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HIGH TEMPERATURE ELECTROCHEMICAL SENSORS FOR IN-SITU CORROSION MONITORING IN
COAL-BASED POWER GENERATION BOILERS

1. EXECUTIVE SUMMARY

In this project, we successfully achieved the goals we proposed: @ optimization and
development of electrochemical sensor, @ sensor construction and package, @ sensor
testing @Longview Power Plant and data analysis, @ lab-scale sensor optimization and
corrosion database development, @ electrochemical and corrosion monitoring validation and

(®) TEA.

2. OBIJECTIVES

The primary objectives of this project are (1) to validate the effectiveness of our pervious
electrochemical sensor for high temperature (HT) corrosion in coal-based power generation
boilers; (2) to optimize our HT sensor (current in technology readiness level (TRL) 6 to reach
TRL-7, and (3) to develop a pathway toward commercialization of such technology.

Based on our project timeline, the milestone updates in this quarter mainly include “Task 1
Project Management”, “Subtask 2.1 Design & construct sensors”, “Task 3 Developing signal
processing and communication instruments”, “Subtask 5.1 Lab-scale sensor optimization”,
“Subtask 5.2 Electrochemical and corrosion monitoring validation” and “Subtask 6.1 NPV model

& uncertainty analysis”.
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4. PROGRESS OF THE PROJECT

Corrosion requires prevention and maintenance across many industries, and the total direct

cost of corrosion for industrialized countries has typically been estimated to be 3% of GDP. A

2002 study initiated by the National Association of Corrosion Engineers estimated that 25% of

that cost could be saved using known preventive techniques. That study also segmented the

United States’ estimated $S276B direct annual cost of corrosion into different industries. The

utilities industry has a large corrosion burden of $47.9B—with S$7B direct, or $17.3B indirect,

costs for electrical utilities. The estimated direct costs for fossil fuels is $1.9B, of which the

Electric Power Research Institute estimates a large portion (S590M) is due to fireside

corrosion—the target of this project. But the indirect costs may be higher, as it is estimated




that 50% of unplanned downtime in power plants is caused by contaminants in the water-
steam circuit, primarily due to corrosion. Corrosion becomes an even greater challenge as fossil
fuel-power stations move to ultra-supercritical operation to enhance efficiency. The higher
temperatures cause more corrosion and make monitoring more difficult.

Task 1 Project Management and Planning

The WVU management team is responsible for project management activities: reporting,
organizing, and hosting project meetings, tracking project milestones, and substantiating the
decision metrics.

Task 2 Sensor Development & Optimization
Task 2.1 Design & construct sensors
The set-up of electrochemical sensor

Figure 1 depicts the schematic of the electrochemical sensor set-up. It is clearly shown that it
includes three units: electrochemical sensor, data acquisition system and temperature
controller. The main body of this sensor is made of 304 stainless steel which can effectively
resist high temperature oxidation. All the lead wires, i.e., nichrome, are shielded in the
stainless-steel tube to avoid undesirable oxidation. In the electrochemical sensor, there are
several electrodes/parts: two identical working electrodes, one reference electrode, an electric
resistor and one thermocouple. All these signals including the electrical resistance, the
potential noise between the reference electrode and one working electrode, the current noise
between two identical working electrodes, the actual exposure temperature, are monitored
and recorded by the data acquisition system. The actual exposure temperature on the surface
of these working electrode is automatically controlled by the feed of compressed air. The flow
rate of compressed air is automatically adjustable based on the difference between the actual
temperature and target temperature.
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Figure 1: the schematic of the electrochemical sensor set-up

In the electrochemical sensor, the electric resistance and thermocouple are commercially
available. The working electrode is TP347H, the same materials used as the superheat in the
Longview Power Plant. The reference electrode is a platinum rod with a diameter of 5 mm.

Task 2.2 Sensor packaging
Data acquisition system
@ Requirements

For the data acquisition system, named PIECES therefore after, its requirements for each
measurement type are described in detail below.

TC: The thermocouple requires a voltage measurement between its two terminals. This voltage
indicates the temperature differential between the sensor in the boiler and the cold junction at
the measurement interface in PIECES. To refer this temperature differential to an absolute
temperature, PIECES must include a temperature sensor. Additionally, a mathematical
conversion function is applied to convert the thermocouple voltage value to a temperature
value—the conversion function depends on the type of thermocouple, which was not known at
the time of PIECES hardware design. To determine generic thermocouple measurement
requirements, Figure 2 shows the temperature-to-voltage relationship for several standard
thermocouple types over the temperature range of interest—room temperature, the expected
temperature range in the boiler (300°C-450°C), as well as the temperature for ultra-supercritical
boilers (760°C). The Figure 2 also shows the slope with respect to temperature and the error
range. These thermocouple characteristics come from Fluke’s online calculator. Based on these



characteristics, the requirements for measuring the thermocouple include a £100 mV range to
provide overhead for up to 60 mV readings, an offset of 100 uV or less to keep the uncalibrated
measurement offset on the same order as the thermocouple error (the offset can be further
calibrated to reduce the temperature uncertainty), and a resolution of 50uV or less to resolve
2°C temperature changes for the least sensitive thermocouples.
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Figure 2: Standard thermocouple characteristics. (top) Voltage-to-temperature relationship. (middle) Slope of
voltage with respect to temperature (i.e., Seebeck coefficient). (bottom) Standard limit of error in terms of voltage.

ER: The electric resistance sensor requires a measurement of the resistance of a wire inside the
sensor. The expected range of resistance values is 0.1Q to 5Q, and it is desired to resolve
resistance changes of 0.01Q. For such small resistance values, the resistance of the cable
becomes a significant source of error, so it is recommended to use a four-point Kelvin
connection where separate pairs of leads are used to stimulate and measure the resistor.

Table 2. Sensor measurement requirements. Spectral noise given at 0.1Hz.

Min Max Offset Resolution Sample Rate
TC | -100mV | 100mV | 100uV 50uv <10sps
ER 0.1Q 50 0.10 0.01Q <10sps
ECN | Voltage | -300mV | 300mV | 100puV 1012 V2/Hz <10sps
Current | -50pA | 50pA | 50nA | 2.5x1072° A%/Hz <10sps

ECN: The ECN sensor requires multiple measurement options. If a reference electrode is used,
then voltage should be measured between each working electrode and the reference
electrode. Otherwise, voltage should be measured between each pair of working electrodes.



This voltage measurement should have a high input impedance. In addition to voltage
measurement, current should be measured between every pair of working electrodes. The
current measurement should not affect the WE voltages, so a very small shunt resistor or a
transimpedance amplifier should be used to convert the current into a voltage for
measurement.

ECN measurement requirements can be determined from the data of the previous sensor
(Figure 3). The current covers a range from 1.6pA to 20.5uA, so a #50pA range and a 50nA
uncalibrated offset is sufficient. The voltage covers a range from -192mV to 7.8mV, so a
+300mV range and a 100V uncalibrated offset is sufficient. Since the ECN data will be analyzed
in spectral form, the critical resolution requirement is the low-frequency noise, which should be
low enough to not affect the measurement. Noise accumulates as a sum of squares, so if the
squared noise density of the measurement interface is 30-times less than the squared noise
density of the sensor, then the measurement interface will have approximately 0.1% effect on
the measurement. The corresponding voltage and current noise for 0.1% effect at 0.1Hz is 10-
12 V2/Hz and 2.5x10-20 A2/Hz, respectively. Although this resolution only specifies the noise at
one frequency, a chopper-modulated input will typically be used in precision interfaces, which
keeps the noise relatively flat at lower frequencies, where the sensor noise increases.

Other requirements: The measurement capabilities should be configurable to handle sensors
with different sampling rates, different combinations of electrodes, etc. For all of the
measurement types, the sample rate does not need to be greater than a few samples per
second. To handle different combinations of electrodes, the electrode connectors should be
individual and interchangeable. Banana connectors will be used since they are standard on
electrochemical measurement equipment.
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Figure 3: Electrochemical noise (ECN) measurements from the original WVU corrosion sensor. Both current (top)
and voltage (bottom) are shown. (a) Time-series data. (b) Frequency-domain data via FFT.

@ Design

A modular approach has been used in the design of PIECES. This approach helps to minimize
cost and risk in this first prototype. Figure 4 shows the architecture of PIECES. The Front Panel
and Measurement Board are custom circuit boards, while the Embedded Controller and Radio

are off-the-shelf modules. The Front Panel provides the physical user interface and provides the
central set of electrical connections. Only minimal electronics components are placed on the
Front Panel (just LEDs and buttons) because the purpose of the Front Panel is to connect to the

sensors and to be a “dock” for the other modules. The Measurement Board and Embedded

Controller attach to the bottom of the Front Panel. The bulk of the components are placed on

the smaller Measurement Board; placing the components on a smaller board reduces the
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Figure 4: Modular architecture of PIECES.

assembly cost, which is based on board area for small volume manufacturing. Separating the
measurement circuitry also minimizes the cost of manufacturing any revisions.



Front Panel

The Front Panel of PIECES is shown in Figure 5. It measures 4”x8”. This panel will be mounted
on an enclosure that will contain the Measurement Board, the Embedded Controller, the Radio,
and the batteries. The Front Panel provides 14 banana plug receptacles for all of the sensor
electrode Configurations shown in Figure 1. Banana plugs were recommended since they are
standard for electrochemistry measurement equipment. While four-point resistance
connectors are provided on the Front Panel, two-point resistance measurements can be
performed by shorting the RV* plugs to the RI* plugs. Two buttons (B*) and three LEDs (L*) in
the top-left are firmware-Configurable and will allow the user to set modes and view status.
The firmware and settings will be developed in the next phase of the project. The top-left
corner of the Front Panel is designed to break off to expose the USB and ethernet connections
of a Raspberry Pi when that is used as the Embedded Controller.
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Figure 5: Front Panel of PIECES
Embedded Controller

The underside of the Front Panel provides connectors for multiple types of readily available
commercial embedded controllers. This provides options to begin with an easy-to-use, but
inefficient, controller to quickly prepare the firmware and iterate on changes as needed, and
then to swap to a more efficient controller once the requirements are better known. The three
types of embedded controllers that may be used are described below.

Raspberry Pi ($35): The Raspberry Pi is a popular computer platform that runs a full Linux
distribution. This allows software—such as for controlling the measurement board and logging



and visualizing data—to be developed rapidly with high-level software such as Python and GNU
Octave. The use of high-capacity micro-SD cards allow long-term local data logging, and USB
connections make it easy to transfer data from PIECES or to load user configureuration files.
Ethernet and Wi-Fi allow PIECES to easily work with cloud-based data systems.

Telos (~$100): The Telos “mote” is a legacy wireless sensor networking platform that supports
long battery life for low-data-rate applications, such as corrosion monitoring. It uses an
802.15.4 radio, as is common in industrial sensor networks. It has been used extensively for
wireless sensor network research at WVU, so a well-developed networking codebase built upon
TinyOS is available that will accelerate development.

Panstamp ($20): The Panstamp module uses similar hardware and the same radio as the Telos.
It supports lower power consumption and is more readily available. It has been used in
Aspinity’s other projects, but the wireless networking codebase is not as well developed as the
Telos code base, so it will be incorporated later.

Measurement Board

The measurement board provides a Configurable interface for voltage, current, and resistance
measurements on different combinations of electrode connections. These measurements and
Configurations are controlled by the Embedded Controller using standard chip-to-chip serial
interfaces (SPI for the measurements and I12C for the electrode Configurations).

The measurement board has been designed around a precision voltage-measurement core,
which can also measure current and resistance by adding additional components. Electronically
controlled switches are used to connect the electrodes in the desired combinations and to
switch in resistors and current sources to achieve current- and resistance-measurements with a
single voltage-measurement core. The motivation for basing all measurements around a single
core is that precision measurement devices with low drift and low temperature dependence
will be the most expensive part of the Measurement Board. Electronically controlled switches
with sub-ohm on-resistance and sub-nanoamp leakage currents are readily available at lower
costs than the measurement component, so the cost can be minimized by using switches to
reconfigure a single core that meets the specifications, rather than replicating precision
measurement channels.

The principle of performing the required measurements with a single voltage-measurement
coreis shown in Figure 6 and described below.



|SOUI’CE

Voltage

Voltage Voltage
Measure R Measure Measure

(a) (b)

Figure 6: Different measurements using a common voltage-measurement core. (a) Voltage. (b) Current. (c)
Resistance

(a) The Voltage Measure device measures the open-circuit potential of the sensor
electrodes.

(b) The Sensor current is converted to a voltage by the shunt resistor, R, which is switched
in across the measurement terminals only when measuring current. This is the same
current-measurement principle used in a multimeter. ECN current measurements
typically use transimpedance amplifiers—often called zero-resistance ammeters (ZRA) in
the electrochemistry field—to minimize the voltage drop across the sensor terminals.
That approach has not been used in PIECES due to a desire to accurately measure the
true current between a pair of electrodes, whereas a transimpedance amplifier would
only measure the current out of a single electrode. A precision Voltage Measure device
allows a small shunt resistor to be used while still providing precise current
measurement. This small resistor approximates the low-input impedance of a
transimpedance amplifier so that the effect on the electrode voltages is small.

(c) To measure the Sensor’s resistance, an on-board current source, lsource, Stimulates the
Sensor, while the resistance-induced voltage is measured by Voltage Measure. An
adjustable current source allows measurement of different ranges of sensor resistance.
Since the cable resistance will affect the result, separate connections from the Sensor to
Isource and Voltage Measure are provided to cancel out the cable resistance.

For the Voltage Measure core, we have selected the ADS1292 analog front-end chip, depicted
in the center of Figure 7. The ADS1292 is marketed for high-precision electrocardiogram
measurements, but it also has an excellent combination of specifications for the needs of this
project. It integrates two measurement channels, each with a low-offset, low-noise
instrumentation amplifier (I1A) and a 24-bit analog-to-digital converter (ADC). It also includes a
low-noise voltage reference and a spare operational amplifier (OPA). We are using the first
measurement channel for the Voltage Measure core, and the other measurement channel is
being used in combination with the spare op-amp in a feedback loop as the current source

ISOUFCG-
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Figure 7: Configurable measurements around the ADS1292 voltage-measurement core.

The circuitry that surrounds the ADS1292 for performing sensor measurements is shown in
Figure 7. The integrated precision reference is used for the data converters (ADC1/ADC2) and is
also divided by R17/R18 to generate the MIDRAIL reference for the board—this results in 1.2V
for MIDRAIL, which is half of the measurement range, but not half of the supply voltage (3.3V).
A switching network (not shown in the Figure) connects different pairs of electrode terminals to
the positive (SW_MEAS_P) and negative (MEAS_N) measurement inputs, which connect to the
ADS1292’s first measurement channel. Switches on SW_MEAS_P and MEAS_N allow either
terminal to be referenced to MIDRAIL, and also allow different shunt resistors (R19, R21, R22)
to be added for different current measurement ranges. The reason that two switches are used
to connect to IN1P is so that the smaller resistor (R19) can effectively be Kelvin-connected to
cancel the resistance of its switch, which would otherwise contribute an additional 0.5Q that
would be difficult to accurately account for. Precision wire-wound resistors are used for R19,
R21, and R22 because they are critical for accurate current measurement. An anti-aliasing filter
(not shown) is placed after 1A1, with its corner frequency set by an external capacitor.
Additionally, unpopulated RC footprints have been included at the input to IN1P/ININ to
provide the option for additional anti-alias filtering.

The bottom half of the schematic is used to generate the current /uce for resistance
measurement. This current is generated by a feedback loop in which Q1 drives /source ONto R23
to translate that current into a voltage that is amplified by IA2. The internal Configurations of
the ADS1292 allow either the positive or negative output of IA2 to connect to the inverting



terminal of OPA via a 400kQ resistor. C25 is connected in negative feedback around OPA to
integrate the difference between IA2’s output and the voltage set by potentiometer RV1. The
output of this integration drives the base of Q1 to complete the loop. Q1 is used to buffer the
output of OPA from Isource, Which is too high (10mA) for this integrated op-amp. The loop will
hold /source Steady, and the resulting current is determined by the setting on RV1 and by the gain
of IA2, which is programmable via SPI. That way, the current can be trimmed manually with
RV1, and then the gain of IA2 can be adjusted automatically to measure different resistance
ranges. A precision wire-wound resistor is used for R23.
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Figure 8: Ultra-low frequency characteristics of the ADS1292 compared to the sensor signal. The Sensor traces are
the same five voltage traces from Figure 9(b). The ADS1292 noise is much lower than the sensor signal, so the
measurement path will not affect ECN quality.

The ADS1292 was chosen for its low offset and low noise, but the datasheet does not provide
specifications for operation at the ultra-low frequencies used in this project. To ensure that the
part will work, its voltage-measurement noise was obtained in a similar setup as will be used for
this project. To measure the noise, the input terminals were shorted, and the voltage was
sampled once per second for approximately 1.5 days. The time-series data and spectral data
are shown in Figure 8. In the bottom plot, the low-frequency noise of the ADS1292 is low
enough to not affect the sensor readings, in fact it is ten times lower than the required
resolution value in Table 2.

The sensor terminals and assorted resistors are configured for different measurements using a
set of 24 digitally controlled switches. We have chosen the 8-switch MAX14662 chip, which
have an on-resistance less than 0.50hm and a sub-nanoamp leakage current. Figure 9 shows a



schematic of the electrode switch array. The set of 14 electrodes at the top can be connected to
the four bottom nets in different combinations to support the desired measurements. The four
bottom nets consist of SW_MEAS_P and MEAS_N, which are the differential inputs to the
measurement block (Figure 8), as well as SW_SOURCE and SW_BOTTOM, which are the current
source for resistance measurement. The resistor from SW_BOTTOM to ground serves to shift
the terminal voltages up to the middle of the common-mode range during resistance
measurement—a resistor can be used because the current is known (10mA) and is used instead
of a direct connection to MIDRAIL to reduce the output-impedance requirements of the
MIDRAIL buffer.

Measurement Specifications
The design described above meets the measurement requirements outlined in Table 1.

TC: The ADS1292 provides a measurement range up to 1.2V and an offset of 100uV. The
integrated noise is 37uVrms.

ER: The nominal source current for resistance measurement will be 10mA (although this can be
changed programmatically by adjusting the gain of 1A2). At 10mA, the voltage range for a
resistance range of 0.1Q to 5Q will be 1mV to 50mV, which is reliably measured by the
ADS1292. Furthermore, the resolution requirement of 0.01Q results in 100uV, which can be
resolved reliably.

ECN: (voltage) The ADS1292 provides a measurement range up to 1.2V and the ultra-low
frequency noise is 300-times less than the sensor signal (see Figure 8). (current) The switchable
shunt resistors provide a current measurement offset as low as 50nA and a range up to 60maA.
The largest resistor has been chosen to match the spot noise requirement.
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Operating Temperature Range

PIECES will operate outside of the boiler where the temperature is much lower. PIECES is built
from components to reliably operate at a temperature up to 85°C.

1. Embedded Controllers: The Telos controller is specified to operate up to 85°C and the
Panstamp’s components are also specified to operate up to 85°C. The Raspberry Pi is
specified for 85°C when the ethernet interface is not used.

2. Measurement Board: All of the parts on the Measurement Board are specified for 85°C
or higher, but the impact of the temperature dependence should be also considered.

a. Voltage Measurement: The reference in the ADS1292 has a temperature
coefficient of -45ppm/°C. From room temperature to 85°C the full-scale range
will change by approximately 0.2%.



b. Current Measurement: In addition to the reference’s temperature coefficient,
current measurement will be susceptible to the temperature coefficient of the
shunt resistors. The shunt resistors are wire-wound and have a low temperature
coefficient of +20ppm/°C. Additionally, the electronically controlled switches
have a leakage current that rises to 2nA at 85°C. The most sensitive path is the
positive measurement input, but its maximum leakage at 85°C is just 20nA,
which is still within the current measurement offset range of 50nA.

c. Resistance Measurement: Being built from the same components as the voltage
and current measurements, resistance measurement will have a similar
temperature coefficient.

All combined, PIECES will conservatively operate up to 85°C with less than 100ppm/°C
temperature dependence.

Analysis of Power Consumption

A short analysis of PIECES’ power consumption is provided to estimate the battery life. It is
assumed that there are four operating modes with different power levels: sleep, TC or ECN
measurement, ER measurement (which consumes more power because of the stimulating
current source), and wireless communication. The estimated supply current in each of these
modes is shown in Table 3. The digital supply current (DVDD) includes the quiescent current of
the TPS78330 regulator and the supply current of the Telos mote with radio, and the digital
supply of the ADS1202. The analog supply current (AVDD) includes another regulator, the
analog supply of the ADS1292, the MCP6001 op-amp, Isource, pOtentiometer, and Vref divider.
For the sake of this analysis, assume that PIECES spends 2ms on each measurement and 1ms to
transmit all of the measurements. PIECES will take 9 measurements (6 ECN, 2 ER, and 1 TC), so
it will spend 14ms in TC/ECN mode, 4ms in ER mode, 1ms in Comm mode, and 991ms in Sleep
mode. The average supply current will be 105uA, which will last for approximately 19 months
on AA batteries. This battery life can be increased by using the Panstamp controller instead of
the Telos, which has 20x lower sleep current, by reducing lsource, by taking less frequent readings
of some or all sensors (as opposed to reading every sensor every second), etc. Additionally, the
sub-milliamp average supply current allows energy harvesting to be used to enable battery-less
operation.

Table 3: Estimated supply current of PIECES in different operating modes.

Sleep TC/ECN ER Comm
DVDD | 0.026mA | 0.575mA | 0.575mA | 20mA
AVDD 0 0.427mA | 10.727mA 0
Total | 0.026mA | 1.003mA 11.3mA 20mA




Measurement Testing

Several tests were performed to verify the measurement performance of the PIECES device.
These include a long noise measurement to determine the low frequency noise, as well as
sweeps of voltage, current, and resistance to verify accuracy over the specified measurement
range.

(1) Noise measurement

Since the measurement interface is responsible for reading the Electrochemical Noise (ECN)
measurement, it is critical that the measurement interface provides a low input noise so that it
does not impact the ECN measurement. To determine the noise floor of the device, the WE1
and WE2 terminals were shorted and the voltage was sampled 10 times per second for 60
hours. The results are shown in Figure 10. The top pane shows the raw time-based data. The
device automatically performs offset correction at power up and then once per hour during
operation, which results in a very low offset during the measurement. It can be seen that the
maximum deviation is ~15uV from 10-12 hours. The square-wave deviations where the offset
oscillates up and down for the first 20 hours are the result of automatic offset nulling and
correspond to the time when a laptop was sitting next to the device. Overall, the entire
duration, the noise is 3.2uVms. The frequency distribution of the noise is shown in the bottom
pane. In the Phase 1 report it was determined that if the noise is below 1012 V2/Hz at 0.1Hz
then the impact on the sensor readings will be less than 0.1%. It can be seen from the bottom
pane that the noise of the measurement interface is sufficiently below the target. It appears
that the once-per-hour offset-nulling may have caused small spectral speaks at harmonics of
0.278mHz. These are still below the noise floor that is required for ECN, but could be further
minimized with dithering.
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Figure 10: Voltage noise measurement



(2) Voltage sweep

The accuracy of voltage measurement was determined by sweeping the input voltage and
measuring the resulting error with respect to the true reading from a Siglent SDM3055
multimeter. The results are shown in Figure 11, where the difference between the PIECES
measurement and the multimeter measurement are plotted on the y-axis. This experiment was
done with two different PIECES modules to verify consistency. The input range is approximately
-1.2V t0 1.8V, which is limited by the 3V supply used for the Measurement Board. This range
safely covers the range of voltages previously seen for the ECN sensor, which stayed within the
range of -0.3V to 0.3V. It can be observed from the Figure that the error is a function of the
input voltage and creates 0.176mV error per 1V increase for the first PIECES module and 2mV
error per 1V increase for the second PIECES module. Or in other words, the gain error of the
measurement is a maximum of 0.2%. Any gain error on the Measurement Board is likely caused
by the reference voltage that is used by the analog-to-digital converter, and which will vary
from module to module and is specified for up to 0.5% variation.
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Figure 11: Voltage measurement error
(3) Current sweep

Current measurement was tested by measuring over a range of current values. The results are
shown in Figure 12. Positive and negative current measurements are shown for two different
PIECES modules to verify consistency. The true current was measured using the Siglent
SDM3055 multimeter. The current measurement tracks the true value from 30nA to 1mA.
Current variations below 30nA can still be resolved, but a constant offset will be observed.
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Figure 12: Current measurement sweep
(4) Resistance sweep

Resistance measurement was tested by measuring over a range of resistors. The results are
shown in Figure 13. The true resistance was measured using the Siglent SDM3055 multimeter.
Small diameter wire-wrap wire was used to create smaller resistances and carbon composite
resistors were used for the larger values. The resistance deviates at low values due to a
measurement offset of a few 10s of milliohms. However, this is still within the range needed for
the ER measurements.
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Figure 13: Resistance measurement sweep

(5) Thermocouple sweep

The thermocouple measurement mode was tested by placing two thermocouples on a hot plate
and simultaneously reading one thermocouple with PIECES and the other thermocouple with a



Siglent SDM3055 multimeter. The results are shown in Figure 14. The measurements from
PIECES track the slope of the true readings, but with up to a 10°C offset, which is caused by the
cold-junction compensation process. The process for a thermocouple measurement is to read
the voltage across the thermocouple junction, which indicates the temperature differential
from the voltage-measurement location (i.e., cold junction) to the sensor location. To derive an
absolute temperature value, this voltage measurement must be summed with a voltage that
corresponds to the temperature at the cold junction. To achieve this “cold-junction
compensation,” PIECES is equipped with an MCP9808 temperature sensor. Unfortunately, this
temperature sensor was placed beside the Raspberry Pi board which has a higher temperature
than the actual cold-junction location, and thereby causes thermocouple readings that are
higher than the true values. To mitigate this, we are using the temperature sensor in the
ADS1292 which is further away from the Raspberry Pi. This sensor is giving readings that are
closer to what the temperature should be at the location of the cold junction, but it is still a
little warmer. Ideally, the temperature sensor should be placed directly at the cold junction.
The readings shown in Figure 14 use the temperature sensor in the ADS1292. The temperature
is calculated using Mosaic Industries’ Type K thermocouple calibration equation [1]. The cold
junction compensation was calculated using Mosaic Industries’ cold junction compensation
equation [2]. This method uses a rational polynomial function approximation using a least
squares curve fit of the National Institute of Standards and Technology (NIST) type K
thermocouple data.

250 T
© Measured Temperature
= True Temperature

200 [~

G 150 -

Temperature ( C|

0
0 50 100 150 200 250
True Temperature ( C)

Figure 14: Thermocouple Measurement Sweep
(6) Power supply interference

Power supply interference was tested using two scenarios to verify that reliable readings can be
obtained even when an unreliable power supply is used. In both scenarios, a 1Hz signal with 1V
amplitude was placed on the measurement line. The sampling rate was 100Hz.



During the first scenario shown in Figure 15, a 0.24Hz signal with 0.4V amplitude and 5V offset
was placed on the power line. While the 1Hz signal can clearly be seen, no interference can be
observed at 0.24Hz.

During the second scenario shown in Figure 16, a 60Hz signal with 0.4V amplitude and 5V offset
was placed on the power line. This test represents the typical expected scenario where power
supply noise—either caused by AC mains or by radio activity in the device—is expected to be
higher than the sampling frequency and would therefore show up in aliased form. Again, the
1Hz signal can clearly be seen while no interference can be observed at higher frequencies—

note that the 60Hz interferer would have aliased down to 40Hz if it were large enough to
observe.
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Figure 15: Power Supply 0.24Hz Interference with 1Hz signal  Figure 16: Power Supply 60Hz Interference with 1Hz
Signal

(7) Channel to channel interference

Channel to channel interference was tested to verify that signals on different sensor lines do

not interfere with each other. A 0.24Hz signal with 1V amplitude was applied to the RE line as
interference.

In Figure 17, a 6Hz signal with 1V amplitude was applied to WE1 and was measured. This signal
can be clearly observed, while no interference is seen at 0.24Hz.
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Figure 1: Channel to Channel 0.24Hz Interference with 6Hz Signal
(8) Intermodulation distortion

To verify the linearity of the PIECES measurement system, an intermodulation distortion test
was performed by applying a summed 0.24Hz and 0.25Hz signal each at 0.5V amplitude for a
combined 1V amplitude. PIECES was collecting at 100Hz sampling rate. The resulting spectra is
shown in Figure 18. The only peaks are at 0.24Hz and 0.25Hz—no discernable distortion was
observed in the form of additional peaks.
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Figure 2: Intermodulation Distortion (0.24Hz and 0.25Hz each at 0.5V amplitude)
(9) Out of band interference/aliasing

To determine the susceptibility to out-of-band noise—such as noise that may couple onto the
sensor cable—a test was performed measuring a summed 0.25Hz and 60Hz signal each at 0.5V
amplitude for a combined 1V amplitude. PIECES was collecting at 100Hz rate. An aliased spike
can be seen that wrapped from 60Hz to 40Hz—its amplitude is reduced by approximately half.



Aliasing can be further reduced by lowering the cutoff frequency of the on-board anti-aliasing
filters or by adjusting the scheduling of measurement readings in the firmware. However, it is
unknown at this stage what magnitude and frequency of cable noise to expect in the power
plant environment. Reducing aliasing noise will be a topic for the next Phase of the after on-site
measurements provide guidance on noise levels.
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Figure 19: Out of Band Interference/Aliasing (0.25Hz and 60Hz each at 0.5V amplitude)
Task 3 Developing signal processing and communication instruments
(1) Introduction

To realize the wireless control of the data acquisition system, networking capabilities have been
added to PIECES to enable remote data collection. Many options exist for networking sensors—
both between sensor and gateway and between sensor/gateway and the wider internet. Figure
20 shows the envisioned architecture that we are building, and which represents a typical
industrial 10T system. The Sensor converts the corrosion characteristics into electrical quantities
(i.e., voltage, current, resistance) that are measured by the Measurement Board.
Measurements are configured and scheduled by the Measurement Controller (via common
inter-integrated circuit protocols SPI and 12C), which also temporarily stores the data. The
Gateway aggregates data from multiple sensor nodes over time. We envision a Bluetooth Low
Energy (BLE) interface between the controllers and gateway due to its increasing use in
industrial systems. The Gateway sends the data to the internet via a cellular loT Network (LTE
Cat-M1) where the data is routed as HTTPS packets to a server for Storage & Visualization. We
used our own server for the last stage but envision porting to a cloud provider for enhanced
reliability.
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Figure 20: Envisioned data pipeline for the corrosion sensor

The pieces of Figure 20 are being built up over the various Phases of this project. The Sensor
Node portion was built in Phases 1-3 using a Raspberry Pi as the Measurement Controller. The
Gateway and Cloud portions have been built in Phase 4, with more focus on the Gateway and
Network pieces. In the remaining phases, the Measurement Controller can be ported from a
Raspberry Pi to a BLE System-on-Chip (SoC) to enable a battery-operated Sensor Node and the
Storage & Visualization can be expanded upon. This progression is illustrated in Figure 21.
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Figure 21: Progression from the Sensor Node built in Phases 1-3 to the complete data-collection stack envisioned
for this project. In Phase 4, we have built a fully working stack. The shortcomings are that the Measurement
Controller and Gateway are combined on one Raspberry Pi—so it does not allow battery operation nor multiple
sensors networked via a single Gateway—and the Storage and Visualization capabilities are minimal. These can be
expanded in the next Phases.

(2) Implementation

The cellular loT implementation for the Phase centered around the communication
architecture. The constraints and decisions for the architecture are illustrated in Figure 22. Even



though the Measurement Controller software and Gateway software are both running on the
same device in this implementation, we were careful to split their interfaces in preparation for
an architecture where multiple sensors are networked to the gateway. This set the requirement
that the interface between Measurement Controller and Gateway be architected to support an
eventual BLE implementation. In this implementation a TCP socket on the Raspberry Pi models
the BLE interface. To connect to the internet, loT sensors typically use lightweight protocols
because of limited resources on the devices and low data requirements. Our requirements for
the Gateway-to-Cloud interface were driven by the choice of cellular network provider (i.e.,
Hologram.io, more in Section 3.2), but our use of JSON formatting will work well with other
services.

The communication architecture allows data packets to be continuously sent from the PIECES
device to the cloud. Additionally, it allows communication from the cloud to the PIECES device
so that measurement settings can be adjusted, settings can be queried, and the device can also
be rebooted remotely if necessary. Furthermore, alarm thresholds can be set so that the PIECES
devices send a notification email when readings are out of range and may need to be checked
on.

The remainder of this Section describes the implementation details of each component,
including the Measurement Controller, Gateway, and Watchdog software on the PIECES
hardware, the Hologram cellular loT network, and the server.
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Figure 22: Constraints for the interfaces of the cellular loT communication architecture.

PIECES Device

@ Measurement controller software

The Measurement Controller software is the interface between the measurement hardware
and the rest of the stack. For this implementation it runs on the Raspberry Pi and is written in



C++. It includes the low-level firmware that interacts with the switch/ADC/etc. registers on the
Measurement Board. It also includes a TCP socket interface so the Gateway software can
communicate with it for everything needed to control and receive information from PIECES.

Measurement data is sent from the Measurement Controller over the socket in packets when a
parameterized data limit is reached. PIECES measurement control variables can also be set and
gueried via the socket. Every time that a command is sent from the Gateway to the
Measurement Controller, it will echo the command along with the response. This
“command/response with regular measurement data packets” setup is similar to how a
Bluetooth client/server system would work and should therefore be easy to move towards a
wireless solution.

All commands sent from the Gateway to the Measurement Controller start with either set for
setting a variable or get for querying a variable. After set or get, is the variable name. If the
client is setting a variable, there should be a number after the variable name which will be the
new value for that variable.

Example: set cCnt_En 1

Each variable name is made up of 2 parts separated by underscores. The 2 parts are referred to
as prefix and suffix. The variable names can be split into 3 categories:

1. Variables that affect the general controller operation: cCnt (described in Table 2),
2. Variables that affect the ADC: cAdc (described in Table 3),

3. Variables that affect the individual measurement types (measurement prefixes
described in Table 4 and variable suffixes described in Table 5).

Table 4: General Controller Variables

Variable Function Accepted
Input
cCnt_En Enable PIECES to take measurements. 0]1
Trigger a one-shot measurement of all enabled
cCnt_Trg measurement modes and immediately 01
transmit.
Cnt PkSz Number of bytes in data packets. (Smaller Positive
- values mean more frequent updates) integers
cCnt_DbgEn | Enable debugging messages. 01

Table 5: ADC Variables
Variable Function Accepted Input
12512501500 | 1000
[ 2000 | 4000 | 8000

cAdc Dr Data rate of ADS1292 ADC.




cAdc_C1Gain Gain for measure channel 1. 11231416812
cAdc_C2Gain Gain for measure channel 2. 11231416812
cAdc_Off En Enable automatic offset correction. 01

Interval (in seconds) for recalibrating

cAdc_Off Int .
- - offset correction.

Positive integers

cAdc_Oft Rawl | Offset correction for measure channel 1. Real numbers
cAdc_Off Rawl | Enable data transmit of channel 1 offset 01

En corrections.
cAdc_Oft Raw2 | Offset correction for measure channel 2. Real numbers
cAdc_Off Raw2 | Enable data transmit of channel 2 offset 01

En corrections.

Table 6: Measurement Type Prefixes
Prefix Function
cTc Thermocouple (°C)
cR1 Resistor 1 ()
cR2 Resistor 2 ()
cVIRE | Voltage (WEI to RE) (V)
cV2RE | Voltage (WE2 to RE) (V)
cV3RE | Voltage (WE3 to RE) (V)
cV12 Voltage (WE1 to WE2) (V)
cl12 Current (WEI1 to WE2) (A)
cV23 Voltage (WE2 to WE3) (A)
cl23 Current (WE2 to WE3) (A)
cV13 Voltage (WE1 to WE3) (A)
cll3 Current (WE1 to WE3) (A)
cT1 MCP9808 Temperature Sensor
QY
cT2 ADS1292 Temperature Sensor
(O

Table 7: Measurement Type Suffixes

Suffix Function Accepted Input
En Enable this measurement type. 01
SwLUT | Switch conFigureuration for this measurement type. 24 bits
Freq Sampling frequency for this measurement type. Positive real numbers
AvgNum | Number of readings to average into a measurement. Positive integers
AvgFreq | Frequency to take each reading. Positive real numbers
tEn Include time in data packets (time in seconds). 01
RawlEn | Include channel 1 raw voltage in packets (voltage). 01
Raw2En | Include channel 2 raw voltage in packets (voltage). 0]1
MeasEn | Include final measurement in packets (measure type). | 0] 1
ResEn | Include current-measurement resistance in packtes 01
(€2).

When the Measurement Controller collects enough data to reach the packet limit (i.e.
cCnt_PktSz in Table 4), it sends the data to the Gateway over the socket. Each variable in the
packet is formatted in groups of 5 bytes:

[id84, dataO, datal, data2, data3, id129, dataO, datal, data2, data3, ... |



The first byte is an identifier for the variable that follows in the next 4 bytes. There are currently
224 identifiers used in this architecture including all of the variables in the tables above. These
identifiers are listed in the file varlList.csv in the source code directory. The Measurement
Controller and Gateway both need to have the same copy of this list of identifiers so the
measurement packets can be deciphered. The 4 bytes following the identifier are either an
unsigned integer representation of the time (in milliseconds) or a floating-point representation
of the measurement values. Floating-point provides enough precision because the ADS1292 is a
24-bit ADC and floating-point provides 24 significant bits.

The Gateway software is the interface between the local sensor network of PIECES devices and
the cloud or the user. It runs on the Raspberry Pi and is written in Python. The Gateway
receives data packets from the Measurement Controller over a TCP socket, filters the data
required for the packet, encodes it, and sends it to the cloud at regular intervals based on
defined settings. It also accepts packets from the cloud containing new settings or queries and
arbitrates communication with the Measurement Controller. In addition to the cloud interface,
the Gateway software also accepts commands from standard input—so it can be controlled
directly by a user with a keyboard connected to the Raspberry Pi.

At startup, the Gateway accepts a *.csv file with the names of all the variables that are
measured or configureurable and a port number to connect with the Measurement Controller
as its input. It connects with the Measurement Controller via a TCP socket and with the cloud
via Hologram'’s Python API for the Nova cellular modem.

The gateway begins by reading an initial configureuration JSON file present in a local directory
(“configure.json”) that describes the measurement settings and other operation characteristics.
It loads the parameters from that file into its own parameters as well as loads them to the
Measurement Controller by sending them via the socket. Parameters starting with ‘g’ are only
for the Gateway and parameters starting with ‘c’ are for the Measurement Controller. These
initial loaded settings are also sent to the cloud at bootup with a “settings” tag so that the user
can see the current settings with which the device is running.

Once the initial configureurations are set, the gateway starts to accept the measured data from
the Measurement Controller, appends them to a dictionary data structure—using the variable
list *.csv file to obtain the keys for the dictionary—and unpacks the data to get the
measurement values for those keys. When a certain packet size (i.e. gateway parameter
gPktSize) is reached, the gateway concatenates all data into a JSON string based on the variable
name (only those variables that are enabled for transmission; i.e have “variablename_TX”:1 in
the configureuration settings), encodes it, compresses it, and transmits to the cloud via
Hologram. The full packet structure is shown below.



{"measdata":{"cl12_Meas":"MTE...","cl12_t":"MS4...",...},"metadata":...,"pktld":891}

The measdata field contains a field for each measurement variable (e.g. cl12_Meas) with the

array of measurements encoded as described below. The metadata field is a placeholder for

adding other information, and the pktld field provides a unique number for the packet to
ensure they are sorted in order.

The encoding for transmitting the measurement data consists of these steps:

Normalize and round to integers: Each measurement value is divided by the
g* scaleMeas variable and then rounded to an integer. The scaling is chosen to avoid
loss of precision. This normalizes the data—since the time, voltage, current, resistance,
and temperature all have different units—to prepare for encoding. The scale factor is
added as the first variable in the array that will be encoded.

Delta encoding: The differences between subsequent measurements are taken to
reduce the range of values that must be encoded. The starting value is appended to the
array that will be encoded, followed by each of the deltas.

Base64 encoding: The resulting array is converted to a string and then Base64 encoding
is applied to compress the string. Base64 meets the requirements that the data must be
encodable as an HTTP packet for the cloud communication.

In addition to transmitting data to the cloud, the Gateway also actively listens to data received

from the cloud and from standard keyboard input simultaneously while sending the data to

perform certain specific operations.

Commands from the server:

reboot - This reboots the pi and restarts the entire setup.
Data in json format - eg: {“cCnt_En”:0,”cCnt_Trg”:1}

o Once the gateway receives data messages in this format, it automatically
updates the ‘configure. Son’ file to these values and sends these Configurations
to the controller to set the variables.

Queries - eg: {“cCnt_En”":"?"}

o This is used to query the controller for the value of a specific variable. Once the
gateway receives the response to the query from the controller, it sends the
results to the cloud using a “query” tag where the value for the variable can be
seen.

Saving Configurations - eg: {“gConfSave”:1}

o Every time the present variable (gateway or controller variables) Configurations

are to be saved, the cloud must send the command above (either in isolation or



with other commands). This will save the current Configurations in
‘curr_configure.json’ (essentially merging the original ‘curr_configure.json’ which
was the last saved configureuration with the new configureurations sent as a
message to the gateway, currently reflected in ‘configure.json’). When the
program restarts or reboots, the gateway runs with these new settings that are
present in ‘curr_configure.json’.

Commands from standard input:

- get cCnt_En - From the keyboard, if we send ‘get’ with a variable name, it acts as a
guery and the controller sends back the value of the variable to the gateway.

- set cCnt_En 1 - Writing this on the gateway would set the particular variable with the
given value in the controller.

- exit - This is used to quit the program. The gateway and the measurement side exit on
receiving this command.

In addition to the communications described above, the Gateway also sends notifications based
on different events. When the device starts and the Gateway runs, it sends a ‘Powering on’
email to indicate everytime the program starts (or reboots). An email is also sent when the
measurement values fall outside of a set range. The message indicates the variable, the value it
is at currently, as well as the required range for that value.

If the modem connection goes away while the program is running, the data packets are
buffered up locally and are sent once the connection returns.

In order to recover from brownouts, PIECES starts automatically using the last configureuration
that it was given. This is done using the UNIX profile file. In the case of a software crash that
does not cause the unit to reboot, a software watchdog will close both the Measurement
Controller process and the Gateway process and restart them both using a new port number.
Whenever the Gateway process starts, an email notification will be sent to let the user know
that PIECES is starting. This way, the user may know if the unit had to restart. In the case that
this occurs, all the data currently being recorded will be saved to a directory called DUMPED
FILES. This directory can be retrieved by following the USB Data Transfer instructions. It cannot
be retrieved through the cloud interface.

Hologram Cellular loT Network

Given the deployment constraints for this device and guidance from the WVU team, it was
determined that communication should happen over a cellular network. A developer faces a
number of choices when connecting a sensor device to a cellular network. 2G/3G are common



for 10T setups, but they are sunsetting, so we preferred LTE. The remaining choices are the
modem hardware, the network provider, the cloud platform (which handles the interface
between the internet and the cellular network), and the cloud backend. We settled on
Hologram.io as they provide the modem hardware, the network, and the cloud platform
combined. Additionally, they have a simple pricing model with world-wide cellular coverage
agreements. They also have good documentation.

Figure 23: Hologram Nova cellular modem plugged into a Raspberry Pi.

We considered a variety of modems (Table 8) that are geared toward small projects before
settling on the Hologram Nova modem (Figure 23). The modems are all based around similar
chipsets, but the Nova modem had the advantage that it can connect directly via USB to the
Raspberry Pi that is already part of PIECES, so no hardware rework was required. Additionally, it
already has an API that runs on the Raspberry Pi.

Table 8: Summary of Cellular IoT Modem Modules

Module Mfg Modem Price Interface Processor | SIM Card
MKR 1400 | Arduino U-Blox SARA | $69 Arduino IDE | SAMD21 Not included
FONA Adafruit SIM5320A $79.95 | UART n/a Ting
Electron Particle U-Blox SARA | $69 Particle Dev STM32F2 | Particle
Nova Hologram | U-Blox SARA | $64 USB n/a Hologram

SIM cards and data plans for loT devices are widely available, including from most electronics
suppliers (e.g. Digikey, Adafruit, etc.). We chose Hologram for the reasons described above. The
following link can be referenced to activate SIM cards from Hologram:

https://support.hologram.io/hc/en-us/articles/360035697873-How-do-l-activate-SIMs-

To achieve reliable operation, we had to update the modem’s firmware, the link below is
referenced:


https://support.hologram.io/hc/en-us/articles/360035697873-How-do-I-activate-SIMs-

https://support.hologram.io/hc/en-us/articles/360035212594-Updating-the-Cat-M1-R410-
Nova-s-Firmware?

Toinstall the Hologram APl on the Raspberry Pi, the first two commands from the following link
are used:

https://hologram.io/docs/reference/cloud/python-sdk/

In order to use the Hologram API with Python3, line 336 in CustomCloud.py must be changed
from recv += result to recv += result.decode(). This may require changing the file’s access
permission.

Hologram'’s platform provides several ways to communicate with a device:

e To device
o Hologram cloud (acting as the interface between internet and cellular network)

= Web dashboard: Interactive dashboard where one can enter JSON strings
and send them to the device.

= RESTful HTTP: Send HTTP commands from any program. The example
below uses the UNIX curl command to say hello to the device. We have
created several Matlab functions to automate communication with the
device for sending new measurement settings and for accessing one-shot
measurements.

curl POST --header "Content-Type: application/json" \
--header "Authorization: Basic XXXXXXX"
--data '{"deviceid": XXXXX, "body": "Hello device!"} \
'https://dashboard.hologram.io/api/1/sms/incoming'

= SMS: The device can receive SMS messages from the Hologram cloud
without having a registered phone number.
o Spacebridge tunnel: Direct SSH tunnel. Uses more data and requires additional
software setup.
o SMS: With a registered phone number, the device can receive message via SMS.
We have not enabled this.

! pipis replaced by pip3 in subpoint 3 in subpoint 3; and python is replaced by python3 in subpoint 4 in order to
be compatible with the installed versions.


https://support.hologram.io/hc/en-us/articles/360035212594-Updating-the-Cat-M1-R410-Nova-s-Firmware
https://support.hologram.io/hc/en-us/articles/360035212594-Updating-the-Cat-M1-R410-Nova-s-Firmware
https://hologram.io/docs/reference/cloud/python-sdk/

e From device

= Advanced Webhook Builder (Your Own App)
o Hologram cloud
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webhook (Figure 24).
o Direct IP socket.

o Carrier SMS (requires additional data plan).
Server

When data packets are sent from the PIECES device, they are routed from the Hologram Cloud
to our server via a webhook. The server is running Ubuntu with a webhook server installed
from:

https://github.com/adnanh/webhook

Each time the webhook is triggered, it forwards the received packet to a script which does the
following:

- Append the entire packet into a “raw” file.
- Extract the header info and append it into a “log” file.
- Parse the measured data into *.csv files.

The server also periodically reads in the stored data and generates plots. Access to the data on
the server is described in Section 5.

We have verified the full communication stack by functionally testing one-shot measurements
for each of the 14 measurement types (Voltage: W1-RE, W2-RE, W3-RE, W1-W2, W2-W3, W1-
W3; Current: W1-W2, W2-W3, W1-W3; Resistance: R1, R2; Temperature: Thermocouple,


https://github.com/adnanh/webhook

ADS1292 temp-sensor, MCP9808 temp-sensor). We also let the unit sit and collect data for an
extended time to verify reliability and verify the noise measurements.

Organization of the data on the server

The directory structure and file-naming conventions for the stored data on the server are as
follows:

- Data
o incoming
= 2020_01
e Ol.log: log file for the first day of the month. Only contains header
info. Used for reference.
e Ol.raw: full raw data file for the first day of the month. Contains
all the packets in the form they arrived. Used for backups.
e (01 id472440 cl12_Meas.csv: CSV file for the first day of the
month from device 472440 containing the measured data for W1-
W2 currents.
L e
2020_02
... (S{YEAR}_S{MONTH})

o plots
= 472440: PNG files of automatically generated plots for each
measurement for device 472440.

To provide remote access, these files are stored in a directory that uses the Tonido syncing
service as described in the next section.

Accessing the data via the Tonido syncing service

To access data from the server, we are using the Tonido syncing service, which is similar to
Dropbox and other syncing services. This provides three options to access the data:

1. Web interface at cicada.tonidoid.com. (We will provide the login details separately.)

After logging in, you can navigate through the file structure and download the data files.
The interface is shown in Figure 25.


http://cicada.tonidoid.com/ui/core/index.html
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Figure 25: Web interface for accessing the data at cicada.tonidoid.com.

2. Install the Tonido sync client for Windows:
http://patch.codelathe.com/tonido/live/installer/x86-
win32/TonidoSync2Setup.exe. Versions are also available for Linux

and Mac. We have found it is best to use the manual syncing option.

Once it is installed, you will have a Tonido client running in your

. . . . . Figure 26: Tonido
apps tray as shown in Figure 26. You can click on this to trigger  snccientrunningin

the apps tray.

manual syncing and to access the sync folder.
3. Tonido also provides mobile apps. These can be useful for quickly
viewing the automatically generated plots.

USB data transfer from the PIECES device

Data transfer using a USB Flash drive works similarly to how it was performed previously. The
only difference now is that the Flash drive cannot be used to upload a new configureuration file
to the unit. The only way to program PIECES is now through the cellular interface. When you
transfer the data over USB, you will receive all of the data that the device has stored (up to a
week) as well as any data the device saved after a crash.


http://patch.codelathe.com/tonido/live/installer/x86-win32/TonidoSync2Setup.exe
http://patch.codelathe.com/tonido/live/installer/x86-win32/TonidoSync2Setup.exe
http://cicada.tonidoid.com/ui/core/index.html

To transfer data using a USB Flash drive, insert the Flash drive into one of the three empty
ports. Do not unplug the modem to perform this process. Wait at least 5 seconds for the drive
to connect. Some Flash drives will have an LED indicator that will change patterns to let you
know that it is connected to the device. It is recommended to use one of these Flash drives so
you have an indicator of when it is connected. Once the device has detected the Flash drive and
has connected, press the black button once. It is not necessary to hold it down. Make sure to
not hold it down for more than 10 seconds. If you do, the device will transfer its local date and
time to the RTC. (This is useful for setting up new RTC devices.) After pressing the black button,
the yellow light will flash and then stay on while the data is transferring. The transfer process
may take up to a minute for each day’s worth of data on the device. When the yellow light
turns off, it is safe to unplug the Flash drive.

Task 4 Corrosion sensor testing @ Longview Power Plant
Task 4.1 Sensor placement and installation

Figure 27 depicts the installation of electrochemical sensor system through the observation
port near the superheater located on the 11t floor of the boiler in Longview Power Plant. The
exposure temperature was designed to be 550 °C, consistent with the actual exposed
temperature of superheater in this power plant. The temperature is automatically adjusted by
the temperature controller system through the feed of compressed air. The actual temperature
is kept at 550 +/- 5 °C during the measurement. The signals including potential noise, current
noise, actual temperature, resistance, are collected by the developed data acquisition system
with a frequency of 1 Hz.

'é‘

Figure. 27 the installation of electrochemical sensor system through the observation port near superheater (11

floor of the boiler)



Task 4.2 Sensor testing

Once the electrochemical sensor has been installed for one day, the initial potentiodynamic
polarization curve was measured, as shown in Figure 28. The successful conduction of PDP
suggests the formation of intact molten salt layer on the working electrodes acted as the

electrolyte conducting ions. Tafel fitting was carried out to obtain the related parameters listed
in Table 9.
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Figure 28: the potentiodynamic polarization (PDP) curve of 347H stainless steel measured at superheater place
(550 °C)

Table 9: related parameter obtained from the PDP curve

. Anodic Tafel Cathodic Tafel Stern-Geary
Materials and .
location slope, o slope, B coefficient, B
(mV/decade) (mV/decade) (mV)
347 55, 810.08+159.98 200.49+17.72 69.78
Superheater

After the PDP test, the electrochemical noise and potential are recorded by the data acquisition
system. We run several times in-field testing in the Longview Power Plant and encountered
several big issues such as the installation of sensor, the location of the sensor, the effectiveness
of the temperature controlling system and the reliability of the sensor and data acquisition
system. After addressing several significant issues during the in-field testing, the latest
electrochemical sensor was made and installed in the power plant on Aug 30, 2019. It showed
extraordinary reliability in the power plant which lasted for seven months without any



operational problems. Figure 29 depicts the raw electrochemical potential and current noise
from Aug 30, 2019, to Apr 39, 2020. It did not work for some reason and we could not enter
the power plant to check and fix it due to the pandemic. However, this sensor worked for such
as a long duration and all the EN data were successfully collected unless the boiler was down
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Figure 29: Electrochemical noise measured at the superheater since Aug 30%", 2019

Task 4.3 Post-mortem analysis

All the electrochemical data was collected and accessed through the self-developed remote
data acquisition system. The data was real-time collected and transferred daily remotely. Once
the electrochemical data is obtained. The following process depicted in Figure. 29 was adopted
to calculate the corrosion depth by assuming all the iron atoms are oxidized to Fe3*.
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Figure 30: Process to calculate the corrosion depth by electrochemical noise data

The corrosion depth calculated through the process depicted in Figure. 30 is shown in Figure.
31. When the boiler was down, no electrochemical signals were collected. Also, due to the
equipment issue, some data is missed. Overall, the electrochemical sensor shows extraordinary
stability for seven month.

0.020
—_ [ Boiler down T-————"‘""
£
E OO \ data missing
= L
Q.
@ 0.010 |-
©
5 Aug 30th 2019 - Apr 3rd 2020
0
O 0.005
=
@)
O
0.000 e
0 50 100 150 200

Time (d)

Figure 31: Time dependence of the accumulated corrosion depth calculated from the electrochemical noises
measured at the superheater place.



Task 5 Corrosion monitoring software & database development

Besides the in-field testing of electrochemical sensor, lab-scale experimental were also
conducted to develop corrosion database. To make the laboratory work close to the actual

operation condition, firstly, we have to identify the composition of coal ash, a key factor
influencing the corrosion process.

Two baskets of coal ash were obtained from Longview Power Plant. To determine the
composition of coal ash, XRD and EDX were carried out to check the crystal structure and main
elements in these coal ashes. As shown in Figure. 32 and Figure. 33, the coal ash in the basket
labeled as 120 is amorphous while the one labeled as 122 is crystalline, suggesting the
compositions of these two baskets of coal ash are different. EDX results show the main
elements in the coal ash named as 120 are O, Si, Al, Ca, Fe and K while the other one mainly
includes O, Si, Al and Ca. To obtain the detailed composition (mass ratio), two samples will be
sent out to the composition analysis.
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Figure. 32 XRD pattern of coal from Longview Power Plant (Labeled as 120)
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Figure.33 XRD pattern of coal from Longview Power Plant (Labeled as 122)
Besides XRD, chemical analysis has been conducted as shown in Table 10. It clearly shows the different

compositions of the two batch of coal ash. To guarantee the repeatability of experimental results in lab, synthetic
coal ash has been adopted.



Table 10 Various oxides in two kinds of coal ash from Longview Power Plant

Alea Ca0 F2203 MgO MnO P205 Kzo SiOZ Nazo 503 Tio:
120 20.88 5.18 11.82 1.15 0.05 0.23 2.26 49.17 0.64 0.92 0.99
122 61.46 2.33 0.62 0.08 0.01 0.20 0.10 27.81 0.21 0.08 1.38

Task 5.1 Lab-scale sensor optimization

5.1 Reference electrode development

5.1.1 Experimental section

5.1.1.1 Preparation of Cu/Cu?* reference electrode

The quartz sealed Cu/Cu?* reference electrode was prepared by adding CuCl, (99.9%, Sigma-
Aldrich, melting point, 498 °C) and NaCl (99.9%, Sigma-Aldrich, melting point, 801 °C) with a
molar ratio of 1:9 into a quartz tube with one closed end (Advalue Technology Inc) by following
the preparation process of the Ag/AgCl reference electrode [16]. The starting melting point of
this mixture of CuCl, and NaCl measured by DTA is around 386.1 °C, lower than the lowest
experimental temperature, i.e., 500 °C (Figure. 34). A copper wire with a diameter of 1 mm
(99.99%, Surepure Chemetals Inc, melting point, 1085 °C) was immersed into the salt. The
exposed Cu wire was spot-welded to a tungsten wire with a diameter of 0.4 mm (99.99%,
Surepure Chemetals Inc). The outer diameter and thickness of this quartz tube was 8 mm and 1
mm, respectively. The residual air in the quartz tube was exhausted with the assistance of a
vacuum pump while the open end was sealed with the aid of oxygen-methane flame. The
schematic of the reference electrode is depicted in Figure. 34. To minimize the electric
resistance of this reference electrode, the quartz tube was thinned manually by grinding using
SiC abrasive paper. The final thickness of the quartz tube is about 0.4 mm. The potential
difference between the quartz sealed Cu/Cu?* reference electrode and the quartz tube sealed
Ag/Ag,S0. (molar ratio between Ag,SO4 and NaCl is 1:9) has been experimentally verified to be
around 0.45 V at 600 °C, 650 °C and 700 °C shown in Figure. 34, demonstrating the half reaction
in Cu/CuCl; reference electrode is Cu + 2e <> Cu?*(the standard potential of Ag/Ag+, Cu/Cu2+,
Cu/Cu+is0.8V,0.36 Vand 0.18 V, respectively).
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Figure. 34 The schematic of the quartz sealed Cu/Cu?" reference electrode

5.1.1.2 Performance of Cu/Cu?* reference electrode

The electrochemical measurements were conducted in an alumina crucible which was filled
with synthetic coal ash with a composition of 40% SiO; (99.9%, Sigma-Aldrich), 40% Al,O3
(99.9%, Sigma-Aldrich), 9% Fe,03(99.9%, Sigma-Aldrich), 5% Na;S04 (99.9%, Sigma-Aldrich), 5%
K2SO4 (99.9%, Sigma-Aldrich) and 1% NaCl (99.9%, Sigma-Aldrich). Except otherwise specified,
synthetic coal ash was used as the electrolyte in the following tests. Electrodes were connected
to a Gamry 1010E interface. Synthesized flu gas with a composition of 1 vol. % SO, 4 vol. % O,
15 vol. % CO; and 80 vol. % N, was fed at a flow rate of 100 ml min1to simulate the working
condition in a coal-fired power plant. The coal ash started to melt from 535 °C to form a molten
salt layer with the feed of flu gas, as depicted in Figure. 34. All the electrodes were spotted
welded to a tungsten wire with a diameter of 0.4 mm which was shielded in a ceramic tube to
avoid oxidation. The experimental temperature varied from 500 °C to 900 °C.

With the quartz sealed Cu/Cu?* reference electrode as the counter electrode, a piece of
platinum with the dimension of 20 X 20 mm? or another quartz sealed Cu/Cu?* reference
electrode as the working electrode which was placed with a spacing of 1 cm. A small voltage,
i.e., 20 mV, was applied to measure the response of current between two electrodes for a few
milliseconds. By assuming that the equivalent circuit of this system is a resistor and a capacitor
connected in series, the value of this resistor can be calculated by the voltage and
instantaneous current using the Ohm’s law. The resistance of this reference electrode is the
difference between two values obtained with the platinum and the reference electrode used as
the working electrode, respectively. Each reported value is the average of five measurements.
In this experiment, the coal ash was replaced by molten salt composed of Na;SO4 and K;SO4
with a weight ratio of 1:1 to minimize the resistance of electrolyte.



The reproducibility of this reference electrode was checked by measuring the potential
difference between two similar reference electrodes made at separate times. Every reference
electrode was immersed into synthetic coal ash with the same depth, i.e., 1 cm, to ensure the
same contact area.

The stability of the reference electrode was probed by measuring the potential difference
between two similar reference electrodes as a function of time.

A micropolarization test was conducted to check the reversibility of this reference electrode by
adopting the reference electrode as the working electrode and a piece of platinum as the
counter electrode with a scan rate of 0.5 mV s in a potential range between -5 mV and 5 mV
versus OCP. The potential was designed to sweep from 0 mV to 5 mv, then from 5 mV to -5 mV,
finally back to 0 mV vs. OCP.

Galvanostatic chronopotentiometry was adopted to reveal the cathodic and anodic polarization
of this reference electrode. The open circuit potential between two similar reference electrodes
was measured after a small current (1, 2 and 3 mA) passed through it with a duration of 300 s.

5.1.1.3 Application of Cu/Cu?* reference electrode in electrochemical tests

All electrochemical tests including OCP, EN and PDP were conducted at 700 °C using our
developed high temperature electrochemical sensor [20], which consisted of two identical
working electrodes, i.e., a piece of TP347H stainless steel with a dimension of 10 x 10 x 3 mm3,
one counter electrode, i.e., a piece of platinum with a dimension of 20 x 20 x 0.5 mm?3 and one
reference electrode, i.e., the quartz sealed Cu/Cu? reference electrode. Both working
electrodes were sealed with the aid of ceramic paste leaving a surface of 10x10 mm? which
were covered by 1 mm coal ash. All these electrodes were welded with tungsten wires which
were placed into the alumina tube to avoid oxidation at elevated temperatures. The OCP of one
TP347H electrode with respect to Cu/Cu?* reference electrode was measured in the first hour
using the platinum as the counter electrode. Then the EN test was executed with a prolonged
time of 72 h with a frequency of 1 Hz by measuring the current noise of two TP347H electrodes
in ZRA mode and the potential noise of one TP347H electrode with respect to Cu/Cu?*
reference electrode. The PDP test was performed at the end of the EN test with a scan rate of
0.5mV s from-2Vto2V versus OCP.

5.1.1.4 Weight loss measurement and characterization

The weight and surface area of four TP347H samples with a dimension of 10 x 10 x 5 mm?3 were
recorded. Then all four samples were buried in the coal ash in an alumina crucible which was
placed in the tube furnace with the feed of the same flu gas. After 72 h, the corrosion products



on three samples were removed in boiling water for 20 min followed by ultrasonic cleaning in
acetone, then rinsing with distilled water and drying in cold air. The final weights of three
samples were measured with the aid of a microbalance with an accuracy of 1 x 107 g. The
cross-section morphology of the corrosion product and corresponding elemental distribution
mapping were characterized by SEM equipped with EDX.

5.1.2 Result and discussion
5.1.2.1 Electric resistance of ionic conduction of sodium through quartz tube

The ohmic resistance of the Cu/Cu?* reference electrode in molten sodium sulfate is
summarized in Table 11. We expect the uncertainties of the resistance values not to exceed +/-
50% due to the different conFigureuration between Cu/Cu?* reference electrode and platinum
and the delayed response of current. The data clearly reveal that the ohmic resistance
decreases with increasing temperature. Figure. 35 reveals the good linear correlation between
logio (T/R) (denoted as log(T/R)) and 1000/T, with an R2 of 0.9865.

Table 11 The electric resistance of Cu/Cu?* reference electrode in molten sulfate salt at different temperatures

Temperature (°C) 500 550 600 650 700 750 800 850 900

Resistance (Q) 6.7k 4.8k 40k 2.8k 2.2k 1.4k 1086 920 830

The ohmic resistance of this reference electrode is mainly ascribed to the diffusion of sodium
ions through the quartz tube [9, 16]. The straight line in Figure.35 suggests the conduction of
sodium ions through quartz tube is a thermally activated process, defined by Eq. (1).

T_,. E

R aTexp (kT) (1)
Wherein, a is the pre-exponential factor; T is the experimental temperature, K; R is the ohmic
resistance of the reference electrode, Q; E; is the activation energy, J, and k is the Boltzmann
constant (1.381 x 102 J/K). The slope of the fitting line in Figure. 2 is -2.061, yielding an

activation energy of 0.52 eV (1 eV = 1.602 x 10-%° J). This value is much smaller than in the one
reported in Gao et. al’s work, i.e., 1.36 eV, due to the thinner wall of the quartz tube.

As shown in Table 11, it clearly reveals that the ohmic resistance of the reference electrode
even at 500 °C, i.e., 6.7 kQ is far lower than 1012 Q, i.e., the resistance of the input impedance of
the Gamry 1010E, demonstrating its applicability in a wide temperature range from 500°C to
900°C.
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Figure. 35 the linear relationship between log (T/R) and 100/T of the reference electrode from the data in Table 11.

5.1.2.2 Reproducibility, stability, durability and reusability

The cell diagram of two similar quartz sealed Cu/Cu?* reference electrodes immersed in the coal
ash is denoted as

Cu(s) | CuCly(l)+ NaClI (1) || quartz tube || Na2SO4(l) + K2SO4(l) || quartz tube ||CuCly(l)+ NaCl (1) | Cu(s)

SiO; is stable in basic molten sulfate salt and the dissolution of SiO; in acidic fused sulfate salt is
a chemical dissolution process without any charge transfer; the chemical dissolution does not
affect the potential difference between two similar Cu/Cu?* reference electrodes [24].
Designating the left reference electrode as the anode, the electrochemical reactions for these
two reference electrodes are shown in the following equations.

Left side (anode): Cu - 2e” > Cu?* (2)
Electrolyte: 2Na* (left) > 2Na* (molten sulfate salt) > 2Na* (right) (3)
Right side (cathode): Cu?* +2e" > Cu (4)

Assuming that the sodium junction potentials resulting from the diffusion of Na* through the
semi-permeable quartz tube and the molten sulfate salt having equal magnitude and opposite
signs, the potential difference between two similar quartz sealed Cu/Cu?* reference electrodes
is zero theoretically. Ten similar Cu/Cu?* reference electrodes made at separate times were
placed in synthetic coal ash with the same immersed depth and the OCPs between any two
similar Cu/Cu?* reference electrodes were measured over the temperature range from 500 °C
to 900 °C. The potential differences between these reference electrodes were less than 5 mV at
most time and never greater than 8 mV regardless of the exposure temperature, demonstrating



the desirable reproducibility of this reference electrode. The slight potential difference might
be ascribed to the asymmetric construction of these two reference electrodes or the acceptable
experimental error. This reproducibility is comparable to Ag-AgCl and Ag-AgSOa. reference
electrodes reported in the literature [9, 12, 16].

The potential difference between two similar Cu/Cu?* reference electrodes at 600 °C and 800 °C
monitored for 200 h is shown in Figure. 36. The potential difference is between — 5 mV and 5
mV at 600 °C and from —8 mV and 8 mV at 800 °C in the duration of 200 h, demonstrating good
stability of this type of reference electrode over eight days.
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Figure. 36 Potential difference between two similar quartz sealed Cu/Cu?* reference electrodes in synthetic coal
ash as a function of time at (a) 500 °C and (b) 800 °C

It is important to note that these reference electrodes were immersed in the coal ash all the
time during the measurement of potential difference between two similar reference electrodes
at both 600 °C and 800 °C for 200 h shown in Figure. 36. The reference electrode has been
successfully used in this corrosive environment for a continuous period of 400 h, about 16 days,
demonstrating its outstanding durability in molten sulfate salts. Moreover, this reference
electrode can be washed by water and stored once it is taken out from the coal ash for the
following multiple-time usage without impairing its capability. However, after several usages,
the surface of the quartz tube, especially the quartz tube/ molten salt/ flu gas triple phase
boundary is eroded. The erosion site is brittle and prone to break. A similar result has been
found in a previous report which is ascribed to the formation sodium silicates [16].

5.1.2.3 Polarization of reference electrode

Figure. 37 shows the potential difference between two similar Cu/Cu?* reference electrodes in
synthetic coal ash after the flow of a small current (1 mA and 2 mA at 500 °C, 1 mA, 2 mA and 3



mA at 600 °C, 700 °C, 800 °C and 900 °C) for 300 s. The chronopotentiometry measurement
with a current of 3 mA at 500 °C cannot be performed due to the limited voltage range (-5 V to
5 V) of the electrochemical workstation. The initial value of potential difference (2 mV) is re-
established within 120 s and 200 s after the flow of a small current of -/+ 1 mA and -/+ 2 mA,
respectively at 500 °C (Figure. 5a). No visible difference was observed between cathodic and
anodic polarization. The time required to resume the initial value is shortened to less than 40 s
with the increase of temperature (Figure. 5b-e). These times reflect the recovery of the
concentrations of Cu?* concentration at the surface of the Cu wire after polarization. Overall,

the Cu/Cu?* reference electrode exhibits similar recovery behavior to Ag/AgCl reference
electrode [10].
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Figure.37 Chronopotentiometry of two similar Cu/Cu?* reference electrodes at different temperatures (a) 500 °C,
(b) 600°C, (c) 700°C, (d) 800°C and (e) 900 °C after the flow of a small current for 300 s

5.1.2.4 Reversibility

Cyclic voltammetry curves with the Cu/Cu?* electrode as the working electrode and platinum as
the counter electrode at different temperatures are shown in Figure. 38. The OCP grows with
the increase of temperature which might be attributed to response of the potential of the
Cu/Cu?* reference electrode to temperature. It clearly reveals a linear behavior in the potential
range -/+ 5 mV versus OCP from 500°C to 900 °C. The linear relationship between the current

density and potential indicates the good reversibility of the Cu/Cu?* reference electrode in coal
ash from 500 °C to 900 °C.



100 |-

-100 |-

——500°C
—600°C
-200 |- 700 °C
——800°C

900 °C

Current (nA)

300 M IR N R R R R
-1.12 -1.11 -1.10 -1.09 -1.08 -1.07 -1.06 -1.05

Voltage (E (Cu/Cu?*)- E (Pt))

Figure. 38 The Micropolarization test of Cu/Cu?* reference electrode at 500 °C, 600 °C, 700 °C, 800 °C and 900 °C

5.2.1.5 Application of this reference electrode to investigate the coal ash hot corrosion
behavior of TP347H

Figure. 39 depicts the OCP as a function of time in the first hour. The OCP grows from 385 mV
to 500 mV versus Cu/Cu?* in the first hour. This might be ascribed to the formation of a
protective scale composed of oxides of nickel, chromium and their spinels on the surface of
TP347H, which is similar to the layer formed on the nickel-based alloy when exposed to the
oxidizing atmosphere at elevated temperatures.
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Figure.39 OCP as a function of time in the first hour at 700 °C

Figure. 39 depicts the (a) potential and (b) current of for two TP347H electrodes held at the
same potential as a function of time for 72 h. In the initial corrosion stage, the potential grows
from 500 mV to 1.02 V versus Cu/Cu?* and the (absolute) current density decreases gradually



from 14 pA to 500 nA. The decrease of potential is attributed to the growth of oxide scale
during the corrosion process [29, 30]. The existence of a negative direct current drift suggests
the preferential oxidation of one working electrode in the initial stage which might be ascribed
to the accepted asymmetry between two electrodes. After several hours, the negative direct
current drift was shifted to be positive, indicating the faster corrosion rate of the other working
electrode due to the growth of the oxide scale on the previous working electrode during the
initial corrosion process [6, 30]. The trend in the data was calculated using 8t-order
polynomials with an R? of 0.998 for potential and 0.864 for current noise and subtracted to
isolate the potential and current noise. The potential and current noise after detrending is
depicted in Figure. 40 (c) and (d). The bidirectional transient of current noise indicates the
corrosion of both working electrodes in the entire process. Finally, both the potential and
current fluctuate randomly in a narrow range, around 1.02 V versus Cu/Cu?* and 500 nA,
respectively, which is the characteristic of the sulfidation process, as described in the literature
[29, 30]. This experimental result verifies the feasibility of the application of electrochemical
noise to monitor the corrosion process of TP347H in coal ash with the aid of this reference
electrode. The cross-section morphology of TP347H after hot corrosion for 72 h and the
corresponding element distribution (Figure. 41) further confirm the formation of oxides and
sulfides which is consistent with the corrosion process characterized by the potential and

current noise pattern in Figure. 40.
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Figure.40 (a, c) Potential and current (a, b) before and (c, d) after detrending of TP347H as a function of time at
650 °C for 3d with 2 mm coal ash
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Figure.41 Cross-section morphology and corresponding element distribution mapping of TP347H after coal ash hot
corrosion at 700 °C for 72 h

After detrending, the potential and current noise is transferred to frequency domain through
Fast Fourier transformation (FFT). Noise resistance, the ratio of the standard deviation of the
potential noise to the current noise, in the time domain (Rn) and frequency domain (Rsn) has
been proved to be an effective indicator of the corrosion rate. The comparison of R, and Rsn
value is shown in Figure. 42a. It clearly reveals that R, and Rs, show the same trend. Both R, and
Rsn show the highest value in the third day which might be attributed to the formation of
oxidation scale during the initial corrosion process, hindering the ingress of oxidization species.
The PDP curve ranging from -2 V to 2 V versus OCP after EN test has been successfully obtained
with the aid of the Cu/Cu?* reference electrode (Figure. 42b). The OCP is 1.0 V versus Cu/Cu?*
which is consistent with the potential noise in Figure. 40b. No signal fluctuation has been
observed during the measurement.
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Figure. 42 (a) R, and R, as a function of time and (b) PDP after hot corrosion at 700 °C



Compared with other electrochemical measurement such as PDP and EIS, electrochemical noise
can be a powerful tool to measure the real-time corrosion rate without any instrumental
disturbances. According to the Faraday’s law, the corrosion rate (CR, g cm2) can be calculated
through eq (5) [32].

CR = (M x1i)/pFnS (5)

Wherein i is the current density, A; F is a Faraday’s constant, i.e., 96485 C mol; p is the density
of TP347H, i.e., around 7.84 g cm3; S is the exposed area of the working electrode, 1 cm%, M
represents the atomic mass of iron, i.e., 56 g mol%; n is for the number of electrons transferred
per atom of iron, i.e., 3 by supposing all the iron atoms are oxidized to Fe3*.

The accumulated corrosion rate calculated through eq (5) is 0.378 mg cm2, which is lower than
that 2calculated by weight loss measurement, i.e., 0.459 mg cm2. The difference might be
attributed to the unavoidable oxidation during the ramp-up and down of tube furnace. With
the aid of this robust reference electrode, electrochemical measurements have been
successfully conducted to tentatively investigate the hot corrosion behavior of TP347H. Future
work will focus on the coal ash hot corrosion mechanism through various electrochemical
measurements.

5.1.3 Conclusion

A robust Cu/Cu?* reference electrode with good stability, reproducibility, durability, reversibility
and non-polarizability in the temperature range from 500°C and 900 °C has been developed in
this work. The ionic resistance associated with the diffusion of Na* ions through the quartz
tube, which is a thermally activated process, decreases with the increase of time. Moreover,
the ohmic resistance of this reference electrode is just 6.7 KQ at 500 °C which is far lower than
that of the input impedance in the Gamry 1010E Interface. With the aid of this reference
electrode, electrochemistry tests including OCP, PDP and EN have been conducted to
investigate the coal ash hot corrosion behavior of various alloys in commercial conditions.

5.2 Corrosion database development- effect of temperature
5.2.1 Experimental details

TP347H stainless steel, same material as the superheater in service in Longview Power Plant,
was supplied by Longview Power, LLC, a coal-fired power plant located in State of West Virginia,
USA. The element composition of TP347H stainless steel (Table. 12) meets the ASME standards.
The corresponding metallographic microstructure after etching (etchant composition: 10 mL
HCl + 10 mL H,0 + 2 g CuSQ,) is shown in Figure. 43. It clearly reveals that there are no visible



inclusion phases in the austenite phase. The TP347H samples used in the following experiments
were grinded subsequently by SiC abrasion paper up to 2000 grit, cleaned in acetone, rinsed
with ethanol and dried in cold air. The dimension of these samples was fixed as 10 x 10 x 3
mm?3,

The coal ash was synthesized in lab with a composition (weight percentage) of 29.25% SiO,,
29.25% Al,03, 29.25% Fe;03, 5.625% Na;S04, 5.625% K>SO4 and 1% NaCl based on the analysis
result of the coal ash obtained from Longview power plant, which is similar to other reports [29,
32, 33]. The salts were dissolved in distilled water followed by ultrasonication for 6 h and then
drying at 450 °C. A layer of synthesized coal ash with a thickness of 1 mm was deposited on
TP347H samples in all tests. The synthesized gas containing 1 vol. % SO;, 4 vol. % O3, 15 vol. %
CO; and 80 vol. % N was fed at a flow rate of 100 ml min? to simulate the corrosive
atmosphere near the superheater in the power plant.

Table 12 Element compositions of TP347H steel

Element C Mn P S Si Cr Ni Mo Nb Fe

Weight ratio (%) 0.041 1.75 0.02 0.003 0.32 17.52 9.22 0.26 0.71 Bal.

Figure.43 Metallographic microstructure of TP347H

Electrochemical tests including open circuit potential (OCP), potentiodynamic polarization (PDP)
and electrochemical noise (EN) were carried out by utilizing a Gamry 5000E at 650 °C, 700 °C
and 750 °C, respectively. All electrochemistry measurements were conducted by using the
same set-up as our developed high temperature corrosion sensor [31] which is consisted of two
identical working electrodes (WE1 and WE2), one reference electrode (RE) and one counter
electrode (CE) [34]. Two identical TP347H SS specimens were acted as WE1 and WE2 which



were sealed with ceramic paste (505N, Aremco Inc) leaving a working area of 1 x 1 cm?. RE was
the quartz sealed Cu/Cu?* reference electrode which has been described in our previous work.
The counter electrode was a platinum rod with a diameter of 2.5 mm (99% in purity, Surepure
Chemetals Inc). Tungsten wire with a diameter of 0.4 mm (99% in purity, Midwest Tungsten Inc)
was welded to these electrodes which was shielded inside a ceramic tube (AdValue Technology
Inc) and sealed with ceramic paste to avoid exposure in the corrosive atmosphere. The initial
OCP was measured for 1 h after reaching the target temperature. EN test consisted of
measuring the potential of one of the working electrodes with respect to the Cu/Cu?* reference
electrode and was executed with a prolonged time of 168 h with a frequency of 1 Hz. Current
noise was measured between the two working electrodes. The PDP test was performed at the
end of the EN test with a scan rate of 0.5 mV s

The weight and exposure area of all TP347H specimens were recorded. At each working
condition, four samples are placed in synthesized coal ash with the same flu gas for 7 d. After
exposure, the corrosion products were removed in boiling water for 20 min followed by
ultrasonic cleaning in acetone, then rinsing with distilled water and drying in cold air. The final
weight was measured with the aid of a microbalance with an accuracy of 1x 107° g.

The corrosion product on the top surface of samples was characterized by X-ray diffraction
(XRD, PANalytical X'pert PRO, Cu Ka radiation). The surface and cross-section morphology of
corrosion product and the corresponding element distribution mapping were characterized by a
scanning electron microscope (SEM, Hitachi S-4700) equipped with an energy dispersive X-ray
(EDX) analysis system.

5.2.2 Results

(1) Open circuit potential analysis

The initial potential of TP347H stainless steel as a function of time in the first hour at different
temperatures is depicted in Figure. 44. As shown in Figure. 44, the OCP increases with time at
650 °C (from 150 mV to 290 mV (vs Cu/Cu?*)) and 700°C (from 190 mV to 458 mV (vs Cu/Cu?*))
in the first hour while it shows an opposite trend at 750 °C, decreasing from 603 mV to 520 mV
(vs Cu/Cu?*)) gradually. Since the predominant process, i.e., sulfidation, in coal ash hot
corrosion always occurs in relatively positive potentials, the positive OCPs at 650 °C, 700 °C and
750°C suggest the favorable occurrence of a sulfidation process [30, 35, 36]. Moreover, the
OCP is higher at a higher temperature at all times in the hour.

When exposed in the oxidizing atmosphere at elevated temperatures, a protective oxide layer
composed of oxides of nickel, chromium and their spinels is formed on the surface of TP347H
stainless steel, which is similar to the layer on a nickel-based alloy [37, 38].

Ni—SO3 + SO42 -> NiO + 2503 + 2¢" (1)



2Cr-S03 +3504% - Cr,03 + 5503 + 6e (2)

Ni-SOs and Cr-SOs stand for the dissolution of Ni and Cr catalyzed by the adsorption of SOs3,
respectively. This protective scale can effectively prevent the inward diffusion of oxidizing
species in the molten salt and outward diffusion of alloy elements, thus mitigating corrosive
attack and elevating the potential. Moreover, the growth rate of oxides is faster at a higher
temperature. The reason leading to the decrease of OCP by time at 750 °C will be discussed in
detail in the following sections.
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Figure.44 OCP as a function of time in the first hour at different temperatures

(2) Electrochemical noise analysis

The potential noise as a function of time in the first seven days at different temperatures (650
°C, 700°C and 750°C) is shown in Figure. 45, respectively. At 650 °C, the potential increases at
the beginning, then decreases for a few hours followed by continuously rising to a constant
value of 1.07 V (vs Cu/Cu?*). When the temperature is 700 °C, the initial potential shows a
similar trend as that at 650 °C. However, after 112 h, the potential suddenly drops from 1.07 V
(vs Cu/Cu?*) to 0.85 V (vs Cu/Cu?*) followed by fluctuating between 0.8 V and 0.9 V (vs Cu/Cu?*).
The sudden drop of potential from 1.07 to 0.85 (vs Cu/Cu?*) with no recovery suggests the
accelerated sulfidation or oxidation process which will be discussed in the following section. In
comparison, the potential at 750 °C grows to 1.07 V (vs Cu/Cu?*) gradually, then fluctuates in a
narrow range with an average value of 1.07 V (vs Cu/Cu?*) followed by a sudden drop to 0.50 V
(vs Cu/Cu?*) after 65 h. However, after several hours, the potential recoveries to 1.07 V (vs
Cu/Cu?).
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Figure.45 Time sequence of the electrochemical potential noise at (a) 650 °C, (b) 700 °C and (c) 750 °C

The corresponding current noise between the two working electrodes versus time is depicted in
Figure. 46. The current becomes stable when the potential approaches 1.07 V (vs Cu/Cu?*)
regardless of the experimental temperature. The violent drifts of current in the first one or two
days suggests the faster corrosion rate at the beginning, which might be ascribed to the lack of
protection capability of corrosion products. Moreover, no visible variation of current is
observed corresponding to the sudden drop or recovery of potential at 700 °C and 750°C. It is
important to note that there are numbers of spikes in current noise in the first few hours at 750
°C (Figure. 46c), suggesting the occurrence of pitting corrosion.
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Figure.46 Time sequence of the electrochemical current noise at (a) 650°C, (b) 700°C and (c) 750°C.

Both the noise resistance in time domain (Rn) and the noise resistance in frequency domain
(Rsn) can be acted as powerful tools to characterize the corrosion rate since they are inversely
proportional to the corrosion rate. The minimum values of R, and Rs, at 700 °C depicted in
Figure. 47a suggest that the corrosion rate is fastest at this experimental temperature. The
current density in frequency domain with the application of power spectral densities (PSDs) as a
function of frequency is depicted in Figure. 48. It clearly shows that the current density in
frequency domain at 700 °C is the highest, suggesting the fastest corrosion rate at 700 °C
compared with that at 650 °C and 750°C, which is consistent with the results shown in Figure.

ba.

Moreover, the localization index, the ratio between the standard deviation of the current noise
and the root mean square of the current noise, shown in Figure. 47b indicates the occurrence
of local corrosion of TP347H in these working conditions. But the trend of localization index at
different temperature varies, suggesting various corrosion behaviors of TP347 at different

temperatures.
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Figure.48 Frequency domain of the electrochemical current noise at (a) 650°C, (b) 700°C and (c) 750°C.

(3) Potentiodynamic polarization analysis

Figure. 49 depicts the potentiodynamic polarization curves and corresponding i vs E plots at
different temperatures. The plots clearly reveal that the corrosion potential is lowest, and
corrosion current density is highest at 700 °C, suggesting the poorest protection capability of
the corrosion products at 700 °C. The corrosion rate might also be calculated with the
application of PDP curve when the process is controlled by charge transfer step. However, due
to the limited Tafel region of the PDP curve (Figure. 49a) and almost pure ohmic property of the



electrolyte (Figure. 49b), it is impossible to quantitatively calculate the corrosion rate from the
Tafel extrapolation method. Based on previous experiments, the linear current-potential
behavior is not solely due to the uncompensated resistance in the three-electrode
conFigureuration [32]. This might be ascribed to the introduction of oxides (Al,Os, Fe;0s3 and
SiO,) and metal oxides (Fe;Os3and Cr,03) composed in the corrosion product which turns the
molten sulfate salt (Na;SOa, K2S04) into an electronic conductor [29, 30].
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Figure.49 (a) Potentiodynamic polarization curve and (b) corresponding i vs E plots at different temperatures.
(4) Calculation of corrosion rate

Compared with other electrochemistry measurements such as EIS and PDP, EN can act as a
powerful tool to provide real-time corrosion rate without any instrumental disturbances.
According to the Faraday’s law, when the potential difference between anode and cathode
working electrodes is larger than 100 mV, the instantaneous localized corrosion rate at the
anode can be calculated from the current density as discussed in our previous work [30]. In
each 24 h, the maximum current value, imax, is adopted to calculate the instantaneous localized
corrosion rate, CR, g s as shown in the following equation.

CR = (M X ipqayx)/Fn (3)

Wherein F is a Faraday’s constant, i.e., 96485 C moll; M represents the atomic mass of iron,
i.e., 56 g/mol; n is for the number of electrons transferred per atom of iron, i.e., 3 by supposing
all the iron atoms are oxidized to Fe3*.



Assuming the corrosion rate is constant in one period, i.e., 24h, the total corrosion rate is
calculated by eq. (4)

D = CR x 86400 (4)

This method has been shown to provide good consistency with respect to weight loss
measurements for the Inconel 740 superalloy [29, 30].

The corrosion rate calculated through eq (4) as a function of time at different temperature are
given in Figure. 50. The corrosion rate is fastest at 700 °C, consistent with the results shown in
Figure. 47a and Figure.48. However, the total corrosion rate in 7 days is far less than the
experimental result obtained from weight loss measurements (3.34 mg cm2 at 650 °C, 20.4 mg
cm? at 700 °C and 14.7 mg cm™ at 750 °C), suggesting this is a discrepancy between the
calculated and experimental result in this system.
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Figure.50 Accumulated corrosion rate calculated by EN data analysis at different temperatures.
(5) Corroded top and cross-sectional surface characterization

Figure. 51-53 show the cross-section morphology and element distribution of corroded TP347H
after hot corrosion test at different experimental temperatures. The corrosion product consists
of two layers, an outer layer mainly of chromium oxide and chromium sulfide, and an inner
layer composed of iron oxide and iron sulfide regardless of the experimental temperature. The
outer layer at 650 °C is much denser than that at 700°C and 750 °C which is consistent with the
surface morphology and corresponding EDX result shown in Figure. 54-56. The inner layer is
porous at three different temperatures. The thickness of corrosion product shows a maximum



value at 700 °C which is consistent with the calculated corrosion rate result shown in Figure. 50.
Moreover, the EDX results on the superficial corrosion products shown in Figure. 54-56 confirm
the existence of Cr, Fe, O and S. The XRD pattern depicted in Figure. 57 further confirms the
existence of Cr,0s3, Fe,03, CrsSs and FesSa.

Figure.51 Cross section morphology and element distribution of TP347H after hot corrosion at 650 °C.

Figure.52 Cross section morphology and element distribution of TP347H after hot corrosion at 700°C.



Figure.54 Surface morphology and element distribution of TP347H after hot corrosion at 650 °C.



Figure.56 Surface morphology and element distribution of TP347H after hot corrosion at 750 °C
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Figure.57 XRD pattern of blank and corroded TP347H at different temperatures.

5.2.4 Discussion
(1) Formation of molten salt

It has been recognized that the main chemical involved in hot corrosion is Na;SOa4 due to its
extraordinary stability in a wide range of oxygen potential and temperature [39, 40]. The
melting point of Na,SO4 is 884 °C which is much higher than the experimental temperatures
(i.e., 650 °C -750°C). However, the inclusion of metal oxide, e.g., Fe;0s, in alkaline sulfate (i.e.,
Na,SO4 and K;S04) facilitates the formation of eutectic salts, i.e., NazFe(SO4)s and K3Fe(SO4)s,
which significantly lowers the melting temperature of the sulfate salts [32].

Moreover, sulfur trioxide (SOs), formed by O, and SO, through Eq. (5), easily partitions into the
molten sulfate layer due to its conversion to pyrosulfate through Eqg. (6).

250, + 0, - 2503 (5)
SO3+ S04% > S04+ (6)

The formation of Na;S,07 and K;S,07 further lowers the melting point of the sulfate/pyrosulfate
salts. The melting points of Na;5,07, KS,07, NasFe(SO4)s and K3Fe(SO4); are 400.9 °C, 325 °C,
624 °C and 618 °C, respectively [32]. Furthermore, the melting point of eutectic salt is lower
than that of a pure salt. Therefore, molten salt can be easily formed even at the lowest
experimental temperature, i.e., 650°C, which would result in hot corrosion of TP347H exposed
in this experimental environment.

(2) Correlation between hot corrosion process and characteristic potential noise patterns



The hot corrosion in molten sulfate salt is a two-step process: initiation and propagation.
However, due to the absence of electrochemistry measurements, there are few reports
revealing the details about the hot corrosion process. To provide a deeper understanding of hot
corrosion, the quantitative relationship between electrochemical noise and the progress of
corrosion is identified in the following section based on the experimental results above.

The corrosion process can be divided into five steps according to the potential noise patterns
shown in Figure. 58. The schematic of characteristic potential noise pattern and corresponding
hot corrosion process of TP347H are depicted in Figure. 58 and 59, respectively.

Potential (mV)

Time (s)

Figure.58 The schematic of potential noise of TP347H stainless steel in coal ash. See the text for a description of
each step.

As TP347H is exposed in the oxidizing atmosphere, a thin passive film mainly composed of
chromium oxide is formed on the top layer (Figure. 59a: initial state). With the increase of
experimental temperature, the sulfate salt begins to melt. Before the formation of an intact
molten salt or a relatively thick molten salt layer to fully separate TP347H from the oxidizing
atmosphere, a thin layer of protective scale mainly composed of chromium oxide, nickel oxide
and their spinels as shown in eq (1) and (2) is formed on the top surface along with the
formation of iron oxide (Figure. 59b: direct oxidation), hindering the further ingress of oxidizing
species and outward diffusion of alloy elements, thus leading to the increase of potential (step
1in Figure. 58). Moreover, a higher temperature promotes the outward diffusion of alloy
elements and the oxidization rate, thickening the protective layer, indicated by a higher
potential at corresponding times as shown in Figure. 3 and 4. The successful measurement of



potential during this process might be ascribed to the formation of a layer of reticulated molten
salt which could also be acted as anionic or electronic conductor.
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Generally, a minimum of 25% chromium is necessary to guarantee the formation of a dense
and continuous chromium oxide layer to provide the satisfactory protection capability.
However, the weight percentage of chromium in TP347H, 18%, is lower than the minimum
value. Once the sulfate salt is fully melted (Figure. 59c: formation of continuous molten layer),
the dissolution of protective scale and iron oxide occurs as shown in eq. (7) and (8) (Figure. 59d:
dissolution of protective scale). The XRD data in Figure. 57 confirms the existence of Fe;(SO4); in
corrosion product, proving the acidic dissolution of iron oxide through eq. (8). The dissolution
process lowers the density of protective oxide layer and weakens the protection capability,
leading to the decrease of potential (step 2 in Figure.58).

Cr,03+ 3NayS04 = Cr2(504)3 + 3Na,0 (7)
Fe;03 + 3NaxS04 = Fey(S04)s3 + 3Na,0 (8)

The incubation time is also closely related to the experimental temperature. It is clearly shown
in Figure. 3 and 4 that the period of initiation process is shorter at a higher temperature due to
the accelerated electrochemical reaction rate in eq (7-8).

Once the molten salt penetrates through the microcracks or microdefects in the protective
scale to the surface of the TP347H substrate (Figure. 59d), electrochemical reactions take place
to achieve chemical equilibrium since the base metal can’t be stable when exposed to molten
salt [41, 42].

The main anodic reactions are shown in eq (9-10).
Fe-3e > Fe?* (9)
Cr-3e > Cr¥ (10)

The anodic reactions lead to the physical dissolution of the bare substrate . As $,0,% formed
through eq. (6) is a more active oxidant than O, and SO4%, the main cathodic reaction is [9, 29,
40]

5,072 +2e” > SO4% + S0, + 0% (11)

The combination of eq (9-10) and eq. (11) leads to the formation of Cr,03 and Fe,0s3 (XRD data
in Figure. 57) which might restore the porous protective scale or even promote the growth of
protective scale, thus enhancing the resistance against hot corrosion indicated by the growth of
potential (step 3 in Figure. 58 and Figure. 59e: oxidation).

Due to the limited dissolution of oxygen in molten salt and continuous consumption of oxygen
as a consequence of the formation of metal oxides, i.e., Cr,03 and Fe;03, the partial pressure of
oxygen at the salt/scale interface decreases with time [43]. According to the Na-S-O phase

68



stability diagram [40, 44], S,0,% is further reduced to form S* and O% through eq. (12) once the
partial pressure of oxygen is below a certain value [9, 10, 44]. Moreover, some Fe?* and Cr?* are
formed due to the partial oxidation of base metal as shown in Eq. (13-14).

Further reduction of S0, in low partial pressure of oxygen,
S207% + 8e > SO4% + S* + 307 (12)
Partial oxidation of base metal,
Fe-2e - Fe?* (13)
Cr-2e > Cr? (14)

The combination of the cathodic reaction (eq.(12)) and anodic reactions (eq (9,10,13 and 14)
leads to the formation of metal oxides (i.e., Cr,0s, Fe203) and metal sulfides (i.e., FesSa, Cr3Ss) ,
which is in agreement with the XRD result shown in Figure. 57 (step 4 in Figure.7 and Figure.
59f: sulfidation). Figure. 60 shows the surface morphology and the EDX analysis of the corrosion
products at 700 °C, further supporting the co-existence of chromium sulfide, chromium oxide,
iron sulfide and iron oxide.

The sulfidation process in hot corrosion is always indicated by the fluctuation of potential in a
small range, which has been demonstrated by the study of the coal ash hot corrosion of 740
nickel-based alloy in our previous work [29, 30].
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Figure.60 Surface morphology and element distribution of corrosion product after hot corrosion at 700 °C.

The sudden drop of potential in seconds after a certain time at 700 °C and 750 °C in Figure. 4
might be ascribed to the destruction of protective scale. As discussed before, the dissolution of
protective scale is much faster at a higher temperature. At 650 °C, no rapid drop of potential is
observed in the exposure period due to the relatively slow disintegration of protective scale.
This observation is consistent with the cross-section morphology of corrosion product depicted
in Figure. 10-12 in which the outer layer in corrosion product at 650 °C is much denser than that
at 700 °C and 750 °C. In contrast, after the exposure of 112 h, the potential suddenly drops

from 1.07 V (vs Cu/Cu?*) to 0.85 V (vs Cu/Cu?*) in seconds at 700 °C due to the accelerated
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dissolution process. A further increase of temperature to 750 °C shortens the time (56 h) taken
to destroy the protective scale (Figure. 59g: decomposition of the protective scale). Therefore,
the occurrence of the sudden drop of potential is earlier at 750 °C than at 700 °C. Moreover,
this sudden drop is not recoverable at 700 °C. The recovery of potential in several hours at 750
°C will be discussed in detail in the following section.

In this following step 5 in Figure.58, the potential still fluctuates around a lower value due to
the impairment of protective scale. The current noise shows a similar trend as step 4 without
any visible differences. Moreover, sulfur is uniformly distributed on the TP347H substrate
instead of locally accumulated along the grain boundaries, which is confirmed by EDX after
polishing and etching. Step 5 is considered as a continuous sulfidation process in which the
electrochemical reactions are same as that in step 4 (Figure. 59h: continuous sulfidation).

(3) The effect of temperature on hot corrosion of TP347H

The increase of temperature promotes both the diffusion of oxidants (i.e., oxygen and sulfur
trioxide) and alloy elements and the reaction kinetics (i.e., the reduction of pyrosulfate ions and
the oxidation of TP347H). This is the reason that it takes a shorter time for the potential
approaching the stable value, i.e., 1.07 V (vs Cu/Cu?") at a higher temperature (Figure. 4).
Moreover, the dissolution rate of protective scale is relatively slow at 650 °C. Therefore, the
outer layer mainly composed of chromium oxide dispersed with some chromium sulfide is
continuous (Figure. 61a) and no sudden drop of potential has been observed (Figure. 4(a)). In
contrast, the dissolution rate is accelerated at a higher temperature, i.e., 700 °C and 750 °C,
thus impairing the protection capability of protective scale which are porous (Figure. 61b and c)
and lowering the potential (Figure. 4(b) and (c)). The sudden drop of potential at 700 °C is not
recoverable. However, the potential was recovered in several hours at 750 °C which is ascribed
to the instability of Fey(SO4)s. At 750 °C, Fe,(S04)s, i.e., the products of the dissolution of iron
oxide shown in eq. (8), is decomposed to Fe,0Os which would restore the protective scales and
suppress the further dissolution of Fe,03 [45, 46], thus hindering the diffusion of SO3; through
the molten salt to the oxide/salt interface. This explanation can be confirmed by the lowest
peak density of Fe;(SO4)s at 750 °C shown in Figure. 16. Therefore, TP347H shows a maximum
corrosion rate at 700 °C. Similar results have also been found by Hendry and Lees in which all of
three different austenitic steels (AISI 316, AISI 347 and Esshete 1250) have a maximum
corrosion rate at 680 °C in a temperature range of 600 °C -750 °C in the simulated coal fired
boiler environment (salt composition: 6 mol% Fe2(S04)3 + 74 mol% NazSO4 + 20 mol% K,S04; gas
composition: 15% CO; + 1% O, + 0.3% SO, + 83.7% N3) [47].
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Figure.61 Cross section morphology TP347H after hot corrosion at different temperatures.

5.2.4 Conclusion

In this work, EN has been used to characterize the hot corrosion process of TP347H in coal ash
in the temperature range of 650 °C -750 °C. According to the characteristic patterns of redox
potential and current noise vs time, the process is divided into five steps: direct oxidation;
dissolution of protective oxide; oxidation; sulfidation; and continuous sulfidation after the
decomposition of the protective scale. The corrosion product is divided into two layers, an
outer layer mainly composed of chromium oxide with some chromium sulfide and an inner
layer mainly consisting of iron oxide and iron sulfide. The outer layer is much denser at 650 °C
than that at 700 °C and 750 °C. A maximum corrosion rate is found at 700 °C. The decrease of
corrosion rate at 750 °C is ascribed to the decomposition of Fe;(S04)s to Fe;0s.

Task 6 Tech-transfer & commercialization

One of the vital boiler components that undergo damage is the waterwall. From 2012 to 2017,
on an average, about 6.4% of annual potential production was lost due to forced outages
caused by waterwall failure, making it the top cause of revenue loss. The primary reason for
damage to tubes in the waterwall section is corrosion, which is accelerated due to load
following. However, monitoring corrosion in real-time in the harsh environment is difficult. The
corrosion sensor developed as part of this project can be a valuable instrument for that.
However, placing corrosion sensors at all locations inside the waterwall section is not feasible.
Thus, the optimal placement of sensors is crucial for real-time corrosion monitoring of the
waterwall section. The proposed sensor network provides estimates of the corrosion depth
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along the entire length of the waterwall tubes. This would, in turn, enable estimation of the
failure time of the waterwall tube due to corrosion. By planning maintenance activities
accordingly, forced outages due to corrosion can be avoided, increasing plant availability. The
improved plant availability can enable the plant to produce more electricity. But the actual
electricity produced, and the plant’s profit depend on the market demand and price. Due to
similar improvements in the availability of other plants and rapid deployment of renewables,
stochasticity in the market demand and price is large. Several factors, like population growth,
industrial growth, technological improvements in renewable and non-renewable energy
technologies, etc., affect the market dynamics and, in turn, the cost of electricity. To capture
these aspects, economic analysis is conducted using energy market forecasting software, which
can provide information about the change in electricity production because of the higher
availability of the power plant.

The report is divided into two sections. The first section explains corrosion modeling, corrosion
estimation, and optimal sensor network. The second section includes the scenario-based
economic analysis, payback period analysis, and corresponding sensitivity studies’ results.

Task 6.1 Corrosion estimation
(1) Corrosion model development

Hot corrosion is the mechanism of corrosion experienced on the fireside of the waterwall. For
metal temperatures under 900°C, the corrosion is mostly parabolic in nature.(Vasantasree and
Hocking 1976) Hence, to simplify the calculation, a general assumption is made here that the
corrosion rate is parabolic in nature. Generally, the corrosion rate monotonically increases with
metal temperature until it reaches a maximum value of approximately 700°C, after which drops
drastically, giving rise to a bell-shaped curve. The spread and height of this bell-shaped curve is
a function of alloy composition.(Pettit 2011) Fireside tube-metal surface temperature, and
concentration of SO; and Oz in combustion gases surrounding the metal surface are the key
factors that influence hot corrosion. Using these as inputs, inhibition model based expression
was developed for the parabolic rate constant. The parameters of the corrosion model are alloy
specific. Iron base alloys, and nickel-based alloys with chromium are commonly used for the
construction of superheater and waterwall. Zhang et al have summarized the studies on deposit
induced hot corrosion of Fe-based alloys in oxidizing and sulfidizing environment.(Zhang and
Wu 1993) Corrosion depth data of alloy Fe-20Cr from their work has been used to calculate the
corrosion model parameters. The model results and literature data for Fe-20Cr alloy are
presented in Figure 62, where the model results are closely following the literature data with
little discrepancies.
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Figure 62: Comparison of literature values (Zhang et al) and corrosion model results of corrosion depth with

temperature
(2) Corrosion model validation

Electrochemical sensors have been placed in the power plant of our industrial partner to
monitor corrosion depth. One of the electrochemical probes is placed on the 11t floor to
monitor corrosion depth on the superheater. The field measurements from this sensor were
provided for 47 days and are used to validate the corrosion model. The superheater in this
power plant is made of the alloy TP 347H which is an austenitic stainless steel. The temperature
at the probe’s location is 550°C. But the exact O, and SO, concentrations are not known. Hence,
0, and SO; concentrations are considered from open literature. The percentage error between
the corrosion model results and the industrial data are presented in Figure 63. The percentage
error between them eventually approaches zero, thus validating the model.
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(3) Corrosion estimation

State estimation is integral to optimal sensor network design. Kalman filter (KF) and its variants
are the most widely used estimation techniques. The corrosion model used in this work is
highly nonlinear. Some states of this system like metal temperature, and gas concentration can
fluctuate significantly within a day due to load following. Whereas corrosion buildup is a slow
process happening in the order of micrometers per year. Rupture of the tube surface occurs
once its thickness drops below a threshold value. Hence, corrosion estimates need to have
minuscule error. Based on these requirements of the system, Unscented Kalman filter (UKF) is
used for estimation as it can handle the nonlinear multi timescale system and produce highly
accurate estimates of corrosion depth.(Julier, Uhlmann, and Durrant-Whyte 1995)

Corrosion monitoring in this work is performed on waterwall section of a boiler system which is
based on work by Seltzer at al.(Seltzer, Fan, and Robertson 2006) Dimension of waterwall
section, burners’ placement, O, concentration and gas velocity in the waterwall section are
taken from Seltzer et al. The power plant uses an air-fired supercritical pulverized coal boiler.
The waterwall section has 24 burners, 3 sets of 4 burners on a pair of opposing walls. In this
work there are four state variables, inputs metal temperature, O, and SO, concentrations are
considered as algebraic states variables, and corrosion depth is considered as differential state
variable. For O, concentration and metal temperature, the model relating changed induced in
the algebraic state to corresponding inputs is formulated using neural network (NN). Whereas
for SO, concentration such model is formulated using first principles.

Three types of corrosion depth values are calculated, each using a distinct set of algebraic

states. The algebraic states calculated from unaltered NN model are called model algebraic
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states. Corrosion depth calculated using these model algebraic states are referred to as model
corrosion depth. The algebraic states calculated from a modified NN model with altered
parameters to induce mismatch are called true algebraic states. The corrosion depth calculated
using true algebraic states are referred to as true corrosion depth. The corrosion model with
same parameters is used to create true and model corrosion depths. To the true algebraic
states, zero mean Gaussian noise is added to create measurements of algebraic states.
Likewise, a zero mean Gaussian noise with a different variance is added to the true corrosion
depth values to create measurements of corrosion depth.

Corrosion formation is a complex process; hence, mismatch is expected between the model and
actual corrosion depth. This reality is being mimicked by creating true and model values that
have a mismatch. The assumption in this work is that model is overpredicting the truth,
measurements are closer to the truth but possess noise. Parameters used to create model
algebraic states are used in process model of UKF. Noisy measurements which are close to the
truth are used as sensor measurements. The spatial and temporal variation of UKF estimate,
measurement and true value of corrosion depth are presented separately in Figure 64 and
Figure 65 respectively.
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Figure 64: Spatial variation of UKF estimates, sensor measurements,
model, and true values of corrosion depth (um) along waterwall
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Figure 65: Temporal variation of UKF estimates, sensor measurements, model,
and true values of corrosion depth (um) at candidate location 16 on waterwall

The noisy measurements of corrosion depth are scattered around the true values of corrosion
depth. True values of corrosion depth are for reference only and are used nowhere in the
estimator. Despite using measurements having high noise and there being large disparity
between model and measurements, UKF is performing exceptionally, as the UKF estimates are
very close to the true values. In this analysis, more trust is placed on the measurements.

The corrosion rate varies significantly with location due to the dynamic nature of algebraic
states. When a corrosion sensor is absent at a certain location, the accuracy of the UKF
estimate drops significantly. Corrosion development is a localized phenomenon, where the
corrosion rates between two adjacent locations are only related through their inputs. Hence,
the potential improvement in corrosion depth estimates due to the placement of algebraic
states sensors is evaluated. In the best case, all four types of sensors are presented at all
candidate locations. In worst case, all four types of sensors are absent at all locations. The
comparison of the best and worst case UKF estimates with the true, model and measurement
values of corrosion depth are presented in Figure 66.
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Figure 66: Comparison of UKF estimates under best and worst cases
with model, true and measurement values of corrosion depth (um)

As expected, the best case UKF estimates of corrosion depth quickly converge and stay close to
the true with any fluctuations despite using noisy measurements and model with mismatch. On
the other hand, worst case UKF estimates are close to the model values. These estimates from
the two extreme cases show a significant improvement in estimation accuracy due to sensor
placement. The location, type and number of sensors significantly impact estimates' accuracy.
Using this as basis, optimal sensor placement was identified.

(4) Economic analysis

According to State of Reliability (SOR) (NERC 2018) report by North American Electric Reliability
Council (NERC), coal-fired power plants have the highest forced outage rate of all conventional
fuels. Boiler tube leaks are one of the leading causes for these forced outages. Waterwall tubes
are one of the dominant locations for boiler tube leaks leading to about 6-7% loss in production
time due to forced outages over the past several years. For instance, as per the State of
Reliability (SOR) 2018 report, about 17.3 TWh of potential electricity production was lost. The
forced outage prevented due to sensor placement improves plants’ availability, in turn
increasing potential revenue gain. The aim of this work is to consider the increased availability
of the coal fired power plants and estimate the demand and price of electricity by taking
market elasticity into account. The improved plant availability can enable the plant to produce
more electricity. But the profit the plant will make depends on the market demand and price.
Due to similar improvements in the availability of other plants, and due to rapid deployment of
renewables, stochasticity in the market demand and price is high. Several factors like
population growth, industrial growth, and technological improvements in renewable and non-
renewable energy technologies also affect the market dynamics and in turn cost of electricity.
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This stochasticity in the electricity demand and price over the specified number of years are
taken into account by energy market forecasting software programs and enable consideration
of increased availability due to sensor network installation.

Software programs like National Energy Modeling System (NEMS), Long-range Energy
Alternatives Planning system (LEAP), The Integrated MARKAL-EFOM System (TIMES) are used
for energy trends prediction and planning.(Mirakyan and De Guio 2013) NEMS by Energy
Information Administration (EIA) is a widely employed software especially in the U.S. which can
be used to project the energy, economic, environmental, and security impacts of alternative
energy policies and different assumptions about energy markets. The projection horizon is
approximately 25 years into the future. The installation and execution of models through NEMS
is convoluted and presents many challenges, as it not a commercial program and does not have
official community forum for quires and discussions. LEAP is a software tool used for energy
policy analysis and climate change mitigation assessment developed at the Stockholm
Environment Institute (SEI). LEAP includes a Technology and Environmental Database (TED) that
provides extensive information describing the technical characteristics, costs, and
environmental impacts of a wide range of energy technologies. But the source of this data is
unspecified as LEAP is not confined to one specific region. Since the interest is in U.S. energy
market, appropriate data is desired. The ideal software program was TIMES, which enabled the
modeling of U.S. energy system through database EPAUS9rT. TIMES model generator explores
possible energy futures that meets the energy service demands, based on scenarios, inputs and
constraints. The EPAUSOrT is a 9-region database representation of the U.S. energy system
developed by U.S. Environmental Protection Agency (EPA) researchers. The database is updated
with every major release of EIA’s Annual Energy Outlook (AEO) report.

(5) Reference case analysis
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The EPAUSIrT database is subdivided into various sectors, like electricity production sector,
transportation sector etc. Processes are identified using technology/process name, input
commodity and output commodity. EPAUSOrT model is executed in TIMES and using
appropriate identifiers electricity production by coal-fired power plants (CFPP) is extracted. This
is compared with 2020 AEO report’s predictions in Figure 67.
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Figure 67: Comparison of the amount of electricity generated by CFPP (billion kWh)
from modified and unmodified EPAUSOrT model with AEO 2020 report’s predictions

Electricity produced by CFPP (billion kWh)

The electricity produced by CFPP in the U.S. calculated by the EPAUSOrT model (9rT model)
decreases with time, similar to AEO 2020 report’s predictions. But this is a significant trend
disparity compared to AEQO’s predictions. After analyzing AEO report and EPAUSSrT database,
several assumptions differed, which caused the distinction, some of which are listed below.

Due to federal tax credits, higher state-level renewable targets, etc., the capital costs for wind
and solar power technologies decline according to AEO.

Electricity generation from renewable sources increases, biggest contributor being solar
photovoltaic technology. In EPAUSOrT, the investment cost for the installation of new solar
technologies does decrease with time. But the rate at which it decreases is not significant. In
addition, the fixed operation and maintenance (O&M) costs for solar and wind technology
remained constant with time.

In EPAUSOIT, the investment cost for the installation of new solar technologies does decrease

with time. The rate at which it decreases varies depending on location, type of technology, etc.
In some cases, the decrease is not significant. In addition, the fixed operation and maintenance
(O&M) costs remained constant with time. The investment cost for the installation of new wind
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technologies does not have a fixed trend. In some cases, it increases, while in other cases it
remains constant. The fixed O&M costs remain constant with time.

According to AEO, natural gas consumption in the electric sector decreases up to 2030 and after
which it increases. But electricity generation from natural gas increases up to 2050. In
EPAUSOrT, natural gas consumption for electricity generation does not follow this trend.

The electricity produced by coal reported in AEO 2020 report is significantly lower due to the
assumptions that solar and wind renewable technologies’ costs decrease and, natural gas prices
decrease. These assumptions favor electricity production technologies that use natural gas,
wind, and solar power, in turn reducing electricity produced by coal. Scenarios mimicking such
predictions were absent in EPAUSOrT model, causing the deviation. Therefore, EPAUSOrT model
is modified by adding scenario where fixed O&M and investment costs related to solar and
wind technologies is decreased by 60% up to 2050. Additionally, natural gas consumption is
increased by 20% up to 2050. The electricity produced by CFPP by the model with this scenario
(9rT modified model) is much closer to the AEO predictions as seen in Figure 67, validating the
model.

(6) Uncertainty in CFPP

Analysis is conduction to find the effect of increased availability on CFPP production. A scenario
is created that increases availability of CFPP as a result of the installation of the corrosion
sensors, this applies to all CFPP in U.S. To do so, all the processes that have coal as input
commodity and electricity as output commodity are selected. The existing availability factors of
these technologies ranged from 82% to 94%. All their availabilities are increased to 98%. The
EPAUSOrT model is run, and the electricity produced by coal fired power plants in the U.S.
under this scenario is calculated and presented as “9rT model (Case 1)” in Figure 68. With the
scenario of increased availability of CFPP the electricity production has increased, with a
maximum improvement of 50 billion kWh in 2035. But is still possess the same decreasing
trend, and in some years like 2040 and 2045 the improvement over the unaltered model’s
results is less than 30 billion kWh. This is due to the following reasons:

Scenario just increases availability of coal-fired power plants. But if the cost required to
produce electricity by CFPP is more than other technologies, then CFPP will not selected.

In EPAUSOrT model, renewable technologies’ investment cost for new facilities decreases with
time. Though there is no definite trend in fixed operating costs for renewable technologies,
they are of relatively lower value than that of CFPP. Thus, pre-loaded scenarios and base data
present in EPAUSOrT favor renewable technologies. In that case, the electricity produced by
renewable technologies would be cheap.

80



1400

9rT model
OrT model (Case 1)

1350

—
[
=
=
T

1250

—
(5]
=
=
T

o
o
th
=
T

]]uu L A L A A |
2020 2025 2030 2035 2040 2045 2050

Time (years)
Figure 68: Comparison of amount of electricity generated from CFPP (billion kWh)

Electricity produced by CFPP (billion kWh)

from EPAUSOrT model with and without case 1 considerations

It is evident from above mentioned reasons that merely increasing the availability of CFPP will
not significantly increase their share of electricity production, and other factors also play an
important role. According to AEOQ, a shift in electricity production from coal to natural gas is
expected due to the competitive pricing of natural gas. In addition, battery storage is predicted
toreach up to 17 GW by 2050. This will help when there is excess production from non-
dispatchable renewables like wind, and solar. Therefore, renewables, particularly solar and
wind technologies, are expected to grow in the foreseeable future whereas electricity produced
from natural gas increases. Hence, technologies in the energy market that significantly affect
CFPP electricity production are identified: solar technology, wind technology and natural gas
technology. CFPP generation is analyzed under uncertainties in each technology.

(7) Uncertainty in renewable technologies

The behavior of the energy market is analyzed when only renewable technologies wind and
solar are uncertain. The model is run under three cases, each case has scenarios that deal with
the same solar and wind technologies. But the degree to which they deviate from reference
case varies. The cases and their corresponding scenarios are tabulated below.
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Table 13: List of the cases and their corresponding scenarios implemented in EPAUS9rT model execution
Technologies

Case Solar Wind
Number l:)l);eh(j Investment cost | Fixed O&M | Investment cost
Case 2 1 75% 1 75% 1 80% 1 70%
Case 3 1120% 1 100% 1 110% 1 110%
Case 4 | 55% 1 60% 1 67% 1 57%

In Case 2, very high growth in renewables is considered, which is achieved by drastically
lowering the fixed O& M and investment costs. In Case 3 renewables are heavily discouraged by
increasing the costs. Case 1 and case 3 are extremities, while case 4 represents moderate
growth in renewables where the magnitude of cost increase is slightly less than in case 1. The
electricity produced by CFPP in each case is presented in Figure 69.
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Figure 69: Comparison of amount of electricity generated from CFPP

(billion kWh) from EPAUS9rT model under cases 2, 3 and 4

Electricity

Electricity produced by CFPP under case 2 is the lowest of the three cases and decreasing with
time because the energy market favors renewables due to their low cost. Under case 3,
electricity produced by CFPP increases time and has greatly increased when compared to case
2. While under case 4 where the growth is intermediate, so is the CFPP generation. The growth
of renewables has profound impact on the CFPP generation.

(8) Uncertainty in natural gas combustion cycle technology

The effect of natural gas on electricity produced by CFPP is analyzed by creating four scenarios.

In these scenarios natural gas power plants’ fixed O&M costs, and investment costs for new
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capacity were increased by 10%, 30%, 60%, and 90%, respectively. In each scenario, no other
technology was altered except for natural gas. The electricity produced from coal and natural
gas under each scenario is presented in Figure 70 and Figure 71 respectively.
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Figure 70: Electricity produced from CFPP under 4 scenarios with

increasing costs related to natural gas technology
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Figure 71: Electricity produced from natural gas under 4 scenarios with
increasing costs related to natural gas technology
Discouraging natural gas technology by increasing related costs resulted in increased electricity produced from
CFPP, with noticeable difference when costs increase by 60% and above. Simultaneously, electricity produced from
natural gas decrease with increasing costs. Natural gas has a significant effect on electricity produced by coal.

(9) Uncertainty in multiple technologies
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There is a possibility that there can be deviations from the assumptions made in AEO. For
instance, technological development might not reduce the operating cost for solar
technologies as assumed. Hence, electricity production from CFPP under such deviations is
studied. These deviations are implemented in TIMES by using various scenarios. Random
deviation of variables in these scenarios from their current base values is generated using
Latin Hypercube Sampling (LHS). In general, there is a normal demand for electricity in the
market. In the near-random scenarios generated by LHS, the energy market’s stability is
disturbed by favoring some technologies over the others. Then the other technology is
expected to supply more electricity to fill the shortfall and meet the demand. The following
table lists all the variables that significantly impact electricity production from CFPP.
Addition of natural gas price to this list is based on the current global scenario, where
restrictions on natural gas supply can change their price.

Table 2: Key variables in EPAUS9rT database that impact electricity production from CFPP

Type of technology Variable

Renewable sources Solar Fixed O&M

Investment cost
Wind Fixed O&M

Investment cost

Non-renewable sources Natural gas Fixed O&M

Investment cost

Price

Coal Fixed O&M
Variable O& M
Availability

CFPP electricity generation is initially analyzed under two scenarios, considering four variables
(solar and wind technologies’ fixed O&M and investment costs). Five sets of values are
generated for these four variables considering standard deviation of 10-20%. In the same
manner, five sets of random values are generated by LHS for the availability of the coal-fired
power plants. The analysis is conducted in the following manner.

Scenario 1: The five sets of values for the four variables representing wind and solar
technologies and additional five sets of values for coal-fired power plants’ availability are
incorporated. Thus, five separate runs have been executed.

Scenario 2: The five sets of values for the four variables representing wind and solar
technologies are incorporated, and five separate runs have been executed.
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The difference between scenarios 1 and 2 is that, in scenario 1 CFPP availability is changed. In
scenario 2, availability of CFPP is unchanged. Thus, the difference in results between scenario 1
and 2 gives a measure of the impact of the availability of the CFPP.
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Figures 72 and 73 show the results for scenario 1 and 2, respectively. The results show that the

random changes considered in the four variables has negligible impact on CFPP electricity
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production. Comparatively random change in the availability of the CFPP do have a larger
impact. A new analysis is conducted, where renewable technologies are subjected to random
changes using LHS, but natural gas is specifically discouraged. Natural gas was identified to be
the primary influencer, this analysis helps in understanding its magnitude of influence on CFPP
production, under variability in renewable technologies.

Three sets of values are generated by LHS for the four variables (solar and wind technologies’
fixed O&M and investment costs). A standard deviation of 10-20% is considered. Separately,
three scenarios are created where natural gas related costs from Table 13 are increased by
10%, 50% and 100% respectively. Three separate scenarios are created where availability of
CFPP was increased 5%, 10%, and 15% respectively. The analysis includes three cases, and in
each case three sets of values are generated by LHS for the four variables representing wind
and solar technologies. Thus, three separate runs have been executed. The differential scenario
in each are as follows:

e (Case A: In each run, the scenario where costs related to natural gas from Table 13 are
increased by 10% is included.

e CaseB: In each run, the scenario where costs related to natural gas from Table 13 are
increased by 50% is included.

e CaseC:Ineachrun, the scenario where costs related to natural gas from Table 13 are
increased by 100% is included.

In all of the above cases CFPP availability was not changed. The difference between the cases is
the increase in natural gas related costs. The electricity produced by coal-fired power plants in
each case is presented below.
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Electricity produced from CFPP (billion kWh)

o
—_—
=
=

L

o

a

1000 f )

900

800

700

600 |

500

400 f 1

3"20020 2025 2030 2035 2040 2045 2050
Time (years)
Figure 75: Region showing the electricity produced from
CFPP from Case B

Electricity produced from CFPP (billion kWh)

87



—
—_—
=
[—

E

E

E

1000 f

900 [

800

700 f

600 "

500 f "

400 "

300 ! 3 * - -
2020 2025 2030 2035 2040 2045 2050

Time (vears)

Electricity produced from CFPP (billion kWh)

Figure 76: Region showing the electricity produced from
CFPP from Case C

Figures 74-76 show CFPP potential production, where it significantly increases from case 1 to
case 3, which is expected, since from case A to case C the natural gas technology’s related costs
increase.
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Figure 77: Region showing the electricity produced from natural gas from Case A
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In Figures 77-78, the natural gas technology’s potential production is shown. The production
decreases significantly from case A to case C, which is due to the increase in costs related to
natural gas technologies.

The random scenario analysis conducted using LHS so far have few number of runs. A superior
near random scenario is generated in the following analysis using large number of runs. CFPP
electricity generation is calculated under three new cases. Each case mimics a possible future,
where energy market deviates from prediction. In each case, 50 random scenarios based on
LHS are generated and the model is executed 50 times. Electricity produced by CFPP from all
the 50 runs in each case are compiled and analyzed.

Case 1:
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In this case, a future scenario is created where solar, wind, and natural gas technologies have
some uncertainties. All variables listed in table 14 corresponding to these technologies are
subjected to random changes using LHS. Fifty sets of values are generated by LHS for the 7
variables. The region within which the potential electricity produced by corresponding
technology lies is presented in Figure 79, Figure 80, and Figure 81.
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Figure 79: Region showing the potential electricity produced from CFPP from case 1
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Figure 80: Region showing the potential electricity produced from solar power from case 1
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Figure 81: Region showing the electricity produced from solar power from Case 1
Due to significant variation in variables related to solar, wind and natural gas technologies, the
region of potential electricity production is large for these solar and natural gas technology as
seen in Figure 80 and Figure 81. Interestingly, CFPP potential production also varies significantly
even though we did not change any variable related to it, seen in Figure 79. Thus, in a future
with uncertainty in solar, wind, and natural gas technologies, CFPP potential production also
fluctuates.

Case 2:

In this case, a future is created where only CFPP technologies have some instability. Fixed O&M
costs and variable O&M costs related to CFPP are subjected to random changes. Fifty sets of
values are generated by LHS for these two variables. Thus, fifty separate runs have been
executed. In each run, existing availability is increased by a fixed amount of 20% which is
assumed due to sensor placement. The region within which the potential electricity produced
by CFPP, and natural gas may lie is presented in Figure 82 and Figure 83 respectively.
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Figure 83: Region showing the electricity produced from natural gas power plants from Case 2

In this case, the potential electricity production from CFPP (seen in Figure 33) varies
significantly when along with availability, fixed and variable O&M costs are varied. Also,
changes in coal technologies have an effect on electricity production from natural gas
technologies, seen in Figure 83. Thus, instability in coal-fired power plant technologies not only
alters the potential electricity production of CFPP, but also that of other technologies.

Case 3:
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In this case, a future is created where solar, wind, natural gas, and coal-fired electricity
production technologies have some uncertainties. In this compound case all variables listed in
Table 14 are subjected to random changes using LHS, except for CFPP availability which is
increased by 20%. Fifty sets of values are generated by LHS for these nine variables. Thus, fifty
separate runs have been executed where in each run existing CFPP availability is increased by
20%.
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Figure 84: Region showing the electricity produced from CFPP from Case 3
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Figure 85: Region showing the electricity produced from natural gas power plants from Case 3

In this complex case where variables related to multiple technologies vary, the potential
electricity production from CFPP is varying significantly. Region of potential electricity

93



generation from CFPP is comparable to that from case 1 but is slightly broader. The electricity
produced by natural gas technologies is slightly less than that from case 1, which is evident by
comparing sizes of regions from Figure 81 and Figure 85. The electricity produced by natural gas
is less, but to meet the market demand, CFPP supplied the necessary electricity which is why
their production is higher. Thus, in this near random scenario where various technologies are
unstable, but CFPP availability increased, prompted the coal-fired power plants to produce
more electricity.

(10) Cost of sensors

Multiple sensor placement networks are considered and for each network the corresponding
investment cost is calculated. Each candidate location is equally likely to fail if corrosion depth
exceeds the threshold. Each sensor network provides an estimated time of failure. If estimated
time of failure is close to the true time of failure within tolerance, then failure at that location is
considered to be avoided. For each sensor network, investment cost is calculated and denoted
by C;S;, where Cj denotes the cost of sensor and S; denotes the presence or absence of
sensor at each candidate location. The sensor network aims to maximize the NPV of the sensor
network, considering the tradeoff between investment cost and potential revenue gained by
coal-fired power plants (CFPP) due to avoiding forced outage, which is expressed by equation 1.

max (NPV) = =% G;S; + [,"/*[Rs(x,t) — Rys(x, )]dt (1)
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Here, RS is the revenue gained by CFPP under sensor network. RNS is the revenue gained by
CFPP under no sensor network. The net potential revenue gained over a time span of 30 years
(from 2020 to 2050) is calculated.

For the cost of each type of sensor two extremities are considered, one being the low-cost case
and the other high-cost case.

e Metal Temperature sensors: Temperature sensors with method of detection based on
fiber optics, filled element liquid (with gas or mercury), pyrometers suction (pneumatic),
radiation pyrometers, platinum resistance bulb, and certain special types of
thermocouples are capable for operating in temperatures up to at least 1094°C. Cost of
these sensors are in two ranges, between $200 to $1000, and above $1000. Waterwall is
in a corrosive environment at high temperature, and superior materials of construction

are needed for use in such environment.

e 0O, concentration sensors: High temperature zirconium oxide oxygen detectors are
considered for measuring O, concentration, as they suitable for corrosive environment,
can be inserted into the process as a probe and can operate up to 1593°C. Their cost
varies between $5,000 and $10,000.

e SO, concentration sensors: Exact cost information for a high temperature SO,
concentration sensor was not readily available in open literature. SO; sensors with
method of detection based on conductimetry, photometry, thermal conductivity are
limited to ambient air analysis. Sensors employing technologies like infrared, correlation
spectrometry are used for stack gas analysis and hence can be used for high
temperature. Permanently installed multiple gas analysis sensor cost varies between
$10,000 and $20,000.

Hence, based on the above inferences, for metal temperature, SO, and O, concentration
sensors, a low-cost of $5,000 and a high-cost of $10,000 is considered.

e Corrosion sensor: Considering the R&D costs, installation costs and cost for materials of
construction, a low-cost of $20,000 and a high-cost of $40,000 is considered.

(11) Return on investment analysis

The waterwall section is divided into 31 evenly spaced candidate locations along height. The
candidate locations layout is depicted in 4. At each candidate location, a sensor can be placed
for corrosion depth, metal temperature, SO, and O, concentrations respectively. ‘1’
(highlighted in green) in a cell indicates that corresponding sensor is present at that location,
whereas ‘0’ (highlighted in red) indicates the absence of that sensor. The corrosion depth
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estimates are calculated under multiple cases, each with a different sensor placement.
Temporal variation of UKF estimates of all states is analyzed under each case.

Table 14: Candidate locations layout for sensor placement

Sensor type
Candidate { x | T | O2 ] SO:2
Location
31
30
2 110
1
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Best and worst cases: In the best case, all four types of sensors are presented at all
candidate locations. In worst case, all four types of sensors are absent at all locations.
The UKF estimate of algebraic states under best case are close to the truth due to
utilization of measurements. The worst case UKF estimates are close to the model
values due to absence of measurements. Based on the individual sensor costs, the total
investment cost in sensor network for best case under high-cost case is $2.17M. And
under low-cost case is $1.08M.

Intermediate cases: In case 1, corrosion sensors are absent at all locations whereas all
types of algebraic states are present at all locations. The investment under high-cost
case is $930k, and under low-cost case is $465k. Case 2 is an intermediate case, where
corrosion sensors are still absent at all locations. SO, concentration sensors are present
all locations. The burners are generally present between locations 1 and 16 and sensor
placement can be infeasible at these locations. Hence, metal temperature and O,
concentration sensors are present only from locations 17 through 31. The investment
cost for sensor network in case 2 under high-cost case is $610k, and under low-cost case
is $305k. The layout of sensors for these cases is presented in Figure 86 and Figure 87
respectively.

CASE 1 Sensor type
Candidate x | T,|0;,| S0,
Location
31 1 1 1
... 1 | 1
17 i | B 1
16 1 i 1
15 1 1 1
S 1 i 1
2 i 1 1
1 I 1 1

Figure 86: Sensor placement layout under case 1
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CASE 2 Sensor type

Candidate x|T,]0,]| SO,

Location
31 ailel B
5| N 1
17 I 1 ol
16 1
15 il
2 i
1 i

Figure 87: Sensor placement layout under case 2

From the economic analysis, case 1 represents a future scenario where solar, wind, and natural
gas technologies have some uncertainties. Case 3 represents a future scenario where solar,
wind, natural gas, and coal-fired electricity production technologies have some uncertainty.
Hence, the difference in revenue gained between case 1 and case 3 is due to the placement of
sensors. The region within which the potential electricity production lies is bounded by the
maximum possible and minimum possible electricity production. The maximum and minimum
possible change in electricity produced by each CFPP per year is calculated from results of cases

1 and 3 and presented in Figure 88.
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Figure 88: Maximum and minimum change in electricity produced
by each CFPP between case 1 and case 3 in million kWh

There are 229 operational CFPP in U.S, and the production presented in Figure 88 is the change
in revenue per plant. According to U.S. EIA, the average nominal retail electricity price in 2021 is
$0.1372 per kWh. The change in electricity production is multiplied with 2021 price of
electricity to obtain yearly potential increase in revenue per plant. Subtracting the investment
cost in sensor network from the potential revenue increase for each case will yield the Net
present value (NPV).

=]
[~

1 1 1 ]
—— Maximum increase due to sensors
—— Minimum increase due to sensors
—— High-cost case sensor investment

=)

=
T
1

P
=
T
L

[\ ]
(=]
T
1

(=]

Change in revenue gained by CFPP ($ million)

-20 1 Il
2020 2025 2030 2035 2040 2045 2050
Time (years)

Figure 89: Change in revenue gained by each CFPP compared to the

high-cost case investment cost when all types of sensors are placed
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In Figure 89, the maximum and minimum possible revenue change in each CFPP is presented.
The high-cost case investment cost in sensor network under best case (where all types of
sensors are placed) is $2.17M. The minimum possible increase in revenue gain by each CFPP
due to sensor placement surpasses this investment cost of $2.17M as early as 2030, indicating
that best case sensor network yield profits. This implies that in an uncertain energy market with
variability in solar, wind, natural gas technologies, by improving CFPP production by sensor
network the plant can gain increased revenue. And recover the investment cost in sensor
network by 2030, even under minimum possible revenue increase.

Conclusion

A simple corrosion model was developed to calculate the corrosion depth along the waterwall
section of a coal-fired boiler and was used in the estimator. The UKF estimates compare well
with the ‘true’ values of corrosion depth along the height of the waterwall with time. Corrosion
depth estimation enabled estimation of the failure time of waterwall tube due to corrosion. An
increase in the overall availability of CFPP is possible by planning maintenance activities
accordingly. Using energy market forecasting software (TIMES), potential revenue gained by
preventing forced outages is calculated. Scenarios based analysis was performed with the aim
of identifying conditions under which the potential revenue gained will be more than the
investment cost of sensor network. All technologies and corresponding factors affecting CFPP
production were identified. The individual degree of impact of each of these technologies on
CFPP electricity production was demonstrated. A set of near-random scenarios including all
effecting technologies were created using the method of Latin Hypercube Sampling. The
electricity produced by CFPP with and without improved availability under these random
scenarios was calculated and compiled to create a feasible region within which electricity
production can lie. From the scenario-based analysis it was identified that, in the near random
future with instability in various technologies, increased availability of CFPP has prompted them
to produce more electricity. The investment cost in the sensors was calculated for multiple
sensor placements. Investment made in sensor placement can be well recovered even with
least possible increase in revenue of CFPP by 2030. This implies that the CFPP can turn and stay
profitable by 2030, making the decision of investment in sensor network cost efficient.
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