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OVERALL OBJECTIVE:

The overall objective of this project is to perform experiments to understand the
effect of coal beneficiation processes and high shear rheological properties on the

atomization of coal-water slurries (CWS). In the atomization studies, the mean drop

size of the CWS sprays will be determined at various air-to CWS. A correlation

between the high shear rheological properties, particle size distributions and the

atomization will be made in order to determine the influence of these parameters on the
atomization of CWS.

PROJECT STATUS:

Rheological properties of the CWS samples were determined after a six month storage

(A)

period and the properties compared to freshly prepared samples. The rheological
evaluations made include:

(B)

Flow characteristics under low shear rates

(C)

Flow Characteristics under high shear rates

Viscoelastic behavior under low frequency of oscillation

All the three CWS samples formed a hard pack solid at the end of the six month

storage period, and had to be redispersed. The flotation cleaned coal and the

heavy-media cleaned coal however, had the tendency to settle much faster than the

uncleaned coal. Each of them remained completely dispersed during the duratibé of
the testing period.
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RESULTS
Viscoelastic Behavior

Oscillatory measurements were made and the storage modulus, G', values were
compared to previously obtained data. Viscoelastic properties can be exhibited in
systems which have internal structure. These properties Acould affect the stability and
fuel breakup of ligaments upon exiting a nozzle or orifice [1]. The linear viscoelasticity
can be measured by subjecting the sample through a small amplitude oscillatory test.
For a system where the strain varies sinusoidally with time, t, The strain amplitude can

be given by:

Y() = YmaxSinat (1)
where < is the maximum strain amplitude and  is the angular frequency of oscillation

[2]. The corresponding stress is given by

(0) = TmaxSin(o + ) (2)
where & is the phase shift between stress and strain.

The above equation, (2), can be re-written as:

2(0) = Yuux(G sinoot+G" Cosol) 3)
The storage modulus, G' and the loss modulus, G" are defined in terms of the

phase angles as:

G = et (4)
G'=0 (5)

The storage modulus G' represents the "stored' or elastic component of the stress and
is in phase with the strain. The loss modulus, G", represents the viscous component
and it is the out of phase component.  For a fluid that is purely viscous, G' is zero and
the phase is 90° and for a purely elastic material where energy is stored but not

dissipated, G"is zero and the phase is 0° [3].




Figure 1 compares the storage modulus of the three samples: Uncleaned coal
slurry, Heavy media Cleaned slurry and the Floatation cleaned slurry . The plot shows
that the uncleaned coal slurry has a much more elastic component than the rest of the
samples examined. This observation is consistent with previously obtained data for the
freshly prepared samples (Figure 2 ). This observation indicates that the cleaning
process minimizes the elastic component of the slurries and that, the length of storage
has no significant effect on the elastic properties of the slurries.

High Shear Rheology
In a capillary flow, CWS rheology can be adequately described by a power law

model:

T=ky" (6)
where 1= shear stress
v= shear rate

K = consistency index
n = power law index
n = 1 for Newtonian
n > 1 dilatant fluids
n < 1 for pseudoplastic fluids
HVA-6 Capillary Viscometer was used to determine the high shear rheological
properties. The HVA 6 automated high shear capillary viscometer permits
measurements from medium up to high shear rates (D=10%to 10° S**). Capillary tubes
of 0.8mm, 1.5mm and 3.0mm in diameters and of length 100 mm were used in these
measurements. The sample to be measured is forced through a capillary at definite

pre-adjusted pressure and pressed into a burette where volume measurement takes




place. Figure 3 shows a high shear flow behavior of 61% CWS uncleaned, floatation,
and heavy media cleaned slurries. Each of these slurries contain xantham gum as a
stabilizer. The coal content of the exit slurry through the capillary tubes at each applied

pressure, were collected and the solids content determined.
Results

The pressure drop in.sluny flows is a key design parameter since it governs
the pumping power required to move the slurry through the system. The change
from laminar to turbulent flow results in a change in the flow resistance or friction
loss. The prediction of the transition from laminar to turbulent flow can be inferred
from the variation in the friction factor, which is dependent on the pipe diameter, the
rate of flow, the length of the pipe, and the acceleration due to gravity.

In a horizontal flow, the actual deposition of the suspended particles is
determined by the competing effects of gravity, particle-particle interaction and the
rheological properties of the carrier fluid. As a result, either concentric or eccentric
plug flow may result.

All the CWS used in the high shear capillary flow studies, followed either the
Power law or the Hescheley- Buckley model (Figure 3). The power law and the

Herschel- Buckley models can be represented By:

T =ky" ( Power Law Model) @)
T =1, +ky" (H. Buckley Model) ®
where k and n are rheological constants, and © and y are the shear stress and

shear rate respectively.




For slurries whose properties are time independent, the dependence of the
shear stress (t) on the shear rate (y) can be expressed as y =f{(x). The distribution of
velocity in the radiant direction and the relation between volumetric flow rate, Q and

loss of pressure AP, can be easily obtained through Rabinowitsch's Equation [4].
S=50 ek ©)
Where <, is the wall stress.

Figure 4 compares the flow curves of the slurries studied, and Tables 1-5 list
the experimental data obtained. The data show a transitional Reynolds number of
1500. The results indicate that the turbulence intensity is damped as the solids
concentration increase.

The coal content in the exit slurry at each applied pressure did not differ
significantly from the initial slurry concentration. This suggests a co;xcennic flow
through the capillary tubes. |

Increasing the applied pressure increases the flow rate and thus, the kinetic
energy. For slurry concentration greater than 25% solids, the effect of increasing the
initial applied pressure had no significant effect on the Reynolds number. This effect
is however, pronounced in slurries having solids concentration less than 20% solids.

The effect of increasing the capillary size, for the high solids concentration

slurries, had no significant effect on the Reynolds Number.
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Table 1.
Flow Rate of 61% CWS Through 0.8mm Capillary Tube

P(bar) Flow Rate(ml/s) Reynolds Number Coal Content in Exit Sample(%)
10.2 .56 6 62
12.2 .66 7 60
14.9 .81 8 60
18.1 1.0 10 59
20.6 1.1 12 59
Table 2.
Flow Rate of 61% CWS Through 1.5mm Capillary Tube
P(bar) Flow Rate(ml/s) Reynolds Number Coal Content in Exit Sample(%)
4.0 41 0 59
6.1 1.9 S 61
8.0 25 6 59
10.4 33 8 59
12.7 42 11 60
14.4 438 13 60
Table3
Flow Rate of 61% CWS Through 3.0mm Capillary Tube
P(bar) Flow Rate(ml/s) Reynolds Number Coal Content in Exit Sample(%)
1.2 0.47 0 55
1.7 1.7 0 60
3.2 3.5 1 59
5.1 5.6 2 60
6.4 8.7 3 59
Table 4.
Flow Rate of 35% CWS Through 0.8mm Capillary Tube
P(bar) Flow Rate(ml/s) Reynolds Number Coal Content in Exit Sample(%)
2.6 24 344 37
4.6 3.9 557 36
6.8 6.1 .995 34
83 6.5 906 35
10.2 . 5.3 439 36
Tables. -
Flow Rate of 15% CWS Through 0.8mm Capillary Tube
P(bar) Flow Rate(ml/s) Reynolds Number Coal Content in Exit Sample(%)
12 2.6 1047 14 .
3.1 5.2 1858 13
4.6 7.2 3851 14
6.3 9.6 4947 14
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Figure 3. Flow Curves of 63Z Coal Water Slurries.
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