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Abstract

GnarlyX is a new hydrocode for direct numerical simulations of the microstructural behav-

ior of high explosives at the mesoscale. We summarize the computational framework for multi-

dimensional, Eulerian multi-material hydrodynamics coupled to EOS and hyperelastic, plastic

constitutive models. We present 1D verification tests of multi-material only and combined multi-

material and strength capabilities with comparisons to exact solutions of shock states resulting

from an incident shock impacting the material interface of PBX9502 and aluminum. We show that

GnarlyX performs well in capturing the resulting shock waves in examining numerical convergence

with exact solutions. In later work, we will summarize the thermomechanics and multi-dimensional,

parallel computing capabilities in GnarlyX with multi-dimensional verification tests.
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I. INTRODUCTION

In this technical report, we present GnarlyX, a new hydrocode for investigating the

leading mechanisms of initiation in high explosives (HE). This computational framework

enables high fidelity thermomechanics in simulating the complex behavior of energetic ma-

terials. High explosive plastic bonded explosives (PBX) are heterogeneous materials con-

sisting of brittle explosive crystals with a polymeric binder [1]. Macroscopic performance

depends on the microstructural constituents because even small microscopic changes lead to

distinct behavior [2, 3]. Internal defects such as porosity, interfaces, and cracks initiate reac-

tions while thermal conductivity, the underlying chemical reaction rates, and exothermicity

control burn. The interplay of these features and mechanisms represents the thermochem-

istry at the chemical reaction zone (∼100 microns). A critical barrier to understanding the

leading mechanisms of initiation in HE is bridging the microscopic and macroscopic length

and time scales, via the mesoscales. GnarlyX is a new hydrocode designed to address this

challenge through direct numerical simulations (DNS) at the mesoscale, providing represen-

tative details that inform multi-scale, thermochemistry in HE burn. GnarlyX is computed

with Eulerian frame multi-physics hydrodynamics to ensure a robust, computational mesh

treatment in modeling these large deformation mechanics systems. The multi-physics capa-

bilities include multi-material hydrodynamics for the shock response, compaction of voids,

and elastic-plastic strength, as well as constitutive models for the equation of state (EOS),

chemical reactions, anisotropic crystal plasticity, and thermal conduction. This technical

report focuses on the multi-material and strength capabilities of GnarlyX. While the ver-
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ification test presented here is at the macroscale, the capabilities are also applicable to the

mesoscale. In Sec. II, we summarize the computational framework for multi-dimensional,

Eulerian multi-material hydrodynamics coupled to EOS and hyperelastic, plastic constitu-

tive models in GnarlyX. This framework is based on a conservative, hyperbolic system

for finite deformation [4–10] and a ghost fluid method for multi-materials [11–14]. By con-

struction, it is thermodynamically consistent in terms of a Helmholtz free energy. The hy-

drodynamic update is straightforward to implement using high resolution shock capturing

methods [15]. The base infrastructure of GnarlyX is the parallel computing, hydrody-

namics framework of Athena++, an open source, multi-dimensional, Eulerian hydrody-

namics code for astrophysical fluid dynamics [16–19]. The changes from Athena++ to

GnarlyX are the significant modifications and additions in implementing a new numerical

scheme for multi-material evolution of condensed phase EOS and hyperelastic plastic con-

stitutive models. Thus, this work brings the base infrastructure from a hydrodynamics code

to a hydrocode, for simulating hydrodynamics and solid motion. These differences include

new evolution equations, Riemann solvers, wave speed calculations, source terms, EOS and

material strength models, data structures, and parallel computing communication (MPI)

networks. In GnarlyX, the material deformation manifests as a Cauchy stress field where

the deformation field itself is identified as an evolving transformation between Eulerian

and Lagrangian frames. This frame transformation enables an implementation of plasticity

models, such as crystal plasticity, used previously in Lagrangian and Lagrangian-Eulerian

(ALE) schemes [20–22]. In Sec. III, we showcase 1D verification tests of multi-material only

and combined multi-material and strength capabilities, in comparing numerical results of

GnarlyX to exact solutions. In Sec. IV, we summarize the results in this report. In later

work, we will showcase the thermomechanics and multi-dimensional, parallel computing

capabilities in GnarlyX with multi-dimensional verification tests.
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II. GOVERNING EQUATIONS

A. Hydrodynamics coupled to constitutive equations

Consider the hydrodynamic evolution of a single material, governed by the mass, mo-

mentum, and energy conservation laws in Cartesian coordinates. In Eulerian form, we have

∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (1)

∂ρui
∂t

+
∂

∂xj
(ρuiuj − σij) = 0, (2)

∂ρetot
∂t

+
∂

∂xi
(ρetotui − σijuj) = 0, (3)

with density ρ, velocity ~u, Cauchy stress σ, and specific total energy etot. The specific total

energy is given in terms of the internal energy eeos from the EOS, internal elastic energy

eelastic from the constitutive model, and kinetic energy ek = 1
2
uiui, where

etot = eeos + eelastic + ek. (4)

The constitutive model is described by the deformation gradient tensor F, defined in com-

ponent form as Fij = ∂xi/∂Xj, the coordinate transformation between the Eulerian xi and

Lagrangian Xj frames. We define the Cauchy stress σ and specific internal energies (per

mass) eeos and eelastic in terms of a Helmholtz free energy state function,

Ψ(V,F, T ) = Ψeos(V, T ) + Ψelastic(F, T ), (5)

for specific volume V , temperature T , and deformation gradient tensor F, with separable

contributions from the EOS, Ψeos, and deviatoric contributions which represent material

strength, Ψelastic. The specific internal energy (including both EOS and deviatoric parts), in

terms of the Helmholtz free energy, is given by

eint = Ψ− T ∂Ψ

∂T
= eeos + eelastic. (6)

The Cauchy stress is then

σij =
ρFik
detF

∂Ψ

∂Fjk
. (7)

Additionally, the Cauchy stress may be separated into components of pressure p from the

EOS and deviatoric stress τ from the constitutive model, where

σij = −δijp+ τij. (8)
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The total deformation gradient is defined through the multiplicative decomposition F =

FeFp, with elastic Fe and plastic Fp contributions. For elastic-plastic strength [6, 7, 10, 14],

we couple the conservation laws Eq. 1-3 to the conservative evolution equation for the elastic

deformation gradient Fe,

∂

∂t
(ρF e

ij) +
∂

∂xk
(ukρF

e
ij − uiρF e

kj) = −ui
∂

∂xk
(ρF e

kj)− ρΩp
ij, (9)

where total energy etot, stress σ, and plastic source term Ωp are defined in terms of Fe

for a given elasticity/plasticity model. We specify the evolution in terms of the elastic

deformation gradient Fe instead of the total deformation gradient F as the plastic part

Fp does not contribute to the stress and energy. Specifically, it is not thermodynamically

admissible to use the plastic deformation gradient tensor as a state variable because it lacks

a “one-to-one” connection with the material state.

B. Wave speeds for hydrodynamics with strength

We obtain the hydrodynamic wave speeds by re-casting the conservative system given in

Eqs. 1, 2, 3, and 9, for purely elastic behavior (no sources), in quasi-linear form [23, 24], as

∂U
∂t

+
∂Fk(U)

∂U
∂U
∂xk

=
∂U
∂t

+ Ak(U)
∂U
∂xk

= 0. (10)

Note that the matrix Ak(U) is in terms of the conservative variables U . In multi-dimensions,

we consider the wave speeds separately, splitting the quasi-linear system of Eq. 10. For the

x-direction, where A(U) = ∂Fk(U)/∂U , we have

∂U
∂t

+ A(U)
∂U
∂x

= 0. (11)
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We re-cast A, for convenience, in terms of conservative variables ξk,

U =



ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

ξ7

ξ8

ξ9

ξ10

ξ11

ξ12

ξ13

ξ14



=



ρ

ρu1

ρu2

ρu3

ρetot

ρF e
11

ρF e
12

ρF e
13

ρF e
21

ρF e
22

ρF e
23

ρF e
31

ρF e
32

ρF e
33



. (12)

Note that the Cauchy stress is dependent on a subset of the conservative variables ξk,

σ = σ(ξ1, ξ6, ξ7, ξ8, ξ9, ξ10, ξ11, ξ12, ξ13, ξ14). (13)

We then have A, for the x-direction, obtained from calculating the derivatives of the flux

Fx, with respect to ξk such that

A =


∂Fx

11

∂ξ1
· · · ∂Fx

11

∂ξ14
...

...
∂Fx

14

∂ξ1
· · · ∂Fx

14

∂ξ14
.

 (14)

The eigenvalues of A are,

{0, 0, 0, u1, u1, u1, u1, u1, u1, u1, u1 + clong, u1 − clong, u1 + cshear, u1 − cshear}, (15)

for the longitudinal clong and shear cshear wave speeds. A similar procedure is used to obtain

the wave speeds in the y- and z-directions.

C. Multi-material evolution with level set functions

We track multiple regions of materials using level set functions in order to place spatial

limits on the multi-material evolution. A level set Φ(~x, t) is a smooth signed distance function
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which gives values for the shortest distance to the interface [13]. For Φm < 0, ~x is inside the

region of material m. For Φm > 0, ~x is outside the region of material m. For Φm = 0, ~x is at

the interface location, the material boundary. For the update, we consider a set of variables

for each material, represented by m, where m = 0, . . . , N − 1, for N number of materials in

the computational domain. In GnarlyX, we implement the level set evolution described

in Osher et al. [13]. The level set evolves as a convection / advection equation,

∂Φ

∂t
+ ak

∂Φ

∂xk
= 0, (16)

where ak is the velocity of the interface, in the k-th direction. The interface velocity ak

is obtained from solving the Riemann problem at the interface [15]. For Eq. 16, we im-

plement Hamilton-Jacobi WENO for fifth order spatial accuracy in smooth flow and either

second-order van Leer or total variation diminishing third-order Runge-Kutta (RK3) time

integration [13]. The level set is initialized given the initial location of the interface. For

distance d, which gives the shortest distance between an interface location (xI , yI , zI), with

subscript “I” denoting the interface location, and a level set point (x, y, z), the level set is

defined as

Φ(x, y, z) = ±min[d(xI , yI , zI , x, y, z)], (17)

where the negative sign is given for a point within the material region and positive sign

otherwise. The surface Φ = 0 indicates the boundary of the material.

D. Ghost fluid boundary conditions at material interface

For each material, the update is limited to the material regions defined by the level set Φ.

In practice, ghost zones are necessary for spatial differencing and reconstruction stencils that

extend beyond the indexed domain for each material. In GnarlyX, we implement constant

extrapolation [25] for all primitive variables, defined by the level set Φ ≤ 0, extrapolated

to the Φ > 0 region and vice versa. This is done as a constant along a normal ~n to the

interface, defined by the level set function,

~n =
~∇Φ

|~∇Φ|
. (18)

For the extrapolation, we solve

H(Φ)~n · ~∇u = 0, (19)
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where H(Φ) is the unit Heaviside function,

H(Φ) =

0, if Φ > 0

1, if Φ ≤ 0
, (20)

and specify ~∇ with a fourth-order stencil. For materials without strength, we implement

a contact discontinuity boundary condition, where the velocity and pressure are constant

across the material interface. More generally, for materials with strength, we apply a traction

equilibrium constraint, where the traction vector is constant across the surface. We define

a stress vector or traction as Ti = σijej, in terms of the Cauchy stress σ and unit basis

vector ei The traction equilibrium constraint along a normal ~n to the interface equates the

tractions on the left (L) and right (R) sides of the interface, where we have in 1D,

σLnn = σRnn. (21)

If both of the materials are without strength, this reduces to the contact discontinuity

pL = pR. (22)

There are a variety of methods to address the interface conditions above using approximate

solutions to the Riemann problem [15, 26]. We implement an approximate solver based

on solving the Rankine-Hugoniot conditions across a wave speed [15] because it addresses

materials with and without strength in a general manner. We choose this method over

a Primitive Variable Riemann Solver (PVRS) method because of convenience. The latter

produces an approximate solution via characteristic equations. For hydrodynamics with a

straightforward analytic EOS and materials without strength, the coefficient matrix for the

primitive form of the Euler equations is constructed from easily obtainable eigenvectors.

However, this method is not convenient for complicated EOS and materials with strength

because the eigenvectors are difficult to obtain. Alternatively, for an approximate solver

based on solving the Rankine-Hugoniot conditions, we only need the eigenvalues and these

are straightforward to obtain. We have, as described in Sec. II B, a coefficient matrix based

on the conservative form of the equation, where inversion for pressure and energy is not

necessary (as for the primitive form) and avoided for complex EOS. Thus, for an approximate

solver based on solving the Rankine-Hugoniot conditions across a wave speed [15], we solve

Ā∆U = λ∆U , (23)
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where the coefficient matrix Ā is assumed to be constant with constant state U = {ρ̄, ū1, σ̄11, . . . }
in 1D, for eigenvalue λ. In obtaining the traction equilibrium constraint in Eq. 21, we only

need expressions using rows associated with ρ and u. We consider the longitudinal wave

speeds given in Sec. II B, where λ = u1± a, for a = clong. As in Toro [15], we use arithmetic

averaging ρ̄ = (ρL + ρR)/2 and ā = (aL + aR)/2. We then solve the jump conditions defined

by Eq. 23 which give a complete system of equations specified by the interface variables

{ρ∗L, ρ∗R, u∗ = u∗L = u∗R, σ
∗
11 = σ∗11,L = σ∗11,R} in terms of the known variables left and right

adjacent to the interface {ρL, ρR, uL, uR, σ11,L, σ11,R} as well as ρ̄ and ā. The 1D traction

equilibrium conditions in the x-direction are then,

ρ∗L =
1

2

[
ρ̄(uL − uR)/ā+ (σ11,L − σ11,R)/ā2

]
+ ρL, (24)

ρ∗R =
1

2

[
ρ̄(uL − uR)/ā+ (σ11,R − σ11,L)/ā2

]
+ ρR, (25)

u∗ =
1

2
[(σ11,R − σ11,L)/(ρ̄ā) + uL + uR] , (26)

σ∗11 =
1

2
[ρ̄ā(uR − uL) + σ11,L + σ11,R] . (27)

In practice, we use only the velocity and the stress (in 1D, we have u∗ and σ∗11) for the

interface in replacing the quantities in the zones adjacent to the interface [26].

III. 1D VERIFICATION OF THE HYDROCODE GNARLYX

A. Constitutive models

In the following, we describe the EOS and hyperelastic, perfectly plastic constitutive

models used in the 1D verification test for GnarlyX described below. We consider material

models for PBX 9502 and aluminum.

1. Equation of State

We consider a Mie-Grüneisen EOS where the specific internal energy is given by

eeos = eint(ρ, p) = er(ρ) +
1

ρΓ
[p− pr(ρ)], (28)

for reference curves er(ρ) and Pr(ρ). Re-writing Eq. 28, we have, for the pressure,

peos = p(ρ, eeos) = ρΓ[eeos − er(ρ)] + pr(ρ). (29)
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TABLE I: EOS parameters. Parameters of ambient density ρ0, ambient sound speed c0,

coefficient s in the linear us − up relation, and Grüneisen constant Γ for PBX 9502 and

aluminum modeled as Mie-Grüneisen EOS with Hugoniot reference curve [27–30].

Material ρ0 [g/cm3] c0 [km/s] s Γ

PBX 9502 1.89 2.4 2.05 1.1464

Al 2.79 5.33 1.34 2.0

TABLE II: Material strength parameters. PBX 9502 is not modeled with a strength

model. Parameters are given for aluminum modeled as a hyperelastic, perfectly plastic

material with constant shear modulus µ and yield Y [30].

Material µ [GPa] Y [GPa]

PBX 9502 N/A N/A

Al 28.6 0.26

For a Hugoniot reference curve [27], we have

pr(ρ) = ρ0c
2
0

(
1− ρ0

ρ

)[
1− s

(
1− ρ0

ρ

)]−2
, (30)

er(ρ) =
Pr(ρ)

2ρ0

(
1− ρ0

ρ

)
, (31)

parameterized by ambient density ρ0, ambient sound speed c0, coefficient in the linear us−up
relation s, and Grüneisen constant Γ. The EOS parameters for PBX 9502 and aluminum

are given in Table I. While this is not a complete EOS [27], it is chosen for convenient

comparison to the EOS models and solutions in [29, 30].

2. Hyperelastic, perfectly plastic strength

We consider a material strength model such that the Cauchy stress is evaluated in sep-

arable components in Eq. 8, with an EOS component which determines the hydrodynamic

pressure p and an elastic component which determines the deviatoric stress τ [20–22, 30].

We assume a hyperelastic constitutive model, parameterized by a constant shear modulus
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µ. We assume the deviatoric contribution to the Helmholtz free energy density is given by

ρ̃Ψdev(Êe) = µÊe : Êe, (32)

for reference density ρ̃ = ρ0, where Êe = 1
2
(F̂T

e F̂e − I) is the deviatoric part of the elastic

Green-Lagrange strain and F̂e = (detFe)
−1/3Fe is the deviatoric part of the deformation

gradient Fe. We define a generic stress as Ŝ = 2µÊe. Then, the deviatoric contribution

to the second Piola-Kirchhoff (PK2) stress in the immediate configuration is obtained by

projection,

S̃dev = Ŝ : M = {Ŝ − 1

3
[(Ce : Ŝ)C−1e ]}(detFe)

−2/3, (33)

with projection operator M = (detFe)
−2/3(I� I− 1

3
Ce⊗C−1e ), where Ce = FT

e Fe [20]. The

deviatoric part of the Cauchy stress is then,

τ(Fe, µ) =
1

detFe

FeS̃devF
T
e , (34)

by transformation into the current configuration using the elastic deformation gradient.

From Eq. 32, the elastic internal energy density is given by

uelastic(Fe, µ) = ρeelastic = µÊe : Êe. (35)

We define the plastic source term as

Ωp = FeLp, (36)

where Fe acts as a push-forward of the plastic distortion rate Lp into the current configura-

tion. We define a plastic flow rule of the form [14, 20–22]

Lp = Nγ̇, (37)

for slip rate γ̇ and, for isotropic flow,

N = (Fe)−1
τ

σeq
Fe, (38)

where σeq =
√

3
2
τ : τ is the equivalent form of the Cauchy stress. We consider an isotropic,

perfectly plastic model [30], parameterized by the yield Y . The plastic yield function is

f(σ̃eq) = σ̃eq − Y = 0, (39)
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for trial equivalent stress σ̃eq. When f ≥ 0 in Eq. 39, the stress is at or extends beyond the

yield surface and the material undergoes plastic deformation. In general, plasticity models

depend on how the yield function f(σ̃eq) is incorporated into the slip rate γ̇ in the plastic

flow rule of Eq. 37. We consider a perfectly plastic update based on a radial return method

to numerically calculate the slip rate for the source term. At each iteration, we calculate a

trial equivalent stress σ̃eq, obtained from a trial elastic deformation gradient Fe, and check

if the yield function in Eq. 39 is satisfied. This is a root-finding scheme to obtain a slip rate

γ̇, where f [σ̃eq(γ̇)] = 0 ensures that the plastic behavior occurs at the yield surface only.

B. 1D incident, reflected, transmitted shocks at the material interface of PBX

9502 and aluminum, modeled without strength

In 1D, consider the shock states resulting from an incident shock traveling left to right,

impacting the material interface of PBX 9502 and aluminum, modeled without strength.

This initial shock wave moves from low density PBX 9502 to high density (high shock

impedance) aluminum, producing a reflected shock in PBX 9502 and transmitted shock in

aluminum. The material interface, particle velocities in each of the states (incident, reflected,

transmitted), and transmitted shock propagate in the direction of the incident shock. The

reflected shock is directed in the opposite direction. We obtain the state quantities between

the incident, reflected, transmitted shocks with shock velocities Di, Dr, and Dt, respectively,

given the incident shock speed Di and the initial, ambient conditions for each material while

enforcing the contact discontinuity (reduced traction equilibrium condition for materials

without strength) boundary conditions at the material interface.

1. Exact solution for shock states

We consider Mie-Grüneisen EOS with Hugoniot reference curves in Sec. III A 1 for both

materials with parameters given by Table I. The shock states are obtained from the Hugo-

niot jump conditions at each shock and the contact discontinuity connecting the reflected-
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TABLE III: Exact solution for 1D incident, reflected, transmitted shocks at the material

interface of PBX 9502 and aluminum. Aluminum is modeled without strength. Incident

and reflected shock states are inside PBX 9502. Transmitted shock state is inside

aluminum. The density ρ, pressure p, particle velocity u, and shock velocity D are given

with high precision for direct comparison with numerical simulations to round-off error.

Shock state ρ [g/cm3] p [GPa] u [mm/µs] D [mm/µs]

Incident 2.094324324324324 1.659512195121952 2.926829268292684e-1 3.0

Reflected 2.171422410559692 2.5895404181265955 1.671158637057647e-1 3.243839809444038

Transmitted 2.8765544629708284 2.5895404181265955 1.671158637057647e-1 5.553935257365725

transmitted states. The incident shock state in PBX 9502 is given by

ρi = ρ0

[
1− 1

s

(
1− c0

Di

)]−1
(40)

pi =
ρ0D

2
i

s

(
1− c0

Di

)
, (41)

ui =
Di

s

(
1− c0

Di

)
, (42)

for incident density ρi, pressure pi, and velocity ui in the x-direction. The reflected shock

state is expressed in terms of the incident state, through the Hugoniot jump conditions across

the reflected shock with direction ~nr = −~ni, opposite to the particle velocity ~nr · ~ur = −ur.
For mass conservation, we have

ρr(~nr · ~ur −Dr) = ρi( ~nr · ~ui −Dr), (43)

where ~nr · ~ui = (~nr · ~ni)(~ni · ~ui). The reflected density is then,

ρr = ρi

(
Dr + ui
Dr + ur

)
. (44)

For momentum conservation, we have

ρr(~nr · ~ur −Dr)
2 + pr = ρi(~nr · ~ui −Dr)

2 + pi. (45)

The reflected pressure is then

pr = ρi(ui +Dr)
2 + pi − ρr(ur +Dr)

2. (46)
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FIG. 1: Comparison of the exact (solid black line) and GnarlyX (dotted red line)

solutions for the hydrodynamic profiles of density ρ, pressure p, and velocity u. Evolution

at t = 0.13µs gives the reflected shock and the transmitted shock from the material

interface of PBX 9502 and aluminum. The level set separates material regions into PBX

9502 (yellow) and aluminum (white).

From energy conservation, for specific internal energies ei and er, we have

er +
pr
ρr

+
1

2
(~nr · ~ur −Dr)

2 = ei +
pi
ρi

+
1

2
(~nr · ~ui −Dr)

2. (47)

From Eq. 44, Eq. 46, Eq. 47, and EOS in Eq. 28, we have four equations and four independent

unknowns {ρr, pr, ur, Dr}. We now add four more independent unknowns {ρt, pt, ut, Dt} for

the transmitted shock state and close the system of equations which specify all the states by

connecting the reflected and transmitted shock states using the contact discontinuity. The

equations for the transmitted shock state in aluminum are of similar form to the incident
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shock state in PBX9502, where

ρt = ρ0

[
1− 1

s

(
1− c0

Dt

)]−1
(48)

pt =
ρ0D

2
t

s

(
1− c0

Dt

)
, (49)

ut =
Dt

s

(
1− c0

Dt

)
, (50)

for transmitted density ρt, pressure pt, and velocity ut in the x-direction. Combining Eq. 49

and Eq. 50, we have a convenient expression for the pressure in terms of the velocity,

pt = ρ0ut(c0 + sut). (51)

From the contact discontinuity at the material interface, we obtain two more equations,

where the pressure and particle velocity are continuous such that,

ur = ut, (52)

pr = pt. (53)

Then, from Eq. 48, Eq. 51, Eq. 52, and Eq. 53, we have four equations that specify the

transmitted state for a total of eight equations and eight unknowns to close the system of

equations which specify all the states. The exact solution with incident shock speed Di = 3

mm/µs is given in Table III.

2. Verification with GnarlyX

We compare the exact solution given in Sec. III B 1 with numerical simulations with

GnarlyX using the following methods. From Athena++, we use the second-order van

Leer time integration scheme for the hydrodynamic and level set update and the second-

order piecewise linear spatial reconstruction for the primitive variables. We add fifth-order

WENO spatial differencing for the level set update. For the Riemann solver, we add a

Lax-Friedrichs method for multi-materials and condensed phase EOS. For the boundary

condition extrapolation at the material interface, we add a constant extrapolation with

a fourth-order stencil [25]. In comparing the exact and numerical solutions, we consider

units convenient for HE applications. Detonation velocities occur at ∼ km/s and we use

the equivalent unit of mm/µs for the velocity across a length scale of millimeters and time
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FIG. 2: Convergence study for GnarlyX in L1 error versus spatial resolution. The

convergence rates for density ρ, pressure p, and velocity u are close to order unity.

duration in microseconds. Density is in cgs units. Pressure is measured in GPa. For this test,

we consider an incident shock speed at Di = 3 mm/µs. This is significantly lower than the

typical detonation speed in PBX 9502, ensuring that shock transmission into aluminum is

under the Hugoniot elastic limit, leading to a split elastic-plastic wave [27, 31]. This impact

velocity is relevant to HE safety applications. We now present the details of 1D verification

simulations of a shock impacting the material interface of PBX9502 and aluminum. The

length of the physical domain is x = [−0.5, 0.5] mm. We resolve the computational domain

with total number of zones {128, 256, 512, 1024, 2048, 4096}. The total time evolution is

tf = 0.13µs. The initial position of the incident shock is xi,0 = −0.3 mm. The initial

position of the material interface (contact discontinuity) is xc,0 = 0.0 mm. The time of

impact, when incident shock reaches the interface, is timpact = −xi,0/Di. The position of the

contact discontinuity xc = (tf − timpact)ur + xc,0, reflected shock xr = (tf − timpact)Dr + xc,0,
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and transmitted shock xt = (tf − timpact)Dt + xc,0 depend on the initial choice of xi,0 and

xc,0. Figure 1 shows density, pressure, and velocity profiles at tf = 0.13µs, a point in the

time evolution after the incident shock hits the material interface, producing a reflected

shock wave traveling in the -x direction at xr through PBX 9502 and a transmitted shock

wave traveling in the +x direction at xt through aluminum. The contact discontinuity also

travels in the +x direction at xc through aluminum, identified in Fig. 1 by the transition

point between the yellow and white shading. The three panels show a comparison of the

exact solution in the solid black line with the numerical result of GnarlyX at resolution

∆x = 2.4e − 4 mm in the red dotted line. GnarlyX captures the reflected shock and

transmitted shock and maintains the contact discontinuity boundary condition, where there

is a jump in density, but continuous in pressure and velocity across the material interface.

We find that the numerical solution converges to the exact solution for all spatial resolutions

considered. We consider a convergence study using the L1 error defined for hydrodynamic

variable f = {ρ, p, u}, where fi is the numerical cell-centered value at index i, fexact is the

exact solution at position xi, and ∆xi is the cell-width at xi,

L1 =
∑
i

|fi − fexact|∆xi. (54)

Fig. 2 shows the L1 error versus resolution size ∆x for the three hydrodynamic profiles ρ, p,

and u. GnarlyX produces convergence rates for each profile close to first-order as expected

for shock-capturing methods.

C. 1D incident, reflected, transmitted split elastic-plastic shocks at the material

interface of PBX 9502 and aluminum

Consider the previous set up in Sec. III B, where aluminum is modeled with strength. This

initial shock wave moves from low density PBX 9502 to high density (high shock impedance)

aluminum, producing a reflected shock in PBX 9502 and transmitted, split elastic-plastic

shocks in aluminum. The split transmitted wave of an elastic precursor followed by a plastic

shock wave results from the behavior of aluminum with material strength [31]. The material

interface, particle velocities in each of the states (incident, reflected, transmitted elastic, and

transmitted plastic), and transmitted shocks propagate in the direction of the incident shock.

The reflected shock is directed in the opposite direction. We obtain the state quantities
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TABLE IV: Exact solution for 1D incident, reflected, transmitted split elastic-plastic

shocks at the material interface of PBX 9502 and aluminum. Aluminum is modeled with a

hyperelastic, perfectly plastic model. Incident and reflected shock states are located inside

PBX 9502. Transmitted elastic and plastic shocks states are located inside aluminum. The

density ρ, pressure p, particle velocity u, and shock velocity D are given with high

precision for direct comparison with numerical simulations to round-off error.

Shock state ρ [g/cm3] p [GPa] u [mm/µs] D [mm/µs]

Incident 2.094324324324324 1.659512195121952 2.926829268292684e-1 3.0

Reflected 2.173721443525260 2.620590805610931 1.632162754677383e-1 3.251834042026332

Plastic 2.871736182750173 2.447257472277594 1.632162754677383e-1 5.589752109400773

Elastic 2.802749184157360 3.657742898480048e-1 2.964727041531747e-2 6.517582767917887

between the incident, reflected, transmitted elastic, and transmitted plastic shocks with

shock velocities Di, Dr, De, and Dp, respectively, given the incident shock speed Di and

the initial, ambient conditions for each material while enforcing the contact discontinuity

boundary conditions at the material interface.

1. Exact solution for shock states

We use the same expressions for the incident and reflected shock states for the strengthless

case given by Sec. III B 1. What remains for the solution is closing the full shock system using

the contact discontinuity boundary condition, the transmitted elastic-plastic shock jump

condition, and the jump condition between the elastic and ambient states. The transmitted

elastic shock state {ρe, pe, ue, De} is completely determined by the shear modulus µ and yield

strength Y . We consider the finite strain uniaxial limit of a hyperelastic, perfectly plastic

constitutive model [30]. The density at yield is

ρe =
ρ0
F11

. (55)

We determine F11 by setting the value of the deviatoric stress τ in Eq. 34 at yield, where

S̃dev is reduced to the uniaxial limit, and then solving

− 2

3
Y =

2

3
µ(F

7/3
11 − F−5/311 + F−111 − F11). (56)
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FIG. 3: Comparison of the exact (solid black line) and GnarlyX (dotted red line)

solutions for the hydrodynamic profiles of density ρ, pressure p, and velocity u. Evolution

at t = 0.13µs gives the reflected shock and the split transmitted precursor elastic shock

followed by a plastic shock from the material interface of PBX 9502 and aluminum. The

level set separates material regions into PBX 9502 (yellow) and aluminum (white).

The deviatoric stress at yield is then,

τe = −2

3
Y, (57)

where σe = −pe + τe. From the mass and momentum jump conditions at the elastic shock,

between the elastic and ambient states, we have the elastic shock velocity,

D2
e =

ρeσe
ρ0(ρ0 − ρe)

. (58)
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Combining the mass and energy jump conditions with the Mie-Grüneisen form of the EOS

in Eq. 28, we have the specific internal energy at yield given by,

ee =

[
pr(ρe)− ρeΓer(ρe) + 2

3
Y
]

(ρe − ρ0)
2ρ0ρe − ρeΓ(ρe − ρ0)

., (59)

which has EOS and elastic contributions, ee = ee,EOS +ee,elastic. From the EOS in Eq. 29, the

pressure is given by pe = peos(ρe, ee,EOS). Then, using the mass jump condition, the particle

velocity at yield is

ue =
ρe − ρ0
ρe

De. (60)

Using the jump conditions across the plastic shock, the plastic state {ρp, pp, up, Dp} is given

in terms of the elastic state. From the mass jump condition, the plastic shock density is

ρp = ρe
ue −Dp

up −Dp

. (61)

In the elastic, perfectly plastic model, we assume the same deviatoric stress for the elastic

and plastic states. Then, from the momentum jump condition, the plastic shock pressure is

pp = pe + ρe(Dp − ue)(up − ue). (62)

Combining the mass and energy jump conditions with the Mie-Grüneisen form of the EOS

in Eq. 28, the plastic specific internal energy is

ep = ee +
1

2

1

ρeρp
(pe + pp − 2τe)(ρp − ρe), (63)

which has EOS and elastic contributions, ep = ep,EOS + ep,elastic, with ep,elastic = ee,elastic due

to the yield condition. For the plastic state, we have three equations in Eq. 61, 62, and

63 and four unknowns {ρp, pp, up, Dp}. From the interface conditions, we obtain two more

equations to close the total system of eight equations and eight unknowns, where the particle

velocity and traction are continuous such that,

ur = up, (64)

pr = pp − τe. (65)

The exact shock states are given in Table III with high precision in order to directly

compare with numerical simulations to round-off error.
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FIG. 4: Convergence study for GnarlyX in L1 error versus spatial resolution. The

convergence rates for density ρ, pressure p, and velocity u are close to order unity.

2. Verification with GnarlyX

We compare the exact solution given in Sec. III C 1 with numerical results by GnarlyX

with methods and computational set up similar to Sec. III B 2. The position of the trans-

mitted plastic shock xp = (tf − timpact)Dp + xc,0 and transmitted elastic shock xe = (tf −
timpact)De + xc,0 depend on the initial choice of xi,0 and xc,0. Figure 3 shows density, pres-

sure, and velocity profiles at tf = 0.13µs, a point in the time evolution after the incident

shock hits the material interface, producing a reflected wave traveling in the -x direction

at xr through PBX 9502 and a split transmitted wave traveling in the +x direction at xp

and xe through aluminum. The contact discontinuity also travels in the +x direction at xc

through aluminum, identified in Fig. 3 by the transition point between the yellow and white

shading. The three panels show a comparison of the exact solution in the solid black line

with the numerical result of GnarlyX at resolution ∆x = 2.4e − 4 mm in the red dotted
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line. GnarlyX captures the reflected shock and split transmitted elastic precursor shock

followed by the plastic shock. It maintains the traction equilibrium boundary condition,

where there is a jump in density, but continuous in traction and velocity across the material

interface. Furthermore, we find that the numerical solution converges to the exact solution

for all spatial resolutions considered. We consider a convergence study using the L1 error

defined in Eq. 54. Fig. 4 shows the L1 error versus resolution size ∆x for the three hydro-

dynamic profiles ρ, p, and u. GnarlyX produces convergence rates for each profile close to

first-order as expected for shock-capturing methods.

IV. CONCLUSION

We present GnarlyX, a newly developed hydrocode for Eulerian multi-material hydro-

dynamics coupled to equation of state and hyperelastic, plastic constitutive models. These

combined multi-material and strength capabilities are verified in 1D tests of the evolution

of shock states resulting from an incident shock wave impacting the material interface of

PBX 9502 and aluminum. We show in resolution studies that GnarlyX converges to the

exact solution. While the verification tests presented here are at the macroscale, the multi-

material and strength capabilities are also applicable to the mesoscale. In following work,

we will present the thermomechanics and multi-dimensional, parallel computing capabilities

in GnarlyX with multi-dimensional verification tests.
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