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Abstract—We introduce a new high-performance design for
parallelism within the Quantum Monte Carlo code QMCPACK.
We demonstrate that the new design is better able to exploit the
hierarchical parallelism of heterogeneous architectures compared
to the previous GPU implementation. The new version is able to
achieve higher GPU occupancy via the new concept of crowds of
Monte Carlo walkers, and by enabling more host CPU threads
to effectively offload to the GPU. The higher performance is
expected to be achieved independent of the underlying hardware,
significantly improving developer productivity and reducing code
maintenance costs. Scientific productivity is also improved with
full support for fallback to CPU execution when GPU imple-
mentations are not available or CPU execution is more optimal.

Index Terms—Heterogeneous computing, GPUs, Monte Carlo

I. INTRODUCTION

QMCPACK, is a modern high-performance open-source
Quantum Monte Carlo (QMC) [1] simulation code [2], [3].
Its main applications are electronic structure calculations
of molecular, nanoscale and solid-state systems. Variational
Monte Carlo (VMC), diffusion Monte Carlo (DMC) and
several other advanced QMC methods are implemented with
highly optimized algorithms. These algorithms sample the
positions of electrons within the simulated system to accu-
rately compute quantum mechanical properties. Their actual
implementations in QMCPACK are called QMC drivers. When
QMCPACK development started in the beginning of the
first decade of this century, there were initially only multi-
threaded CPU drivers. With over 15 years of development,
QMCPACK has been well optimized to run on multicore
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CPU-only supercomputers like Cori at the National Energy
Research Scientific Computing Center (NERSC) and Theta at
the Argonne Leadership Computing Facility (ALCF). When
NVIDIA GPUs emerged in the field of high-performance
computing, GPU dedicated QMC drivers were introduced by
using Compute Unified Device Architecture (CUDA). They
perform extremely well on supercomputers with a CPU-GPU
hybrid architecture like Summit at the Oak Ridge Leadership
Computing Facility (OLCF), though at the cost of portability.
The CUDA-based GPU drivers are completely incompatible
with CPU-only drivers and call separate sets of subroutines of
the wavefunction calculation. This is required due to the differ-
ent data layouts and algorithms needed for high-performance
on the GPUs [4]. For this reason, close to redundant feature
implementations are needed to satisfy both architectures. If
a feature implementation is missing in the GPU drivers, the
whole simulation needs to run with a CPU-only build because
mixing CPU and GPU features is not supported and the
CPU/GPU selection is made at compile time.

As supercomputers start to reach Exascale and architectural
diversity has increased, and CUDA is no longer the only
GPU programming model available. We must find approaches
to efficiently address the different hardware [5]. The current
Top500 rank-1 supercomputer, the AMD-based Frontier at
OLCF, generally prefers Heterogeneous-Computing Interface
for Portability (HIP) due to the installed AMD GPUs. To a
large degree, CUDA source code can be treated as HIP code
directly, and be easily compiled for AMD GPUs, making the
portability issue not significant. However, on the Intel-based
Aurora machine at ALCF, SYCL is the preferred programming
model for Intel designed GPUs. The trick that treats CUDA
as HIP won’t work for SYCL considering the fundamental
difference between CUDA and SYCL. The QMCPACK de-
velopers have already been struggling with maintaining both a
CPU based and a CUDA based GPU implementation. Adding
additional drivers for each preferred programming model is
clearly not a sustainable direction.



In this work, we introduce a new universal design of
batched QMC drivers which may replace all the previous
QMC drivers. The added flexibility in these drivers enables
maximizing code performance on specific hardware once users
match parallelism hierarchies properly to the actual software
and hardware. The new design supports the necessary data
movement to allow mixing CPU-only and GPU accelerated
features to ensure a feature complete QMCPACK experience
for the user regardless of the hardware being used. Code spe-
cialization for specific hardware remains possible for achieving
potentially higher performance although this no longer needs
to be at the driver level.

This paper is organized as follows. Sec. II analyzes the
DMC algorithm and its implementation before the new
batched drivers are added. Sec. III introduces the details of
the new drivers. Sec. IV shows how the code behaves in
CUDA-based GPU drivers and the new drivers, and discusses
application performance. Sec. V summarizes the hierarchical
parallelism in QMCPACK.

II. QMC DRIVERS WITHOUT THE BATCHED DESIGN

A. Basic QMC algorithm
Before analyzing all the three sets of drivers, let us first

understand the characteristics of a DMC algorithm shown in
Alg. 1.

Algorithm 1 Pseudocode for diffusion Monte Carlo.
1: for MC generation = 1 · · ·M do
2: for walker = 1 · · ·Nw do
3: let R = {r1 . . . rN}
4: for particle k = 1 · · ·N do
5: set r′k ← rk +∇kΨT (R) + δ
6: let R′ = {r1 . . . r′k . . . rN}
7: ratio ρ = ΨT (R

′)/ΨT (R)
8: derivatives ∇kΨT (R

′)
9: Accept rk ← r′k or reject

10: end for{particle}
11: local energy EL = ĤΨT (R)/ΨT (R)
12: end for{walker}
13: reweight and branch walkers based on EL − ET

14: update ET and load balance via MPI.
15: end for{MC generation}

• L1. The loop over generations is a sequential time-
stepping loop for the DMC imaginary time evolution.

• L2. The walker evolution at each generation is indepen-
dent of each other and thus this loop can be parallelized.
On parallel computers, walkers are first parallelized over
Message Passing Interface (MPI) and then parallelized
within each MPI process. Due to the fact that MPI is
only needed for aggregating results and handle walker
count imbalance in L14, the parallel efficiency of QMC
algorithms over MPI can be made nearly perfect [2], even
at a scale of thousands to millions of MPI processes.
For the rest of this work, we restrict the discussion of
parallelization schemes of walkers within an MPI process.

• L4. The loop of over particles (electrons) during random
walking is also sequential. Each iteration is called a
single particle move since only one particle of a walker
is moved. This algorithm is referred to as particle-by-
particle moves.

• L5-6. Proposing a new electron position requires rela-
tively cheap computation.

• L7-8. When a single particle move gets proposed, heavy
computational routines contain another vector loop over
all the orbitals or particles.

• L9. The computational cost depends on whether a pro-
posed move gets accepted or rejected. Upon accepting
a move, additional computation is needed to update
the internal data of a walker, including a determinant
matrix inverse which contributes the leading term of
algorithmic complexity. Rejecting a move doesn’t need
computation and results near zero cost. This line causes
the major computational cost difference at each single
particle move. In VMC simulations, the acceptance ratio
is typically between 20–80%. However, within the more
costly DMC, the acceptance ratio is usually very high
(> 99%).

• L11. Energy evaluations are required for every walker
after single particle moves. They are expensive.

B. Multi-threaded CPU drivers

Algorithm 2 Pseudocode for the multi-threaded CPU imple-
mentation.

1: for MC generation = 1 · · ·M do
2: #pragma omp parallel for
3: for walker = 1 · · ·Nw do
4: for particle k = 1 · · ·N do
5: ...
6: end for{particle}
7: end for{walker}
8: end for{MC generation}

On multi-core CPUs, the multi-threaded CPU driver imple-
mentation distributes walkers over CPU cores via OpenMP
threads as shown in Alg. 2. The needed code change is
minimal. Although the cost of each single particle move
depends on whether the proposed move is accepted or rejected,
the overall cost of each walker is almost equal once the single
particle move loop completes given the acceptance ratios
across walkers. Thus, the load-balance of threads is also near
perfect. In the CPU implementation, we also adopt OpenMP
simd directives for the vector loop mentioned in Algo. 1 to
leverage the Single instruction, multiple data (SIMD) units
on modern CPUs [6]. This parallelization strategy works
extremely well on many-core wide vector CPUs including Intel
Xeon, AMD EPYC and Fujitsu A64FX processors.

C. CUDA-based GPU drivers

The introduction of GPUs in HPC challenged the above par-
allelization strategy. The accelerator characteristics of GPUs



require sufficiently heavy compute kernels to amortize kernel
submission or synchronization cost in microseconds. In the
multi-threaded CPU drivers, each compute routine only han-
dles the work of a single walker. For large simulation problems
(> 1000 electrons), the workload of a single walker can keep
GPUs busy. But many QMCPACK users run small to medium
problem sizes (<= 1000 electrons) in scientific production,
so dispatching GPU computation from multi-threaded CPU
drivers results in slow execution with most of the time being
spent in GPU overhead. For this reason, a GPU friendly
scheme [4] was devised and implemented in the CUDA-based
drivers in QMCPACK.

Algorithm 3 Pseudocode for the CUDA-based implementa-
tion.

1: for MC generation = 1 · · ·M do
2: for particle k = 1 · · ·N do
3: Algorithm 1. Line 5,6,7,8,9 over all the Nw walkers
4: end for{particle}
5: local energy EL = ĤΨT (R)/ΨT (R) over Nw

6: reweight and branch walkers based on EL − ET

7: update ET and load balance via MPI.
8: end for{MC generation}

In Alg. 3 it appears that the loop over walkers in Alg. 1
disappeared. Actually it is not removed but is added inside
each of the computational routines previously serving only
one walker at a time. All the computational routines on L3
now handle all the walkers in a batched operation. As a
result, all the walkers advance in lock-step for each single
particle move. All the compute kernels expose both vector
computation and walker concurrency and fit extremely well the
hierarchical design of GPUs with threads and thread blocks.
For small simulated systems, GPUs have sufficient memory to
enable batching over hundreds to thousands of walkers. This is
sufficient to hide most of the GPU kernel overhead in practice.

However, this scheme has a few limitations: (a) In the
operation of accept/reject a single particle move, the number
of walkers with their proposed moves accepted must be large
enough to avoid leaving part of the compute hardware idle.
(b) There is only one thread enqueuing kernels and handling
synchronization, while all the other threads are idle. When the
only working host thread is occupied with handling of pre-
/post-kernel processing, the GPU is also left idle. (c) Most of
the time, there is only one CUDA stream being used and there
is limited overlap between kernel execution and data transfer
or concurrent kernel execution. Using multiple CUDA streams
can be added but requires significant code implementation. (d)
Assigning one thread block per walker only works for small
problem sizes. It doesn’t allow leveraging more thread blocks
per walker to further speed up the computation. Meanwhile,
large problems cannot keep many walkers resident on GPU
due to the device memory capacity limit and thus limits the
full use of hardware resources.

Number of walkers

N
um

be
r 

of
 e

le
ct

ro
ns

Le
ga

cy
C

P
U

 d
riv

er

Legacy GPU driver

Target problem
size space.

Performance
required

Fig. 1. Parameter space of efficient runs with multi-threaded CPU (teal) or
GPU (grey) driver.
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Fig. 2. Parameter space of efficient runs with batched drivers (brown).

D. Deficiency of multi-threaded and CUDA-based drivers

Constrained by their pre-determined parallelization
schemes, either of the above driver designs only works
efficiently in a limited parameter space as illustrated in Fig. 1.
The lower triangle parameter space restriction comes from
memory capacity limits. In addition, the multi-threaded CPU
drivers only invoke single walker APIs while CUDA-based
drivers only invoke “batched” or multi walker APIs. Due to
the difference in data layout and assumptions of data locations,
it is not possible to fallback from one implementation to the
other and every feature must be implemented separately for
both multi-threaded CPU and GPU drivers. i.e. The CPU and
GPU codes were effectively internal forks of the codebase.
This is clearly undesired due to the additional developer effort
and added maintenance cost. Only compute-heavy features
are worth porting to GPUs and running light computation on
CPUs is usually sufficient.

With the above deficiency in mind, here we introduce a
new high-performance design for the QMC drivers and overall
application. It avoids diverging code paths at the driver level
and works efficiently in the full possible parameter space as
illustrated in Fig. 2.



III. PERFORMANCE PORTABLE BATCHED DRIVERS

QMC drivers implemented in the new design are called
batched drivers as walkers are handled by compute devices in
batches. This applies even for CPU based machines, although
a batch size of one is selectable, recovering close-to the old
CPU-only algorithm. Before explaining the design detail, we
first introduce a new concept “crowd”, as a sub-organization
of the walker population. A crowd is a subset of the walkers
that are operated on as a single batch. Walkers within a crowd
move through the operations of the QMC algorithm in lock-
step. Walkers in different crowds remain fully asynchronous
unless operations over the full population are needed.

The batched DMC driver pseudocode is shown in Alg. 4.
Compared to the multi-threaded CPU implementation, the
threaded loop over walkers has been replaced with a threaded
loop over crowds and thus crowds are fully parallelized over
host threads. The performance of multi-core CPUs can be
easily maximized as long as the number of crowds is chosen
equal to the core count. When the crowd size equal to 1,
batched drivers behave exactly as multi-threaded CPU drivers.
With the crowd size larger than 1, the throughput of generating
statistical samples can potentially further increase due to
improved data reuse or data locality.

Compared to the CUDA-based implementation, the un-
changed walker operation in batches ensures dispatching suffi-
ciently heavy computation in each GPU invocation. The added
multi-threaded crowds enable further improvements to GPU
utilization. When the number of crowd is restricted to one,
batched drivers behave exactly as CUDA-based drivers. With
more than one crowd, crowds parallelized over host threads
concurrently sending operations to GPUs; data transfer and
kernel execution from different crowds may overlap if the
underlying hardware allows. Thus, the first three limitations
of the CUDA-based implementation are removed. Considering
that the batched drivers do not mandate specific data layouts,
the last limitation of the CUDA-based implementation can be
removed by specializing compute kernels for extremely large
problem sizes.

With the added crowds, batched drivers have a flexible
number of batches and batch sizes which can be tuned to
maximize the performance of underlying hardware. In the new
driver design, the old set of walker batched computational
routines used by CUDA-based drivers are replaced with a new
set which allow falling back to computation using the single
walker APIs. Consequently, batched drivers allow mixing
and matching CPU-only and GPU-accelerated features in a
way that is neither feasible with the multi-threaded CPU
implementation nor the CUDA-based GPU one.

IV. RESULTS

A. Demonstrating concurrent execution via GPU tracing

In order to verify that batched drivers behave as expected on
GPUs with real simulations, we use NVIDIA Nsight Systems
to trace GPU activities on an NVIDIA GPU when running a
QMCPACK performance test, which is a NiO 8-atom supercell

Algorithm 4 Pseudocode for the batched DMC driver.
1: for MC generation = 1 · · ·M do
2: #pragma omp parallel for
3: for crowd = 1 · · ·C do
4: for particle k = 1 · · ·N do
5: Algorithm 1. Line 5,6,7,8,9 over all walkers with

in this crowd
6: end for{particle}
7: local energy EL = ĤΨT (R)/ΨT (R) over this

crowd
8: reweight and branch walkers based on EL − ET

9: update ET and load balance via MPI.
10: end for{crowd} CG
11: end for{MC generation}

Fig. 3. CUDA-based GPU driver GPU activity tracing. GPU API calls are
made from a single thread and kernel execution and data transfers are all
serialized.

DMC simulation with 512 walkers. This is a “small” system
where kernels are small and therefore hiding kernel latency
and maximizing concurrency is critical to performance. Fig. 3
shows the tracing of this test using the CUDA-based DMC
driver. There is only 1 thread active even though there are
4 OpenMP threads available to the process. Kernel execution
and data transfer are serialized. Fig. 4 shows the tracing of
the same test using the new batched DMC driver. All the 4
OpenMP threads enqueue kernels and submit data transfers to
the GPU dedicated to this process. The GPU keeps servicing
requests from threads to maximize its utilization. Both con-
current kernel execution and overlapping kernel execution and
data transfers are observed in the tracing. Higher efficiency is
clearly obtained.

Fig. 4. Batched driver GPU activity tracing. GPU API calls are made from
multiple threads. Both concurrent kernel execution and overlapping kernel
execution and data transfers are observed.



B. Demonstrating gain in throughput on NVIDIA GPUs

When targeting GPUs, the batched drivers currently use
OpenMP offload and vendor linear algebra libraries. Their
performance are compared to the CUDA-based drivers. The
comparison is not apples to apples. In general, the batched
drivers have fewer pieces of features running on GPUs and
additional data transfer can be necessary between the GPU
and the host. Although all the features used in the NiO
performance tests are accelerated in both the CUDA-based
and batched drivers, the implementations still differ due to the
fundamental design change in the batched drivers. And for
the old CUDA-based drivers, all the kernels were handwritten
and highly optimized in CUDA while the performance of
batched drivers are affected by the quality of kernels generated
by the OpenMP offload compilers. Here we can compare
the performance of both drivers by the sampling throughput,
namely the number of samples generated in a given time.
The study was conducted on the Summit supercomputer at
Oak Ridge National Laboratory. Each Summit node contains
dual socket IBM Power 9 processors with 42 CPU cores in
total and 6 NVIDIA V100 GPUs. The optimal way of running
QMCPACK requires 1 MPI rank per GPU. Thus, on each node,
we place 6 MPI ranks and each MPI process has its dedicated
7 CPU cores and 1 GPU.

Both the CUDA-based GPU drivers and batched drivers re-
quire optimizing the walker count to maximize the throughput
of a single GPU. Typically, the greatest number of walkers
prior to exhausting GPU memory is optimal. In Fig. 5, the
throughput of the runs with the CUDA-based driver increases
rapidly as walker count increases. It quickly saturates at 1792
walkers once a single thread performance gets maxed out.
With the batched DMC driver, throughput grows slower in
small walker counts. When the total walker count per MPI
rank is fixed, the walker batch size per thread is smaller in
batched drivers and thus in total more GPU overhead gets
exercised by all the threads. At larger walker counts when
single thread maximal performance is reached, batched drivers
have more potential to maximize the full GPU throughput by
leveraging available threads. For this benchmark problem, the
measured performance becomes higher than the CUDA-based
GPU driver when the walker count exceeds 2000.

We also benchmark the code performance for a wide range
of problem sizes. The benchmark uses DMC simulations
of NiO solids with 16, 32, 64, 128 and 256 atoms in the
simulation cell. In Fig. 6 the throughput of each problem size
is rescaled by the throughput of CUDA-based GPU driver
runs. When running CPU-only, the relative throughput is only
10% which reflects the fact that most of compute power on
Summit is from the NVIDIA V100 GPUs and the CUDA-
based DMC driver is very well optimized. Our newly designed
batched DMC driver shows 80% to 115% relative perfor-
mance depending on the problem size. It is already suitable
for scientific production simulations due to its competitive
high-performance and feature complete nature. With further
optimization, we expect that the batched drivers will exceed

Fig. 5. Sampling throughput as a function of walker counts in the 32 atom
cell NiO solid DMC simulation.

Fig. 6. Batched driver throughput compared with the CUDA-based GPU
driver.

the CUDA-based driver in all the benchmark cases. As of
August 2022, the compilers and libraries on non-NVIDIA
platforms were not yet mature enough for benchmarking. We
plan to evaluate them once compilers and runtime libraries are
sufficiently mature.

V. CONCLUSION

Here we summarize the high-performance design of hierar-
chical parallelism in QMCPACK from the coarse level to the
fine level as implemented in the batched drivers.

1) Fully MPI distributed walker population. Usually one
MPI per CPU socket or GPU. Extremely good strong
and weak scaling across thousands to millions of com-
pute nodes.

2) Multi-threaded crowds handle walkers within each MPI
process. Each crowd does its independent time evolution.
This is highly scalable on multi-core CPUs. In a CPU-
GPU hybrid architecture, crowds may maximize the



utilization of CPU cores before the shared GPUs are
saturated by the workload.

3) Batched computation of walkers within each crowd. On
GPUs, their computations can be submitted to GPUs
with minimal GPU API overhead. On CPUs, there
remains the possibility of breaking them into smaller
tasks which can run on additional CPU threads if they
are available.

4) Compute kernels of each walker operate on a set of
orbitals, usually the same or more than the electron
count, or all the electrons. They can be fully vector-
ized on single instruction, multiple threads (SIMT) and
single instruction, multiple data (SIMD) hardware. For
extremely large problem sizes, these vector loop can be
broken up in order to leverage more threads on CPUs
or thread blocks on GPUs.

By matching these parallelism levels to appropriate soft-
ware abstractions in a high-performance parallel computer, we
believe that the maximal code performance can be achieved
regardless of the underlying hardware and true performance
portability can be achieved across CPU/GPU and even accel-
erators from any vendor, potentially also including FPGAs and
ASICs. In future work we plan to demonstrate this portability.
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