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SUMMARY: Owing to its excellent mechanical properties and stability under high tem-
perature and neutron irradiation conditions, SiC/SiC composites have emerged as a promising
material for light water reactors (LWRs) in the development of accident-tolerant fuel (ATF) sys-
tems. Structural integrity and retention of hermeticity are two crucial requirements for SiC/SiC
claddings during normal operations, and both of them are closely related to the proportional
limit stress (PLS) of the material. Understanding the behavior of SiC/SiC composites under
multi-axial stress states and developing a probabilistic approach for evaluating the structural
vulnerability are of paramount importance for reliability-based analysis and design of SiC/SiC
composite claddings. So far, there has been very limited effort towards experimental and ana-
lytical investigations of probabilistic failure of SiC/SiC claddings. This critical knowledge gap
motivates this research.

A probabilistic failure criterion for SiC/SiC composites under multi-axial loading is de-
veloped, and this criterion is incorporated into reliability analysis of the structural integrity of
SiC/SiC fuel cladding. The research consists of two parts: 1) experimental investigation of mul-
tiaxial failure behavior of SiC/SiC composites, and 2) theoretical modeling of time-dependent
probabilistic failure of SiC/SiC cladding. In the experimental investigation, the PLS is deter-
mined through the examination of stress-strain response, the acoustic emission measurement,
as well as the X-ray computed tomography. The theoretical framework is derived by combin-
ing the finite weakest-link statistical model and the subcritical damage growth model. This
theoretical model captures the time-dependent failure mechanism of the material, which has
a major consequence for predicting the lifetime distribution of the cladding. Meanwhile, the
model also predicts that the failure statistics of the cladding depends strongly on the cladding
length.

The results of the multiaxial experiments reveal the level of statistical variation of the PLS
of SiC/SiC materials under different stress states. The theoretical model provides a robust
analytical tool for extrapolation of small-scale laboratory test results to the behavior of full-scale
claddings. These findings establish a scientific foundation for the development of reliability-
based design of SiC/SiC fuel claddings, which will play an essential role in improving the
structural safety and integrity of LWRs.
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1 Introduction

The 2011 Fukushima Daiichi nuclear power plant accident has stimulated the active de-

velopment of accident-tolerant fuels (ATFs) and accident-tolerant cores [31]. In recent years,

silicon carbide (SiC) fiber-reinforced SiC matrix (SiC/SiC) composites have attracted increas-

ing attention as an alternative material for fuel cladding in light water reactors (LWRs) [16].

Extensive experimental research showed that the SiC/SiC composites can retain excellent me-

chanical properties under high temperature and neutron irradiation conditions. Compared to

traditional zirconium alloy cladding and core, which would produce explosive hydrogen in a

water vapor environment, SiC/SiC composites exhibit general chemical inertness at very high

temperatures [30]. Moreover, they are also stable under high-dose neutron [16]. Owing to these

attractive features, SiC/SiC composites are considered favorably for providing passive safety

for LWRs in beyond-design-basis severe accident scenarios [31].

For LWR fuel claddings, SiC/SiC composites are fabricated in the form of long tubes. Con-

siderable efforts have been devoted towards experimental investigations of SiC/SiC composite

tubes under different loading scenarios including uniaxial tension, hoop tension, and multiaxial

loading [7, 27, 8, 24, 26]. It is generally observed that the specimen would exhibit a linear

elastic behavior up to a stress level referred to as the proportional limit stress (PLS). Upon

reaching the PLS, the matrix material experiences notable damage and the specimen shows

a reduction of stiffness. As damage accumulates in the matrix, the fibers start to take more

loading. This eventually leads to localized fiber breakage, and the specimen attains its ultimate

tensile strength (UTS). For the purpose of cladding design, the PLS and UTS are two critical

metrics. It is considered that the PLS indicates the stress level at which damage poses the risk

of a gas release, whereas the UTS corresponds to the scenario that the structure loses its load

capacity. One important observation made from a recent inter-laboratory round robin study is

that the PLS and UTS of SiC/SiC composites exhibit a considerably level of variability. The

measured the coefficients of variation of PLS and UTS are 9.7% and 12.5%, respectively [27].

Despite the aforementioned experimental efforts, only one study has reported the failure

surface of SiC/SiC composites under multiaxial loading [7]. Procedures for uniaxial and hoop

tensile tests for SiC/SiC composites have been well established (ASTM C1275 and ASTM

C1819). So far, limited efforts have been devoted to multiaxial loading. Furthermore, for hoop

tensile tests the current test method relies on elastomeric inserts [26]. However, friction between

the elastomeric insert and the internal surface of the specimen may cause unpredictable shear

stresses, which affect the measurement of material strength parameters. Therefore, a more

robust and reliable testing system is needed.

The statistical nature of PLS and UTS of SiC/SiC composites can be attributed to the

heterogeneity of the material. In the manufacturing process, the SiC matrix is deposited from

gaseous reactants onto a heated substrate of fibrous preforms of SiC [18]. This process, called
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chemical vapor infiltration (CVI), inevitably introduces internal pores in the matrix. It is re-

ported that the porosity of SiC/SiC composites is 8-17% [17, 7]. Computed X-ray tomography

showed that the large pores between fiber tows are crucial to damage development compared

to small pores [25]. The size and location of these internal pores are affected by fiber ar-

chitecture and kinetics of deposition. The uncertainty in the manufacturing process leads to

statistical variation in both the local stress field and material resistance and consequently the

macroscopically observed variability in PLS and UTS.

The observed variability of PLS and UTS has important implications for design of SiC/SiC

composite claddings. It is widely acknowledged that engineering structures must be designed

against an acceptable risk level. In the current design approach, an empirical reduction factor

is applied to the PLS to account for its uncertainty [22]. This concept is similar to safety factors

used in design of concrete and steel structures. Safety factors allow us to perform reliability-

based structural design through deterministic analysis. The essential step is to relate the safety

factors to the failure risk of the structure [13, 19, 2]. Evidently this relation must be derived

from a probabilistic model of structural failure.

In recent years, considerable attention has been directed towards investigation of the failure

statistics of SiC/SiC composites. Previous studies have largely used the two-parameter Weibull

distribution for the probability distributions of PLS and UTS [27, 29, 9]. The Weibull distribu-

tion belongs to the class of extreme value statistics [33, 34, 32, 2], which indicates that the failure

statistics of the structure can be represented by an infinite weakest-link model. Physically it

implies that a damage localization mechanism occurs and that the structure must be much

larger than the size of the damage zone. A series of recent studies discussed the applicability of

the Weibull distribution for strength statistics of structures made of quasibrittle materials, such

as composites and ceramics, which feature a strain softening behavior and damage localization

mechanism [5, 3, 21, 2]. It was shown that, for most quasibrittle structures, the structure size is

not sufficiently large to guarantee the validity of the Weibull distribution. The same issue also

applies to SiC/SiC composite tubes. While the full length cladding is 4m long, the laboratory

test specimen is less than 100 mm, which is not significantly larger than the size of the damage

zone. Therefore, the classical Weibull model cannot be used to extrapolate the laboratory test

result to full-scale cladding design.

In addition to the inapplicability of the Weibull distribution for design extrapolation, prob-

abilistic modeling of SiC/SiC composite tubes is further complicated by the time evolution of

the internal stress state. A thermomechanical analysis was recently performed to investigate

the stress history of the SiC/SiC cladding over its service lifetime [6, 28]. It was shown that the

cladding experiences a complicated stress history along axial and hoop directions in LWRs. To

model the lifetime of the cladding, it is crucial to take into account the damage accumulation

mechanism. The failure probability of the entire structure at the present time depends not only

on the current stress state but also on the prior loading history. So far, such a time-dependent
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behavior has not been investigated.

In this study, we develop a probabilistic failure criterion for SiC/SiC composites under mul-

tiaxial loading, and incorporate the criterion into reliability analysis of the structural integrity

of SiC/SiC fuel cladding. The research consists of two parts: 1) experimental investigation

of multiaxial failure behavior of SiC/SiC composites, and 2) theoretical modeling of time-

dependent probabilistic failure of SiC/SiC cladding. In the experimental investigation, the

PLS is determined through the examination of stress-strain response and the acoustic emission

measurement. The theoretical framework is derived by combining the finite weakest-link sta-

tistical model and the subcritical damage growth model. This theoretical model captures the

time-dependent failure mechanism of the material, which has a major consequence for predict-

ing the lifetime distribution of the cladding. Meanwhile, the model also predicts that the failure

statistics of the cladding depends strongly on the cladding length. The results of the multiaxial

experiments reveal the level of statistical variation of the PLS of SiC/SiC materials under dif-

ferent stress states. The theoretical model provides a robust analytical tool for extrapolation

of small-scale laboratory test results to the behavior of full-scale claddings. These findings lay

down a scientific foundation for the development of reliability-based design of SiC/SiC fuel

claddings, which will play an essential role in improving the structural safety and integrity of

LWRs.
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2 Probabilistic Time-Dependent Failure Model

This chapter presents a new stress-based multiaxial failure model for the PLS of SiC/SiC mate-

rials. The model is further extended to predict the specimen lifetime through a damage kinetics

model. By considering the PLS under uniaxial tension in hoop and axial directions as well as

biaxial loading as random variables, the model can be used to calculate the probability distri-

bution of specimen lifetime.

2.1 Stress-based failure criterion

Consider a laboratory test specimen under general loading (axial load F , internal pressure p,

and torsion T ), as shown in Fig. 2.1. To discuss the failure criterion, we first need to define the

meaning of failure. For structural design, failure often refers to the attainment of the peak load

capacity. At that point, the structure would fail under controlled load. For most structures, as

the peak load is reached, the material has already experienced some degree of damage. For fuel

claddings, failure can be defined as the damage initiation, which could lead to leakage of fission

gas. This is not a structural failure but it could cause severe safety consequence of the LWR.

In this study, we define the material failure as damage initiation, which is more stringent than

the strength-based failure criterion.

For damage initiation, it suffices to adopt a stress-based failure criterion. To formulate such

a criterion, we first define the following nominal stresses:

σθθ =
r2
i (r

2
m + r2

e)

r2
m(r2

e − r2
i )
p (2.1)

σzz =
F + pπr2

i

π(r2
e − r2

i )
(2.2)

σzθ =
3T

2π(r3
e − r3

i )
(2.3)

where ri, re are the inner and outer radius of the specimen, respectively, and rm = 0.5(ri + re).

While these nominal stresses serve as load parameters in the dimension of stress, they physically

represent the homogenous elastic stresses of the test specimen.

Bernachy-Barbe et al. proposed the following strength-based failure criterion [7]:

F (σi, ki) = k1〈σ1〉2 + k1〈σ2〉2 + k2〈σ1〉〈σ2〉+ k3σ
2
3 − 1 ≥ 0 (2.4)

where σ1, σ2 = in-plane principal elastic stresses, σ3 = σθθ − σzz, ki (i = 1, 2, 3) = model

constants, and 〈x〉 = Macaulay bracket= max(x, 0). It was shown that this failure criterion can

well capture the multiaxial failure behavior of SiC/SiC composites with±45◦ tow orientation [7].

The term k3σ
2
3 corresponds to damage of tows oriented at ±45◦. By considering some specific
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Figure 2.1: Schematic of loading configuration of SiC/SiC cladding.

loading scenarios, such as uniaxial tension, uniaxial compression, and equi-biaxial tension, we

can express ki’s by

k1 =
1

f 2
t

− 1

f 2
c

; k2 =
1

f 2
b

− 2k1; k3 =
1

f 2
c

(2.5)

where ft, fc and fb denote the nominal strengths of the specimen corresponding to the uniaxial

tensile, uniaxial compressive, and biaxial tensile stress states, respectively. It is clear that ft, fc

and fb corresponds to the aforementioned PLS. It is worthwhile to note that these nominal

strengths are structural properties, which could vary with the specimen length [2]. Therefore,

the failure criterion itself (Eq. 2.4) is dependent on the specimen length.

Note that in Eq. 2.4 the tensile strengths in the axial and hoop directions are the same.

This may not be the case if the tows do not orient at ±45◦. A more general failure criterion

can be written by

F (σi) =
〈σθθ〉2
f 2
tθ

+
〈σzz〉2
f 2
tz

− 〈σθθ〉〈σzz〉
f 2

0

+
σ2
θz

f 2
τ

− 1 ≥ 0 (2.6)

where ftθ = tensile strength in the hoop direction, ftz = tensile strength in the axial direction,

fτ = shear strength, and f0 can be related to the biaxial strength fb by considering a biaxial

test σθθ = σzz = fb, which gives

f0 = (f−2
tθ + f−2

tz − f−2
b )−1/2 (2.7)
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In the study, we will use Eq. 2.6 for describing the failure surface corresponding to PLS.

Furthermore, the recent thermo-mechanical elastic analysis of SiC/SiC cladding under a com-

bination of external pressure, internal pressure, temperature, and irradiation-induced swelling

showed that the shear stress σθz is insignificant as compared to the axial and hoop stresses [28].

Therefore, we may ignore the shear component in Eq. 2.6, and the failure criterion becomes:

F (σi) =
〈σθθ〉2
f 2
tθ

+
〈σzz〉2
f 2
tz

− 〈σθθ〉〈σzz〉
f 2

0

− 1 ≥ 0 (2.8)

Due to the inherent material inhomogeneity, ftθ, ftz, and fb would exhibit a certain degree

of variability. Therefore, they should be considered as random variables. Consequently, the

failure probability of the test specimen under given loading can be expressed by

Pf (σi) = 1− Pr[F (σi, ftθ, ftz, fb) ≤ 0] (2.9)

= 1−
∫∫∫

Ω

f(x1, x2, x3)dx1dx2dx3 (2.10)

where xi (i = 1, 2, 3) denote the random values of ftθ, ftz and fb, respectively, Ω denotes the

region of F (σi, ftθ, ftz, fb) ≤ 0, and f(x1, x2, x3) is the joint probability density function (pdf)

of random variables ftθ, ftz, and fb. In general, the integral in Eq. 2.10 needs to be evaluated

numerically.

2.2 Extension to time-dependent failure behavior

The foregoing analysis is anchored by a stress-based failure criterion. In actual applications, the

SiC/SiC claddings are subjected to time-dependent loading, which is lower than the quasistatic

load capacity. However, the material could still fail after a substantial period of loading due

to subcritical damage growth. In this case, the key design parameter is the structural lifetime,

or time-to-failure. Therefore, it is necessary to reformulate the failure criterion (Eq. 2.8) for

calculating the structural lifetime.

To this end, we consider a damage kinetics model, through which the PLS can be related to

the specimen lifetime. Following the framework of continuum damage mechanics [23, 14, 15],

we introduce a damage parameter ω, which ranges from 0 (intact) to 1 (fully damaged). We

propose the following kinetics model:

dω

dt
=

gn(σi)φ(ω)

〈k − g(σi)〉n
(2.11)

where g(σ) = f−2
tθ 〈σθθ〉2 + f−2

tz 〈σzz〉2 − f−2
0 〈σθθ〉〈σzz〉, and k, n are constants. In continuum

damage mechanics, a typical choice is φ(ω) = (1 − ω)−1. Eq. 2.11 is phenomenological in

nature, but it reflects the following well-expected behaviors: 1) the damage growth rate is zero

at the absence of stress; 2) the damage growth rate increases with the applied stress; and 3) the

damage growth rate is non-negative, which signifies the fact that damage growth is irreversible.
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Figure 2.2: Loading protocols: a) reference ramped loading, and b) general loading history.

The damage kinetics model implies that the PLS would depend on the loading rate. Let r

denote the loading rates used in the uniaxial tensile experiments in hoop and axial directions.

These experiments directly measure ftθ and ftz. To relate the PLS to the specimen lifetime,

we now consider two loading protocols: 1) reference linearly ramped loading and 2) general

time-dependent loading, as shown in Fig. 2.2. For the reference linearly ramped loading, we

consider the case of equi-biaxial loading, i.e. σθθ = σzz = rt. By applying the separation of

variables to Eq. 2.11, we have ∫ ωc

0

dω

φ(ω)
=

∫ tc

0

αnt2ndt

(k − αt2)n
(2.12)

where α = r2(f−2
tθ + f−2

tz − f−2
0 ), ωc = critical damage extent at which the specimen fails under

load controlled test, and tc = time to failure. Meanwhile, the stress-based failure criterion (Eq.

2.8) indicates αt2c = 1, or tc = α−1/2. By substituting the expression of tc into Eq. 2.12, we

obtain ∫ ωc

0

dω

φ(ω)
= C/

√
α (2.13)

where C =
∫ 1

0
x2n(k − x2)−ndx.

Now consider a general loading history σi(t) (i = 1− 3). Applying the same analysis of the

kinetics model to this general loading case yields∫ ωc

0

dω

φ(ω)
=

∫ tf

0

{
f−2
tθ 〈σθθ(t)〉2 + f−2

tz 〈σzz(t)〉2 − f−2
0 〈σθθ(t)〉〈σzz(t)〉

}n{
k −

[
f−2
tθ 〈σθθ(t)〉2 + f−2

tz 〈σzz(t)〉2 − f−2
0 〈σθθ(t)〉〈σzz(t)〉

]}ndt (2.14)
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where tf = failure time or the specimen lifetime. We further postulate that, for different loading

paths, the specimen would fail at the same critical damage extent. By equating Eqs. 2.12 and

2.14, we obtain∫ tf

0

{
f−2
tθ 〈σθθ(t)〉2 + f−2

tz 〈σzz(t)〉2 − f−2
0 〈σθθ(t)〉〈σzz(t)〉

}n{
k −

[
f−2
tθ 〈σθθ(t)〉2 + f−2

tz 〈σzz(t)〉2 − f−2
0 〈σθθ(t)〉〈σzz(t)〉

]}ndt = C/
√
α (2.15)

From Eq. 2.15, we can solve tf for any given time-dependent loading. Note that, by using

the equivalent damage, the actual form of φ(ω) in Eq. 2.11 is not required here. If one wants

to quantify the critical damage ωc at failure, then φ(ω) needs to be formulated. By considering

ftθ, ftz and fb as random variables, we perform Monte Carlo simulation to determine the

probability distribution of tf (i.e. lifetime distribution) of the laboratory specimen for a given

loading history. The algorithm for calculating this probability distribution is shown below.

Note that the probability distribution of tf exactly equals to the failure probability Pfs of

the specimen at any given time t, i.e. Pr(tf ≤ t) = Pfs(t). What follows is that the failure

probability of the specimen during a particular period of time (t ∈ [t1, t2]) can be calculated by

Pfs = Pfs(t2)− Pfs(t1).

Algorithm 1 Probabilistic Time-Dependent Failure Model Algorithm

1: for Every material element in simulation do
2: Find its loading history σ(x, t)
3: Array tf array = [ ]
4: Monte Carlo sampling ftz, ftθ, fb ∼ Prob(σN)
5: for Every sampling of (ft, fb, fc) do
6: Calculate its corresponding k1, k2, k3

7: Solve tf based on Eq. 2.15
8: Append tf in tf array
9: end for
10: Sort tf array
11: Calculate Pfs based on sorted tf array
12: end for
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3 Multiaxial Experiments on SiC/SiC Specimens

This chapter presents a robust multiaxial testing setup for SiC/SiC tubular specimens. By us-

ing this setup, multiaxial experiments with four loading paths were performed, and the failure

surfaces for PLS and UTS were constructed. Meanwhile, new criteria for determining the PLS

using both strain invariants and AE cumulative energy were developed.

3.1 Multiaxial testing apparatus and data acquisition system

The design of the new multiaxial test apparatus aims to facilitate different combinations of

axial loading, internal fluid pressure, and external fluid pressure as shown in Fig. 2.1. Though

the multiaxial loading configuration shown in Fig. 2.1 is seemingly simple, several practical

problems must be solved to perform successful multiaxial tests. First of all, specimens must

be carefully fabricated such that wall thickness should be uniform in circumferential and axial

directions. General Atomics (GA) is capable of producing 1-m long tubes by using the CVI

process with adequate straightness, wall thickness uniformity, roundness, and reproducibility

of surface roughness [8]. For the present research, GA manufactured twenty-one 300-mm long

tubes of SiC/SiC ceramic matrix composites with ±55◦ triaxial braided fiber orientation. The

internal and outer diameters are 8mm±0.25mm and 10mm ±0.25mm. The tubes are cut with

a diamond saw into specimens of length 72–73mm. The cut surface is carefully prepared such

that it is smooth and no fibers are pulled out. Figure 3.1 shows a specimen and architecture

observed by optical microscopy and scanning electron microscopy [27].

Figure 3.1: Specimen prepared and similar specimen observed by optical microscopy and scan-
ning electron microscopy (right) [27].

A major issue in the design of the multiaxial apparatus is the effective isolation (jacketing)
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from the internal fluid pressure. Since SiC/SiC composites inherently contain internal pores,

sealing of the specimen is of critical importance. Due to the woven geometry of the specimen

surface and tensile loading in the axial direction, it is challenging to directly seal the interface

between the SiC/SiC specimen and loading apparatus. It has been proposed to use polyurethane

coatings or high-strength epoxy to seal the interface and transmit axial loading. However,

these methods do not always provide complete sealing to the specimen. In this study, Viton

membranes with a special shape (shown in Fig. 3.2) are used to seal both the internal surface

of specimen and interface between the specimen and apparatus. High strength epoxy is used

to transmit the axial loading.

Figure 3.2 shows the schematic of the apparatus. For multiaxial testing, the SiC/SiC speci-

men is glued to both the top and bottom steel plates. The specimen and plates are held together

using an alignment tool during epoxy curing to avoid eccentricity, shown in Fig. 3.3. A Viton

membrane is inserted from the hole of the bottom plate into the SiC/SiC tube while the flange

is clamped by bolting the steel bottom plate to the steel pedestal. The O-rings inside the steel

pedestal prevent high pressure liquid from leaking through the interface. The specimen and top

plate are centered inside the steel clamp and the whole system is bolted to the MTS load frame.

The gage length of the specimen is around 40 mm after subtracting the length of adhesive from

the specimen length. Based on St. Venant’s principle, the central area of the specimen would

experience a uniform tensile stress. The present multiaxial testing apparatus is designed for

both uniaxial tensile testing and internal pressure testing.

Figure 3.2: Membrane and loading apparatus.

In the experiment, 6-mm long strain gages are attached to the outer surface of the specimen
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Figure 3.3: Alignment tool.

in both axial and lateral directions. The strain gages can cover several repeating cells of the

SiC/SiC composites. The non-flat surface of the woven architecture of SiC/SiC composites

makes it difficult to glue strain gages in a single step. The adhesive is first placed on part of

the specimen surface and allowed to cure. The hardened epoxy is then lightly sanded and the

strain gages are placed on the specimen. In addition to strain measurements, acoustic emission

(AE) is used to monitor damage growth. The AE system is composed of (i) AE sensors; (ii)

signal filters and preamplifiers; (iii) signal digitizers, and (iv) computer-based data acquisition

system. The AE sensors (Physical Acoustics model S9225, frequency response from 0.3-1.8 MHz

or Physical Acoustics model Nano-30, frequency response from 0.125–0.75 MHz) are attached

to the specimen surface using cyanoacrylate adhesive. The AE signals are pre-amplified with

40 dB gain and band-pass filtered 0.1-1.2 MHz (Physical Acoustic model S1220C). Two four-

channel Agilent L4534A digitizers with a sampling rate of 20 MS/s, 16 V full-scale range,

and 16-bit resolution are used to record the AE signals continuously. A 4000-sample window

provides 0.2 millisecond of recording, with a pre-trigger set at 1500 samples to ensure capturing

the first arrival. The digitizers are triggered whenever a selected anchor channel signal reaches

the amplitude threshold of 25 mV. To avoid one AE event triggering the system twice, a hold-off

time of 10 millisecond between two consecutive events is prescribed. This indicates a maximum

AE recording rate of 100 events per second, which is not reached in any of the tests. The time

stamps of the trigger are also recorded, which are used for mechanical data analysis.

Figure 3.4 shows the testing and data acquisition system. The closed-loop, servo-hydraulic

load frame has multiple control channels, where the axial force, internal pressure, and external

pressure can be used as feedback/control signals simultaneously. Data acquisition systems

for strains and AE are separated, and therefore synchronization is needed. (For the external

pressure test, the pressure vessel would be lowered to create a sealed chamber around the
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Figure 3.4: Multiaxial testing and data acquisition system.

specimen. The outer surface of the SiC/SiC specimen would be coated with polyurethane to

isolate the high-pressure fluid from the specimen.)

3.2 Strain-Based PLS criterion

To investigate the behavior of SiC/SiC specimens under multiaxial stress states, four different

load paths are considered in the experiment: uniaxial tension, hoop tension, biaxial tension

(σzz/σθθ = 1), and one other proportional loading path (σzz/σθθ = 2).

For each load path, about 10 successful experiments are performed under the load controlled

mode. In order to minimize the effect of loading rate, the same rate is used for all tests. For

uniaxial tension and hoop tension tests, loading rates are 2 N/s and 0.03 MPa/s respectively.

For multiaxial tests, the major loading rates are fixed to the 2 N/s and 0.03 MPa/s values while

the minor loading rates are calculated based on Equations (1) and (2). A typical stress-strain

curve from a uniaxial tensile test is shown in Figure 3.5. The UTS or ULS (ultimate limit

strength) is recorded as the maximum stress before failure.

ASTM has published recommendations for determining the PLS for uniaxial tension and

hoop tension tests (ASTM standards C1275 and C1819). In these recommendations, the PLS is

determined as the intersection between the stress-strain curve and a straight line with the slope

equal to the Young modulus and an offset of 0.5× 10−3. Figure 3.5 shows the PLS determined

by this criterion. This approach cannot readily be applied to specimens under multiaxial stress

states.

In this study, we propose a new strain criterion in determining PLS for multiaxial stress

16



Figure 3.5: Stress-strain response of a uniaxial tension test.

states, which reads √∑
i,j

(εij − εeij)2 = 0.05% (3.1)

where εij are the measured components of the strain tensor and εeij are the theoretical elastic

strain components calculated as εeij = Sijklσkl, where Sijkl = elastic compliance. For the uniaxial

tension test, when
√∑

i,j(εij − εeij)2 = 0.05%, the lateral strain is very close to that predicted

by the elastic solution. Therefore, we have
√∑

i,j(εij − εeij)2 ≈ εzz − εezz = 0.05%, which is

essentially the same as the ASTM recommendation.

We further note that Eq. 3.1 is invariant of coordinate system. To show it, denote the present

coordinate system by three orthogonal unit vectors ~ei (i = 1−3), and the new coordinate system

by vectors ~e′i. The strain tensor in the new coordinate system can be expressed in terms of the

present strain tensor

ε′ij = ami a
n
j εmn (3.2)

where aqp = ~e′p · ~eq. To express the strain criterion (Eq. 3.1) in the transformed coordinate

system, we first rewrite Eq. 3.1 by√∑
i,j

(ε′ij − ε′eij)2 =
√
ε′ijε
′
ij − 2ε′ijε

′e
ij + ε′eijε

′e
ij (3.3)

in which we used the Einstein notation. Following Eq. 3.2, we have ε′ijε
′
ij = (~e′i ·~em)(~e′j ·~en)(~e′i ·

~ep)(~e′j · ~eq)εmnεpq. By noting
∑

m=1−3(~e′i · ~em)2 = 1, it can be shown that ε′ijε
′
ij = εmnεmn.
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Likewise, we have ε′ijε
′e
ij = εmnε

e
mn and ε′eijε

′e
ij = εemnε

e
mn. Therefore, the strain criterion is

invariant with the coordinate system.

3.3 Damage Evaluation via Acoustic Emission

To further investigate the behavior of the SiC/SiC specimens at PLS, we use the cumulative

AE count or cumulative AE energy to examine the damage evolution in the specimen. The

AE technique is one of the most widely used non-destructive testing techniques for damage

evaluation. One major advantage of AE is that the damage processes can be observed during

the entire loading history. During the loading process, the formation of new microcracks and

subsequent crack propagation generates transient elastic waves. Such waves propagate through

the material and are captured by the AE sensors attached to the specimen. Figure 3.5 shows

a typical AE waveform (also called an AE event) from a uniaxial tensile test. A sampling time

of 100 microseconds (2000 data points) after the first arrival is used to calculate the frequency

spectrum with a Fast Fourier Transform (FFT) algorithm and the FFT is shown in Figure 7.

It can be seen that the major frequency is between 0.2 and 0.4 MHz.

Figure 3.6: A typical AE event and its frequency spectrum.

For each of test on a SiC/SiC specimen, 3000 to 20,000 AE events are typically recorded.

These large numbers of AE events could be attributed to the inhomogeneity on a local scale,

and the friction between numerous fibers. The AE count rate is calculated as the frequency of

AE events recorded. Figure 3.7 shows the AE count rate as well as the corresponding stress

state during one of the multiaxial experiments with σθθ = σzz. It is observed that AE events
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occurred at an early stage of loading and a considerable proportion of the total AE events took

place prior to the PLS defined by Eq. 3.1.

Figure 3.7: AE count rate from a SiC/SiC multiaxial test.

The root-mean-square (RMS) value, which is the square root of the average voltage under

the AE waveform, is also used for the analysis of relative energy. The RMS for each AE event

is calculated by

RMS =

√
1

T

∫ T0+T

T0

[V (t)]2dt (3.4)

where T0 is the first arrival time. The time period T should capture the P-wave and the S-wave

but not the sensor resonance. Based on the acquired time histories, a time period T of 20

microseconds (i.e. 400 samples from the first arrival point) is used in Eq. 4. After calculating

the RMS value for each AE event, the cumulative RMS and cumulative AE count through the

entire loading history for one multiaxial test are also determined. The results are shown in Fig

3.8a. The cumulative AE count is shifted by 200 seconds for an easier comparison. From Fig.

3.8a, it is seen that the cumulative plots of RMS and AE count have almost identical shape.

Even though the RMS value for each AE event is different, due to the high AE count rate, the

summation of the RMS value is proportional to the AE count rate.

Figure 3.8b shows the cumulative AE count and its slope. It can be seen that the rate of

cumulative AE counts increases monotonically to its peak and exhibits a mild decrease with

strong fluctuation. In some other tests, it is found that the rate of AE counts increases first

to the peak followed by fluctuations around the peak value. The initial increase in the rate
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Figure 3.8: (a) Comparison of cumulative RMS and AE count curve, and (b) cumulative AE
count curve and its slope from a SiC/SiC multiaxial test.

of AE counts signifies the rapid increase in microcracking in the specimen. As a sufficient

number of microcracks form, the microcracks start to nucleate into macrocracks, which leads

to a pronounced effect on the stiffness of the specimen. Therefore, it is reasonable to use the

peak of the AE count rate to infer the PLS, where we see a clear degradation of the tangential

stiffness.

Figure 3.9: Failure surface measured from SiC/SiC multiaxial test.

20



Figure 3.10: Specimen after test under (a) uniaxial tension, and (b) hoop tension.

3.4 Measured PLS Failure Surface

Figure 3.9 shows the surfaces of PLS measured using Eq. 3 and the rate of AE counts, as well

as the surface of ULS. All three failure surfaces follow a convex shape. The average value of

PLS from AE, PLS from strain gages, and ULS are reported to be 66.51, 71.31 and 165.96 MPa

for uniaxial tension tests. These values are larger than those for hoop tension tests, as reported

to be 51.49, 59.84 and 129.09 MPa. This clearly shows the anisotropy of SiC/SiC composites.

The average biaxial strength of the SiC/SiC specimens are reported to be 55.21, 61.17 and

155.41 MPa for PLS from AE, PLS from strain gage and ULS, while those values for loading of

σzz/σθθ = 2 are 74.69, 78.40 and 209.87 MPa (hoop stress). It is seen that the PLS determined

by Eq. 3.1 is reasonably close to that measured by the rate of AE counts.

Figure 3.10 shows the final failure patterns of the specimens under two loading paths. For

specimens loaded by σzz > σθθ, the failure is featured by a fracture normal to the cylindrical

axis. For specimens loaded with σθθ > σzz , catastrophic fracture initiates at the internal

surface and propagates through the thickness. Due to the internal pressure control mode, high

pressure fluid opens up the crack and the specimen loses its structural integrity, as depicted in

Fig. 3.10b.

3.5 Statistics of Multiaxial PLS

One important step for reliability analysis of SiC/SiC claddings is to quantify the variability of

the PLS. Motivated by this need, we performed the multiaxial tests on a number of replicates

for each loading path. Table 1 lists the results of the PLS of each individual specimen for all

four loading paths. Since the present experiments consider proportional loading, we can use a
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single parameter η to represent the PLS for each loading path. For axial or hoop tensile test,

η is simply equal to the axial or hoop tensile PLS. For biaxial tension σzz = σθθ, η is equal to

the PLS of σzz (or σθθ). For loading path σzz/σθθ = 2, we let η equal to the PLS of σzz and the

corresponding hoop stress is equal to η/2.

Trial Uniaxial Tension
[MPa]

Hoop Tension
[MPa]

Biaxial Tension
[MPa]

Multiaxial Tension
(σz/σθ = 2) [MPa]

1 74.7 53.2 56.4 90.5
2 64.1 62.2 53.8 68.9
3 79 52.8 63.2 82.8
4 48.1 49.1 59.9 52.5
5 58.1 53.8 60.6 64.3
6 82.6 44.5 52.5 81.7
7 60.4 46.3 43.8 71.2
8 61.6 46.9 51.5 78.2
9 65 42.1 - 82.1
10 71.5 64 - -

Table 1: PLS from Acoustic Emission (parameter η) for all four loading paths

To plot the probability distribution of η, we first rank the values of η of test specimens in

the ascending order, and the corresponding cumulative probability is calculated by

pi(η) = (i− 0.5)/n (3.5)

where i = rank of strength value η, and n = total number of test specimens. Fig. 3.11 shows

the measured probability distributions of η plotted on the Weibull scale. Note that, if the data

points fall on a straight line, they can be fitted by a two-parameter Weibull distribution. It

is seen from Fig. 3.11 that the experimental data cannot be fitted by a straight line. The

observed inapplicability of Weibull distribution is well expected for quasibrittle structures since

the structure size is not much larger than the zone of damage localization [21, 2]. The application

of Weibull strength distribution for quasibrittle structures will be discussed in details in the

next chapter.

With the limited amount of test specimens, we can estimate the mean and standard devi-

ation of the PLS for different load paths, which are listed in Table 2. It is seen that the mean

value of PLS varies considerably with the load paths. The mean PLS in the axial direction is

about 25% lower than that in the hoop direction. On the other hand, the coefficients of vari-

ation (CoVs) for different load paths are pretty close. The measured statistics of PLS clearly

indicates the anisotropic behavior of the SiC/SiC composites.

We now extend the proposed failure surface (Eq. 2.8) to describe the statistics of PLS.

As discussed in Chapter 2, for the present study the failure surface can be fully described

by three PLS limits: tensile strength ftz in the axial direction, tensile strength ftθ in the

hoop direction, and biaxial tensile strength fb. Here we consider these three PLS limits exhibit
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Figure 3.11: Probability distributions of strength in different loading paths.

Uniaxial Tension
[MPa]

Hoop Tension
[MPa]

Biaxial Tension
[MPa]

Multiaxial Tension
(σz/σθ = 2) [MPa]

Mean 66.51 51.49 55.21 74.69
Std 9.93 6.87 5.81 10.95
CoVs 0.149 0.133 0.105 0.147

Table 2: Mean, Std and CoVs for all four loading paths

certain randomness, and they follow a Gauss-Weibull probability distribution. This distribution

function was recently developed for quasibrittle materials based on atomistic fracture mechanics

and a multiscale statistical model [5, 20, 21, 2]. The salient feature of the model is that it

captures in the statistical sense both damage localization and load redistribution mechanisms

at different scales. The Gauss-Weibull grafted distribution function can be written as

Fi(x) =

1− e(x/si)
mi (x ≤ xgi)

Pgi + ri
δGi
√

2π

∫ x
xgi
e
− (x′−µGi)

2

2δ2
Gi dx′ (x > xgi)

(3.6)

where subscript i = tz, tθ and b denote the model parameters for tensile strengths in the axial

and hoop directions, and biaxial tensile strength, respectively. mi and si are Weibull modulus

and the scale parameter of the Weibull tail; µGi and δGi are mean and standard deviation of the

Gaussian core, if considered extended to −∞; ri is a scaling parameter required to normalize

the grafted cdf such that Fi(∞) = 1; xgi is the grafting point and Pgi = 1 − e(xgi/si)
mi is the
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grafting probability, which is typically on the order of 10−3 to 10−2 [21, 2]. Since the Weibull

tail is very short, the mean and standard deviation of the Gaussian core are almost equal to

the mean and standard deviation of the corresponding PLS.

Figure 3.12: Gauss-Weibull fitting of measured histograms of ftz, ftθ and fb

µGi δGi mi si xgi ri Pgi
ftθ 50.68 7.030 30 42.882 36.779 1.0144 10−2

ftz 65.70 10.232 30 53.891 46.223 1.0190 10−2

fb 56.75 6.015 30 49.427 42.393 1.0106 10−2

Table 3: Model parameters for fitting histogram of ftz, ftθ and fb

In this study, we use Eq. 3.6 to fit the measured histograms of ftz, ftθ and fb, as shown

in Fig. 3.12. The resulting model parameters are listed in Table 3. Once we determine the

probability distributions of ftz, ftθ and fb, Eq. 3.6 can be used to predict the failure probability

for any loading path. Consider a proportional loading case σzz = kσθθ. Based on Eq. 2.8, we

have

σzz =

[
k2

f 2
tθ

+
1

f 2
tz

− k

f 2
0

]−1/2

(3.7)
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Based on Eq. 2.7, Eq. 3.7 can be rewritten as

σzz =

[
k2 − k
f 2
tθ

+
1− k
f 2
tz

+
k

f 2
b

]−1/2

(3.8)

With the calibrated probability distributions of ftz, ftθ and fb, we can calculate the proba-

bility distribution of σzz by applying the Monte Carlo simulations to Eq. 3.8. We apply this

method to the loading case σzz/σθθ = 2, and obtain the probability distribution of σzz. Fig.

3.13 shows the comparison between the measured and predicted probability distributions of

PLS for loading path σzz/σθθ = 2. It is seen that they match each other reasonably well, which

validates the proposed approach.

Figure 3.13: Measured and predicted probability distributions of PLS for σzz/σθθ = 2
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4 Finite Weakest Link Model for Design Extrapolation

The foregoing chapters focused on the failure of laboratory specimens. The laboratory spec-

imens usually have the same cross-sectional dimension as the fuel cladding, but the specimen

length is about two orders of magnitude shorter than the fuel cladding. The essential question is

how to predict the failure statistics of the full-size cladding from the laboratory test results. To

this end, we need to develop a statistical model that is consistent with the failure mechanism.

This chapter will present a finite weakest-link model, which physically represents a damage

localization mechanism. The model allows efficient calculations of lifetime distribution of the

actual cladding. One important consequence is that the lifetime distribution of the cladding

would exhibit a strong size(length) effect.

4.1 Background on Weakest-Link Model

The simplest statistical theory for structural strength is Weibull’s theory. It is based on the

infinite weakest-link model, imagined as an infinite chain (Fig. 4.1), in which each link cor-

responds to one representative volume element (RVE) of the material. The Weibull theory is

based on the following two hypotheses:

1. The structure fails if one RVE fails, as implied by the weakest-link model; and

2. the number of RVEs that could trigger the structural failure is extremely large and can

be considered as infinite.

The structural geometry for which the former hypothesis is valid is often called the positive

geometry. The positive geometry is defined as the structural geometry for which the stress

intensity factor (or the energy release rate) at constant load increases as the crack grows. For

structures under load control, the failure for such geometry occurs right at the beginning of

crack propagation. In the opposite case of negative geometry, the structure does not fail when

one RVE softens. Rather, the crack extends under an increasing load in a stable manner, as

typically seen in reinforced concrete structures and also achieved in some fracture specimens

such as a large panel with a small center crack, loaded on the crack, or in a reverse-taper

double-cantilever specimen.

Hypothesis 2 means that, in comparison to structure size D, the FPZ is so small that it can

be treated as a point. For geometrically similar structures of various sizes, the stress distribution

as a function of relative coordinate vector ξ = x/D of material points is then independent of

D (x = actual coordinate vector).

Hypothesis 2 has often gone unmentioned and has usually been considered automatically

applicable. But recently it transpired that, for structures made of concrete, fiber composites,
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Figure 4.1: Weakest-link model of strength statistics.

tough ceramics and other quasibrittle materials, the number of potentially failing RVEs is often

far too small to justify the application of Weibull statistics.

Denote Pk = failure probability of the kth RVE (k = 1, 2, ...N) of structure, and Pf = failure

probability of the structure as a whole. Since positive geometry is assumed, the structure must

fail as soon as one RVE fails. In other words, the structure behaves statistically as a chain,

which fails as soon as one link fails (Fig. 4.1). The trick to determine Pf is to switch attention

from failure probabilities Pk to survival probabilities, which are 1−Pk for each RVE. Obviously,

the structure will survive if all its RVEs survive. So, the probability of survival of the structure

is the joint probability of survival of all the RVEs. Thus, if we assume that all Pk are statistically

uncorrelated (which is acceptable when the autocorrelation length of the random strength field

in the structure is not appreciably larger than the spacing of the RVEs), we have, according to

the joint probability theorem,

1− Pf = (1− P1)(1− P2) · · · (1− PN) (4.1)

or ln(1− Pf ) =
N∑
k=1

ln(1− Pk) ≈ −
N∑
k=1

Pk (4.2)

Here we introduced the small Pk approximation

ln(1− Pk) ≈ −Pk (4.3)

because, in a very long chain, Pk � 1. The reason is that a very long chain is likely to fail at

stress that is in the range of very low probability.

4.2 Weibull theory

Based on his experiments of unprecedented scope (not yet surpassed), Weibull [33, 34] realized

that, to fit his test data, the left (low probability) tail of the cumulative distribution function
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(cdf) of RVE strength (i.e., failure probability Pk of one RVE) must be a power law1, i.e.,

Pk = [σ(xk)/s0]m for small σ(xk) (4.4)

Here s0 (of the dimension of stress) and m (dimensionless) are material constants; s0 is called

the scaling parameter, and m the Weibull modulus (or shape parameter); and σ(xk) is the

positive part of the maximum principal stress at a point of coordinate vector xk (we take

the positive part because negative normal stresses do not cause tensile fracture). Substituting

Eq. 4.4 into Eq. 4.2 and making the limit transition from a discrete sum to an integral over

structure volume V (which is justified if the structure consists of many RVEs each of which is

much smaller than D), we get the well-known Weibull probability integral;

− ln(1− Pf ) =
∑
k

(
σ(xk)

s0

)m
≈
∫
V

(
σ(x)

s0

)m
dV (x)

l0
nd

(4.5)

where nd = number of spatial dimensions in which the structure is scaled (nd = 1, 2 or 3). The

integrand

cf (x) =
[σ(x)/s0]m

l0
nd

(4.6)

is called the spatial concentration of failure probability and is the continuum equivalent of Pk

of one RVE, whose volume is l0
nd . Because the structural strength depends on the minimum

strength value in the structure, which is always in the low probability range if the structure is

large, the validity of Eq. 4.5 for large enough structures is unlimited.

Eq. 4.5 is contingent upon the assumption that the brittle failure of material occurs in

tension (rather than shear or a shear-tension combination), and that the random material

strength is the same for each spatial direction, i.e., that the strengths in the three principal

stress directions are perfectly correlated. Then it is justified to interpret σ in Eq. 4.5 as the

positive part of the maximum principal stress at each continuum point (this stress must be

considered as nonlocal when the finite elements are smaller than the RVEs). However, if the

random strengths in the principal directions at the same continuum point were statistically

independent, then σm(x) in Eq. 4.5 would have to be replaced by
∑3

I=1 σ̄
m
I (x) where σ̄mI (x) are

the positive parts of the principal nonlocal stresses at that point [11, 4]. Nevertheless, assuming

this kind of statistical independence seems unrealistic.

4.3 Scaling of Weibull theory and pure statistical size effect

Consider now geometrically similar structures of different sizes D. In such structures, the

dimensionless stress fields σ̄(ξ) are the same functions of dimensionless coordinate vector ξ =

1In 1928, Fisher and Tippet [10], working at Cambridge University, evidently unknown to Weibull, came to
the same conclusion by mathematical arguments based on the stability postulate of extreme value statistics (as
explained later in this chapter).
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x/D, i.e., they depend only on structure geometry but not on structure size D. In Eq. 4.5, we

may then substitute

σ(x) = σN σ̄(ξ) (ξ = x/D) (4.7)

where σN = nominal stress = P/bD where P is the applied load or a conveniently defined load

parameter, and b = structure width (which may but need not be scaled with D). Further we

may set

dV (x) = DnddV (ξ) (4.8)

After rearrangements, Eq. 4.5 yields − ln(1− Pf ) = (σN/S0)m or

Pf = 1− e−(σN/s0)mΨ(D/l0)nd = 1 − e−(σN/S0)m (4.9)

where S0 = s0(l0/D)nd/mΨ−1/m, Ψ =

∫
V

[σ̄(ξ)]m dV (ξ) (4.10)

According to Eq. 4.9, the tail probability of structural failure is a power law:

Pf ≈ (σN/S0)m (for σN → 0) (4.11)

For Pf ≤ 0.02 [or 0.2], its deviation from Eq. 4.9 is < 1% [or < 10 %] of Pf .

The effect of structure geometry is embedded in integral Ψ, which is independent of the

structure size. Because exponent m in this integral is typically > 20 (and 0.820 = 0.012), the

regions of structure in which the stress is less than about 80% of material strength have a

negligible effect.

Note that Pf depends only on the parameter

s∗0 = s0l0
nd/m (4.12)

and not on s0 and l0 separately. So, the material characteristic length l0 is used here only

for convenience, to serve as a chosen unit of measurement. The Weibull statistical theory of

strength, per se, has no characteristic length (which is manifested by the fact that the scaling

law for the mean strength is a power law [1]).

The last expression in Eq. 4.9 is the Weibull distribution in standard form, with scale

parameter S0. From Eq. 4.10 one finds that

σN = C0 (l0/D)nd/m (4.13)

where C0 = CfΨ
−1/m, Cf = s0[− ln(1− Pf )]1/m (4.14)

This equation, in which C0 and S0 are independent of D, describes the scaling of nominal

strength of structure when the failure probability Pf is specified.

The mean nominal strength is calculated as (Fig. 4.2):

σ̄N =

∫ ∞
0

σNpf (σN)dσN =

∫ 1

0

σNdPf =

∫ ∞
0

(1− Pf )dσN (4.15)
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Figure 4.2: Calculation of mean structural strength.

where pf (σN) = dPf (σN)/dσN = probability density function (pdf) of structural strength,

while Pf (σN) = strength cdf. Substituting Eq. 4.9 and noting that
∫∞

0
tz−1e−tdt = Γ(z) =

gamma function, one gets, after rearrangements, the well-known Weibull scaling law for the

mean nominal strength as a function of structure size D and geometry parameter Ψ;

σ̄N(D,Ψ) = s0Γ(1 + 1/m) = Cs(Ψ) D−nd/m (4.16)

where Cs(Ψ) = Γ(1 + 1/m) l0
nd/ms0/Ψ

1/m (4.17)

For the gamma function one may use the approximation Γ(1 + 1/m) ≈ 0.63661/m, which is

accurate within the range 5 ≤ m ≤ 50 (Eq. 12.1.22 in [4]).

The coefficient of variation (CoV) of σN is calculated as

ωN
2 = σ̄ −2

N

∫ ∞
0

(σN − σ̄N)2pfdσN = σ̄ −2
N

∫ ∞
0

σN
2 dPf (σN)− 1 (4.18)

where dPf (σN)/dσN = pf (σN) = pdf of σN . Substitution of Eq. 4.9 gives, after rearrangements,

the following well-known expression for the strength CoV:

ωN =

√
Γ (1 + 2/m)

Γ2 (1 + 1/m)
− 1 (4.19)

which is independent of structure size as well as geometry. Approximately, ωN ≈ (0.462 +

0.783m)−1 for 5 ≤ m ≤ 50 (Eq. 12.1.28 in [4]).
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4.4 Finite Weakest-Link Model for SiC/SiC cladding

The previous sections discussed the infinite weakest-link model for structural strength and the

consequent Weibull strength distribution. One important implication of the Weibull strength

distribution is the size dependence of strength statistics, often referred to as the Weibull size

effect. However, the infinite weakest-link model represents a limiting case, in which the smallest

element triggering the failure of the entire structures is far smaller than the overall structure size.

This condition is not often met in many practical cases. Therefore, the measured probability

distribution of structural strength does not follow the Weibull distribution. In this study, we

consider the cladding fails as soon as damage initiates from anywhere. Therefore, the cladding

survives if and only if all the material elements survive. Mathematically, the failure statistics

of the cladding can be represented by a weakest-link model.

First consider a laboratory specimen. At failure damage would localize into one material

element. The size of this material element is related to the width of the fracture process zone.

For SiC/SiC composites, the size of the material element which damage localizes is expected

to be on the order of the tow width (≈ 1.2 mm). By assuming that the failure statistics of

each material element is statistically independent, the failure probability Pfs(t) of the specimen

subjected to a general loading history can be calculated by

Pfs(t) = Pr(tf ≤ t) = 1− [1− P1(t)]ns (4.20)

where P1(t) = failure probability of one material element, and ns = number of material elements

in the specimen. Eq. 4.20 is written by assuming that the all the material elements experience

the same stress history up to failure. It is noted that in laboratory testing we normally cannot

directly obtain the strength distribution P1 of one material element. Instead, we can measure

the failure probability of a specimen, from which we infer P1(t) as

P1(t) = 1− [1− Pfs(t)]1/ns (4.21)

Now consider an actual SiC/SiC cladding. Recent studies have shown that during its service

lifetime the cladding experiences a non-uniform stress distribution [28]. To account for the non-

uniformity of the stress field, we can write the finite weakest-link model as

Pf (t) = 1−
n∏
j=1

[1− P1(σj, t)] (4.22)

where n = number of material elements in the cladding, and σj = a vector containing the stress

components σi for jth material element. Eq. 4.22 can be conveniently rewritten by taking the

logarithmic, which will allow us to replace the product by a summation, i.e.

ln [1− Pf (t)] =
n∑
j=1

ln [1− P1(σj, t)] (4.23)
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Since there are many elements in the cladding, we can replace the summation by integration.

Eq. 4.23 can be rewritten as

Pf (t) = 1− exp

{
1

V0

∫
V

ln {1− P1[σ(x, t), t]} dV

}
(4.24)

where V0 = volume of one material element. By substituting Eq. 4.21 into Eq. 4.24, we have

Pf (t) = 1− exp

{
1

Vs

∫
V

ln {1− Pfs[σ(x, t), t]} dV

}
(4.25)

where Vs = volume of laboratory test specimen. Pfs[σ(x, t), t] represents the failure probability

of the test specimen at time t when subjected to stress history σ(t) that is experienced by a

material point located at x of the actual cladding. As mentioned in Chapter 2, Pfs[σ(x, t), t]

can be calculated through Monte Carlo simulations based on the known cdf’s of ftz, ftθ and fb

through Eq. 2.15.

Eq. 4.25 provides a closed-form relationship between the failure statistics of test specimen

and the full-size cladding. The model has two important features:

• The model captures the effect of cladding length on the failure probability of the cladding.

It is well expected that, similar to the infinite weakest-link model, Eq. 4.25 would predict

a strong length effect on the failure probability of the cladding. Understanding this size

effect is essential for design extrapolation across claddings of different lengths.

• The model takes into account the effect of the time-varying load history. It is noted that

the use of Pfs[σ(x, t), t] indicates that the failure probability at any given time depends

on not only the current stress state, but also the previous load history. This dependence

arises from the damage kinetics model, which naturally captures the effect of load path

on the damage accumulation.
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5 Reliability Analysis of SiC/SiC Claddings

The present model is applied to evaluate the reliability of SiC/SiC claddings. The purposes

of this analysis are 1) to demonstrate the application of the model for reliability analysis of

full-length claddings, 2) to investigate the effect of cladding length on the failure probability,

and 3) to understand the effect of subcritical damage growth on the failure probability.

5.1 Description of Analysis

The stress history used in the analysis was extracted from a recent thermo-mechanical analysis

of SiC/SiC cladding [28]. The analysis is concerned with a 4m long SiC/SiC composite cladding

under a service lifetime of 2 years. The cladding is subjected to a combination of external pres-

sure, internal pressure, temperature, and irradiation induced swelling. The external pressure is

kept at 15 MPa over the entire period of time whereas the internal pressure increases linearly

from 1 MPa to 20 MPa. The thermal loading is applied to both the internal and external

surfaces. The linear heating rate varies along the cladding height. The details of the thermal

loading and boundary conditions can be found in [28]. The irradiation dose increases linearly

from 0 to 6 dpa over the 2 year period. In the analysis, the constitutive behavior of the SiC/SiC

material is described by an anisotropic constitutive model, in which the elastic stiffnesses de-

grade with the irradiation induced swelling. In addition, the constitutive model also takes into

account the temperature-dependent thermal expansion and conduction.

The numerical analysis showed that the cladding experiences compressive stresses in both

axial and hoop directions at the beginning due to the external pressure. During this early

loading stage, the compressive axial and hoop stresses at the inner region of the cladding are

higher than those at the outer region since the inner surface is subjected to a higher temperature

than the outer surface. As the loading proceeds, the cladding experiences irradiation induced

swelling. The amount of swelling is strongly dependent on the temperature. The non-uniform

spatial distribution of temperature leads to a spatial variation of swelling in the cladding, which

drives the evolution of the internal stress distribution. The simulation showed that, over the

service lifetime, the hoop stress at the inner surface changes from 152 MPa in compression to

73 MPa in tension and the axial stress rises from 88 MPa in compression to 51 MPa in tension.

The change of stresses at the outer surface is less significant. Fig. 5.1 shows the time evolution

of the axial and hoop stresses at the inner layer of the cladding at its mid-height. It is seen

that the hoop stress increases at a rate much larger than the axial stress does, as predicted by

the elastic solution of the hoop and axial stresses of thin-wall structures.

Over the majority of the loading duration, the inner region of the cladding experiences axial

tension, and the hoop stress also turns to be tensile after 12 months. By contrast, the outer

region is primarily under mild compressive stresses as compared to the material compressive
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Figure 5.1: Time histories of axial and hoop stresses of the inner layer of the cladding at its
mid-height [28].

strength. Fig. 5.2 shows the variation of axial and hoop stresses at the inner surface along the

height of the cladding at the end of loading. It is seen that the cladding experiences a uniform

stress along its height except towards the two ends. The drastic change of axial stress at the two

ends is attributed to the lower temperature, which affects the the irradiation induced swelling.

Based on the stress history of the cladding simulated in this recent study [28], we calculate

the in-plane principal stresses, which are input to the present probabilistic model. As discussed

in Sec. 3.5, the probability distributions of PLS limits ftz, ftθ, and fb are considered to follow

a Gaussian-Weibull grafted distribution, and the statistical parameters are determined by the

multiaxial tests. By knowing these distribution functions, we can calculate the failure proba-

bility of the cladding at any given time during the loading process. Since the stress histories

are calculated by a finite element analysis [7], it is natural to rewrite Eq. 4.25 by

Pf (t) = 1− exp

{
1

Vs

∑
j

ln {1− Pfs[σj(x, t), t]}∆Vj

}
(5.1)

where σj = stress tenor of finite element j and ∆Vj = volume of finite element j. Based on

Eq. 2.15, it is not possible to obtain a closed-form solution for Pfs[σj(x, t), t]. Therefore, we

rely on Monte Carlo simulations to evaluate the failure probability Pfs of each finite element.

For any given finite element, we first sample the uniaxial tensile and compressive strengths and

biaxial tensile strength by

fi = F−1
i (ui) (i = tz, tθ, b) (5.2)
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Figure 5.2: Spatial distribution of axial and hoop stresses at 2 year of service along the height
of the cladding [28].

where ui = sampled value of a random variable u that is uniformly distributed over the range

of 0 to 1. For a given set of ftz, ftθ, fb and the stress history, the time-to-failure tf of each

element can be determined from Eq. 2.15. By repeating this calculation for a large number

of realizations of ftz, ftθ, fb, we can calculate the failure probability Pfs. The simulated failure

probabilities of finite elements are then input to Eq. 5.1 for determining the failure probability

of the entire cladding.

5.2 Time Evolution of Failure Probability

In the recent FE analysis, the cross section of the cladding is discretized into 6 layers in the

radial direction. The thermomechanical loading and irradiation cause a strong non-uniform

stress distribution across these layers. In this section, we first analyze the time evolution of the

failure probability of the inner layer of the cladding. The simulation results showed that a large

part of the inner layer experiences a uniform stress distribution except for the end regions [28].

Here we consider a uniform stress distribution for the inner layer along the cladding height. For

the later analysis of the failure risk of the cladding, the actual stress profile will be used.

Fig. 5.3 shows the calculated failure probability of the inner layer. It is seen that the failure

probability increases monotonically over time. As mentioned earlier, the failure probability

Pf (t) is defined by Pf (t) = Pr(tf ≤ t). Physically it represents the failure probability of the
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Figure 5.3: Failure probability of the inner layer of the cladding calculated using the stresses
at its mid-height.

structure taking into account the entire loading history up to time t. For a given loading history,

Pf (t) is a monotonic non-decreasing function. In the present study, the accumulative effect of

the past loading history on the failure probability is captured by the damage accumulation

model. The failure probability of the structure during a time period δt = t2 − t1 can then be

calculated by Pf (δt) = Pf (t2)− Pf (t1).

Fig. 5.4 presents the time evolution of the contribution of the applied stress on the damage

growth by using the mean values of ft and fc. As indicated by Fig. 5.1, during the first 8 months,

the material experiences compressive stresses in both axial and hoop directions. However, the

absolute difference in the in-plane principal stresses is very small as compared to the compressive

strength. Therefore, the risk of compression-induced shear failure is negligibly small and the

damage growth rate is very low. After 13 months, both axial and hoop stresses become tensile

leading to the acceleration of the damage growth. However, the difference between the hoop

and axial stresses decreases, which leads to a decrease in the failure risk. After 18 months, the

tensile axial and hoop stresses continue to grow, and meanwhile the difference between these

stress components starts to increase. This causes a considerable increase in the damage growth

rate.

The foregoing analysis of the time history of damage growth is directly reflected by the time

evolution of failure probability. It is seen that failure probability is relatively small (< 10−5)

for the first 17 months. Over the last 6 months, the failure probability increases quickly to 1.

This is due to the fact that during that period both the axial and hoop stresses increase to a
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Figure 5.4: Time evolution of contribution of applied stress on the damage growth at the
mid-height of the inner layer.

considerable level as compared to the tensile strength of the material.

5.3 Spatial Distribution of Failure Probability

It is also of practical interest to investigate the spatial distribution of failure probability. This

information not only reveals the most vulnerable part of the structure, but also has profound

implications for the scale effect on the failure probability. Based on the stress histories calculated

from the finite element analysis [28], we determine the spatial distribution of failure probability

Pf of one column of finite elements of the inner layer at the 24th month of service, as shown in

Fig. 5.5.

It is seen that the failure probability of material elements is nearly a constant over the

entire cladding except for the two end regions. This is consistent with the spatial distribution

of the stress profile as shown in Fig. 5.2. This indicates that the damage has an equal like-

lihood to occur at any location over the 3m length of the cladding. The uncertainty of the

potential damage location indicates a strong weakest link effect on the overall failure statis-

tics. The direct consequence is that the failure probability of the layer would increase with the

length of the cladding. Moreover, the type of failure probability function could vary with the

cladding length [2]. This size effect must be taken into account in reliability-based design of the

cladding. By contrast, if the layer experiences a strongly non-uniform stress distribution, then

the failure location could be deterministic. In this case, the failure probability of the layer is
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Figure 5.5: Spatial distribution of failure probability of one column of inner-layer elements over
a period of 24 months.

determined solely by the particular material element at the failure location, and therefore the

failure statistics is independent of the cladding length.

5.4 Failure Probability of Entire Cladding and the Effect of Damage
Growth Rate

Fig. 5.6 presents the evolution of the failure probability of the entire cladding over the its

service period calculated based on the stress histories reported in [28]. It is seen that the failure

probability of the cladding grows monotonically over time up to 5.2%. The FE stress analysis

showed that the outer layer of the cladding primarily experiences compressive stresses in both

hoop and axial directions over the entire loading period, whereas the hoop and axial stresses of

the inner layer change from compression to tension as loading proceeds [28].

During the first 18 months of service, the entire cladding experiences compressive stresses.

Based on the failure criterion, this could lead to compression-induced shear. In this case, the

entire cross section of the cladding contributes to the failure probability. This explains why the

failure probability of the cladding is higher than that of the inner layer for the first 18 months.

Nevertheless, it should be pointed out that the inner layer experiences higher compressive

stresses as compared to the outer layer, and therefore the inner layer is more vulnerable than

the outer layer during the early stage of the loading process. After 18 months, the inner layer

of the cladding starts to experience tension. Since the compressive strength is considerably

higher than the tensile strength, the tensile stresses experienced by the inner layer give rise to
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a significant level of failure probability. By contrast, the risk of failure due to the compression-

induced shear is very low. Consequently, the overall failure probability of the cladding at the

end of its service is primarily governed by the inner layer.

Fig. 5.6 provides critical information on when the inspection and maintenance are needed

to guard against a given tolerable failure risk. Based on Fig. 5.6, for a tolerable failure risk of

10−6, the cladding should be inspected after 16.6 month service. The present model also shows

that the inner surface is the most vulnerable part of the cladding. Therefore, the inspection

should focus on the inner surface of the cladding along its the entire height.

It is evident that one important component of the present model is the kinetics of damage

growth (Eq. 2.11). In this kinetics model, the dependence of the damage growth rate on the

applied loading is governed by the exponent n in Eq. 2.11. Fig. 5.7a shows a parametric study

on how the value of n influences the time evolution of the failure probability. It is seen that with

an increasing value of n the failure probability of the entire structure decreases. This is because,

as n increases, the damage growth rate decreases and so does the failure probability. Fig. 5.7a

also includes the failure probability calculated from the time-independent model. In this model,

the overall failure statistics of the cladding is still represented by the weakest-link model (Eq.

5.1), but the failure probability function Pfs is calculated solely based on the current stress

state using Eq. 2.9. As compared to the present time-dependent model, the key difference

is that the time-independent model ignores the damage state of the material and treats the

material is in the virgin state for the current loading state. This is an oversimplification, which

can cause a gross underestimation of the failure risk. The present model keeps track of the
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Figure 5.7: (a) Lifetime distributions of cladding calculated by using different n values and
a time-independent model, and (b) the corresponding service lifetimes corresponding to Pf =
10−6.

damage state through the damage accumulation model, and therefore would predict a higher

failure risk than the time-independent model.

Fig. 5.7b shows the lifetime of the cladding for the failure risk of 10−6. It is seen as n-

value varies from 50 to 5, the service lifetime of the cladding decreases from 17 months to 12

months. This indicates the significant influence of the n-value on the prediction of the lifetime

distribution of the cladding. Therefore, it is crucial to experimentally determine the parameter

n. One method is to perform the strength test using a linear ramped loading and the lifetime

test using static fatigue on the same batch of specimens. Based on the measured strength and

lifetime, Eq. 2.15 can be used to determine the value of n.

5.5 Effect of the Cladding Length to Failure Probability

The actual cladding in LWR is around 4m long, which makes it difficult to perform direct

mechanical tests. Therefore, it is customary to test specimens of shorter lengths. The essential

question for design is how to extrapolate the laboratory test results to full length design. To

facilitate this design extrapolation, we investigate the effect of the cladding length on the failure

probability. Since the failure probability is calculated based on the elastic stress analysis, the

stress distribution is independent of the cladding length.

Fig. 5.8 presents the calculated failure probability of claddings of different lengths. The

failure probability of the cladding increases with the increasing length. At a given time, the

failure probability of a cladding of 4 m long could be twice the failure probability of a 1m
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Figure 5.9: Length effect on the service lifetime of the cladding corresponding to Pf = 10−6.

cladding. This difference would be much more pronounced if we compare claddings with a

larger length ratio. This behavior is due to the fact that the failure of the cladding is governed

by the weakest element. Since most of the cladding experiences a uniform stress distribution,

a longer cladding would have a large likelihood to contain weaker elements and consequently a

higher failure risk. This is a classical feature of the weakest link statistical model.

Fig. 5.9 shows the relationship between the service lifetime corresponding to a failure

probability of 10−6 and the cladding length. The lifetime of a 4m cladding is 16.7 months while

that of a 1m cladding is 17.6 months. This is a strong size effect on the design lifetime, which

needs to be taken into consideration in the design extrapolation. The direct consequence of this

finding is that the safety factor determined based on the laboratory tests needs to be adjusted

for the design of full length structure. Otherwise, the failure probability of the actual structure

would be much larger than the tolerable value.
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6 Conclusions and Recommendations

6.1 Conclusions

• A multiaxial failure model is proposed for SiC/SiC composites. The failure model is

extended to capture the probabilistic behavior. It is shown that, for the stress states of

present interest, the probabilistic behavior of the failure surface can be well described for

the probability distributions of the proportional limit stresses (PLS) in the axial, hoop,

and biaxial directions.

• A robust multiaxial testing systems is developed for generating various load combinations

of axial force and internal pressure. To provide the effective isolation (jacketing) from the

internal fluid pressure, Viton membranes of a special shape are manufactured to seal both

the internal surface of specimen and interface between the specimen and apparatus. High

strength epoxy is used in-between the contracted surface of the specimen and apparatus

to transmit axial loading. With this design, the system is able to load the specimen up

to ultimate failure.

• A new strain-based criterion is proposed for determining the PLS for multiaxial loading.

The criterion reduces to the current ASTM recommendation on the PLS for uniaxial

tensile loading. The proposed criterion is validated by the comparison with the results of

acoustic emission. With the newly designed test apparatus, the multiaxial failure surface

corresponding to the PLS with its statistical variation is experimentally measured.

• The time dependence of the failure statistics of SiC/SiC composites is formulated through

a damage kinetics model. The damage accumulation mechanism indicates that the failure

probability of the material at any given time is governed by the entire previous loading

history, a key difference from the time-independent model in which the failure probability

depends only on the current stress state.

• It is demonstrated that the damage growth kinetics has a profound influence on the

time evolution of failure probability of the cladding. Therefore, to accurately predict the

lifetime distribution of the cladding, it is crucial to calibrate the damage growth model

for SiC/SiC composites. Based on the present model, it is suggested to use a combination

of strength test and static fatigue lifetime test to calibrate the damage kinetics model.

• The failure probability of the SiC/SiC cladding is calculated from the material failure

probability through a weakest-link model, which signifies the damage localization mech-

anism. Since the cladding experiences a relatively uniform stress distribution along its

height, the failure probability is strongly dependent on the cladding length. It shown that
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a longer cladding would experience a considerably higher failure probability as compared

to a shorter one.

6.2 Recommendations

In this study, we define failure of the entire structure to occur once any material element reaches

the PLS. This definition is conservative because, in actual application, the cracks initiated at

the cladding inner region could be arrested by the compressive stress at outer region. In this

case, hermeticity of the system may be retained and the actual failure risk of the cladding

would be lower than that calculated by the present model. To capture the behavior of crack

propagation for estimating the failure risk, one would need to rely on stochastic numerical

simulations (e.g. finite element analysis), which involve a nonlinear constitutive material model

with spatially distributed random material properties (e.g. [12]). Such type of numerical models

are appealing as they will yield a more accurate estimation of failure risk as well as reveal the

cracking pattern at failure. Though the computational cost could be high, full scale nonlinear

stochastic computation will be feasible with the advances in modern computing technology. In

comparison, the present model provides an efficient means for estimating an upper bound of

failure risk while taking into account the effect of damage accumulation.

The finding of the present study indicates the importance of understanding the subcritical

damage growth behavior. In nuclear applications, the subcritical damage growth not only de-

teriorates the load carrying capacity of the structure, but also affects the structural integrity.

So far most laboratory experiments focused solely on strength properties. There is a clear need

to experimentally investigate the subcritical damage growth under sustained loading combined

with other environmental conditions such as high temperatures and irradiation. Such experi-

mental data will allow us to quantify the kinetics of subcritical damage growth, to reveal the

underlying mechanisms, and to calibrate the relevant numerical and theoretical models.

The present model reveals the important consequences of the damage accumulation mech-

anism as well as the size effect for assessing the lifetime distribution of SiC/SiC composite

cladding. These findings suggest the critical need of future work on experimental character-

ization of mechanical behavior of SiC/SiC composite materials as an essential step toward

reliability-based design of SiC/SiC composite claddings.
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[21] J.-L. Le, Z. P. Bažant, and M. Z. Bazant. Unified nano-mechanics based probabilistic

theory of quasibrittle and brittle structures: I. strength, static crack growth, lifetime and

scaling. Journal of the Mechanics and Physics of Solids, 59(7):1291–1321, 2011.

[22] T. Nozawa, S. Kim, K. Ozawa, and H. Tanigawa. Stress envelope of silicon carbide com-

posites at elevated temperatures. Fusion Engineering and Design, 89(7):1723–1727, 2014.

[23] Y. N. Rabotnov. Creep Problem in Structural Members. North-Holland, Amsterdam, 1969.

[24] E. Rohmer, E. Martin, and C. Lorrette. Mechanical properties of SiC/SiC braided tubes

for fuel cladding. Journal of Nuclear Materials, 453(1):16 – 21, 2014.

[25] L. Saucedo-Mora, T. Lowe, S. Zhao, P.D. Lee, P.M. Mummery, and T.J. Marrow. In situ

observation of mechanical damage within a SiC-SiC ceramic matrix composite. Journal of

Nuclear Materials, 481:13–23, 2016.

[26] K. Shapovalov, G. M. Jacobsen, L. Alva, N. Truesdale, C. P. Deck, and X. Huang. Strength

of SiCf -SiCm composite tube under uniaxial and multiaxial loading. Journal of Nuclear

Materials, 500:280 – 294, 2018.

45



[27] G. Singh, S. Gonczy, C. Deck, E. Lara-Curzio, and Y. Katoh. Interlaboratory round robin

study on axial tensile properties of SiC-SiC CMC tubular test specimens. International

Journal of Applied Ceramic Technology, 15(6):1334–1349, 2018.

[28] G. Singh, K. Terrani, and Y. Katoh. Thermo-mechanical assessment of full SiC/SiC com-

posite cladding for LWR applications with sensitivity analysis. Journal of Nuclear Mate-

rials, 499:126 – 143, 2018.

[29] J.G. Stone, R. Schleicher, C.P. Deck, G.M. Jacobsen, H.E. Khalifa, and C.A. Back. Stress

analysis and probabilistic assessment of multi-layer SiC-based accident tolerant nuclear

fuel cladding. Journal of Nuclear Materials, 466:682–697, 2015.

[30] K. A. Terrani, B. A. Pint, C. M Parish, C. M. Silva, L. L. Snead, and Y. Katoh. Sili-

con carbide oxidation in steam up to 2 MPa. Journal of the American Ceramic Society,

97(8):2331–2352, 2014.

[31] Kurt A. Terrani. Accident tolerant fuel cladding development: Promise, status, and chal-

lenges. Journal of Nuclear Materials, 501:13–30, 2018.

[32] E. Vanmarcke. Random Fields Analysis and Synthesis. World Scientific Publishers, Sin-

gapore, 2010.

[33] W. Weibull. The phenomenon of rupture in solids. Proc. Royal Sweden Inst. Engrg. Res.,

153:1–55, 1939.

[34] W. Weibull. A statistical distribution function of wide applicability. Journal of Applied

Mechanics, 153(18):293–297, 1951.

46


