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Abstract—The peculiar nature of whole slide imaging (WSI),
digitizing conventional glass slides to obtain multiple high
resolution images which capture microscopic details of a pa-
tient’s histopathological features, has garnered increased interest
from the computer vision research community over the last
two decades. Given the unique computational space and time
complexity inherent to gigapixel-size whole slide image data,
researchers have proposed novel machine learning algorithms to
aid in the performance of diagnostic tasks in clinical pathology.
One effective algorithm represents a Whole slide image as a
bag of smaller image patches, which can be represented as low-
dimension image patch embeddings. Weakly supervised deep-
learning methods, such as cluster-constrained-attention multiple
instance learning (CLAM), have shown promising results when
combined with image patch embeddings. While traditional en-
semble classifiers yield improved task performance, such methods
come with a steep cost in model complexity. Through knowledge
distillation, it is possible to retain some performance improve-
ments from an ensemble, while minimizing costs to model com-
plexity. In this work, we implement a weakly supervised ensemble
using clustering-constrained-attention multiple-instance learners
(CLAM), which uses attention and instance-level clustering to
identify task salient regions and feature extraction in whole
slides. By applying logit-based and attention-based knowledge
distillation, we show it is possible to retain some performance
improvements resulting from the ensemble at zero cost to model
complexity.

Index Terms—whole slide imaging, pathology, deep learning,
ensemble, knowledge distillation, weak supervision, multiple
instance learning, model compression, clam, attention, logits,
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I. INTRODUCTION

Combined, advances in compute capability and artificial
intelligence enable machine analysis of gigapixel whole-slide
images (WSIs) for a range of tasks in clinical pathology
including diagnosis, prognosis, and prediction of therapeutic-
response [1]-[3]. Through algorithmic breakthroughs in ma-
chine vision, we have witnessed significant advances medical
imaging research, notably classification and prediction [2],
[4]. Inherent challenges in computational pathology stemming
from: (i) spatial complexity and memory footprint to process
gigapixel-size whole slide images; and (ii) availability of
manually-annotated gigapixel WSIs. In recent years, these
two problems combined constitute the bulk of computational
pathology research. Generating image patches is one solu-
tion to address spatial complexity of gigapixel WSIs. Patch
generation applies a divide-and-conquer strategy, where single
gigapixel WSIs are decomposed into a collection of smaller
images, which lend themselves to sequential or parallel pro-
cessing algorithms [5].

Machine learning algorithms for computational pathology,
such as deep learning, is dependent on availability of sufficient
manually annotated gigapixel WSIs for supervised learning,
or large corpora of slide-level labels for weakly supervised
learning. However, as only a disproportionately small region
within a given gigapixel WSI corresponds to the slide-level
label, a majority of learning algorithms rely on pixel or patch-
level annotations, or annotated regions-of-interest (ROIs) [6].
The results obtained through such methods reflect performance
decline resulting from both noise generated by applying a
single label to all patches obtained from a WSI [7], and bias
from sub-sampling tissue regions with lower task salience.

Given the high cost of obtaining manually annotated WSIs
sufficient for training a deep neural network, recent work gives
evidence to clinical grade performance using weak supervision



with slide-level labels on binary classifiers. General weak su-
pervision methods, such as multiple-instance learning (MIL),
generate labeled data for supervised training and modeling.
However, aggregation functions commonly used for ROI slide-
level or patch-level predictions in weakly supervised whole-
slide classification methods under-perform in binary and multi-
class tissue sub-typing problems, and do not generalize on tests
sets in which images are generated by a different device [8].

In [9], Lu et. al. developed clustering-constrained-attention
multiple-instance learning (CLAM), a high-throughput deep-
learning framework that achieves high performance across
different whole-slide-level classification tasks using a limited
number of training labels. The initial layers in the CLAM
framework combine transfer learning and convolutional neural
network (CNN) encoders for dimensionality reduction. In
the subsequent layers in the framework apply attention-based
multiple-instance aggregation [10] on encoded outputs from
the previous layer. This combination allows CLAM to be
generalized to multi-class classification and tumor subtpying
classification problems in addition to tumor versus normal
binary classification tasks.

Ensemble learning algorithms are considered the state-of-
the-art for a number of machine learning tasks. The term
ensemble learner refers to a general class of methods that
combine the predictive output multiple base learners to make a
final decision; primarily in supervised machine learning tasks
[11]. A base learner, is an machine learning algorithm that
learns to discriminate a set of labeled examples as input,
the end result of which is a a generalizable classification
or regression model. By utilizing models generated through
base learners, predictions can be drawn for new unlabeled
examples.

While the aggregation of base learners in an ensemble yields
an improvement in task performance for almost any machine
learning algorithm, they can be cumbersome to implement,
and come with a steep increase in spatial and computational
complexity. These increases are more pronounced when deep
neural networks are utilized as base learners in an ensemble;
making the latter unsuitable for deployment in many real world
applications. Bucilu™ et al. [12] initially proposed a method
for compressing the knowledge encoded in an ensemble of
models into a single model.

Recently, much research effort is focused on achieving same
or similar accuracy while compressing deep neural networks.
These include pruning [13], quantization [14], efficient neural
network families [15], [16], and knowledge distillation [17],
[18]. In [17], Hington et al. developed a knowledge distillation
method by combining a single compressed model, and fewer
specialized models. The idea behind knowledge distillation is
the augmentation of available class labels through the use of
soft probabilities from a larger, fully trained teacher network
to supervise the training of a smaller student network.

In this paper, we designed a study that applies two knowl-
edge distillation methods to compress a bootstrap ensemble
of CLAM base learners, trained on the CAMELYON16 [19]
dataset. In Section , we describe the bootstrap aggregation

sampling applied to the CAMELYON16 dataset. We also
describe the logit-based and attention-based knowledge dis-
tillation methods used in our experiments. Section presents
the results of our experimental; and Section covers a brief
discussion, and directions for future work.

II. METHODS
A. Whole Slide Image Dataset

Assessing the extent of cancer spread by histopathologi-
cal analysis of sentinel axillary lymph nodes (SLNs) is an
important part of breast cancer staging. To encourage the
development of diagnostic machine learning algorithms, the
CAMELYONI16 dataset, for detecting lymph node metastases,
was published in November 2016. The CAMELYON 16 dataset
consists of a total of 399 whole-slide images and correspond-
ing glass slides of SLNs from Radboud University Medi-
cal Center (RUMC) and University Medical Center Utrecht
(UMCU) in the Neatherlands. RUMC images were produced
with a digital slide scanner (Pannoramic 250 Flash II; 3DHIS-
TECH) with a 20x objective lens (specimen-level pixel size,
0.243pum x 0.243um). UMCU images were produced using a
digital slide scanner with a 40x objective lens (specimen-level
pixel size, 0.226pm x 0.226um).

For algorithm development, the dataset includes a training
and validation set consisting of (n=110) and without (n=160)
nodal metastases verified by immunohistochemical staining.
For algorithm performance evaluation, the dataset includes an
independent test set of 129 whole-slide images (49 with and 80
without metastases). As a baseline for human performance, the
same test set of corresponding glass slides was evaluated by
a panel of 11 pathologists with time constraint (WTC) from
the Netherlands to ascertain likelihood of nodal metastases
for each slide in a flexible 2-hour session, simulating routine
pathology workflow, and by 1 pathologist without time con-
straint (WOTC) [19].

B. Cluster-Constrained-Attention Multiple-Instance Learning

CLAM is a high-throughput and interpretable framework
for data efficient whole slide image (WSI) classification uti-
lizing slide-level labels alone. Not requiring ROI extraction
or patch-level annotations, the CLAM framework is capable
of modeling multi-class tumor subtyping tasks. In [9], Lu et
al. demonstrate the efficacy of the CLAM framework on three
WSI datasets. Models trained on each dataset were adapted
to independent test cohorts of WSI resections and biopsies as
well as smartphone microscopy images (photomicrographs).

C. Ensemble Learning

Bootstrap aggregation ensemble algorithm, known as bag-
ging, creates a collection of identical base learners trained
on sub-samples randomly drawn from an underlying dataset.
Samples from the underlying dataset are drawn through
bootstrap sampling, where data instances are drawn with
replacement. The resulting sampled dataset will have multiple
instances of some original samples and no instances of others.
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Fig. 1: Cluster-constrained-attention multiple-instance learning (CLAM) framework for whole slide image classification tasks.
WSI images are decomposed to uniform sized patches, compressed using a pretrained CNN-based DNN, and fed through a
cluster-constrained attention model to obtain output predictions as illustrated in [9].

The final prediction of the bagging ensemble is obtained by ag-
gregating the predictive outputs of constituent learners. Thus,
instance errors for each individual learner are compensated
for by other learners in the ensemble. Intuitively, ensemble
methodology stems from human nature and our tendency
to gather different individualized data informed by unique
perspective; individually weighing and combining data points
to form opinions and make complex decisions. The main
idea is that weighing and aggregating several individualized
opinions will be better than aggregating or choosing individual
decisions [20]-[22].

D. Model Compression

The basic concept of model compression [12] is to train a
miniaturized model to approximate the function learned by a
larger, more complex model. First, model compression gener-
ates samples by passing unlabeled data through a pretrained,
larger or more complex model (teacher model). The outputs or
scores obtained from the larger model serve as synthetic labels
for the corresponding sample. These synthetically labeled data
form the training corpus for a smaller and less complex
model (student model). The mimic model is not trained on
the original labels it is trained to learn the function that was
learned by the larger model. If the compressed model learns
to mimic the large model perfectly it makes exactly the same
predictions and mistakes as the complex model. The process
of compression suggests the complexity of a model limits
its ability to learn a complex function from training data,
but the complex function can be approximated through an
intermediate, more complex model capable of learning such
functions from training data.

In this work, we apply two compression methods on an en-
semble of models generated using CLAM framework. The first
compression method uses log probability values, also known
as logits, obtained before the softmax activation. Training on
logarithms of predicted probabilities are shown to improve
the learning process for the student model by placing an equal
emphasis on the functions learned by the teacher model across
all targets. In [18], Ba and Caruana noted that the logits of

two samples may differ greatly, showing the teacher model is
capable of discriminating between two samples of the same
class. However, with a softmax operation, this information is
lost as both outputs represent the same class. By training the
student model directly on the logits, the student is better able
to learn the internal model learned by the teacher, without
suffering from the information loss that occurs from passing
through logits to probability space.

The second compression method employs activation-based
attention transfer, by using spatial attention maps to transfer
information from teacher model to student model. In [23],
Zagoruyko et al. take the absolute value of a hidden neuron
activation as a measure of importance of that neuron w.r.t that
specific input, and compute the statistics of these values across
the channel dimension to construct class-discriminative spatial
attention maps. Defining attention as gradient w.r.t input, can
be viewed as an input sensitivity map as described in [24],
attention to a spatial location within the input encodes how
sensitive the output prediction is w.r.t. changes at that input
location. To obtain gradient of loss w.r.t input for both student

and teacher model, we recall from [23]:
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III. EXPERIMENTAL

In the following section, we compare the performance
of knowledge distillation using logit-based distillation and
attention-based distillation on an ensemble of CLAM learners
trained on the CAMELYON 16 dataset. We split this section into
two parts, first we describe the training and model selection
process, which is uniform across all experiments. Then we
include the experimental results for the base CLAM model
(CLAMg, and results for both the CLAM ensemble used as
teacher model (CLAMT) and both the logit-based (CLAMgy,)
and the attention-based (CLAMg 4) distilled student models.

A. Training and Model Selection

All our experiments were run using WSIs dataset partitions
drawn from the CAMELYONI6 training dataset. Using the
CLAM pipeline, we segmented the tissue region in each WSI
image and extracted 256 x 256 pixel-sized patches. Each patch
was then compressed using a deep CNN to convert tissue
image patches to a low-dimensional image embedding. For
this experiment, we used a deep residual network model
[26] pre-trained on ImageNet, and applied adaptive mean-
spatial pooling after the third residual block, converting each
256 x 256 patch into a 1024 dimension feature vector.

During training, for each slide, we apply a cross-entropy
loss function on scores of patch selected through max-pooling;
model parameters are optimized via stochastic gradient descent
using a batch size of one and the Adam optimizer with the
same hyperparameters as CLAM. Namely, we use a learning
rate of 2 x 10*, a weight decay of 1 x 10°, with $1 = 0.9,
82 =10.999 and e = 1 x 108.

The CLAM  model and both student models were evaluated
using a k-fold cross-validation (k = 10) scheme by creating
ten unique partitions. For each fold, we reserve a partition
as hold-out, while the rest of the data is split using 90% for
model training, and 10% for validation (5%). To create the
ensemble, we trained 100 CLAMp models as base-learners.
The bootstrap aggregation ensemble algorithm first creates 100
partitions. Each partition is formed by uniformly sampling
95% of the CAMELYONI6 without replacement. Bootstrap
samples (n = 270) are drawn uniformly with replacement
from each partition to from model training (90%) and valida-
tion (10%) splits.

All models are trained for at least 50 epochs and up to a
maximum of 100 epochs if the early stopping criterion is not
met. Validation loss is monitored each epoch and when it has
not decreased from the previous low for over 20 consecutive
epochs, early stopping is used. The saved model, which has
the lowest validation loss, is then tested on the CAMELYON16
test set (n = 129).

B. Binary Tumor Versus Normal Classification Results

On the CAMELYON16 dataset for breast-cancer-metastasis
detection in axillary lymph nodes, the (CLAMpg) model
achieved an average test AUC of 0.904, 95% CI [0.899, 0.908].
The ensemble teacher model, (CLAM7), achieved a test AUC
of 0.935. The logit-based student model (CLAMg;,) achieved

an average test AUC of 0.916, 95% CI [0.892,0.925], while
the attention-based student model (CLAMg4), achieved an
average test AUC of 0.906, 95% CI [0.882,0.920]

IV. DISCUSSION

In this paper, we briefly reviewed the application of
computer vision algorithms in clinical pathology to address
challenges inherent in digitized whole slide imaging. We
also reviewed the cluster-constrained-attention multi-instance-
learning framework developed by Lu et al. [9], and described
how we can leverage ensemble learning and knowledge dis-
tillation to achieve improvements in task performance while
minimizing the increased computational costs of deploying
ensemble algorithms. As our results on the CAMELYON16
dataset for breast-cancer-metastasis detection in axillary lymph
node suggest, we are able to preserve some of the performance
improvements obtained through ensemble learning, while en-
tirely eliminating the computational costs, producing a student
model of similar complexity to the base-learner (CLAM) but
better task performance.
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