoustic modeling may not be suitable for the prediction of signal
257 arrival time in the local distances as the blast waves propagate faster than the speed of sound near the
258 source.

259

260 Figure 8 and 9 compare the signals for LSECE-2. As for Figure 6, the observation signal at 1 km south
261 shows good agreement with either empirical or numerical model for LSECE-2. The empirical models

262 for LSECE-1 and 2 indicate that the weather condition is not critical to the acoustic amplitude variation
 263 at the close distance, and the homogeneous atmosphere model can be used for the prediction regardless
 264 of weather conditions. However, at 7 km from the source in Figure 9, the empirical model substantially
 265 overestimated acoustic amplitudes due to unaccounted upward refraction in the negative temperature
 266 gradient and may not be suitable for relatively long-distance propagation. The finite-difference
 267 simulation still shows good agreement with the observations as in LSECE-1. As long as appropriate
 268 weather profiles are used, the physics-based numerical modeling seems to have the capability to
 269 account for acoustic wave propagation near the ground.

270

271 3.3. Yield Estimate for Surface Explosions

272

273 The yield estimation based on Equation 3 requires the acoustic source spectrum and transmission loss
 274 calculation for acoustic energy radiation. We used the K21 model to obtain acoustic source spectra for
 275 arbitrary yields. The K21 model was empirically developed by surface explosion data and can be
 276 directly used for yield estimation of surface explosions like LSECE. Based on the scaling law of blast
 277 waves (Kinney and Graham, 1985) and regression analysis of the data, the standard waveform ($p(t)$) for
 278 a 1kg TNT explosion at the surface was determined in K21. This waveform represents apparent
 279 acoustic pressures recorded at 1m from the source and is defined by the analytic functions as

280

$$281 p(t) = \begin{cases} p_p \left(1 - \frac{t}{t_p}\right), & 0 \leq \frac{t}{t_p} \leq 1, \\ p_p \frac{1}{6} \left(1 - \frac{t}{t_p}\right) \left(1 + \sqrt{6} - \frac{t}{t_p}\right)^2, & 1 < \frac{t}{t_p} \leq 1 + \sqrt{6}. \end{cases} \quad (4)$$

282

283 Based on the statistical properties of the data, the probability distribution of the peak pressure (p_p) and
 284 positive period (t_p) is also expressed in the bivariate normal distribution (ρ),

$$285 \rho(p_p, t_p) = \frac{1}{2\pi\delta_p\delta_t\sqrt{1-c^2}} \exp \left\{ \frac{-1}{2(1-c^2)} \left(\frac{(p_p - \bar{p}_p)^2}{\delta_p^2} + \frac{(t_p - \bar{t}_p)^2}{\delta_t^2} - 2c \frac{(p_p - \bar{p}_p)(t_p - \bar{t}_p)}{\delta_p^2\delta_t^2} \right) \right\}, \quad (5)$$

286 where $\bar{p}_p = 86,900$ Pa and $\bar{t}_p = 5.08 \times 10^{-3}$ s. δ_p^2 and δ_t^2 are the variances of p_p and t_p , respectively, and c
 287 is the covariance shown in the Table 2 in Kim et al. (2021). From Equation 4 and 5, acoustic source
 288 waveforms for 1kg TNT explosion are calculated and scaled for arbitrary yields following the scaling
 289 law as

290

291

292
$$\hat{p}_p(W) = p_p \frac{P_a}{P_0} \left(\frac{\alpha W^{\frac{1}{3}}}{f_d} \right), \quad (6)$$

293
$$\hat{t}_p(W) = t_p \left(\frac{\alpha W^{\frac{1}{3}}}{f_t} \right), \quad (7)$$

294
$$f_d = \left(\frac{P_a}{P_0} \right)^{1/3} \left(\frac{T_a}{T_0} \right)^{-1/3}, \quad (8)$$

295
$$f_t = \left(\frac{P_a}{P_0} \right)^{1/3} \left(\frac{T_a}{T_0} \right)^{1/6}, \quad (9)$$

296

297

298 where \hat{p}_p and \hat{t}_p are peak pressure and positive period for arbitrary yields W . The atmospheric
299 correction factors f_d and f_t are obtained by the atmosphere temperature (T_a) and ambient pressure (P_a)
300 in comparison with the reference $P_0=101,325$ Pa and $T_0= 288.15$ K. Note that the effective yield is
301 determined by the effectiveness factor (α). In this study, the effectiveness factor was assumed 2 as the
302 ground surface effectively doubles the acoustic energy for surface explosions (Kinney and Graham,
303 1985; Kim and Rodgers 2016).

304

305 Figure 10 shows the process to predict the acoustic spectrum. First, we generated 500 random
306 realizations of source spectra at a given yield based on the probability distribution of the K21 model.
307 Transmission losses are calculated by dividing synthetic Green's function for each station by the
308 Green's functions at 1m from the source. The prediction at the observing station is made by multiplying
309 the source spectrum and transmission loss in the frequency domain (described in Equation 3). Finally,
310 the acoustic energies for the observations and predictions are measured between 1 – 10 Hz following
311 Equation 3 and compared for different yields between 1 kg and 20 metric tons. We observed the peak
312 frequency near 5 Hz in the recorded signals, and the frequency range for acoustic energy calculation
313 includes the majority of observed energies. In addition, our finite-difference setup supports stable
314 simulations up to 10 Hz. Due to the range of predictions made by the source model, the variance of
315 acoustic energies in Equation 2 is directly calculated from the set of predictions. This variance of
316 prediction depends on the variance of source model as the transmission loss is not a random variable in
317 our approach. However, the variance of the K21 model was determined by local acoustic observation
318 from various yields and distances, and thus, represents possible variability of local acoustic amplitudes.

319

320 Figure 11 and 12 show estimated yields and their probability distribution for LSECE-1 and 2 based on
321 Equation 1 and 2. We calculate the probability distributions for 8 stations located between 5.5 – 8 km
322 from the source and combined them for the joint distribution. The stations within a 5 km distance may
323 be able to improve the accuracy of estimated yields. However, they are generally independent to
324 weather conditions as shown in Figure 6 and 8 and not suitable for evaluating the yield estimation
325 capability in different weather conditions. For LSECE-1, the maximum likelihood yield estimate is
326 1287 kg for explosion at surface. The 99% confident interval is between 963 – 1920 kg showing
327 acceptable ranges. LSECE-2 shows the estimate yield of 550 kg at the maximum likelihood and the
328 99% confidence interval between 420 – 781 kg. This yield is considered significantly underestimated
329 as the nominal yield falls out of the confident range. This large error for yield estimation seems to be
330 caused by the propagation prediction errors due to the poor resolution of atmospheric specification. In
331 this study, we assumed 1-D stratified atmosphere due to limited atmospheric data. However, the 1-D
332 model may not represent the lateral variability of the ABL resulting in large prediction error (Kim et al.,
333 2018).

334

335 Although the propagation simulation and estimated yields strongly depend on the accuracy and
336 resolution of weather specification, our approach using the physics-based propagation model showed
337 significantly improved results than those by the homogeneous K21 model. Figure 13 and 14 show the
338 estimated yield by those two prediction models. The homogeneous model estimates the yields of 3464
339 kg for LSECE-1 and 308 kg for LSECE-2, which have unacceptably large error. In contrast to the
340 homogeneous model, the finite-difference simulation results in more reasonable estimation error.
341 Higher-resolution weather specification should be the key to improve the accuracy of yield estimates in
342 our approach.

343

344

345 **4. Seismoacoustic Approach for Yield and Depth Estimation**

346

347 **4.1. Acoustic Likelihood**

348

349 Although the K21 model provides full waveform information of explosion-generated acoustic waves
350 and can be used for a source model in Equation (3), it was developed based on only surface explosions
351 and cannot be applied for explosions at arbitrary depth or height near the ground. In this section, we
352 explore the explosion blast model developed by Ford et al. (2014, 2021) for simultaneous yield and

353 depth estimation for acoustic waves. By using a series of low-yield near-surface chemical explosion
 354 experiments, Ford et al. (2021) developed an empirical model which provides acoustic pressure and
 355 seismic motion prediction at a given yield and depth/height. The Ford's model for soft-rock (e.g.,
 356 alluvium) defines atmospheric overpressure impulse (i_s) as

$$358 \quad \ln(i_s) = \beta_1 + \beta_2 \ln(r_s) + \beta_3 h_s - \ln[1 + \exp(\beta_3 h_s)], \quad (10)$$

$$359 \quad \beta_1 = 6.16, \beta_2 = -1.14, \beta_3 = 5.06,$$

360
 361 where the scaled impulse (i_s), scaled range (r_s) and the scale height-of-burst (h_s) are the quantities
 362 scaled for a 1kg TNT explosion. Equation (10) calculates overpressure impulses which depend on not
 363 only the source size (W) and depth (h_s) but also the propagation distance (r_s). Later, Kim and Rodgers
 364 (2016) defined the reduced acoustic impulse from Equation (10). Unlike the acoustic impulses in
 365 Equation (10), the reduced acoustic impulse is a source property depending only on the size of source
 366 representing apparent impulse at 1m from the explosion and defined as

$$367 \quad I_{1kg} = 2\pi r_s i_s(r_s), \quad (11)$$

368
 369 where I_{1kg} is the reduced acoustic impulse for 1kg TNT explosion, $r_s = 20\text{m}$, 2π is a geometric
 370 spreading factor in a halfspace. The reduced acoustic impulse for arbitrary yields can be obtained by
 371 the scaling law as

$$373 \quad I_W(W) = I_{1kg} f_t W^{2/3}, \quad (12)$$

374
 375 where f_t is the atmosphere correction factor in Equation (9). We explore the variation of the reduced
 376 acoustic impulse in a range of depths and yields and define the likelihood function with a normal
 377 distribution assumption as

$$379 \quad L(I_w) = \frac{1}{\delta_I \sqrt{2\pi}} \exp \left[\frac{-1}{2} \frac{(I_w(W,h) - I_0)^2}{\delta_I^2} \right], \quad (13)$$

380
 381 where I_0 and δ_I^2 is the reduced acoustic impulse and its variance for a surface explosion of 1287 kg for
 382 LSECE-1 and 550 kg for LSECE-2 (the estimated yield from the waveform inversion in this study). We
 383 calculated the variance of acoustic impulse (δ_I^2) from the acoustic impulses derived from the

384 probability distribution for the surface explosions in Figure 11 and 12. Instead of individual distribution
385 for each station, the final joint distributions for LSECE-1 and 2 are used to obtain the acoustic impulse
386 distributions and their variances (δ_I^2).
387

388 **4.2. Seismic Likelihood**

389 Seismic yields are estimated using the regional waveform envelope yield method, first described in
390 Pasyanos et al., (2012), which couples an explosion source with models to account for the propagation.
391 In terms of specifics, we use the explosion source model of Walter and Ford (2018), where the
392 propagation consists of calibrated coda shapes and Q with accompanying station site terms from an
393 updated attenuation model for the United States (Pasyanos, 2013). The method, initially developed for
394 underground events, was extended to near-surface explosions in Pasyanos and Ford (2015) by using an
395 energy-partitioning model (F14). The material properties for the explosion source are taken from the
396 measured parameters of the shallowest SPE DAG explosion (DAG-4): $V_p=1416$ m/s, $V_s=805$ m/s,
397 1913 kg/m³, and gas porosity of 27.5%. Envelopes from station TPNV between 4 and 10 Hz (4-6, 6-8,
398 and 8-10 Hz) are used in the analysis. We test yields ranging from 1 kg to 100 t TNT-equivalent and
399 from heights of 10 m to depths of 10 m. As expected from the coupling codes, there is a tradeoff
400 between yield and depth, with a larger yield required for above surface events and a smaller yield for
401 fully buried explosions. We find a minimum misfit of 1.0 tons and 1.5 tons at the surface for LSECE-1
402 and 2, respectively. Uncertainties, which are used to transform misfit into likelihood, are derived from
403 uncertainties from the regressions in the surface coupling model (F14). These uncertainties could
404 potentially be reduced by new regressions and additional modeling for a variety of material conditions.
405

407 **4.2. Joint Likelihood**

408 We follow the joint likelihood method for seismoacoustic yield estimation suggested by Pasyanos and
409 Kim (2019). Assuming the seismic and acoustic observations are independent, the joint likelihood
410 function (L) for yields can be constructed by the multiplication of the independent seismic and acoustic
411 likelihoods as
412

$$413 L_{yield} = L_{acoustic} \times L_{seismic}.$$

414
415 The combined likelihoods are shown in Figure 15 and 16. The likelihood functions are computed for
416 the yields between 0.001 – 100 tons and depths between -10 – 10 m, and their cumulative likelihoods

417 over the interval are normalized to unity. In general, individual likelihood from seismic and acoustic
418 analysis has a strong trade-off between explosion yield and depth. The region with high likelihood
419 values stretches over a wide range of depths, and it is difficult to determine a reliable depth based on
420 either individual seismic or acoustic likelihoods. However, by combining the two likelihoods, the
421 constraints for depths are significantly improved. Without any priori for the depth and yield, the
422 maximum likelihood depths for LSECE-1 and 2 are estimated at -0.99 and 1.25 m, respectively,
423 indicating near-surface explosions. The yields are also estimated as 1.0 ton for LSECE-1 and 2, which
424 are improved from individual estimates. In addition, the shape of likelihoods is a well-defined ellipse,
425 allowing for the reliable determination of yield and depth simultaneously. This improvement was
426 achieved by the different sensitivities of seismic and acoustic signals to the depth of explosions.
427

428 The uncertainties of combined likelihoods are also affected by the individual likelihoods. The variance
429 of yields in the acoustic likelihoods appears smaller than that in seismic likelihoods for both LSECE-1
430 and 2. This observation may reflect the fact that sound speed structures of the atmosphere are
431 relatively simpler than the subsurface seismic velocities at the considered wavelengths and results in
432 less variability of acoustic signals. The small variance of acoustic likelihood significantly reduced the
433 uncertainty of joint likelihood. This suggests that either more accurate seismic or acoustic likelihood
434 can complement the other to improve the accuracy of resultant yield and depth estimates.
435

436 **5. Conclusion**

437 We investigated the capability of seismoacoustic yield estimation for chemical explosions in different
438 meteorological conditions. The LSECE experiment with two surface detonations before dawn and in
439 the afternoon provided the rare ground-truth data for seismic and acoustic signal generation and
440 propagation. The data showed that the excitation of seismic and acoustic energy is consistent but
441 acoustic propagation is significantly affected by the variation of atmospheric boundary layer near the
442 ground. Without accounting for this atmospheric propagation-path effect, the yield estimation by the
443 acoustic-only signals would have unacceptably large uncertainty. Individual seismic and acoustic yield
444 estimation showed large uncertainty for depth determination. However, by combining seismic and
445 acoustic likelihoods, the depth constraint was significantly improved, allowing for reliable
446 determination of both depth and yield. Our analysis also showed the seismic and acoustic likelihoods
447 effectively complement each other to not only improve the accuracy of yield and depth but also reduce
448 the uncertainty of the estimates.
449

450 **Data and Resources**

451 Data collected as part of LSECE are under a two-year embargo and is anticipated to be available to the
452 public at the IRIS Data Center (www.iris.edu) starting in October 2022. Seismic data from TPNV is
453 part of the U.S. National Seismic Network (<https://doi.org/10.7914/SN/US>) and data is available at the
454 IRIS Data Center.

455

456 **Acknowledgments**

457 The Large Surface Explosion Coupling Experiment (LSECE) would not have been possible without the
458 support of many people from several organizations. The authors wish to express our gratitude to the
459 LSECE working group and multi-institutional and interdisciplinary group of scientists and engineers
460 for the field experiment. The authors also thank two anonymous reviewers for their valuable feedback
461 that improved the article. The experiment and follow-on research was supported by the Nuclear Arms
462 Control Technology (NACT) program at the Defense Threat Reduction Agency (DTRA). The views
463 expressed in the article do not necessarily represent the views of the U.S. Department of Energy or the
464 U.S. Government. This work was performed under the auspices of the U.S. Department of Energy by
465 the Lawrence Livermore National Laboratory under Contract Number DE-AC52-07NA27344. This is
466 LLNL Contribution LLNL-JRNL-841545.

467

468 **References**

469

470 Arrowsmith, S. J., Johnson, J. B., Drob, D. P., & Hedlin, M. A. (2010). The seismoacoustic wavefield:
471 A new paradigm in studying geophysical phenomena. *Reviews of Geophysics*, 48(4),
472 doi:10.1029/2010RG000335

473

474 Berg, E. M., & Poppeliers, C. (2022). Inversion of Infrasound Time Series for Seismoacoustic Source
475 Parameters Produced by a Buried Chemical Explosion at the Source Physics Experiment Phase II: Dry
476 Alluvium Geology. *Bulletin of the Seismological Society of America*, 112(4), 2216-2230,
477 doi:10.1785/0120220020

478

479 Blom, P., & Waxler, R. (2012). Impulse propagation in the nocturnal boundary layer: Analysis of the
480 geometric component. *The Journal of the Acoustical Society of America*, 131(5), 3680-3690,
481 doi:10.1121/1.3699174

482

483 Blom, P. S., Dannemann, F. K., & Marcillo, O. E. (2018). Bayesian characterization of explosive
484 sources using infrasonic signals. *Geophysical Journal International*, 215(1), 240-251,
485 doi:10.1093/gji/ggy258

486

487 Bonner, J., Waxler, R., Gitterman, Y., & Hofstetter, R. (2013). Seismo-acoustic energy partitioning at
488 near-source and local distances from the 2011 Sayarim explosions in the Negev Desert, Israel. *Bulletin*
489 *of the Seismological Society of America*, 103(2A), 741-758, doi:10.1785/0120120181

490

491 Fee, D., & Garcés, M. (2007). Infrasonic tremor in the diffraction zone. *Geophysical Research Letters*,
492 34(16), doi:10.1029/2007GL030616

493

494 Ford, S. R., Rodgers, A. J., Xu, H., Templeton, D. C., Harben, P., Foxall, W., & Reinke, R. E. (2014).
495 Partitioning of seismoacoustic energy and estimation of yield and height-of-burst/depth-of-burial for
496 near-surface explosions. *Bulletin of the Seismological Society of America*, 104(2), 608-623,
497 doi:10.1785/0120130130

498

499 Ford, S. R., Bulaevskaya, V., Ramirez, A., Johannesson, G., & Rodgers, A. J. (2021). Joint Bayesian
500 inference for near-surface explosion yield and height-of-burst. *Journal of Geophysical Research: Solid*
501 *Earth*, 126, e2020JB020968. <https://doi.org/10.1029/2020JB020968>

502

503 Kim, K., & Rodgers, A. (2016). Waveform inversion of acoustic waves for explosion yield estimation.
504 *Geophysical Research Letters*, 43(13), 6883-6890, doi:10.1002/2016GL069624

505

506 Kim, K., & Rodgers, A. (2017). Influence of low-altitude meteorological conditions on local infrasound
507 propagation investigated by 3-D full-waveform modeling. *Geophysical Journal International*, 210(2),
508 1252-1263, doi:10.1093/gji/ggx218

509

510 Kim, K., Rodgers, A., & Seastrand, D. (2018). Local infrasound variability related to in situ
511 atmospheric observation. *Geophysical Research Letters*, 45(7), 2954-2962,
512 doi:10.1002/2018GL077124

513

514 Kim, K., Rodgers, A. R., Garces, M. A., & Myers, S. C. (2021). Empirical acoustic source model for
515 chemical explosions in air. *Bulletin of the Seismological Society of America*, 111(5), 2862-2880,
516 doi.org/10.1785/0120210030

517

518 Kim, K., & Pasyanos, M. E. (2022). Yield Estimation of the August 2020 Beirut Explosion by Using
519 Physics-Based Propagation Simulations of Regional Infrasound. *Geophysical Research Letters*,
520 e2022GL101118, <https://doi.org/10.1029/2022GL101118>.

521

522 Kinney, G. & Graham, K., (1985). Explosive Shocks in Air, Springer-Verlag, 282 pp.

523

524 Modrak, R. T., Arrowsmith, S. J., & Anderson, D. N. (2010). A Bayesian framework for infrasound
525 location. *Geophysical Journal International*, 181(1), 399-405, doi:10.1111/j.1365-246X.2010.04499.x

526

527 Pasyanos, M. E., Walter, W. R., & Mayeda, K. M. (2012). Exploiting regional amplitude envelopes: A
528 case study for earthquakes and explosions in the Korean Peninsula. *Bulletin of the Seismological
529 Society of America*, 102(5), 1938-1948, doi: 10.1785/0120120012.

530

531 Pasyanos, M.E. (2013). A lithospheric attenuation model of North America, *Bulletin of the
532 Seismological Society of America*, 103, 3321-3333, doi: 10.1093/0120130122.

533

534 Pasyanos, M. E., & Ford, S. R. (2015). Determining the source characteristics of explosions near the
535 Earth's surface. *Geophysical Research Letters*, 42(10), 3786-3792, doi: 10.1002/2015GL063624.

536

537 Pasyanos, M. E., & Kim, K. (2019). Seismoacoustic analysis of chemical explosions at the Nevada
538 National Security Site. *Journal of Geophysical Research: Solid Earth*, 124(1), 908-924, doi:
539 10.1029/2018JB016705.

540

541 Petersson, N. A., & Sjögren, B. (2018). High order accurate finite difference modeling of seismo-
542 acoustic wave propagation in a moving atmosphere and a heterogeneous earth model coupled across a
543 realistic topography. *Journal of Scientific Computing*, 74(1), 290-323, doi:10.1007/s10915-017-0434-7

544

545 Rayleigh, J. W. S. B. (1896), The Theory of Sound, vol.2, Dover, New York

546

547 Schnurr, J., Kim, K., Garces, M. A., & Rodgers, A. (2020). Improved parametric models for explosion
548 pressure signals derived from large datasets. *Seismological Research Letters*, 91(3), 1752-1762,
549 doi:10.1785/0220190278

550

551 Strand, B. (1994). Summation by parts for finite difference approximations for d/dx. *Journal of*
552 *Computational Physics*, 110(1), 47-67, doi:10.1006/jcph.1994.1005

553

554 Stump, B., Hayward, C., Golden, P., Park, J., Kubacki, R., Cain, C., ... & Jun, M. S. (2022). Seismic
555 and Infrasound Data Recorded at Regional Seismoacoustic Research Arrays in South Korea from the
556 Six DPRK Underground Nuclear Explosions. *Seismological Society of America*, 93(4), 2389-2400,
557 doi:10.1785/0220220009

558

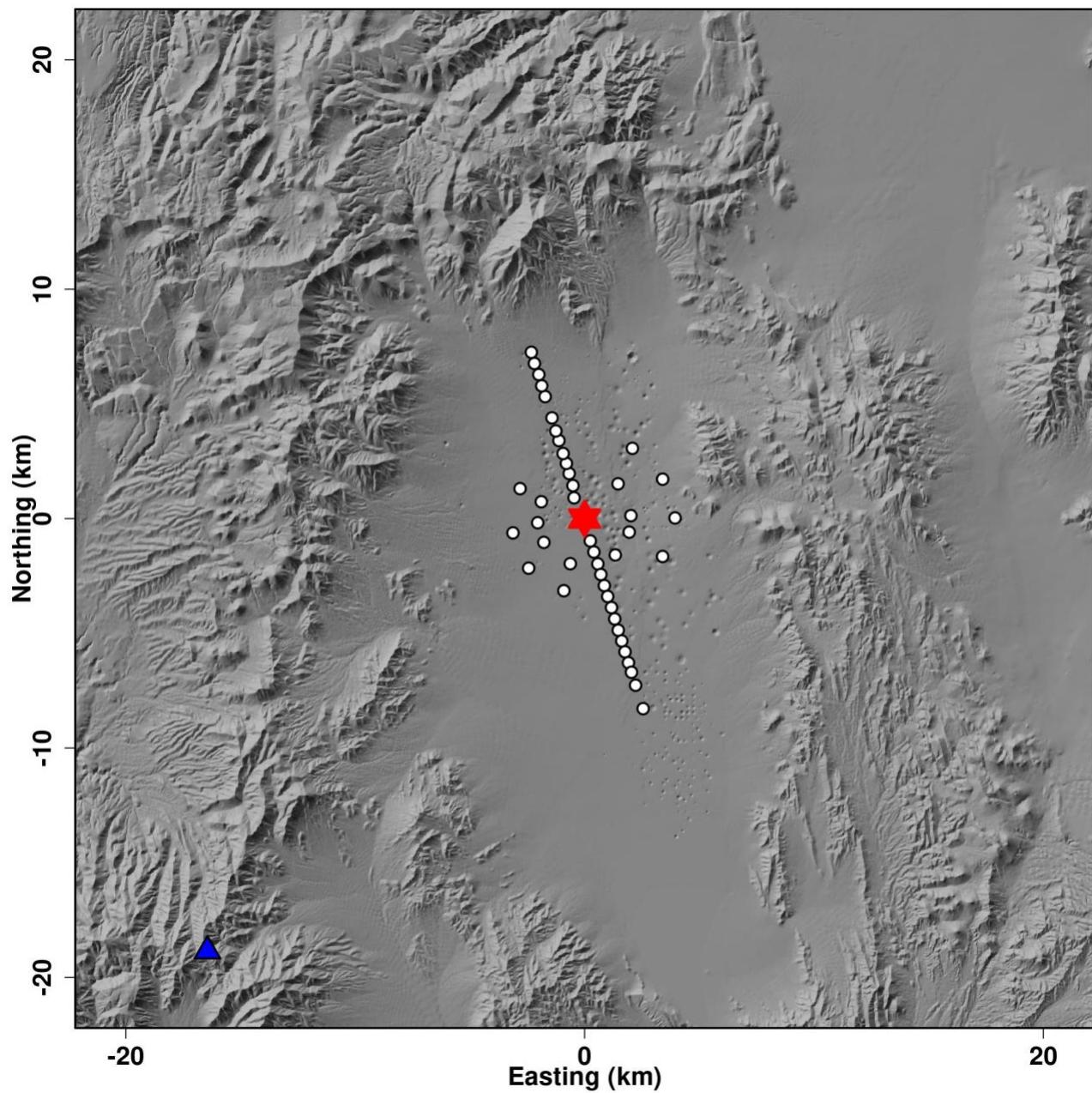
559 Vorobiev, O. Y. and S. R. Ford (2022). Airblast observations and near-field modeling of the Large
560 Surface Explosion Coupling Experiment (LSECE), submitted to and under review in *Shock Waves*.

561

562 Walter, W.R. and S.R. Ford (2018). A preliminary explosion seismic spectral model for saturated/hard
563 rock, Lawrence Livermore National Laboratory, LLNL-TR-754292, 14 pp., doi:10.2172/1460932.

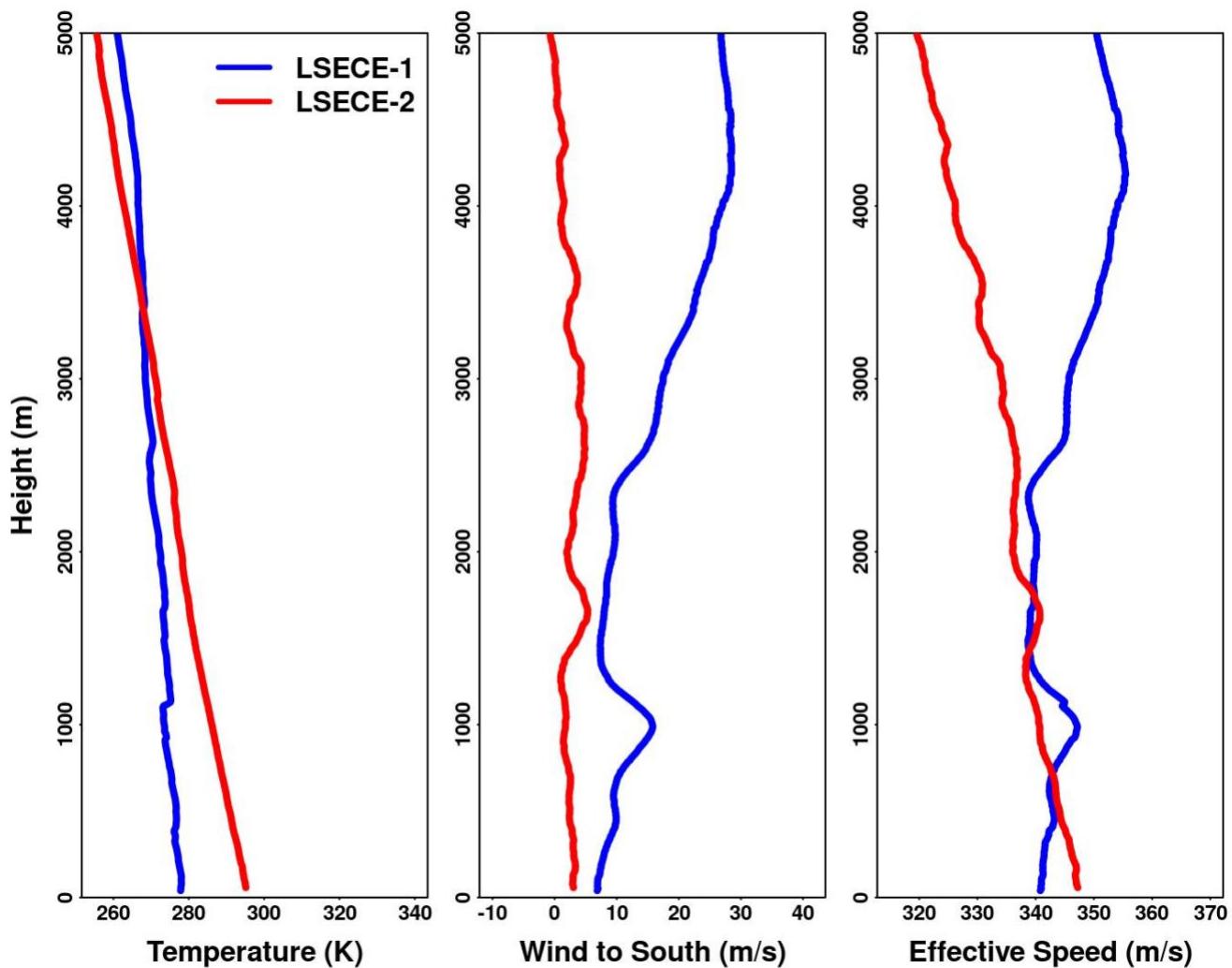
564

565 Wilson, D. K., Pettit, C. L., & Ostashev, V. E. (2015). *Sound propagation in the atmospheric boundary*
566 *layer*. Acoustical Society of America.

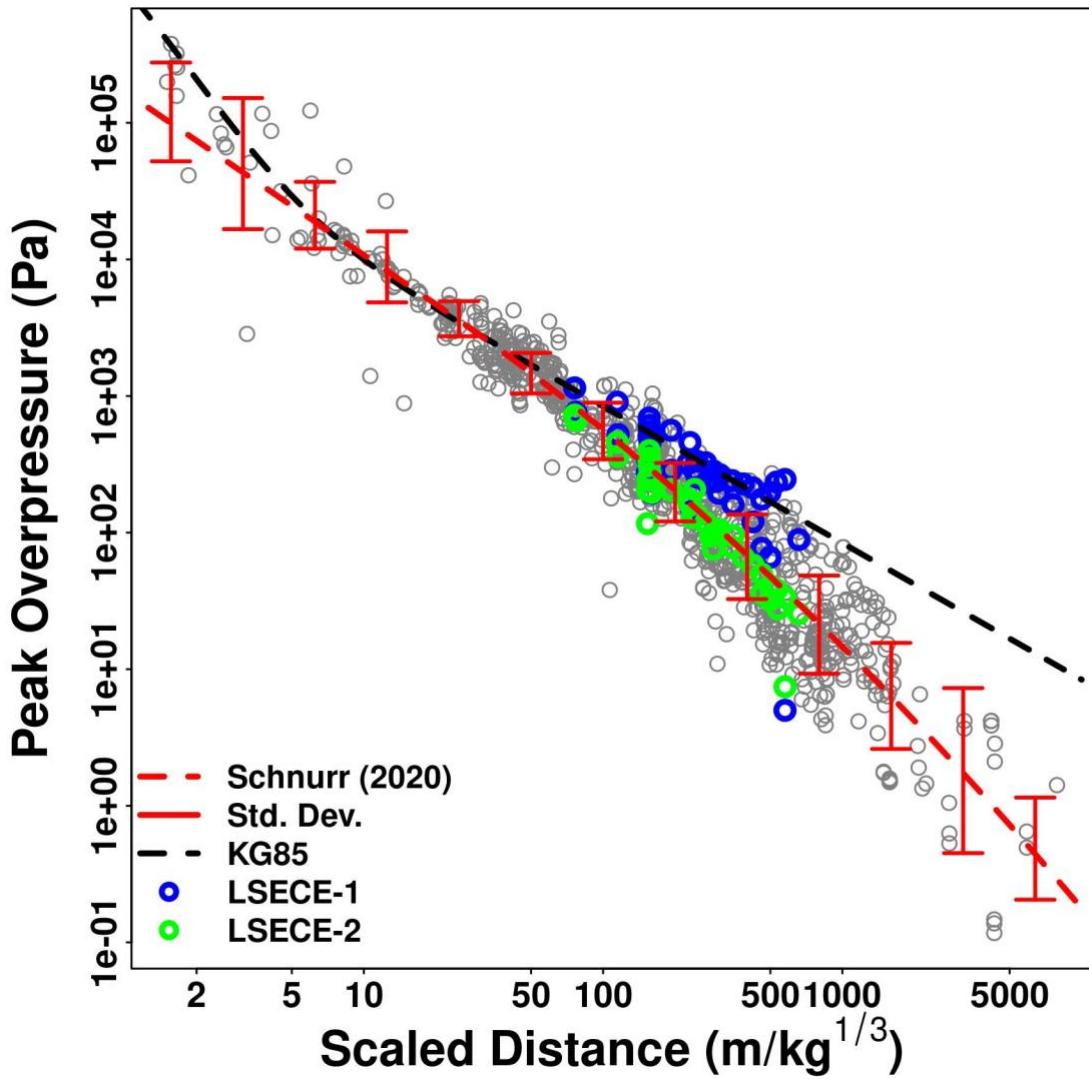

567

568 **Keehoon Kim**
569 kim84@llnl.gov
570 7000 East Avenue,
571 Livermore, CA 94550

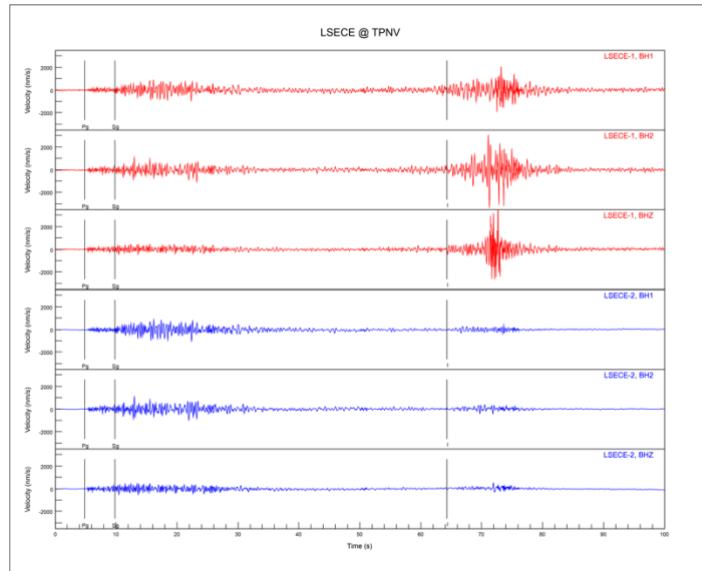
572


573 **Michael E. Pasyanos**
574 pasyanos1@llnl.gov
575 7000 East Avenue,
576 Livermore, CA 94550

577

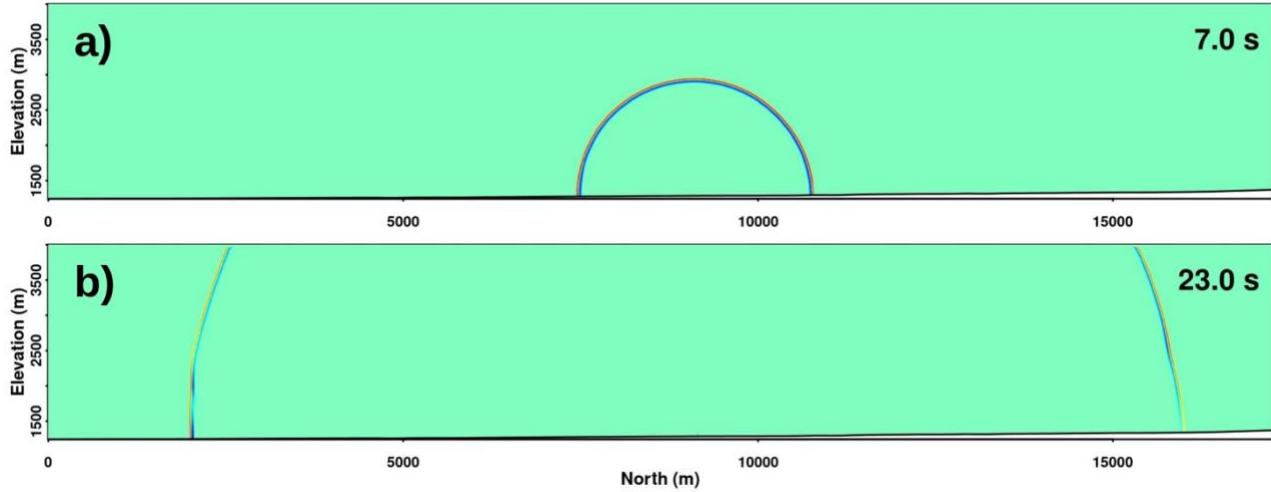

578

579 Figure 1. The acoustic sensor network (white circles) deployed for the LSECE experiment. Ground
580 zero is denoted by the red star, and the seismic station (TPNV) used for the analysis is indicated by the
581 blue triangle.


582

583 Figure 2. Atmospheric temperature and meridional wind profiles measured by local radiosonde
 584 sounding. The effective sound speed profiles to the south were computed from the temperature and
 585 wind data.

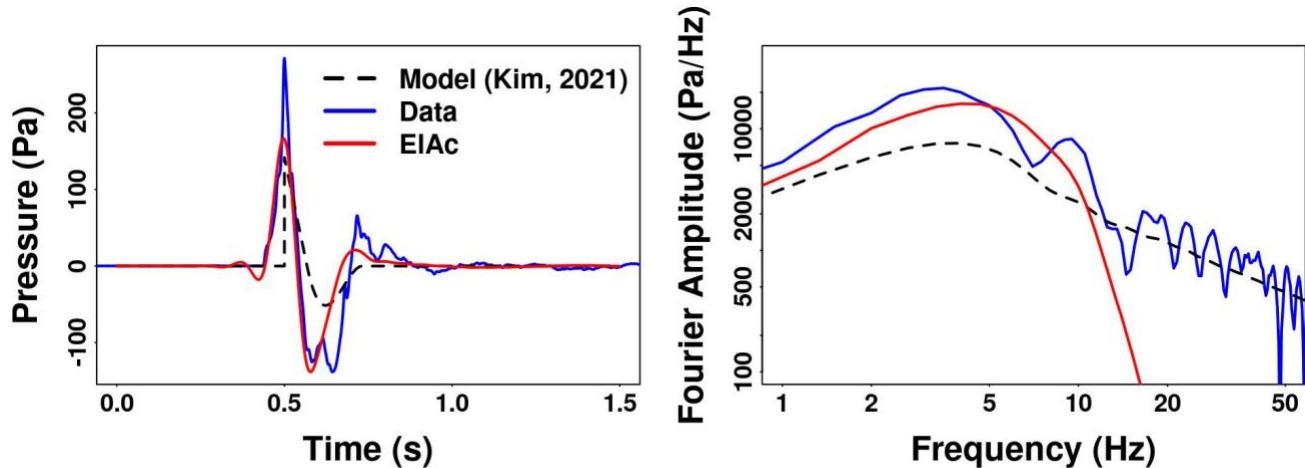
586


587 Figure 3. Peak overpressure measurements for LSECE. LSECE-1 (blue circles) and 2 (green circles)
 588 are compared with other dataset (gray circles) published by Schnurr et al. (2020). The peak amplitudes
 589 and distances are scaled for a 1kg TNT explosion on the surface. The red dashed line and vertical error
 590 bars denotes the mean and standard deviation of the other dataset. The black dashed line is a semi-
 591 empirical blast model published by Kinney and Graham (1985), which assumes propagation in a
 592 homogeneous atmosphere.

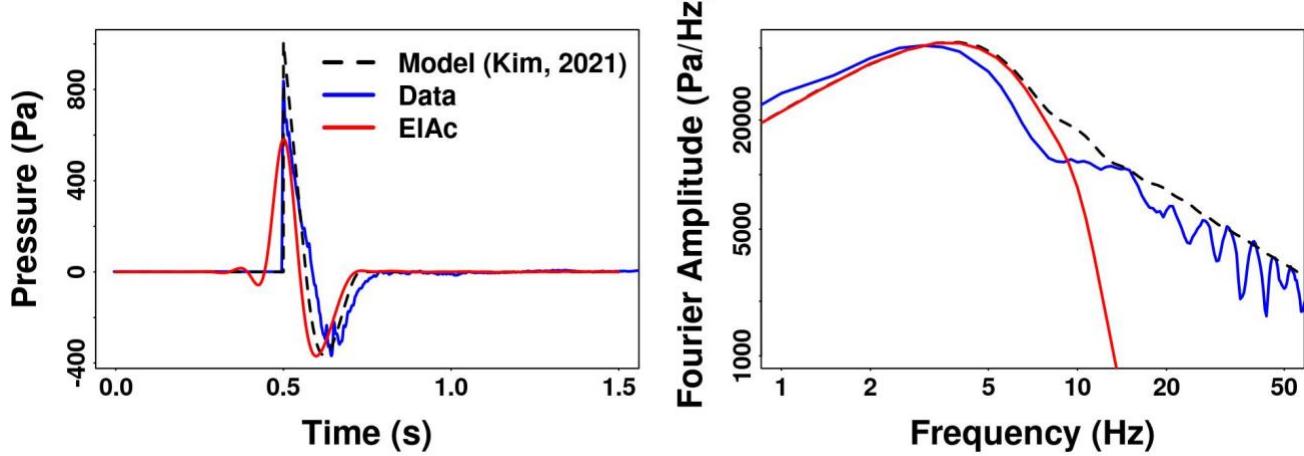
595
596
597
598
599
600


Figure 4. Seismic signals recorded for LSECE-1 and 2. Seismic phases and ground-coupled acoustic waves (following the seismic phases) are recorded on the seismometer (top). The Pg, Sg, and I labels mark the approximate arrivals of the P-wave, S-wave, and acoustic wave, respectively. The direct comparison of the seismic portion is shown on the bottom panel.

601
602
603
604

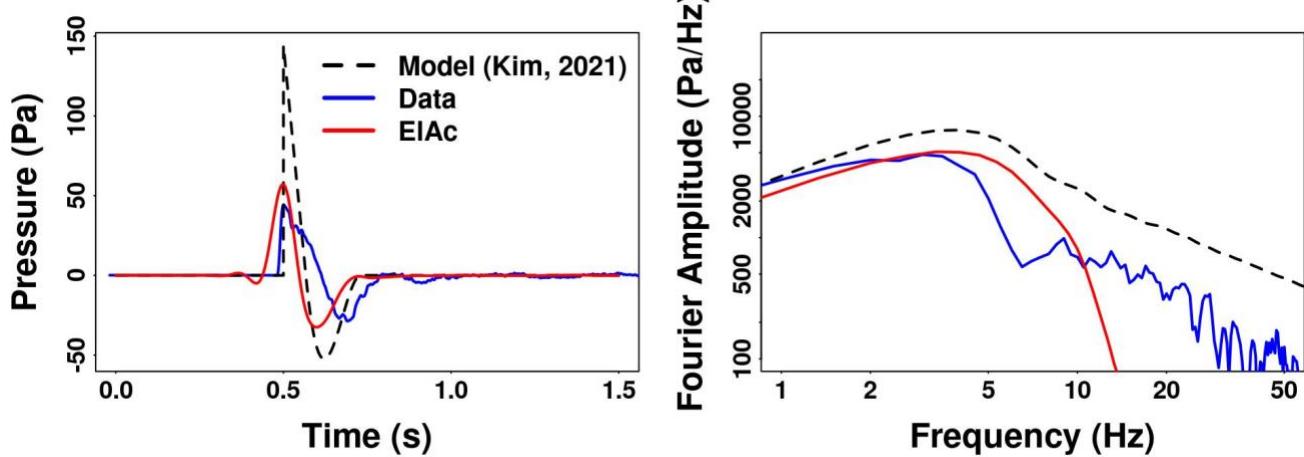

605

606 Figure 5. Finite-difference simulation images of acoustic wave propagation for LSECE-1. The images
607 illustrate acoustic propagation on a vertical cross-section in the north-south direction from the source.
608 a) Early wavefront development near the source 7 seconds after the detonation. The wavefront is
609 characterized by spherical radiation. b) Wavefronts after 23 seconds of the detonation. The wave
610 amplitudes are significantly different in the south and north directions. The high amplitude in the south
611 is attributed to the waveguide observed in the radiosonde profiles (Figure 2).
612

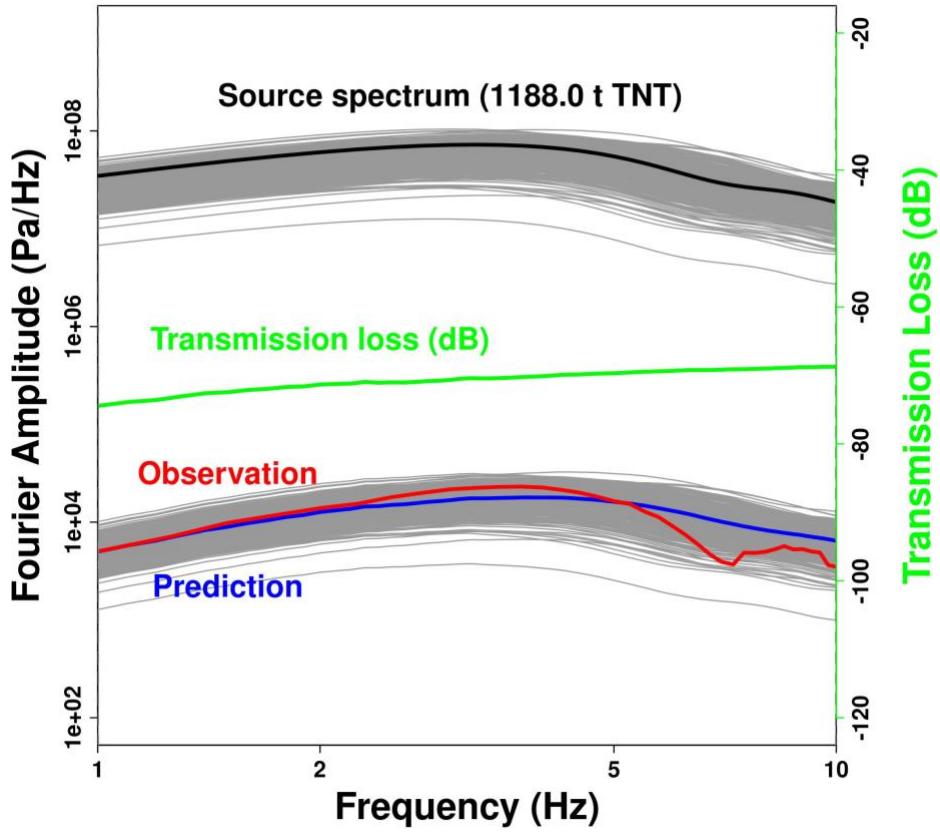

613

614 Figure 6. Waveform prediction for LSECE-1 in time (left) and frequency domain (right). The blue line
 615 is the observed signals at 1 km from the source to the south. The red line is the synthetic waveform
 616 predicted by the finite-difference simulation using the local weather data for background atmosphere.
 617 The black dashed line is the K21 model assuming homogeneous atmosphere. The data and predicted
 618 models are aligned with respect to their peak amplitudes for comparison. At this close distance, the
 619 empirical K21 model shows good agreement with the observation. Note that the finite-difference
 620 simulation result is band-limited. Below 10 Hz, the finite-difference model is also in good agreement
 621 with the observation.

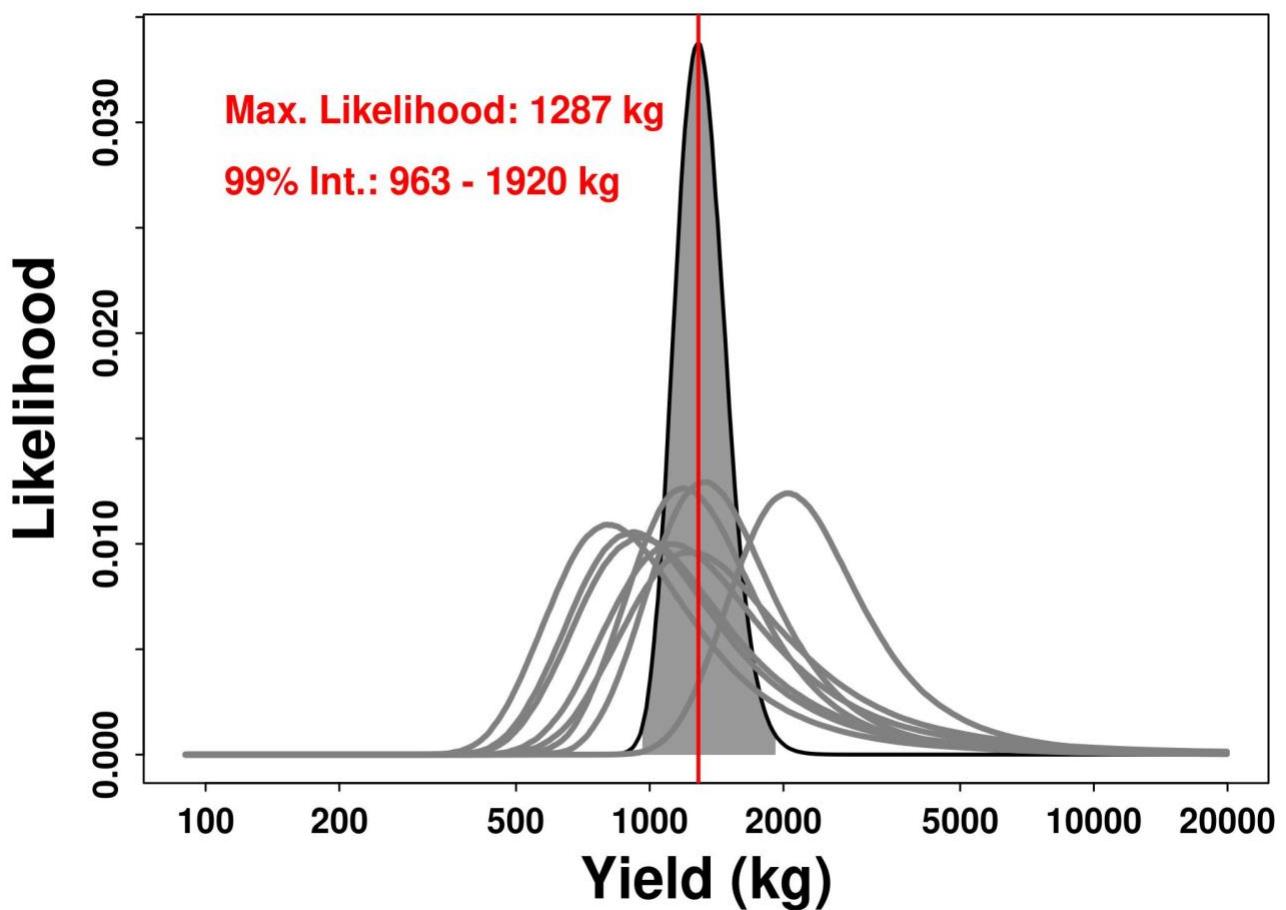
622


623 Figure 7. Waveform prediction for LSECE-1 at 7 km to the south. The blue, red, and black dashed lines
 624 are the observation, finite-difference model, and K21, respectively as for Figure 6. At this distance, the
 625 K21 model shows large prediction error due to unaccounted atmospheric propagation effects. However,
 626 the finite-difference model shows much better fit to the data, particularly below 10 Hz.

627


628 Figure 8. Waveform prediction for LSECE-2 at 1 km to the south. The blue, red, and black dashed lines
 629 are the observation, finite-difference model, and K21, respectively as for Figure 6. As in Figure 6, both
 630 K21 and finite-difference models show good agreement with the data at this distance, indicating
 631 insignificant weather impact on propagation.

632

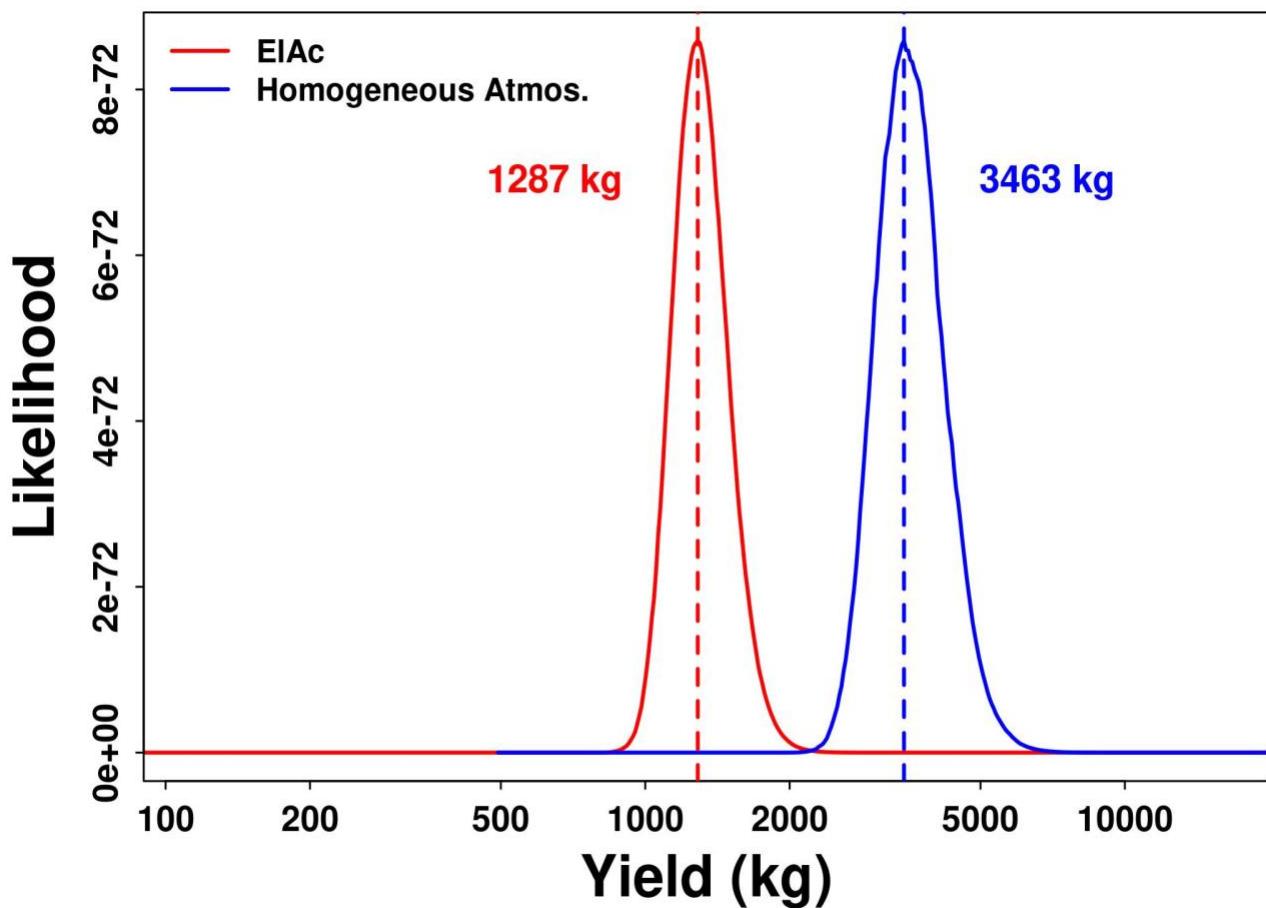

633

634 Figure 9. Waveform prediction for LSECE-2 at 7 km to the south. The blue, red, and black dashed lines
 635 are the observation, finite-difference model, and K21, respectively as for Figure 6. As for LSECE-1,
 636 finite-difference model show much better prediction than the K21 model.

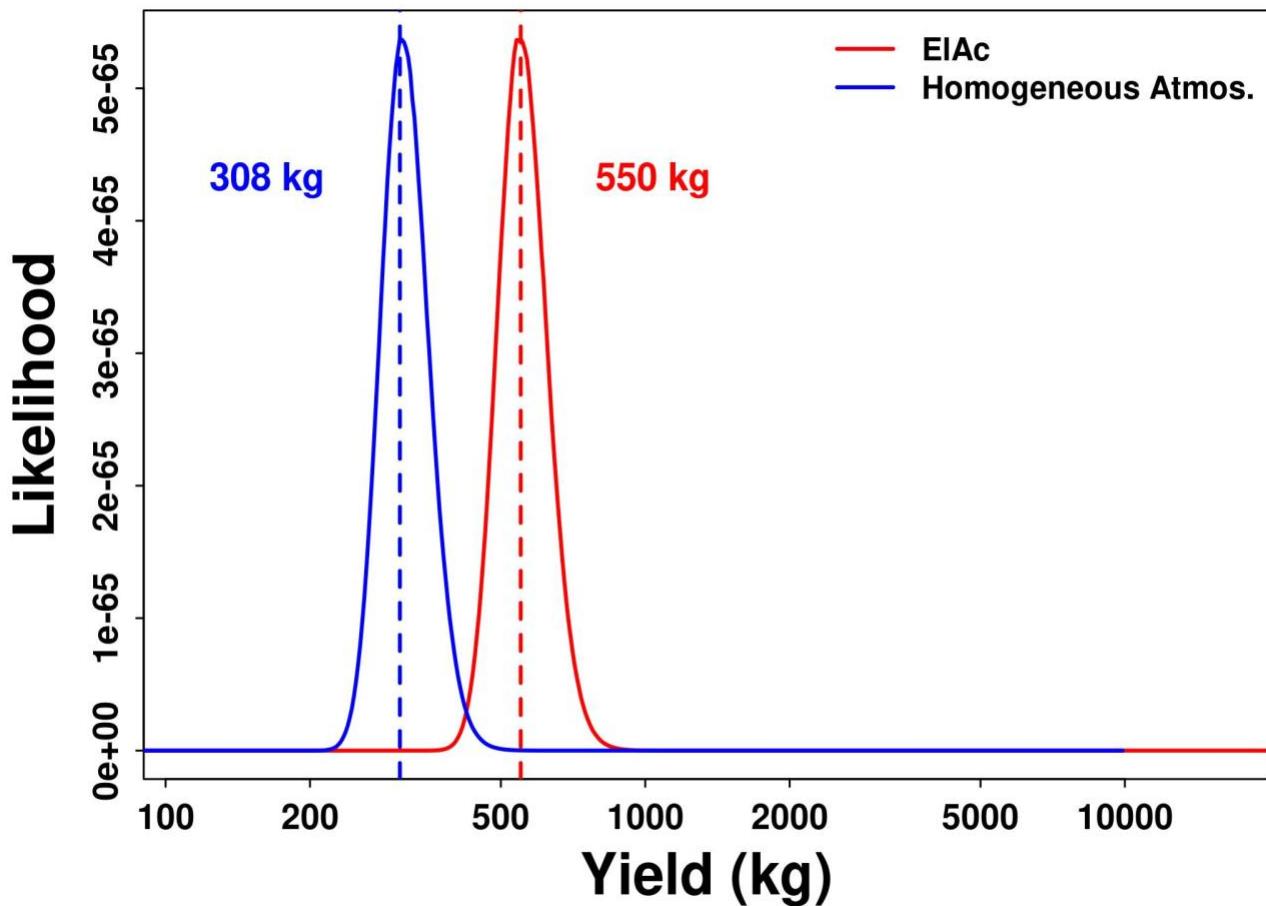
637

638 Figure 10. Acoustic signal prediction in the frequency domain. The source spectrum at a given yield
 639 (black line) is multiplied by the transmission loss (green line) to obtain frequency spectrum of
 640 prediction (blue) in comparison with the data (red). The K21 model provides the probability
 641 distribution of the source spectrum, leading to random realizations of possible sources (gray lines).
 642 Based on the source spectrum variation, a group of predictions (gray lines) are made for the
 643 observations.

644

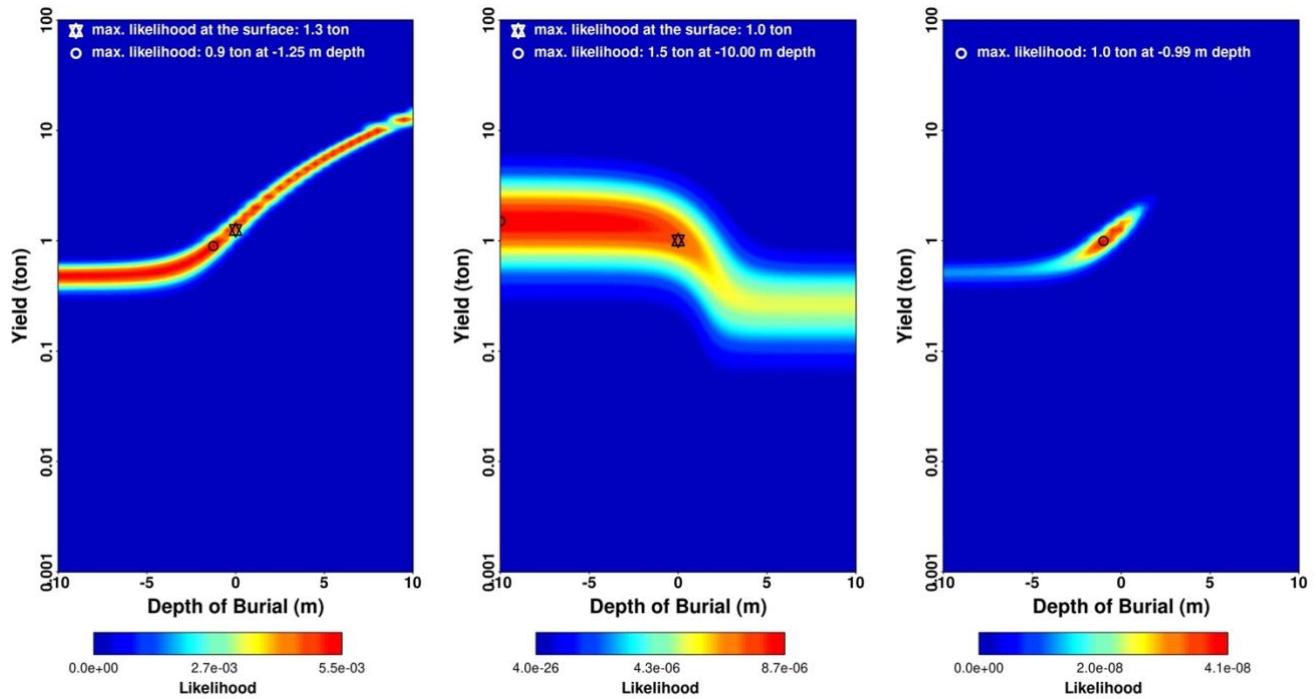

645 Figure 11. The probability distribution of the estimate yield for LSECE-1. The grey lines are
646 distributions for individual stations, and the black line is the joint distribution made of the individual
647 distributions. The 99% confidence interval was denoted by the shaded region.

648



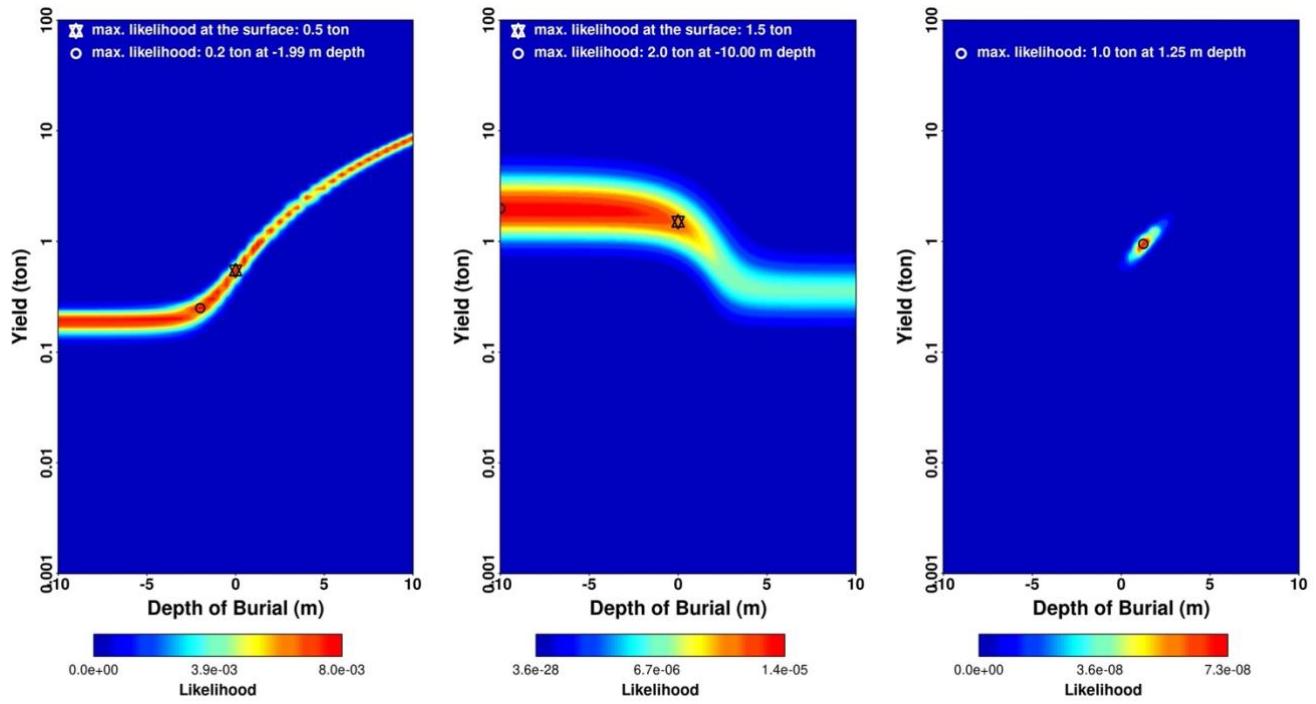
649

650 Figure 12. The probability distribution of the estimate yield for LSECE-2. The grey lines are
651 distributions for individual stations, and the black line is the joint distribution as for Figure 11. The
652 99% confidence interval was denoted by the shaded region.



653
654 Figure 13. The comparison of estimated yields and probability distributions for LSECE-1. The
655 distributions are obtained by the inversions with the finite-difference modeling (red) and K21 model
656 with homogeneous atmosphere (blue). The maximum-likelihood yields are estimated as 1287 kg for the
657 finite-difference model and 3463 kg for the K21 homogeneous model.

658


659 Figure 14. The comparison of estimated yields and probability distributions for LSECE-2. As for
660 Figure 13, the red and blue lines are the distributions obtained by the finite-difference modeling (red)
661 and K21 model with homogeneous atmosphere (blue). The maximum-likelihood yields are estimated as
662 550 kg for the finite-difference model and 308 kg for the K21 homogeneous model.

663

664 Figure 15. Likelihoods of explosion yields and depths for LSECE-1. Acoustic (left) and seismic (right)
 665 likelihoods are combined for the joint likelihood (right). The maximum likelihood yields assuming a
 666 surface explosion are denoted by the white star. The maximum likelihood yields without depth
 667 assumption are denoted by the white circle.

668

669

670

671 Figure 16. Likelihoods of explosion yields and depths for LSECE-2. Acoustic (left) and seismic (right)
 672 likelihoods are combined for the joint likelihood (right). As for Figure 15, the maximum likelihood
 673 yields with/without a priori depth are denoted by the white star and circle, respective