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Introduction

Parametric thermal evaluations of spent nuclear fuel (SNF) waste packages (WPs) emplaced in
the potential repository were performed to determine the impact of thermal loading, WP spacing,
drift diameter, SNF aging, backfill, and relocation on the design of the Engineered Barrier
System. Temperatures in the WP and near-field host rock are key to radionuclide containment,
as they directly affect oxidation rates of the metal barriers and the ability of the rock to impede
particle movement which must be demonstrated for a safe and licensable repository. Maximum
allowable temperatures are based on material performance criteria and are specified as the
following design goals for the WP/EBS design®* P: SNF cladding 350°C, drift wall 200°C, and
TSw3 rock 115°C.

Base Evaluations

Using ANSYS, a 3-D finite element model of the potential repository was built to supply the
boundary conditions (WP surface temperatures) for a more detailed model of the WP internals.
Benchmarks (of this emplacement scale model) against V-TOUGH calculations at LLNL

(mountain scale) have been performed®* 2,

¢

The spacing of the emplacement drifts and individual WPs determine the area mass loading ’
(AML in MTU/acre) and the areal power density (APD, in kW/acre). The emplacement model
was evaluated at thermal loadings of 100, 83, and 25 MTU/acre for the 21 and 12 PWR WPs.
At the low loading, three different WP spacings were investigated. Thermal loading dominated
long-term near-field temperatures which were about 153, 134, and 71°C at 1,000 years for the
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Figure 1 - Minimum Waste Package Spacing
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three thermal loadings, respectively. At 25 MTU/acre, WP surface temperatures could permit

aqueous corrosion if water were present. Further discussion is provided in the WP Conceptual
Design Report®?,

Minimum WP Spacing

At 100 MTU/acre, three variations on WP spacing (16, 12, and 8 m) were considered to
determine a minimum WP spacing. Figure 1 displays the effect of shorter WP spacings on peak
cladding and drift wall temperatures. Rock and cladding temperature thermal goals are clearly
violated for the 8 m WP spacing and are near the limits or marginal with the 12 m WP spacing.

Therefore, a minimum WP spacing of 16 m provides a conservative lower bound for large WPs.

Minimum Drift Diameter

Five emplacement drift diameters (7.6, 5.0, 4.3, 3.0, and 2.0 m) were investigated for 21 and
12 PWR WPs at 100 MTU/acre. Figure 2 displays the effect of drift diameter on peak cladding
and drift wall temperatures. Rock temperature and cladding thermal goals are violated at

diameters less than 4.3 m for the large WP, and 3.0 m is the minimum diameter for the 12 PWR




Figure 2 - Minimum Drift Diameter
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WP. The impact (per meter) increases as drift diameters decrease, bounded by the case of
borehole emplacement which is prohibitively hot for WP capacities greater than about 4 PWR
assemblies. (Hundreds of years after emplacement, the temperature drop from WP surface to drift

wall is small and drift diameter is less important.)

SNF Aging

An analysis was conducted to demonstrate the effect of aging SNF (22, 40, 80, and 100 years)
before emplacement in a 21 PWR WP. SNF aging was found to reduce the short-term
temperatures, but did not significantly alter the long-term thermal behavior of the repository.
SNF aging of 40 years is required to maintain WP surface temperatures below boiling, and aging
of over 100 years is needed to keep large WP surface temperatures below the range for

aggressive corrosion (60 to 100°C) and may not be feasible.

Effect of Drift Backfill

Since it is not known what the backfill material will be, a parametric was devised to determine

what thermal conductivity is needed to maintain cladding temperatures below the thermal goal.




Figure 3 - Effect of Drift Backfill on Cladding Temp.
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As seen in Figure 3, a backfill conductivity of no less than 0.6 W/meK is required to maintain
cladding temperatures below 350°C when backfill is added at 100 years. This compares
marginally to crushed tuff which can have a conductivity of 0.58 to 0.74 W/meK®* 9, If the
backfill were added before 100 years, a much higher conductivity would be needed. Backfill at
the time of emplacement would be much hotter than borehole emplacement, because typical

backfill materials have conductivities lower than intact TSw2 rock (2.1 W/meK).

WP Relocation

Conceptually, WPs could be repositioned in the emplacement drifts at repository closure (assumed
100 years) to increase AML and manage high initial WP heat loads. An evaluation was
performed that doubled the AML (from 100 MTU/acre to 200 MTU/acre). Because the
relocation takes place after 100 years, the SNF has aged sufficiently to avoid a violation of SNF
cladding goals. However, the relocation does result in TSw2 rock temperatures much higher that
the thermal goal of 200°C. Not only do maximum drift wall temperatures exceed the thermal
goal, but average repository horizon temperatures exceed 250°C for more than 600 years and

TSw3 goals are violated. It is concluded that relocations resulting in AMLs much above the




maximum (100 MTU/acre) recommended by the FY 1993 Thermal Loading System Study®"

will result in a violation of thermal goals.

Conclusions

Thermal loading (AML) will be the primary determination of long-term repository temperatures
which affects engineered barrier corrosion mechanisms and rates and the ability of the host rock
to impede the migration of radionuclides. However, several engineered barrier design issues are
also important to meeting disposal thermal goals, repository operability, and containment lifetime;
some affect short-term peak temperatures, and some affect the long-term. The impact of thermal
loading, WP spacing, drift diameter, SNF aging, backfill, and other thermal management issues

must all be understood to demonstrate the safety and licensability of the potential repository.
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