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Abstract

GNARLYX is a new hydrocode for direct numerical simulations of the microstructural behav-
ior of high explosives at the mesoscale. We summarize the computational framework for multi-
dimensional, Eulerian multi-material hydrodynamics coupled to EOS and hyperelastic, plastic
constitutive models. We present 1D verification tests of multi-material only and combined multi-
material and strength capabilities with comparisons to exact solutions of shock states resulting
from an incident shock impacting the material interface of PBX9502 and aluminum. We show that
GNARLYX performs well in capturing the resulting shock waves in examining numerical convergence
with exact solutions. In later work, we will summarize the thermomechanics and multi-dimensional,

parallel computing capabilities in GNARLYX with multi-dimensional verification tests.
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I. INTRODUCTION

In this technical report, we present GNARLYX, a new hydrocode for investigating the
leading mechanisms of initiation in high explosives (HE). This computational framework
enables high fidelity thermomechanics in simulating the complex behavior of energetic ma-
terials. High explosive plastic bonded explosives (PBX) are heterogeneous materials con-
sisting of brittle explosive crystals with a polymeric binder [I]. Macroscopic performance
depends on the microstructural constituents because even small microscopic changes lead to
distinct behavior |2 3]. Internal defects such as porosity, interfaces, and cracks initiate reac-
tions while thermal conductivity, the underlying chemical reaction rates, and exothermicity
control burn. The interplay of these features and mechanisms represents the thermochem-
istry at the chemical reaction zone (~100 microns). A critical barrier to understanding the
leading mechanisms of initiation in HE is bridging the microscopic and macroscopic length
and time scales, via the mesoscales. GNARLYX is a new hydrocode designed to address this
challenge through direct numerical simulations (DNS) at the mesoscale, providing represen-
tative details that inform multi-scale, thermochemistry in HE burn. GNARLYX is computed
with Eulerian frame multi-physics hydrodynamics to ensure a robust, computational mesh
treatment in modeling these large deformation mechanics systems. The multi-physics capa-
bilities include multi-material hydrodynamics for the shock response, compaction of voids,
and elastic-plastic strength, as well as constitutive models for the equation of state (EOS),
chemical reactions, anisotropic crystal plasticity, and thermal conduction. This technical

report focuses on the multi-material and strength capabilities of GNARLYX. While the ver-



ification test presented here is at the macroscale, the capabilities are also applicable to the
mesoscale. In Sec. [lI| we summarize the computational framework for multi-dimensional,
Eulerian multi-material hydrodynamics coupled to EOS and hyperelastic, plastic constitu-
tive models in GNARLYX. This framework is based on a conservative, hyperbolic system
for finite deformation [4-10] and a ghost fluid method for multi-materials [I1-14]. By con-
struction, it is thermodynamically consistent in terms of a Helmholtz free energy. The hy-
drodynamic update is straightforward to implement using high resolution shock capturing
methods [I5]. The base infrastructure of GNARLYX is the parallel computing, hydrody-
namics framework of ATHENA-+-, an open source, multi-dimensional, Eulerian hydrody-
namics code for astrophysical fluid dynamics [I6HI9]. The changes from ATHENA4+ to
GNARLYX are the significant modifications and additions in implementing a new numerical
scheme for multi-material evolution of condensed phase EOS and hyperelastic plastic con-
stitutive models. Thus, this work brings the base infrastructure from a hydrodynamics code
to a hydrocode, for simulating hydrodynamics and solid motion. These differences include
new evolution equations, Riemann solvers, wave speed calculations, source terms, EOS and
material strength models, data structures, and parallel computing communication (MPI)
networks. In GNARLYX, the material deformation manifests as a Cauchy stress field where
the deformation field itself is identified as an evolving transformation between Eulerian
and Lagrangian frames. This frame transformation enables an implementation of plasticity
models, such as crystal plasticity, used previously in Lagrangian and Lagrangian-Eulerian
(ALE) schemes [20-22]. In Sec. we showcase 1D verification tests of multi-material only
and combined multi-material and strength capabilities, in comparing numerical results of
GNARLYX to exact solutions. In Sec. [[V] we summarize the results in this report. In later
work, we will showcase the thermomechanics and multi-dimensional, parallel computing

capabilities in GNARLYX with multi-dimensional verification tests.



II. GOVERNING EQUATIONS

A. Hydrodynamics coupled to constitutive equations

Consider the hydrodynamic evolution of a single material, governed by the mass, mo-

mentum, and energy conservation laws in Cartesian coordinates. In Eulerian form, we have

dp 0
i N = 1
Opu; 0
5 oz (puju; — o45) = 0, (2)
Opeto 0
0; : + 8_331 (petotui - Uz‘juj) =0, (3)

with density p, velocity @, Cauchy stress o, and specific total energy e;;. The specific total

energy is given in terms of the internal energy e..s from the EOS, internal elastic energy

1

5 Ui, where

Eelastic from the constitutive model, and kinetic energy e =
€tot = Ceos T Eelastic T €k- (4)

The constitutive model is described by the deformation gradient tensor F, defined in com-
ponent form as F;; = 0x;/0X;, the coordinate transformation between the Eulerian x; and
Lagrangian X frames. We define the Cauchy stress o and specific internal energies (per

Mass) €eos ANA Eepastic 10 terms of a Helmholtz free energy state function,
\II(V7 F7 T) = \Ijeos<vv T) + \Ilelastic(F7 T)7 (5)

for specific volume V', temperature 7', and deformation gradient tensor F, with separable
contributions from the EOS, V.., and deviatoric contributions which represent material
strength, Weasiic. The specific internal energy (including both EOS and deviatoric parts), in
terms of the Helmholtz free energy, is given by

ov

€int = v — Té?_T = €eos T Celastic- (6)
The Cauchy stress is then
pFi OV
= . 7
71 = detF OFy, @

Additionally, the Cauchy stress may be separated into components of pressure p from the

EOS and deviatoric stress 7 from the constitutive model, where
Tij = —0ip + Tij- (8)
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The total deformation gradient is defined through the multiplicative decomposition F =
FeF?, with elastic F¢ and plastic F? contributions. For elastic-plastic strength [6] [7, 10, [14],
we couple the conservation laws Eq. to the conservative evolution equation for the elastic

deformation gradient F¢,

0
>—(pFy;) — P, (9)

a e a e e
F5) 4 o —(uepFs — wiply;) = —u, O

a(ﬁ ij D2

where total energy e, stress o, and plastic source term €2 are defined in terms of F¢
for a given elasticity/plasticity model. We specify the evolution in terms of the elastic
deformation gradient F¢ instead of the total deformation gradient F as the plastic part
F? does not contribute to the stress and energy. Specifically, it is not thermodynamically
admissible to use the plastic deformation gradient tensor as a state variable because it lacks

a “one-to-one” connection with the material state.

B. Wave speeds for hydrodynamics with strength

We obtain the hydrodynamic wave speeds by re-casting the conservative system given in

Eqgs. , , 7 and |§|, for purely elastic behavior (no sources), in quasi-linear form [23], 24], as

u
oxk

ou  oFrtu)you U
ot oo A

=0. (10)
Note that the matrix A*({{) is in terms of the conservative variables /. In multi-dimensions,

we consider the wave speeds separately, splitting the quasi-linear system of Eq.[I0] For the
x-direction, where A(U) = OF*(U)/O0U, we have

au ou

- TAU =0, (11)



We re-cast A, for convenience, in terms of conservative variables &,

&1 p
&2 pu1
€3 pus
€4 pus
&s PCtot
&6 PEY
U — 3 _ PET, (12)
€s pET;
&9 235
&10 pEg,
£ Pl
&1 pEs
€13 pEs,
§14 pEs;
Note that the Cauchy stress is dependent on a subset of the conservative variables &,
o = 0(&1, 86, &7, €85 €9, §10, 11, 12, 13, E1a)- (13)

We then have A, for the x-direction, obtained from calculating the derivatives of the flux

F*, with respect to &, such that

oFh .. Oy
3! 0614
A= : : (14)
OF . OF
3! 0814 "
The eigenvalues of A are,
{07 Oa 07 Uy, U1, Uy, Uy, U1, U, U1, U1 + Clong7 Uy — Clonga U1 + Cshear, U1 — Cshear}a (15>

for the longitudinal ¢jon, and shear cgpear Wave speeds. A similar procedure is used to obtain

the wave speeds in the y- and z-directions.

C. Multi-material evolution with level set functions

We track multiple regions of materials using level set functions in order to place spatial

limits on the multi-material evolution. A level set ®(Z, t) is a smooth signed distance function
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which gives values for the shortest distance to the interface [13]. For ®” < 0, Z is inside the
region of material m. For ®™ > 0, & is outside the region of material m. For ™ = 0, ¥ is at
the interface location, the material boundary. For the update, we consider a set of variables
for each material, represented by m, where m =0,..., N — 1, for N number of materials in
the computational domain. In GNARLYX, we implement the level set evolution described

in Osher et al. [13]. The level set evolves as a convection / advection equation,

0o 0P

where a; is the velocity of the interface, in the k-th direction. The interface velocity ay
is obtained from solving the Riemann problem at the interface [I5]. For Eq. [16] we im-
plement Hamilton-Jacobi WENO for fifth order spatial accuracy in smooth flow and either
second-order van Leer or total variation diminishing third-order Runge-Kutta (RK3) time
integration [I3]. The level set is initialized given the initial location of the interface. For
distance d, which gives the shortest distance between an interface location (x;,ys, 27), with
subscript “I” denoting the interface location, and a level set point (z,v, z), the level set is
defined as

O(z,y,2) = £minld(xy, yr, 21, 2, Y, )], (17)

where the negative sign is given for a point within the material region and positive sign

otherwise. The surface & = 0 indicates the boundary of the material.

D. Ghost fluid boundary conditions at material interface

For each material, the update is limited to the material regions defined by the level set ®.
In practice, ghost zones are necessary for spatial differencing and reconstruction stencils that
extend beyond the indexed domain for each material. In GNARLYX, we implement constant
extrapolation [25] for all primitive variables, defined by the level set ® < 0, extrapolated
to the ® > 0 region and vice versa. This is done as a constant along a normal 7 to the

interface, defined by the level set function,

Vo
n=—= (18)
Vo
For the extrapolation, we solve
H(®)it - Vu =0, (19)



where H(®) is the unit Heaviside function,

0, if®>0
H(®) = , (20)

1, ifd <0
and specify V with a fourth-order stencil. For materials without strength, we implement
a contact discontinuity boundary condition, where the velocity and pressure are constant
across the material interface. More generally, for materials with strength, we apply a traction
equilibrium constraint, where the traction vector is constant across the surface. We define
a stress vector or traction as T; = o0;;e;, in terms of the Cauchy stress o and unit basis
vector e; The traction equilibrium constraint along a normal 7 to the interface equates the

tractions on the left (L) and right (R) sides of the interface, where we have in 1D,

ok =gl (21)
If both of the materials are without strength, this reduces to the contact discontinuity

ph =" (22)

There are a variety of methods to address the interface conditions above using approximate
solutions to the Riemann problem [I5, 26]. We implement an approximate solver based
on solving the Rankine-Hugoniot conditions across a wave speed [15] because it addresses
materials with and without strength in a general manner. We choose this method over
a Primitive Variable Riemann Solver (PVRS) method because of convenience. The latter
produces an approximate solution via characteristic equations. For hydrodynamics with a
straightforward analytic EOS and materials without strength, the coefficient matrix for the
primitive form of the Euler equations is constructed from easily obtainable eigenvectors.
However, this method is not convenient for complicated EOS and materials with strength
because the eigenvectors are difficult to obtain. Alternatively, for an approximate solver
based on solving the Rankine-Hugoniot conditions, we only need the eigenvalues and these
are straightforward to obtain. We have, as described in Sec.[[TB] a coefficient matrix based
on the conservative form of the equation, where inversion for pressure and energy is not
necessary (as for the primitive form) and avoided for complex EOS. Thus, for an approximate

solver based on solving the Rankine-Hugoniot conditions across a wave speed [15], we solve

ANU = \AU, (23)



where the coefficient matrix A is assumed to be constant with constant state d = {p, iy, 711, . . .

in 1D, for eigenvalue A. In obtaining the traction equilibrium constraint in Eq. we only
need expressions using rows associated with p and u. We consider the longitudinal wave
speeds given in Sec. , where A\ = uy £ a, for a = ¢jong. As in Toro [15], we use arithmetic
averaging p = (pr + pr)/2 and a = (ar, + ar)/2. We then solve the jump conditions defined
by Eq. which give a complete system of equations specified by the interface variables
{01, Py u* = uj = up, 07, = 0}, = 05, p} in terms of the known variables left and right
adjacent to the interface {pr, pr,ur, ur, 011,1,011,r} as well as p and a. The 1D traction

equilibrium conditions in the x-direction are then,

b= [ = u)fa+ (o — o) /] + o, (24)
PR = % [p(ur —ug)/a+ (o1r — 0111)/@%] + pr, (25)
ut = % [(o11,r — o11,L)/(pa) + ur + ug], (26)
o1 = % [pa(ur —ur) + o + oi1r]- (27)

In practice, we use only the velocity and the stress (in 1D, we have u* and oj;) for the

interface in replacing the quantities in the zones adjacent to the interface [26].

III. 1D VERIFICATION OF THE HYDROCODE GNARLYX
A. Constitutive models

In the following, we describe the EOS and hyperelastic, perfectly plastic constitutive
models used in the 1D verification test for GNARLYX described below. We consider material

models for PBX 9502 and aluminum.

1.  FEquation of State

We consider a Mie-Griineisen EOS where the specific internal energy is given by

1

€eos = eint(pap> = er(ﬂ) + p_F[p - pr(ﬂ)]? (28)

for reference curves e, (p) and P,(p). Re-writing Eq. 28] we have, for the pressure,

Peos = p(ﬂa eeos) = pr[eeos - er(ﬂ)] +pr(/))- (29)

10
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TABLE I: EOS parameters. Parameters of ambient density pg, ambient sound speed cg,
coefficient s in the linear us — u, relation, and Griineisen constant I' for PBX 9502 and

aluminum modeled as Mie-Griineisen EOS with Hugoniot reference curve [27H30].

Material po [g/cm?] co [km/s] s r
PBX 9502 1.89 2.4 2.05 1.1464
Al 2.79 5.33 1.34 2.0

TABLE II: Material strength parameters. PBX 9502 is not modeled with a strength
model. Parameters are given for aluminum modeled as a hyperelastic, perfectly plastic

material with constant shear modulus p and yield Y [30].

Material w [GPa Y [GPa
PBX 9502 N/A N/A
Al 28.6 0.26

For a Hugoniot reference curve [27], we have

=i (1=8) 1= (1= 5)]

o) =50 (120, (31)

2po p

parameterized by ambient density py, ambient sound speed cy, coefficient in the linear u;—u,
relation s, and Griineisen constant I'. The EOS parameters for PBX 9502 and aluminum
are given in Table [II While this is not a complete EOS [27], it is chosen for convenient

comparison to the EOS models and solutions in [29, [30].

2. Hyperelastic, perfectly plastic strength

We consider a material strength model such that the Cauchy stress is evaluated in sep-
arable components in Eq. [§ with an EOS component which determines the hydrodynamic
pressure p and an elastic component which determines the deviatoric stress 7 [20H22] [30].

We assume a hyperelastic constitutive model, parameterized by a constant shear modulus

11



1. We assume the deviatoric contribution to the Helmholtz free energy density is given by

Vg (E,) = pE, : E,, (32)
for reference density p = po, where B, = %(]?‘ST]?‘e —1I) is the deviatoric part of the elastic
Green-Lagrange strain and F, = (detF,)"'/3F, is the deviatoric part of the deformation
gradient F.. We define a generic stress as S = QMEe. Then, the deviatoric contribution
to the second Piola-Kirchhoff (PK2) stress in the immediate configuration is obtained by
projection,

1
2

Sgev =5 :M = {5 — Sl(Ce S)C '} (detF,) /2, (33)

with projection operator M = (detF.) *3(IKI — 1C. ® C.'), where C. = FI'F, [20]. The

deviatoric part of the Cauchy stress is then,

T(Fea ,u) = FegdeVF37 (34>

detF,

by transformation into the current configuration using the elastic deformation gradient.

From Eq.[32 the elastic internal energy density is given by
Uelastic(Fe, 1) = peelastic = MEe : Ee- (35)
We define the plastic source term as
QF = F°L?, (36)

where F¢ acts as a push-forward of the plastic distortion rate L” into the current configura-

tion. We define a plastic flow rule of the form [14], 20-22]

L’ = N¥, (37)
for slip rate 4 and, for isotropic flow,
exn—1 T e
N = (F°)" —F°, (38)
Teq

where g = 4/ %7’ : 7 is the equivalent form of the Cauchy stress. We consider an isotropic,
perfectly plastic model [30], parameterized by the yield Y. The plastic yield function is

f(‘}eq) = &eq -Y =0, (39)

12



for trial equivalent stress geq. When f > 0 in Eq. the stress is at or extends beyond the
yield surface and the material undergoes plastic deformation. In general, plasticity models
depend on how the yield function f(de,) is incorporated into the slip rate 4 in the plastic
flow rule of Eq. We consider a perfectly plastic update based on a radial return method
to numerically calculate the slip rate for the source term. At each iteration, we calculate a
trial equivalent stress ey, obtained from a trial elastic deformation gradient F., and check
if the yield function in Eq.[39|is satisfied. This is a root-finding scheme to obtain a slip rate

4, where f[Geq(7)] = 0 ensures that the plastic behavior occurs at the yield surface only.

B. 1D incident, reflected, transmitted shocks at the material interface of PBX

9502 and aluminum, modeled without strength

In 1D, consider the shock states resulting from an incident shock traveling left to right,
impacting the material interface of PBX 9502 and aluminum, modeled without strength.
This initial shock wave moves from low density PBX 9502 to high density (high shock
impedance) aluminum, producing a reflected shock in PBX 9502 and transmitted shock in
aluminum. The material interface, particle velocities in each of the states (incident, reflected,
transmitted), and transmitted shock propagate in the direction of the incident shock. The
reflected shock is directed in the opposite direction. We obtain the state quantities between
the incident, reflected, transmitted shocks with shock velocities D;, D,, and D;, respectively,
given the incident shock speed D; and the initial, ambient conditions for each material while
enforcing the contact discontinuity (reduced traction equilibrium condition for materials

without strength) boundary conditions at the material interface.

1. Ezxact solution for shock states

We consider Mie-Griineisen EOS with Hugoniot reference curves in Sec. [[II A 1| for both
materials with parameters given by Table [ The shock states are obtained from the Hugo-

niot jump conditions at each shock and the contact discontinuity connecting the reflected-

13



TABLE III: Exact solution for 1D incident, reflected, transmitted shocks at the material
interface of PBX 9502 and aluminum. Aluminum is modeled without strength. Incident
and reflected shock states are inside PBX 9502. Transmitted shock state is inside

aluminum. The density p, pressure p, particle velocity u, and shock velocity D are given

with high precision for direct comparison with numerical simulations to round-off error.

Shock state p [g/cm?] p [GPa] u [mm/ps] D [mm/ps]

Incident  2.094324324324324 1.659512195121952 2.926829268292684e-1 3.0
Reflected 2.171422410559692 2.5895404181265955 1.671158637057647e-1 3.243839809444038
Transmitted 2.8765544629708284 2.5895404181265955 1.671158637057647e-1 5.553935257365725

transmitted states. The incident shock state in PBX 9502 is given by

1 C !
pi = Po {1—5(1—50)] (40)
poD? ¢
pi:%(l—%)> (41)

Di Co
N 42
b S ( Di)’ (42)

for incident density p;, pressure p;, and velocity u; in the x-direction. The reflected shock
state is expressed in terms of the incident state, through the Hugoniot jump conditions across
the reflected shock with direction 7, = —n;, opposite to the particle velocity 7, - U, = —u,.

For mass conservation, we have

pr(ﬁrﬁr_DT) :pz(n_;"ﬁl_DT)’ (43)

— —

where n;. - i; = (7, - 7i;)(7; - 4;). The reflected density is then,

Dr+ui
r — Pi : 4
pr=p (Dr+ur) (44)

For momentum conservation, we have

—

pr(nr ﬁr _Dr>2+pr :pl(ﬁr ﬁl _Dr)2+pz (45)
The reflected pressure is then
Pr = pz(uz + Dr)2 “‘2% - pr(ur + Dr)2- (46)

14
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FIG. 1: Comparison of the exact (solid black line) and GNARLYX (dotted red line)
solutions for the hydrodynamic profiles of density p, pressure p, and velocity u. Evolution
at t = 0.13us gives the reflected shock and the transmitted shock from the material
interface of PBX 9502 and aluminum. The level set separates material regions into PBX

9502 (yellow) and aluminum (white).

From energy conservation, for specific internal energies e; and e,., we have

€r+;+§<ﬁT'QZT’_D7‘)2:ei+%+§(nr.ui_D7‘)2’ (47)

From Eq.[4] Eq.[46], Eq.[d7, and EOS in Eq. 28], we have four equations and four independent
unknowns {p;, pr, -, D, }. We now add four more independent unknowns {ps, p;, us, Dy} for
the transmitted shock state and close the system of equations which specify all the states by
connecting the reflected and transmitted shock states using the contact discontinuity. The

equations for the transmitted shock state in aluminum are of similar form to the incident

15



shock state in PBX9502, where

a5

pODtZ Co
- 1- % 49
Pe= < Dt>’ (49)
Dt Co
e 50
b s( Dt>’ (50)

for transmitted density p;, pressure p;, and velocity u; in the x-direction. Combining Eq.

and Eq. [50, we have a convenient expression for the pressure in terms of the velocity,

pr = pour(co + suy). (51)

From the contact discontinuity at the material interface, we obtain two more equations,

where the pressure and particle velocity are continuous such that,

Up = Uy, (52)
Pr = Pt (53)

Then, from Eq. 48 Eq. Eq. b2 and Eq. 53, we have four equations that specify the
transmitted state for a total of eight equations and eight unknowns to close the system of
equations which specify all the states. The exact solution with incident shock speed D; = 3

mm/ps is given in Table [[T]

2. Verification with GNARLYX

We compare the exact solution given in Sec. with numerical simulations with
GNARLYX using the following methods. From ATHENA-+-, we use the second-order van
Leer time integration scheme for the hydrodynamic and level set update and the second-
order piecewise linear spatial reconstruction for the primitive variables. We add fifth-order
WENO spatial differencing for the level set update. For the Riemann solver, we add a
Lax-Friedrichs method for multi-materials and condensed phase EOS. For the boundary
condition extrapolation at the material interface, we add a constant extrapolation with
a fourth-order stencil [25]. In comparing the exact and numerical solutions, we consider
units convenient for HE applications. Detonation velocities occur at ~ km/s and we use

the equivalent unit of mm/us for the velocity across a length scale of millimeters and time
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FIG. 2: Convergence study for GNARLYX in L; error versus spatial resolution. The

convergence rates for density p, pressure p, and velocity u are close to order unity.

duration in microseconds. Density is in cgs units. Pressure is measured in GPa. For this test,
we consider an incident shock speed at D; = 3 mm/us. This is significantly lower than the
typical detonation speed in PBX 9502, ensuring that shock transmission into aluminum is
under the Hugoniot elastic limit, leading to a split elastic-plastic wave [27, BI]. This impact
velocity is relevant to HE safety applications. We now present the details of 1D verification
simulations of a shock impacting the material interface of PBX9502 and aluminum. The
length of the physical domain is x = [—0.5,0.5] mm. We resolve the computational domain
with total number of zones {128,256,512,1024,2048,4096}. The total time evolution is
ty = 0.13us. The initial position of the incident shock is ;0 = —0.3 mm. The initial
position of the material interface (contact discontinuity) is .o = 0.0 mm. The time of
impact, when incident shock reaches the interface, is timpact = —2i0/D;. The position of the

contact discontinuity x. = (t — timpact)Ur + Zc,0, reflected shock @, = (tf — timpact) Dr + Zc,0,
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and transmitted shock x; = (tf — timpact) Dt + %0 depend on the initial choice of z;( and
Zcpo. Figure (1| shows density, pressure, and velocity profiles at ¢y = 0.13us, a point in the
time evolution after the incident shock hits the material interface, producing a reflected
shock wave traveling in the -x direction at z, through PBX 9502 and a transmitted shock
wave traveling in the +x direction at z; through aluminum. The contact discontinuity also
travels in the +x direction at z. through aluminum, identified in Fig. [1| by the transition
point between the yellow and white shading. The three panels show a comparison of the
exact solution in the solid black line with the numerical result of GNARLYX at resolution
Az = 2.4e — 4 mm in the red dotted line. GNARLYX captures the reflected shock and
transmitted shock and maintains the contact discontinuity boundary condition, where there
is a jump in density, but continuous in pressure and velocity across the material interface.
We find that the numerical solution converges to the exact solution for all spatial resolutions
considered. We consider a convergence study using the L; error defined for hydrodynamic
variable f = {p,p,u}, where f; is the numerical cell-centered value at index i, fexact iS the

exact solution at position z;, and Az; is the cell-width at z;,
Ll = Z ’fz - fexact|Axi- (54)

Fig. 2| shows the L; error versus resolution size Ax for the three hydrodynamic profiles p, p,
and u. GNARLYX produces convergence rates for each profile close to first-order as expected

for shock-capturing methods.

C. 1D incident, reflected, transmitted split elastic-plastic shocks at the material

interface of PBX 9502 and aluminum

Consider the previous set up in Sec. [[IT B where aluminum is modeled with strength. This
initial shock wave moves from low density PBX 9502 to high density (high shock impedance)
aluminum, producing a reflected shock in PBX 9502 and transmitted, split elastic-plastic
shocks in aluminum. The split transmitted wave of an elastic precursor followed by a plastic
shock wave results from the behavior of aluminum with material strength [31]. The material
interface, particle velocities in each of the states (incident, reflected, transmitted elastic, and
transmitted plastic), and transmitted shocks propagate in the direction of the incident shock.

The reflected shock is directed in the opposite direction. We obtain the state quantities
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TABLE IV: Exact solution for 1D incident, reflected, transmitted split elastic-plastic
shocks at the material interface of PBX 9502 and aluminum. Aluminum is modeled with a
hyperelastic, perfectly plastic model. Incident and reflected shock states are located inside
PBX 9502. Transmitted elastic and plastic shocks states are located inside aluminum. The
density p, pressure p, particle velocity u, and shock velocity D are given with high

precision for direct comparison with numerical simulations to round-off error.

Shock state p [g/cm?] p [GPa] u [mm/ ps] D [mm/pus]

Incident 2.094324324324324 1.659512195121952  2.926829268292684e-1 3.0

Reflected 2.173721443525260 2.620590805610931 1.632162754677383e-1 3.251834042026332
Plastic =~ 2.871736182750173 2.447257472277594  1.632162754677383e-1 5.589752109400773
Elastic ~ 2.802749184157360 3.657742898480048e-1 2.964727041531747e-2 6.517582767917887

between the incident, reflected, transmitted elastic, and transmitted plastic shocks with
shock velocities D;, D,, D., and D,, respectively, given the incident shock speed D, and
the initial, ambient conditions for each material while enforcing the contact discontinuity

boundary conditions at the material interface.

1. Ezact solution for shock states

We use the same expressions for the incident and reflected shock states for the strengthless
case given by Sec. What remains for the solution is closing the full shock system using
the contact discontinuity boundary condition, the transmitted elastic-plastic shock jump
condition, and the jump condition between the elastic and ambient states. The transmitted
elastic shock state {pe, pe, te, D} is completely determined by the shear modulus p and yield
strength Y. We consider the finite strain uniaxial limit of a hyperelastic, perfectly plastic

constitutive model [30]. The density at yield is

)
AT

We determine Fi; by setting the value of the deviatoric stress 7 in Eq. at yield, where

(55)

Sdev is reduced to the uniaxial limit, and then solving
2 2

=3V = guE = B B - R, (56)
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FIG. 3: Comparison of the exact (solid black line) and GNARLYX (dotted red line)

solutions for the hydrodynamic profiles of density p, pressure p, and velocity u. Evolution

at t = 0.13us gives the reflected shock and the split transmitted precursor elastic shock

followed by a plastic shock from the material interface of PBX 9502 and aluminum. The

level set separates material regions into PBX 9502 (yellow) and aluminum (white).

The deviatoric stress at yield is then,

where o,

2
e — __Y7
Ty

between the elastic and ambient states, we have the elastic shock velocity,

Pe0ec

pr=_ Pl
PO(PO - Pe)

20
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—pe + Te. From the mass and momentum jump conditions at the elastic shock,

(58)



Combining the mass and energy jump conditions with the Mie-Griineisen form of the EOS

in Eq. 28, we have the specific internal energy at yield given by,

[ r(pe) — pel'er(pe) + %Y} (Pe — po)
2p0pe — el (pe — po)

, (59)

Ce =

which has EOS and elastic contributions, e, = €¢ os + €e elastic. From the EOS in Eq. , the
pressure is given by pe = Peos(pe, €epos). Then, using the mass jump condition, the particle
velocity at yield is

Ue — Pe — pODe' (60)
Pe

Using the jump conditions across the plastic shock, the plastic state {p,, pp, u,, Dp} is given

in terms of the elastic state. From the mass jump condition, the plastic shock density is

Ue — Dy
u, — D,

Pp = Pe (61)

In the elastic, perfectly plastic model, we assume the same deviatoric stress for the elastic

and plastic states. Then, from the momentum jump condition, the plastic shock pressure is

Pp = De + pe(Dp — ue) (up — te). (62)

Combining the mass and energy jump conditions with the Mie-Griineisen form of the EOS

in Eq. [28] the plastic specific internal energy is

€p = €¢ + = (pe +pp - 27—6)(pp - pe)a (63)

2 pepyp

which has EOS and elastic contributions, e, = e, gos + €pelastic, With €p lastic = €e elastic due
to the yield condition. For the plastic state, we have three equations in Eq. 62, and
and four unknowns {p,, p,, u,, D,}. From the interface conditions, we obtain two more
equations to close the total system of eight equations and eight unknowns, where the particle

velocity and traction are continuous such that,
Up = Up, (64)
= py— 7. (65)

The exact shock states are given in Table [[TI] with high precision in order to directly

compare with numerical simulations to round-off error.
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FIG. 4: Convergence study for GNARLYX in L; error versus spatial resolution. The

convergence rates for density p, pressure p, and velocity u are close to order unity.

2. Verification with GNARLYX

We compare the exact solution given in Sec. with numerical results by GNARLYX
with methods and computational set up similar to Sec. [IIB2] The position of the trans-
mitted plastic shock x, = (ty — timpact) Dp + Tco and transmitted elastic shock x, = (tf —
timpact) De + Zco depend on the initial choice of ;¢ and x.. Figure [3| shows density, pres-
sure, and velocity profiles at ¢y = 0.13us, a point in the time evolution after the incident
shock hits the material interface, producing a reflected wave traveling in the -x direction
at x, through PBX 9502 and a split transmitted wave traveling in the +x direction at z,
and x. through aluminum. The contact discontinuity also travels in the 4+x direction at z.
through aluminum, identified in Fig. |3| by the transition point between the yellow and white
shading. The three panels show a comparison of the exact solution in the solid black line

with the numerical result of GNARLYX at resolution Az = 2.4e¢ — 4 mm in the red dotted
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line. GNARLYX captures the reflected shock and split transmitted elastic precursor shock
followed by the plastic shock. It maintains the traction equilibrium boundary condition,
where there is a jump in density, but continuous in traction and velocity across the material
interface. Furthermore, we find that the numerical solution converges to the exact solution
for all spatial resolutions considered. We consider a convergence study using the L, error
defined in Eq. p4l Fig. [4 shows the L; error versus resolution size Az for the three hydro-
dynamic profiles p, p, and u. GNARLYX produces convergence rates for each profile close to

first-order as expected for shock-capturing methods.

IV. CONCLUSION

We present GNARLY X, a newly developed hydrocode for Eulerian multi-material hydro-
dynamics coupled to equation of state and hyperelastic, plastic constitutive models. These
combined multi-material and strength capabilities are verified in 1D tests of the evolution
of shock states resulting from an incident shock wave impacting the material interface of
PBX 9502 and aluminum. We show in resolution studies that GNARLYX converges to the
exact solution. While the verification tests presented here are at the macroscale, the multi-
material and strength capabilities are also applicable to the mesoscale. In following work,
we will present the thermomechanics and multi-dimensional, parallel computing capabilities

in GNARLYX with multi-dimensional verification tests.
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