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Abstract 12 

The Large Surface Explosion Coupling Experiment (LSECE) is a chemical explosion experiment 13 

conducted in Yucca Flat at the Nevada National Security Site (NNSS) in 2020. The experiment included 14 

two surface detonations of approximately 1000 kg Trinitrotoluene equivalent. The main goal of the 15 

experiment was to provide the ground-truth data for seismoacoustic wave excitation by large chemical 16 

explosions near the ground surface. The seismic and acoustic energy partitioning between the surface is 17 

strongly governed by the depth or height of explosions, and either seismic or acoustic-only analysis may 18 

have inherent ambiguity in determining explosion yield and depth simultaneously. Previous studies 19 

suggested that joint seismoacoustic analysis can resolve the tradeoff and reduce the uncertainty of yield 20 

and depth estimation dramatically. We demonstrate the capability of seismoacoustic analysis to improve 21 

the accuracy of explosion yield and depth estimation with the LSECE data. Local acoustic wave 22 

propagation in the atmosphere can be substantially affected by constantly varying weather conditions. 23 

Consisting of two detonations before dawn and in the afternoon, LSECE provides unique data to evaluate 24 

the model accuracy of acoustic wave propagation and seismoacoustic energy partitioning depending on 25 

local atmospheric conditions. We quantitatively evaluate the accuracy of yield and depth estimation 26 

depending on atmospheric variability and the improvement achieved by the joint seismoacoustic 27 

approach. 28 

 29 

1. Introduction 30 

 31 

Seismology and geophysical acoustics play an important role in explosion monitoring, including event 32 

detection and discrimination. The International Monitoring System (IMS) of Comprehensive Nuclear-33 



Test-Ban Treaty Organization (CTBTO), which is designed to detect any nuclear explosion in the 34 

atmosphere, in the oceans, and underground, includes both seismic and acoustic sensors in the network. 35 

Determining the yield of explosions and its depth is critical part of the explosion monitoring. In 36 

general, seismic and acoustic techniques for the explosion yield estimation have been independently 37 

applied, with seismic methods used for deeply-buried explosions and acoustic methods used for near-38 

surface explosions. Because of strong tradeoffs between yield and depth/height, there are large 39 

uncertainties in the determination of the explosion yield and depth simultaneously either by seismic or 40 

acoustic waves (Ford et al., 2014). This problem is particularly exacerbated for near-surface explosions 41 

as small changes of explosion depth and height near the Earth’s surface have drastic impact on seismic 42 

and acoustic waves amplitudes. 43 

 44 

Recently, joint seismoacoustic analysis has received interest for explosion monitoring as an increasing 45 

number of regional infrasound (low-frequency acoustic waves) networks effectively complement 46 

seismic observations (Arrowsmith et al., 2010; Bonner et al., 2013; Stump et al., 2022). Ford et al. 47 

(2014) collected local seismic and overpressure data from the near-surface explosions with various 48 

yields and depth-of-burial/height-of-burst and quantitatively determined seismoacoustic energy 49 

partitioning depending on their depths, hereafter referred as F14. Although the F14 model provides 50 

quantitative predictions for seismic motions and atmospheric pressures near the source, it cannot be 51 

applicable to distant observations which are governed by complex propagation path effects. Later, 52 

Pasyanos and Ford (2015) used the seismic waveform envelope method (Pasyanos et al., 2012) for 53 

near-surface explosions by incorporating F14 in the explosion source model. Seismic wave propagation 54 

effects through the media are corrected by accounting for anelastic attenuation and site effects. For 55 

acoustic yield estimation, Kim and Rodgers (2016) proposed a similar approach. They accounted for 56 

acoustic wave propagation in the atmosphere by using a physics-based propagation simulation and 57 

incorporated F14 into the acoustic source model for yield estimation. Pasyanos and Kim (2019) 58 

performed joint seismoacoustic analysis for the yield and depth estimation and demonstrated that the 59 

joint approach can improve the depth constraint substantially. 60 

 61 

Although the seismoacoustic approach showed promising results for simultaneous determination of 62 

yield and depth, they might need to be evaluated with more data. The Earth’s atmosphere has distinct 63 

diurnal variation. On a clear day, the Earth’s surface is heated by the sun, and the atmospheric boundary 64 

layer (ABL) near the surface has unstable stratification due to buoyancy. Conversely, on a clear night, 65 

buoyantly stable stratification is developed in the ABL due to cooling of the ground. Although this 66 



diurnal change of near-surface atmosphere is not critical to seismic waves in the solid Earth, acoustic 67 

wave generation and propagation by near-surface explosions can be substantially affected (Wilson et 68 

al., 2015). Many empirical models were developed to address explosion-generated acoustic waves. 69 

However, those models were generally determined by the limited data collected from explosion 70 

experiments in the daytime, and it is possible that those acoustic data were biased by the characteristic 71 

stratification of atmosphere in daytime. Although acoustic wave propagation in nighttime has been 72 

reported and investigated before (Fee and Garces, 2007; Blom and Waxler, 2012), the ground-truth data 73 

measured from known sources and quantitative analysis are rare for yield estimation. 74 

 75 

In this study, we evaluate the seismoacoustic yield estimation technique with unique seismic and 76 

acoustic data obtained from the comparison of two surface explosions at different times of a day. This 77 

chemical explosion experiment, called the Large Surface Explosion Coupling Experiment (LSECE), 78 

includes a detonation at the dawn before the ABL develops unstable stratification and provides a unique 79 

dataset to characterize acoustic wave propagation in this atmospheric condition. We focus on acoustic 80 

signal analysis, which strongly depends on atmospheric conditions, and quantitatively compare the 81 

acoustic signals with existing dataset obtained in daytime. This analysis provides a rare opportunity to 82 

evaluate the empirical model developed from the data in daytime. Finally, we extend the analysis for 83 

seismoacoustic yield estimation by incorporating seismic data and analyze the uncertainty of yield 84 

estimates due to the characteristic weather conditions at the dawn. 85 

 86 

2. Data 87 

 88 

LSECE is a chemical explosion experiment conducted in Yucca Flat at the Nevada National Security 89 

Site (NNSS) in October 2020. The main goal of the experiment was to provide the ground-truth data 90 

for acoustic and seismic wave coupling generated by large chemical explosions (Vorobiev and Ford, 91 

2022). The experiment consisted of two surface explosions of 992.05 and 991.5 kg Trinitrotoluene 92 

(TNT) equivalent. The first shot (LSECE-1) was conducted on 27 October 2020 at 6:37 am local time 93 

(13:37 UTC) before the sunrise in Nevada. The second shot (LSECE-2) was conducted on 29 October 94 

at 3:35 pm local time (22:35 UTC) during the daytime. The atmospheric temperature profiles in the 95 

ABL were distinctly different due to the shot time, and the experiment produced a unique dataset to 96 

exhibit the sensitivity of acoustic wave excitation and propagation in the different weather conditions. 97 

The geology of the test site in this region is characterized by alluvium layers which can affect the 98 

seismoacoustic partitioning between the atmosphere and subsurface. The LSECE experiment took 99 



place at the same location of the Source Physics Experiment (SPE) Phase II in Dry Alluvium Geology 100 

(DAG) which consisted of four buried explosions (Berg and Poppeliers, 2022). Hence, the LSECE 101 

seismic and acoustic signals in addition to the SPE DAG provide the ground truth data to understand 102 

seismoacoustic energy partitioning for surface and buried explosions across dry alluvium.  103 

 104 

LSECE included 30 overpressure sensors deployed near the source for non-linear blast measurements 105 

(Vorobiev and Ford, 2022) and 54 acoustic/infrasonic sensors located between 1 to 9 km from the 106 

source. In this study, we used the linear infrasound array with 12 sensors deployed in the north-south 107 

direction for yield estimation (Figure 1). This linear array captured gradual waveform evolution 108 

depending on propagation distances, which is suitable for quantitative analysis of excited acoustic 109 

energy and its propagation near the ground. These stations consisted of a single Hyperion IFS5000 110 

sensor with a flat frequency response between 0.01 – 100 Hz. 111 

 112 

Local weather conditions were also measured by launching a radiosonde before the detonations. Figure 113 

2 shows background temperatures, and meridional (northerly) wind profiles obtained by the radiosonde 114 

sounding. Both temperature and meridional winds affect the local acoustic propagation by contributing 115 

to effective sound speed profiles in air. The two temperature profiles measured before the dawn and in 116 

the daytime show drastically different gradients with respect to the elevation. Atmospheric temperature 117 

gradients are generally negative in the daytime due to higher temperature of the ground surface, which 118 

leads to negative sound speed gradient with respect to increasing elevation (Wilson et al., 2015). In the 119 

negative sound speed gradient, acoustic waves near the ground refract upward and result in reduced 120 

amplitudes near the ground (Rayleigh, 1896; Kim and Rodgers, 2017). Conversely, positive or neutral 121 

gradient of sound speeds can be produced before the dawn, and acoustic wave amplitudes increase near 122 

the ground by enhancing downward refraction or suppressing upward refraction (Blom and Waxler, 123 

2012).  124 

 125 

The impact of different temperature profiles is observed in the LSECE data. Figure 3 shows the peak 126 

overpressures measurements for LSECE-1 (blue circles) and 2 (green). The peak overpressures and 127 

observation distances are scaled for 1kg TNT explosion and compared with the other dataset (gray 128 

circles) which were collected from previous explosion experiments in daytime. These data were used 129 

by Schnurr et al. (2020) to develop the average peak overpressure model (denoted by red line) and its 130 

statistical variation (red vertical error bars). A semi-empirical model developed for a homogeneous 131 

atmosphere (KG85) is also shown as a black line (Kinney and Graham, 1985). The peak overpressure 132 



amplitudes for LSECE-2 suffer larger attenuation than the homogeneous KG85 model as the 133 

propagation distance increases. This is attributed to the negative temperature gradient leading to 134 

upward refraction of acoustic waves near the ground. This attenuation rate for LSECE-2 follows almost 135 

exactly the mean model of previous dataset as they have similar sound speed structures in daytime. 136 

However, the peak amplitudes for LSECE-1 have larger than the mean model over one standard-137 

deviation amplitude, indicating the LSECE-1 amplitudes are significantly different from those observed 138 

in daytime. These higher amplitudes are attributed to the combination of atmospheric temperature and 139 

wind conditions. During LSECE-1, the background temperature profile showed a very weak gradient 140 

against elevations, which would not cause effective upward refraction of sound. In addition, strong 141 

wind jet from north to south was observed at 1 km above the ground (Figure 2). The effective sound 142 

speed profile is determined by the wind speed added to the sound speed of air (Figure 2), and this 143 

strong wind at 1 km altitude created an effective waveguide below. Propagating acoustic waves near 144 

the ground is trapped in this waveguide, and their amplitudes undergo less attenuation or even increase 145 

at certain distances due to downward refraction. The LSECE data indicate that this characteristic sound 146 

speed structures observed before the dawn have great impact on the local acoustic wave propagation, 147 

and the existing data and model obtained from daytime explosions cannot account for the observations 148 

for LSECE-1. 149 

 150 

The explosions were well-recorded by dozens of stations at local distance. For our analysis, however, 151 

we preferentially select stations close enough to have good signal-to-noise, but distant enough for the 152 

coda to be well-formed.  We also want to use a station which has been calibrated for local site effects 153 

using earthquakes.  For the seismic yield analysis, we use station TPNV (Topopah Spring, NV), a long 154 

running and well-calibrated station in the U.S. National Seismic Network located 24 km southwest of 155 

ground zero.  In contrast to the acoustic signal, the seismic waves from the two explosions were very 156 

similar, despite the presence of a crater created by the first shot for the second one.  Figure 4 shows the 157 

seismic signals of the two explosions. We observe significantly larger ground-coupled acoustic waves 158 

for the first explosion (in red) at TPNV than the second explosion (in blue). While the two seismic 159 

signals are nearly identical, there are some small differences in the pre-event noise and the coda, which 160 

is reflected in small differences in the coda envelopes.   161 

 162 

3. Acoustic Yield Estimation 163 

 164 

3.1. Acoustic Inversion 165 



 166 

We perform the acoustic yield estimation based on a Bayesian approach (Modrak et al., 2010; Blom et 167 

al., 2018; Kim et al., 2021). The posterior distribution of yields (P(W|E)) at the given data (E) is written 168 

as follows. 169 

 170 

𝑃(𝑊|𝐸) =
𝑃(𝐸|𝑊)𝑃(𝑊)

𝑐
                                                           (1) 171 

 172 

The probability distribution of yield is determined based on the likelihood of acoustic energy (E) at a 173 

given yield (W),  and the normalization constant of the distribution is denoted by c. P(W) is the prior 174 

distribution of yields and assumed to be uniform in this study. The likelihood P(E|W) is assumed 175 

Gaussian distribution as 176 

𝑃(𝐸|𝑊) =
1

√2𝜋𝜎2
𝑒𝑥𝑝

−1

2
(
𝐸𝑝(𝑊)−𝐸(𝑊)

𝜎
)
2

,                                           (2) 177 

 178 

The variance (𝜎2 ) governs the uncertainty of the yield estimate P(W|E). In this study, we determined 179 

the variance of acoustic energy from the other dataset obtained by various explosions. This will be 180 

discussed in Section 3.3.  181 

 182 

We measure the acoustic energy (E) in the frequency domain between a frequency f1 and f2. The 183 

predicted acoustic energy (Ep) is measured from the predicted spectrum as 184 

 185 

𝐸𝑝(𝑊, 𝑥) = ∫ ∥ 𝑆(𝑤, 𝑓, 𝑥0)𝑇(𝑓, 𝑥; 𝑥0) ∥
2 𝑑𝑓

𝑓2
𝑓1

.                                             (3) 186 

 187 

We predict acoustic spectrum by multiplying acoustic source spectrum (S(W, f, x0)) at a position x0 by 188 

the transmission loss (T) from x0 to x. There may be various ways to calculate the transmission loss. In 189 

this study, we used physics-based numerical simulations to obtain the transmission loss and explained 190 

the processes in Section 3.2. The source model for the acoustic source spectrum is also discussed in 191 

Section 3.3. 192 

 193 

3.2. Acoustic Propagation Simulations 194 

 195 



The accuracy of yield estimation in Equation 1 strongly depends on the accurate calculation of the 196 

transmission loss in Equation 3. It has been reported that local acoustic wave propagation can have 197 

large variations depending on the weather conditions in the ABL (Fee and Garces, 2007; Blom and 198 

Waxler, 2012; Kim and Rodgers, 2017; Kim et al., 2018). Our data from LSECE-1and 2 also 199 

demonstrate that an empirical model determined in a certain weather condition may not account for the 200 

amplitude variations in different conditions. In this study, we perform a physics-based numerical 201 

simulation to account for the acoustic wave propagation and amplitude variation due to the weather 202 

variability. We use the finite-difference code, ElAc, to calculate numerical Green’s functions from the 203 

source to the receivers. ElAc is a seismoacoustic code developed by Lawrence Livermore National 204 

Laboratory (Petersson and Sjogreen, 2018) and used for full-waveform simulation of acoustic waves in 205 

the atmosphere (Kim and Rodgers, 2017; Kim et al., 2018). ElAc solves the Linearized Euler Equation 206 

in the atmosphere with 6th order finite-difference scheme which satisfies the summation-by-parts 207 

principle and guarantees the stability of solutions (Strand, 1994). It also adopts curvilinear grids 208 

following surface topography. This terrain-following grid defines smooth surface boundary removing 209 

artificial scattering of waves due to the staircase approximation of interface boundary in rectangular 210 

grids.  211 

 212 

The numerical simulations are performed in the spatial domain over 20 km in the north-south and 7 km 213 

in the east-west direction. The vertical extent of the domain is 4 km above the ground. The ground 214 

surface elevation (Figure 1) is specified by the US national digital elevation model with a 10 m spatial 215 

resolution. The grid spacing of finite-difference stencil is 3 m which satisfies the requirement of eight 216 

grid points per wavelengths and minimize artificial dispersion up to 10 Hz. For numerical source time 217 

functions, we used a Gaussian-type function with a corner frequency of 10 Hz. The numerical Green’s 218 

functions with this configuration are valid up to 10 Hz, providing the transmission loss in Equation 3. 219 

 220 

The background condition of atmosphere for the simulation is specified by the local radiosonde 221 

sounding data. The temperature, wind, and pressure profiles obtained before the shots were used for the 222 

simulations. Since we have only one profile at a single position, the atmosphere is defined as 1-D, 223 

horizontally stratified layers. Although the Earth’s atmosphere is generally characterized by stratified 224 

layers due to the gravity, the ABL near the ground can be highly turbulent by diurnal heating/cooling 225 

and complex topography of the ground (Kim et al., 2018). In that case, the 1-D atmosphere model in 226 

the simulations may underestimate the lateral variability of the ABL and produce large prediction errors 227 

for wave amplitudes.  228 



 229 

The modeling results are shown in Figure 5 for LSECE-1. The images of acoustic wave propagation 230 

are captured in a vertical cross-section in the north-south direction from the source. In the beginning of 231 

simulations, the acoustic waves propagate spherically near the source, but the overall wavefront starts 232 

undergoing distortion by the atmospheric sound speed structure at further distances. As we expected 233 

from the temperature and wind profiles in Figure 2, the acoustic waves are trapped in the waveguide 234 

below 1km to the south, and their amplitudes are much larger than waves traveling to the north. This is 235 

due to the directional wind. The strong wind to the south created the waveguide but reduced the 236 

effective sound speed gradient to the north, resulting in lower amplitudes in the north direction. 237 

 238 

Figure 6 and 7 show the quantitative comparison of numerical simulation and observations for LSECE-239 

1. Figure 6 compares the observed signal at 1 km south from the source with the numerical simulation 240 

results and empirical model. The waveform data and predicted models are aligned with respect to their 241 

peak amplitudes for relative amplitude comparison. The empirical waveform was obtained from the 242 

acoustic source model proposed by Kim et al (2021), hereafter called K21. The K21 model was scaled 243 

for 992 kg TNT explosion, and the amplitude attenuation to the observation distance was calculated by 244 

the geometric spreading (inversely proportional to the distance) in a homogeneous atmosphere. At the 245 

relatively close distance from the source, both the empirical and finite-difference models show good 246 

agreement with the observations indicating that the propagation effects due to atmospheric variation are 247 

not significant. However, the predictions from the two models are completely different at the distance 248 

of 7 km in Figure 7. The observed amplitudes are considerably larger than the prediction by the 249 

homogeneous K21 model. The observed acoustic signals are enhanced by the waveguide near the 250 

ground, but the empirical model with a homogeneous atmosphere cannot account for this effect and 251 

results in significantly underestimated amplitudes at 7 km. However, the finite-difference model takes 252 

into account the sound speed profile near the ground and predicted comparable amplitudes to the 253 

observation. These apparent acoustic source model and linear propagation simulation are intended to 254 

predict acoustic energy attenuation in the far field out of the nonlinear shock regime (Kim et al., 2021; 255 

Kim and Pasyanos, 2022). The linear acoustic modeling may not be suitable for the prediction of signal 256 

arrival time in the local distances as the blast waves propagate faster than the speed of sound near the 257 

source. 258 

 259 

Figure 8 and 9 compare the signals for LSECE-2. As for Figure 6, the observation signal at 1 km south  260 

shows good agreement with either empirical or numerical model for LSECE-2. The empirical models 261 



for LSECE-1 and 2 indicate that the weather condition is not critical to the acoustic amplitude variation 262 

at the close distance, and the homogeneous atmosphere model can be used for the prediction regardless 263 

of weather conditions. However, at 7 km from the source in Figure 9, the empirical model substantially 264 

overestimated acoustic amplitudes due to unaccounted upward refraction in the negative temperature 265 

gradient and may not be suitable for relatively long-distance propagation. The finite-difference 266 

simulation still shows good agreement with the observations as in LSECE-1. As long as appropriate 267 

weather profiles are used, the physics-based numerical modeling seems to have the capability to 268 

account for acoustic wave propagation near the ground. 269 

 270 

3.3. Yield Estimate for Surface Explosions 271 

 272 

The yield estimation based on Equation 3 requires the acoustic source spectrum and transmission loss 273 

calculation for acoustic energy radiation. We used the K21 model to obtain acoustic source spectra for 274 

arbitrary yields.  The K21 model was empirically developed by surface explosion data and can be 275 

directly used for yield estimation of surface explosions like LSECE. Based on the scaling law of blast 276 

waves (Kinney and Graham, 1985) and regression analysis of the data, the standard waveform (p(t)) for 277 

a 1kg TNT explosion at the surface was determined in K21. This waveform represents apparent 278 

acoustic pressures recorded at 1m from the source and is defined by the analytic functions as  279 

 280 

𝑝(𝑡) = {

𝑝𝑝 (1 −
𝑡

𝑡𝑝
) , 0 ≤

𝑡

𝑡𝑝
≤ 1,

𝑝𝑝
1

6
(1 −

𝑡

𝑡𝑝
) (1 + √6 −

𝑡

𝑡𝑝
)
2

, 1 <
𝑡

𝑡𝑝
≤ 1 + √6.

                            (4) 281 

 282 

Based on the statistical properties of the data, the probability distribution of the peak pressure (pp) and 283 

positive period (tp) is also expressed in the bivariate normal distribution (), 284 

𝜌(𝑝𝑝, 𝑡𝑝) =
1

2𝜋𝛿𝑝𝛿𝑡√1−𝑐2
𝑒𝑥𝑝 {

−1

2(1−𝑐2)
(
(𝑝𝑝−𝑝𝑝)

2

𝛿𝑝
2 +

(𝑡𝑝−𝑡𝑝)
2

𝛿𝑡
2 − 2𝑐

(𝑝𝑝−𝑝𝑝)(𝑡𝑝−𝑡𝑝)

𝛿𝑝
2𝛿𝑡

2 )},    (5) 285 

where 𝑝
𝑝
= 86,900 Pa and 𝑡𝑝=5.0810-3 s. 𝛿𝑝

2 and 𝛿𝑡
2 are the variances of 𝑝𝑝 and𝑡𝑝, respectively, and c 286 

is the covariance shown in the Table 2 in Kim et al. (2021). From Equation 4 and 5, acoustic source 287 

waveforms for 1kg TNT explosion are calculated and scaled for arbitrary yields following the scaling 288 

law as 289 

 290 



 291 

𝑝𝑝(𝑊) = 𝑝𝑝
𝑃𝑎

𝑃0
(
𝛼𝑊

1
3

𝑓𝑑
),                                                      (6) 292 

𝑡̂𝑝(𝑊) = 𝑡𝑝 (
𝛼𝑊

1
3

𝑓𝑡
),                                                          (7) 293 

𝑓𝑑 = (
𝑃𝑎

𝑃0
)
1 3⁄

(
𝑇𝑎

𝑇0
)
−1 3⁄

,                                               (8) 294 

𝑓𝑡 = (
𝑃𝑎

𝑃0
)
1 3⁄

(
𝑇𝑎

𝑇0
)
1 6⁄

,                                                 (9) 295 

 296 

 297 

where 𝑝𝑝 and 𝑡̂𝑝 are peak pressure and positive period for arbitrary yields W. The atmospheric 298 

correction factors 𝑓𝑑 and 𝑓𝑡 are obtained by the atmosphere temperature (𝑇𝑎) and ambient pressure (𝑃𝑎) 299 

in comparison with the reference 𝑃0=101,325 Pa and 𝑇0= 288.15 K. Note that the effective yield is 300 

determined by the effectiveness factor (). In this study, the effectiveness factor was assumed 2 as the 301 

ground surface effectively doubles the acoustic energy for surface explosions (Kinney and Graham, 302 

1985; Kim and Rodgers 2016). 303 

 304 

Figure 10 shows the process to predict the acoustic spectrum. First, we generated 500 random 305 

realizations of source spectra at a given yield based on the probability distribution of the K21 model. 306 

Transmission losses are calculated by dividing synthetic Green’s function for each station by the 307 

Green’s functions at 1m from the source. The prediction at the observing station is made by multiplying 308 

the source spectrum and transmission loss in the frequency domain (described in Equation 3). Finally, 309 

the acoustic energies for the observations and predictions are measured between 1 – 10 Hz following 310 

Equation 3 and compared for different yields between 1 kg and 20 metric tons. We observed the peak 311 

frequency near 5 Hz in the recorded signals, and the frequency range for acoustic energy calculation 312 

includes the majority of observed energies. In addition, our finite-difference setup supports stable 313 

simulations up to 10 Hz. Due to the range of predictions made by the source model, the variance of 314 

acoustic energies in Equation 2 is directly calculated from the set of predictions. This variance of 315 

prediction depends on the variance of source model as the transmission loss is not a random variable in 316 

our approach. However, the variance of the K21 model was determined by local acoustic observation 317 

from various yields and distances, and thus, represents possible variability of local acoustic amplitudes. 318 

 319 



Figure 11 and 12 show estimated yields and their probability distribution for LSECE-1 and 2 based on 320 

Equation 1 and 2. We calculate  the probability distributions for 8 stations located between 5.5 – 8 km 321 

from the source and combined them for the joint distribution. The stations within a 5 km distance may 322 

be able to improve the accuracy of estimated yields. However, they are generally independent to 323 

weather conditions as shown in Figure 6 and 8 and not suitable for evaluating the yield estimation 324 

capability in different weather conditions. For LSECE-1, the maximum likelihood yield estimate is 325 

1287 kg for explosion at surface. The 99% confident interval is between 963 – 1920 kg showing 326 

acceptable ranges. LSECE-2 shows the estimate yield of 550 kg at the maximum likelihood and the 327 

99% confidence interval between 420 – 781 kg. This yield is considered significantly underestimated 328 

as the nominal yield falls out of the confident range. This large error for yield estimation seems to be 329 

caused by the propagation prediction errors due to the poor resolution of atmospheric specification. In 330 

this study, we assumed 1-D stratified atmosphere due to limited atmospheric data. However, the 1-D 331 

model may not represent the lateral variability of the ABL resulting in large prediction error (Kim et al., 332 

2018). 333 

 334 

Although the propagation simulation and estimated yields strongly depend on the accuracy and 335 

resolution of weather specification, our approach using the physics-based propagation model showed 336 

significantly improved results than those by the homogeneous K21 model. Figure 13 and 14 show the 337 

estimated yield by those two prediction models. The homogeneous model estimates the yields of 3464 338 

kg for LSECE-1 and 308 kg for LSECE-2, which have unacceptably large error. In contrast to the 339 

homogeneous model, the finite-difference simulation results in more reasonable estimation error. 340 

Higher-resolution weather specification should be the key to improve the accuracy of yield estimates in 341 

our approach. 342 

 343 

 344 

4. Seismoacoustic Approach for Yield and Depth Estimation 345 

 346 

4.1. Acoustic Likelihood 347 

 348 

Although the K21 model provides full waveform information of explosion-generated acoustic waves 349 

and can be used for a source model in Equation (3), it was developed based on only surface explosions 350 

and cannot be applied for explosions at arbitrary depth or height near the ground. In this section, we 351 

explore the explosion blast model developed by Ford et al. (2014, 2021) for simultaneous yield and 352 



depth estimation for acoustic waves. By using a series of low-yield near-surface chemical explosion 353 

experiments, Ford et al. (2021) developed an empirical model which provides acoustic pressure and 354 

seismic motion prediction at a given yield and depth/height. The Ford’s model for soft-rock (e.g., 355 

alluvium) defines atmospheric overpressure impulse (𝑖𝑠) as 356 

 357 

𝑙𝑛(𝑖𝑠) = 𝛽1 + 𝛽2𝑙𝑛(𝑟𝑠) + 𝛽3ℎ𝑠 − 𝑙𝑛[1 + 𝑒𝑥𝑝(𝛽3ℎ𝑠)],                              (10) 358 

𝛽1 = 6.16, 𝛽2 = −1.14, 𝛽3 = 5.06, 359 

 360 

where the scaled impulse (𝑖𝑠), scaled range (𝑟𝑠) and the scale height-of-burst (ℎ𝑠) are the quantities 361 

scaled for a 1kg TNT explosion. Equation (10) calculates overpressure impulses which depend on not 362 

only the source size (W) and depth (ℎ𝑠) but also the propagation distance (𝑟𝑠). Later, Kim and Rodgers 363 

(2016) defined the reduced acoustic impulse from Equation (10). Unlike the acoustic impulses in 364 

Equation (10), the reduced acoustic impulse is a source property depending only on the size of source 365 

representing apparent impulse at 1m from the explosion and defined as  366 

𝐼1𝑘𝑔 = 2𝜋𝑟𝑠𝑖𝑠(𝑟𝑠),                                                           (11) 367 

 368 

where 𝐼1𝑘𝑔 is the reduced acoustic impulse for 1kg TNT explosion, 𝑟𝑠 = 20m, 2𝜋 is a geometric 369 

spreading factor in a halfspace. The reduced acoustic impulse for arbitrary yields can be obtained by 370 

the scaling law as 371 

 372 

𝐼𝑊(𝑊) = 𝐼1𝑘𝑔𝑓𝑡𝑊
2 3⁄ ,                                                     (12) 373 

 374 

where 𝑓𝑡 is the atmosphere correction factor in Equation (9). We explore the variation of the reduced 375 

acoustic impulse in a range of depths and yields and define the likelihood function with a normal 376 

distribution assumption as 377 

 378 

𝐿(𝐼𝑤) =
1

𝛿𝐼√2𝜋
𝑒𝑥𝑝 [

−1

2

(𝐼𝑤(𝑊,ℎ)−𝐼0 )
2

𝛿𝐼
2 ],                                     (13) 379 

 380 

where𝐼0  and 𝛿𝐼
2is the reduced acoustic impulse and its variance for a surface explosion of 1287 kg  for 381 

LSECE-1 and 550 kg for LSECE-2 (the estimated yield from the waveform inversion in this study). We 382 

calculated the variance of acoustic impulse (𝛿𝐼
2) from the acoustic impulses derived from the 383 



probability distribution for the surface explosions in Figure 11 and 12. Instead of individual distribution 384 

for each station, the final joint distributions for LSECE-1 and 2 are used to obtain the acoustic impulse 385 

distributions and their variances (𝛿𝐼
2). 386 

 387 

4.2. Seismic Likelihood 388 

 389 

Seismic yields are estimated using the regional waveform envelope yield method, first described in 390 

Pasyanos et al., (2012), which couples an explosion source with models to account for the propagation.  391 

In terms of specifics, we use the explosion source model of Walter and Ford (2018), where the 392 

propagation consists of calibrated coda shapes and Q with accompanying station site terms from an 393 

updated attenuation model for the United States (Pasyanos, 2013).  The method, initially developed for 394 

underground events, was extended to near-surface explosions in Pasyanos and Ford (2015) by using an 395 

energy-partitioning model (F14).  The material properties for the explosion source are taken from the 396 

measured parameters of the shallowest SPE DAG explosion (DAG-4): Vp=1416 m/s, Vs=805 m/s, 397 

1913 kg/m3, and gas porosity of 27.5%.  Envelopes from station TPNV between 4 and 10 Hz (4-6, 6-8, 398 

and 8-10 Hz) are used in the analysis.  We test yields ranging from 1 kg to 100 t TNT-equivalent and 399 

from heights of 10 m to depths of 10 m.  As expected from the coupling codes, there is a tradeoff 400 

between yield and depth, with a larger yield required for above surface events and a smaller yield for 401 

fully buried explosions. We find a minimum misfit of 1.0 tons and 1.5 tons at the surface for LSECE-1 402 

and 2, respectively.  Uncertainties, which are used to transform misfit into likelihood, are derived from 403 

uncertainties from the regressions in the surface coupling model (F14). These uncertainties could 404 

potentially be reduced by new regressions and additional modeling for a variety of material conditions. 405 

 406 

4.2. Joint Likelihood 407 

 408 

We follow the joint likelihood method for seismoacoustic yield estimation suggested by Pasyanos and 409 

Kim (2019). Assuming the seismic and acoustic observations are independent, the joint likelihood 410 

function (L) for yields can be constructed by the multiplication of the independent seismic and acoustic 411 

likelihoods as 412 

Lyield = Lacoustic x Lseismic. 413 

 414 

The combined likelihoods are shown in Figure 15 and 16. The likelihood functions are computed for 415 

the yields between 0.001 – 100 tons and depths between -10 – 10 m, and their cumulative likelihoods 416 



over the interval are normalized to unity. In general, individual likelihood from seismic and acoustic 417 

analysis has a strong trade-off between explosion yield and depth. The region with high likelihood 418 

values stretches over a wide range of depths, and it is difficult to determine a reliable depth based on 419 

either individual seismic or acoustic likelihoods. However, by combining the two likelihoods, the 420 

constraints for depths are significantly improved. Without any priori for the depth and yield, the 421 

maximum likelihood depths for LSECE-1 and 2 are estimated at -0.99 and 1.25 m, respectively, 422 

indicating near-surface explosions. The yields are also estimated as 1.0 ton for LSECE-1 and 2, which 423 

are improved from individual estimates. In addition, the shape of likelihoods is a well-defined ellipse, 424 

allowing for the reliable determination of yield and depth simultaneously. This improvement was 425 

achieved by the different sensitivities of seismic and acoustic signals to the depth of explosions. 426 

 427 

The uncertainties of combined likelihoods are also affected by the individual likelihoods. The variance 428 

of yields in the acoustic likelihoods appears smaller than that in seismic likelihoods for both LSECE-1 429 

and 2.  This observation may reflect the fact that sound speed structures of the atmosphere are 430 

relatively simpler than the subsurface seismic velocities at the considered wavelengths and results in 431 

less variability of acoustic signals. The small variance of acoustic likelihood significantly reduced the 432 

uncertainty of joint likelihood. This suggests that either more accurate seismic or acoustic likelihood 433 

can complement the other to improve the accuracy of resultant yield and depth estimates. 434 

 435 

5. Conclusion 436 

We investigated the capability of seismoacoustic yield estimation for chemical explosions in different 437 

meteorological conditions. The LSECE experiment with two surface detonations before dawn and in 438 

the afternoon provided the rare ground-truth data for seismic and acoustic signal generation and 439 

propagation. The data showed that the excitation of seismic and acoustic energy is consistent but 440 

acoustic propagation is significantly affected by the variation of atmospheric boundary layer near the 441 

ground. Without accounting for this atmospheric propagation-path effect, the yield estimation by the 442 

acoustic-only signals would have unacceptably large uncertainty. Individual seismic and acoustic yield 443 

estimation showed large uncertainty for depth determination. However, by combining seismic and 444 

acoustic likelihoods, the depth constraint was significantly improved, allowing for reliable 445 

determination of both depth and yield. Our analysis also showed the seismic and acoustic likelihoods 446 

effectively complement each other to not only improve the accuracy of yield and depth but also reduce 447 

the uncertainty of the estimates. 448 

 449 



Data and Resources 450 

Data collected as part of LSECE are under a two-year embargo and is anticipated to be available to the 451 

public at the IRIS Data Center (www.iris.edu) starting in October 2022.  Seismic data from TPNV is 452 

part of the U.S. National Seismic Network (https://doi.org/10.7914/SN/US) and data is available at the 453 

IRIS Data Center. 454 
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 578 

Figure 1. The acoustic sensor network (white circles) deployed for the LSECE experiment. Ground 579 

zero is denoted by the red star, and the seismic station (TPNV) used for the analysis is indicated by the 580 

blue triangle.  581 



 582 

Figure 2. Atmospheric temperature and meridional wind profiles measured by local radiosonde 583 

sounding. The effective sound speed profiles to the south were computed from the temperature and 584 

wind data.  585 



 586 

Figure 3. Peak overpressure measurements for LSECE. LSECE-1 (blue circles) and 2 (green circles) 587 

are compared with other dataset (gray circles) published by Schnurr et al. (2020). The peak amplitudes 588 

and distances are scaled for a 1kg TNT explosion on the surface. The red dashed line and vertical error 589 

bars denotes the mean and standard deviation of the other dataset. The black dashed line is a semi-590 

empirical blast model published by Kinney and Graham (1985), which assumes propagation in a 591 

homogeneous atmosphere.  592 



 593 
 594 

 595 
Figure 4. Seismic signals recorded for LSECE-1 and 2. Seismic phases and ground-coupled acoustic 596 

waves (following the seismic phases) are recorded on the seismometer (top). The Pg, Sg, and I labels 597 

mark the approximate arrivals of the P-wave, S-wave, and acoustic wave, respectively. The direct 598 

comparison of the seismic portion is shown on the bottom panel. 599 

  600 



 601 

 602 

 603 

 604 

 605 

Figure 5. Finite-difference simulation images of acoustic wave propagation for LSECE-1. The images 606 

illustrate acoustic propagation on a vertical cross-section in the north-south direction from the source. 607 

a) Early wavefront development near the source 7 seconds after the detonation. The wavefront is 608 

characterized by spherical radiation. b) Wavefronts after 23 seconds of the detonation. The wave 609 

amplitudes are significantly different in the south and north directions. The high amplitude in the south 610 

is attributed to the waveguide observed in the radiosonde profiles (Figure 2). 611 

  612 



 613 

Figure 6. Waveform prediction for LSECE-1 in time (left) and frequency domain (right). The blue line 614 

is the observed signals at 1 km from the source to the south. The red line is the synthetic waveform 615 

predicted by the finite-difference simulation using the local weather data for background atmosphere. 616 

The black dashed line is the K21 model assuming homogeneous atmosphere. The data and predicted 617 

models are aligned with respect to their peak amplitudes for comparison. At this close distance, the 618 

empirical K21 model shows good agreement with the observation. Note that the finite-difference 619 

simulation result is band-limited. Below 10 Hz, the finite-difference model is also in good agreement 620 

with the observation. 621 

 622 

Figure 7. Waveform prediction for LSECE-1 at 7 km to the south. The blue, red, and black dashed lines 623 

are the observation, finite-difference model, and K21, respectively as for Figure 6. At this distance, the 624 

K21 model shows large prediction error due to unaccounted atmospheric propagation effects. However, 625 

the finite-difference model shows much better fit to the data, particularly below 10 Hz.  626 



 627 

Figure 8. Waveform prediction for LSECE-2 at 1 km to the south. The blue, red, and black dashed lines 628 

are the observation, finite-difference model, and K21, respectively as for Figure 6. As in Figure 6, both 629 

K21 and finite-difference models show good agreement with the data at this distance, indicating 630 

insignificant weather impact on propagation.  631 

 632 

 633 

Figure 9. Waveform prediction for LSECE-2 at 7 km to the south. The blue, red, and black dashed lines 634 

are the observation, finite-difference model, and K21, respectively as for Figure 6. As for LSECE-1, 635 

finite-difference model show much better prediction than the K21 model.  636 



 637 

Figure 10. Acoustic signal prediction in the frequency domain. The source spectrum at a given yield 638 

(black line) is multiplied by the transmission loss (green line) to obtain frequency spectrum of 639 

prediction (blue) in comparison with the data (red). The K21 model provides the probability 640 

distribution of the source spectrum, leading to random realizations of possible sources (gray lines). 641 

Based on the source spectrum variation, a group of predictions (gray lines) are made for the 642 

observations.  643 



 644 

Figure 11. The probability distribution of the estimate yield for LSECE-1. The grey lines are 645 

distributions for individual stations, and the black line is the joint distribution made of the individual 646 

distributions. The 99% confidence interval was denoted by the shaded region. 647 

  648 



 649 

Figure 12. The probability distribution of the estimate yield for LSECE-2. The grey lines are 650 

distributions for individual stations, and the black line is the joint distribution as for Figure 11. The 651 

99% confidence interval was denoted by the shaded region.  652 



 653 

Figure 13. The comparison of estimated yields and probability distributions for LSECE-1. The 654 

distributions are obtained by the inversions with the finite-difference modeling (red) and K21 model 655 

with homogeneous atmosphere (blue). The maximum-likelihood yields are estimated as 1287 kg for the 656 

finite-difference model and 3463 kg for the K21 homogeneous model.  657 



 658 

Figure 14. The comparison of estimated yields and probability distributions for LSECE-2. As for 659 

Figure 13, the red and blue lines are the distributions obtained by the finite-difference modeling (red) 660 

and K21 model with homogeneous atmosphere (blue). The maximum-likelihood yields are estimated as 661 

550 kg for the finite-difference model and 308 kg for the K21 homogeneous model.  662 



 663 

Figure 15. Likelihoods of explosion yields and depths for LSECE-1. Acoustic (left) and seismic (right) 664 

likelihoods are combined for the joint likelihood (right). The maximum likelihood yields assuming a 665 

surface explosion are denoted by the white star. The maximum likelihood yields without depth 666 

assumption are denoted by the white circle. 667 

  668 



 669 

 670 

Figure 16. Likelihoods of explosion yields and depths for LSECE-2. Acoustic (left) and seismic (right) 671 

likelihoods are combined for the joint likelihood (right). As for Figure 15, the maximum likelihood 672 

yields with/without a priori depth are denoted by the white star and circle, respective 673 


