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Synopsis

Magnetohydrodynamics (MHD) provides a useful model to describe the crucial plasma
macroscopic equilibrium and stability behaviors in toroidal tokamak devices by considering the
plasma as a conducting fluid interacting with a surrounding confining electromagnetic field. MHD
is the most basic plasma model, incorporating most large-scale phenomena, including plasma
equilibrium and all major instabilities. MHD equations are obtained by taking moments of the
Boltzmann equations for different plasma species. They provide a set of comprehensive physics
constrains to compute and optimize the equilibrium plasma shape and pressure and current profiles
that are critical to its stability and performance. In the ideal case, the equations have special
properties that lead to efficient numerical calculation schemes, the most important of which is the
ideal MHD energy principle for linear stability against small departures from equilibrium. In a
tokamak plasma, equilibrium pressure is mostly destabilizing for MHD modes, whereas
equilibrium current is also often a major driving force. Plasma resistivity creates new freedom for
a MHD instability to grow, but there are also cases where the plasma resistivity plays a stabilizing
role. Equilibrium toroidal flow and/or flow shear can affect MHD instabilities. Principal MHD
instabilities include the internal kink mode, sawtooth, fishbone, external kink, resistive wall mode,
resistive interchange, tearing and neoclassical tearing modes (NTMs), locked modes, toroidal
Alfven eigenmodes (TAEs), and edge localized modes (ELMs). Fast-growing MHD instabilities
can lead to an abrupt plasma disruption and termination that can potentially damage the device
plasma facing components (PFCs) and in-vessel structures. An important MHD application is to
develop robust techniques to mitigate and control MHD instabilities.

Keywords: Magnetohydrodynamics, MHD equilibrium, MHD stability, MHD instabilities, Grad-
Shafranov equation, ideal linear stability, energy principle, Troyon limit, tokamak disruption,
shattered pellet injection, dispersive pellet injection, disruption prediction and avoidance,
disruption mitigation

Glossary

Alfven velocity Alfven wave travelling velocity

Beta The ratio of plasma stored energy to confining magnetic energy

DIII-D Doublet III dee-shaped tokamak

Disruption Rapid termination of a plasma discharge

EFIT Equilibrium reconstruction and fitting code

ELM Edge localized mode

Flow shear A measure of radial variation of plasma angular flow across
magnetic surfaces

H-mode High confinement mode



ITER

Magnetic shear

Magnetic surface
MHD

Mode rational surface
RWM

Safety factor

International thermonuclear experimental reactor, an international

project constructing tokamak designed to study fusion plasma
production in deuterium-tritium plasmas

A measure of radial variation of safety factor across magnetic
surfaces

A surface formed by magnetic-field lines
Magnetohydrodynamics

A magnetic surface where the safety factor has a rational value
Resistive wall mode

The number of toroidal transits for each poloidal transit when
following a magnetic-field line

Sawtooth A periodic relaxation in the tokamak plasma central region
Tokamak A donut shaped toroidal confinement device

VDE Vertical displacement event

Introduction

In magnetic-fusion confinement devices such as tokamaks, to remain confined and produce fusion
power, the plasma must be maintained in a force-balance equilibrium state and stable to
perturbations around this state. To keep the plasma away from the surrounding vacuum vessel,
the expanding hot-plasma pressure force, and the centrifugal force if the plasma is rotating, must
be balanced by a counter magnetic force driven by electrical currents flowing in the external coils.
As schematically illustrated in Figs. 1(a) and 1(b), a stationary ball sitting in the bottom of a valley
represents a stable equilibrium state, whereas the one sitting on the top of a hill represents an
unstable equilibrium state.

(a) (b)
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Fig. 1. (a) A stable equilibrium state, (b) an unstable equilibrium state.

Magnetohydrodynamics (MHD) (Bateman 1978, Freidberg 1982) provides a useful model to
describe and evaluate this macroscopic plasma equilibrium and stability state by considering the
plasma as a conducting fluid confined in a restricted region of space by the electromagnetic force
from an externally imposed magnetic field. The magnetic field can be conveniently visualized and
represented using magnetic field lines (Boozer 2005). In an axisymmetric toroidal tokamak device,



the magnetic field lines form a set of nested magnetic surfaces in a donut shape. The geometric
and topological properties of the magnetic surfaces such as the aspect ratio, elongation,
triangularity and squareness play important roles in determining the stability and performance of
tokamak plasmas, and can be controlled using a set of external poloidal-field coils.

An important MHD application is to design an optimal set of external poloidal magnetic-field coils
to produce a target plasma equilibrium shape that are stable to instabilities. An essential magnetic-
fusion research element is to develop the physics basis to support such activities. This requires
design and performance of experiments to test the equilibrium and stability properties of the
plasma, development and validation of MHD equilibrium and stability physics models to explain
the experimental observations, and development of diagnostics and computational tools to
accurately measure and efficiently reconstruct the plasma state to interpret the measurements and
facilitate the validation.

In an ideal perfectly conducting plasma, the plasma is tied to the magnetic surfaces. In the absence
of collisions among ions and electrons and without large drift motions due to magnetic-field
gradient and curvature in the magnetic-field lines, the magnetic surfaces act as a container to keep
the plasma away from the surrounding vacuum-vessel wall and plasma facing components. The
hot plasma pressure and current flowing along the magnetic field lines can act as free-energy
sources to drive the plasma away from the desired equilibrium and into various unstable states
depending on the particular plasma operating configurations and conditions. The tension and shear
in the magnetic-field lines can act as restoring forces to stabilize and keep the plasma in a stable
equilibrium state. An excessive amount of plasma stored energy relative to the confining toroidal
magnetic field energy or a large amount of flowing plasma current relative to the confining toroidal
magnetic-field coil current can drive MHD instabilities that can potentially damage and shorten
the lifetime of the confining device PFCs and in-vessel structures.

Two useful physics parameters to describe these important plasma stability properties are the
safety factor g and the plasma /. For an axisymmetric toroidal device such as a tokamak, these are
defined as
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Here, By and Bp are the toroidal and poloidal component of the magnetic field B from the electric
currents flowing within the plasma plus those flowing in the external toroidal and poloidal
magnetic-field coils. F (1) = 2mRB /U, is the poloidal current stream function, R is the plasma
major radius, 1 is the poloidal flux per radian of the toroidal angle, and By is the vacuum toroidal
magnetic field at the geometric center of the plasma boundary surface. The line integration in Eq.
(1) is along a poloidal cross section of a magnetic flux surface labeled by ¥, () is the volume
enclosed by the magnetic surface 1, and ()p is the plasma volume. The safety factor g describes
the average pitch of the magnetic field lines along a magnetic surface weighted by the geometric
properties of the surface. g represents the number of turns a magnetic field line has to traverse
toroidally before completing a poloidal turn.



Additionally, depending on the plasma transport conditions, strong pressure or current gradients
can develop locally in a small region near a transport barrier that can act as free-energy source to
drive the plasma into an unstable state (Lao 2000). In the tokamak high confinement mode (H-
mode) regime (Wagner 2007, Burrell 1987), a large edge pedestal pressure gradient can develop
leading to ELMs (Leonard 2014). Large ELMs can shorten the life time of the divertor wall.

MHD is also applied to develop robust techniques to mitigate and control MHD instabilities
(Igochine 2015). At high S or low g, a small perturbation can lead to unstable plasma motion that
strongly distorts the magnetic surfaces allowing the plasma to quickly release its thermal and
magnetic energy in a very short time scale, which can potentially damage the plasma-facing
components (PFCs) and in-vessel structures. Additionally, at rational g surfaces the magnetic field
lines close on themselves rather than spanning the entire surface. A magnetic perturbation that has
toroidal and poloidal mode numbers in sync with the pitch of the magnetic field lines can then
interact resonantly with the magnetic field and strongly distort the magnetic surfaces, thus allowing
the heat flux to quickly transport and escape to the surrounding vacuum-vessel wall. Additionally,
together with the plasma resistivity and toroidal asymmetry, magnetic islands and stochastic
regions can form around the rational g surfaces within the plasma that can tear open the magnetic
surfaces and allow particle and heat flux to also redistribute and escape to the vessel wall.
Impurities sputtered from the wall can then enter and accumulate in the plasma and can lead to a
radiation induced thermal collapse and rapid decay of the plasma current. The shrinkage of the
current channel in the plasma column can make it susceptible to vertical displacement events
(VDEs) and then disruption, which can potentially damage the device PFCs and in-vessel
structures due to the large attached halo current induced in the surrounding wall (Boozer 2012,
Lao 1991, Lehnen 2015, Clauser 2019).

In this Chapter, the physics principles of toroidal tokamak equilibrium and stability are first
discussed, including the derivation of the MHD equations from the Boltzmann kinetic equation.
This is then followed by a section on toroidal equilibrium including a description of equilibrium
reconstruction and the inverse representation. A discussion of MHD stability including linear
stability and the energy principle, the effects of plasma resistivity, energetic particles, and plasma
toroidal flow is then discussed. A discussion of major MHD instabilities including axisymmetric
modes, internal kinks (IKs), resistive-wall modes (RWMs), ELMs, tearing modes (TMs), and
TAEs then follows. The plasma response to external 3D magnetic fields and numerical tools to
compute MHD instabilities are also described. Lastly, a short discussion of methods and
techniques to mitigate and control plasma instabilities including disruptions is given.

Physics principles of toroidal equilibrium and stability
MHD model and equations

MHD is the most basic plasma model, incorporating most large-scale phenomena, including all
major instabilities. The model is formally derived from the fundamental Bogoliubov—Born—
Green—Kirkwood—Yvon (BBGKY) (Bogoliubov 1946) equations describing an N-body system of
N, charged particles of various species in an electromagnetic field E and B, coupled with
Maxwell’s equations for the fields. Each individual particle with (vector) position X,, and velocity
V,, is acted on by the sum of the Lorentz forces from all other particles of the same or other species

My, = my¥, = Yrs. qi (B + vy X B). 3)



Note that the x, v, refer to the particles of various species s; the species label is suppressed here
to keep the notation simple. These equations are intractable since Ng~102°. A more tractable
form is obtained by replacing the full particle distribution function for Ny particles of various
species, Fs(xl,wl,xz,vz, ...XNS,WNS), by a sequence of partial distribution functions, S(n), n =

1,2, ..., N, — 1, obtained by integrating over the eliminated variables, so that,
(n-1) — (n) 3 3

fs (X4, V1, Xp, Vi, 0 Xy, V) = ﬂfs (X4, V1, Xg, Vi, 0o X, Vi, X1, V) X 41 Vg, (4)
. (Ng—1) _

with f;° (xl,wl,xz,wz, ...XNS,WNS) = F'S(Xl,wl,xz,wz, ...XNS,WNS).

These are the so-called BBGKY equations.  These contain similar information as
Fs(xl, V1, Xp, Vy, . Xy, WNS), namely the position and velocity of every particle of species s. The
final so-called single particle distribution function is then,

fi(x,v) = S(O)(Xl,wl) = ff ff ...F'S(Xl,wl,xz,wz, ...st,wNS) ]_[I,giz(d3xkd3wk). 5)

Combining this with the equations of motion for the particles then yields the Boltzmann Equation
for f;(x,v) (Colonna 2016):
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the transpose). This coupled set of equations for various particle species (a,B,...,...S,...,C)
describes the evolution of the probability of finding a particle of species s at any given point (X, V)
in phase space at any given time due to electrodynamic and thermodynamic forces. The final term
on the right side formally represents the effects of collisions between species, including those of
the same species. For a collisionless plasma, C; = 0, and the equation is called the Vlasov
Equation (Colonna 2016). Combined with Maxwell’s Equations for the fields, the equations give
a complete self-consistent account of the system of charged particles.

The MHD equations are obtained by taking velocity moments of the Boltzmann equations, for
electrons and each ion species. For the velocity v = (X V¥ V#)T, the velocity moments are
defined by,

aiB ol — JVAVELVSf(X, V)d3w/
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for each of the coordinates, a, B, ...,{ €{X,Y,Z}. We will use the notation V,* (with the s
subscript) when designating the velocity moments. Without the subscript they refer to dummy
integration variables. The first velocity moment (zeroth order) is just the number density defined
as:

ns(x) =<ng > = [ fi(x,v)d3v. (8)

The second is the species single-fluid velocity, with three different moments corresponding to
the three coordinate directions:

(x) =<V* > = JVests W)d3w/f]fs(x, v)d3v’ ©)



The third describes the energy for each species defined as:

1 : 1
G = [im(ve = ve00) (V- Vo) fGewdv.  (10)
This is a symmetric tensor and the temperature for each species is then just found from

T,(x) = [T () + T (x) + T, (x)]/3, (11)
T (x) = <my (Ve - V2(x))" >,. (12)

A pressure tensor for each species can also be defined. This is a symmetric tensor, P, with
components

PP = n 0T () =< mg(Ve = V() (VA = VP 0) > [ filxwdPv.  (13)

The tensor T and the temperature Ty(X) are in units of energy so T,(x) is really k times the
temperature in Kelvins, where k is the Boltzmann’s constant.

The full set of moment equations coupled with Maxwell’s equations provides a complete formal
description of the system. The first two moments provide a set of equations that essentially describe
mass and momentum conservation for each species. For a plasma of just two species, ions and
electron, one can recombine these first moment equations into a single-fluid form by replacing
each pair of species equations by their weighted sum and difference to eliminate v; and v, by the
fluid velocity v, which is the common velocity of the two species,

v = (mnv; + menev,)/(min; + mene), (14)
and the velocity difference represented by the current density,

j = (qiniv; + geneve). (15)
The total mass density is,

P = (min; + men,), (16)
and the total (tensor) pressure is,

P=P; +P,. 17)
Then, the zeroth-order moment becomes the particle conservation equation;

z—‘t’+v-(pw) =0, (18)

familiar from conventional fluid theory. The first order moment equations become a simple force
balance momentum conservation equation, which can be written as the vector equation,

p(5+W-VIv)+V-P—(jxB)=0. (19)

The first two terms on the left represent the inertia. The other two terms are the pressure force and
the electromagnetic force. In equilibrium, with v = 0 , the pressure and electromagnetic forces
are balanced. While at this point the model is two-fluid, these equations are in a single-fluid form.



In general, higher velocity moments from higher order equations are required in each new
equation, and at second order, the situation becomes significantly more complicated. The
individual electron and ion terms cannot be completely eliminated without additional
approximations. At second order, one obtains two equations. One is effectively a generalized
Ohm’s Law

E+vxB=nj+R. (20)

R= (gm0 Pt (Mo )+ (M) (5 + r-7w) +
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R contains the remaining unbalanced two-fluid terms, including the Hall effect. Most are small
and can normally be neglected. The other is a tensor equation for the evolution of the pressure
tensor, P given below.

Truncating the separate ion and electron equations at this order, then one obtains the full set of
MHD equations:

FHV () =0, (22)
do .
Z+v-j=0, (23)
THUX(B) =0, (24)
1 0E o
— =5 T VX (B) = uof, (25)
V-B=0, (26)
V-E=¢;lo, 27)
av o
p(5+(w-V)w)=aIE+]]x[B%—V-]P’, (28)
E+vxB=nj+R. (29)
%P+(w-V)IP=V-’JT+ q. (30)

with T representing a (generalized) stress-energy tensor and @ an energy (heat) flux. In this general
form, MHD is a full two-fluid theory but it is not closed. The stress-energy tensor and energy flux
in Eq. (30), are obtained formally from the higher order truncated terms but most closures involve
specifying them independently instead, along with several simplifying assumptions for R.

Various closure schemes are possible and these lead to different versions of MHD. The most
important approximation is the Darwin Approximation;

LB & VX B ~uj, G1)

c2 ot

which essentially eliminates propagating purely electromagnetic waves from the system. This is
almost always a good approximation and is consistent with the ignoring of relativistic dynamics.
Of the various simplified MHD models, the Darwin approximation is the most valid and is almost



always assumed. With the Darwin approximation, the remaining equations are usually referred to
as the ‘“Two-Fluid MHD Equations”, or sometimes, with an appropriate closure, as the Extended
MHD Equations.

The remaining common assumptions such as no resistivity n = 0, isotropic pressure p; = p , Or
T, = T; are variously valid under different circumstances. These are usually based on
approximations from fluid dynamics and thermodynamics. For example, relations between [P and
the mass density for each species, or an assumption for off-diagonal pressure (stress) terms in P
are often used. Separate leftover electron terms of the full two-fluid model (Hall and Vp, terms)
are commonly dropped as small leaving simpler single-fluid equations. These are usually referred
to as ‘the MHD Equations’ or the ‘Single-Fluid MHD’ equations. Assuming a scalar pressure, one
obtains a much simpler system with relatively simple closure options. An alternative is the Chew-
Goldberger-Low CGL model (Hunana 2019) which allows for pressure anisotropy P, # P.
Finally, if the resistivity is also ignored, nj <K v X B ~ E, then E + v X B ~0 and

zljz VX (vxB), (32)

implies that the fluid moves with the fields; there is no slippage between them. This condition is
called the frozen flux theorem and the resulting MHD model is commonly referred to as ‘ideal
MHD’. In addition, since the equations are physically intuitive, representing various conservation
laws, ad-hoc phenomenological terms can be included as closures to model effects that have been
eliminated, for example, fast-particle drive effects, or neoclassical effects.

Toroidal equilibrium

The shape of the equilibrium magnetic surfaces plays an important role in determining its stability
and performance. The ideal MHD momentum balance Eq. (19) provides a comprehensive physics
constraint to compute and optimize the required external poloidal magnetic-field coil set and its
currents necessary to produce a target plasma boundary shape (defined as the largest closed
magnetic surface enclosed by the surrounding limiter and vacuum vessel), and the diversion of the
external magnetic-field lines to direct the particle and heat flux to the divertor collecting plate.

At equilibrium and in the absence of plasma flow and pressure anisotropy, the MHD equilibrium
Eq. (19) and Ampere’s law Eq. (25) become

VP = jxB, (33)
VX B=uj. (34)

It follows from Egs. (33) and (34) that the confining magnetic force is in the direction
perpendicular to the magnetic field lines. At equilibrium, the pressure must be constant on a
magnetic flux surface P = P(3) and the plasma current density j flows along the surface.

In a toroidal axisymmetric device such as tokamak, a set of 2D nested magnetic surfaces is formed
using a toroidal-field and a poloidal-field coil set. A dedicated Ohmic-coil set is also sometimes
employed to drive the toroidal current flowing within the plasma to ease control as in the DIII-D
(Luxon 2002) and ASDEX Upgrade (Gruber 1986) tokamaks, rather than combining the
functionality into a single set of poloidal-field coils for both shaping and driving Ohmic current as
in more recent superconducting long-pulse tokamak devices such as EAST (Wan 2006), KSTAR



(Lee 1999), JT-60SA (Kamada 2011), and ITER! (ITER Physics Basis Editors 1999a). In the
presence of toroidal asymmetry, magnetic islands and stochastic regions can form that can degrade
the plasma confinement and make it more susceptible to MHD instabilities.

Axisymmetric 2D Grad-Shafranov equilibrium

In an axisymmetric toroidal device such as a tokamak, Eqgs. (33) and (34) can be combined to yield
a 2D elliptic equilibrium equation, the Grad-Shafranov (GS) equation (Grad 1956, Shafranov
1958), by considering force balance in the direction perpendicular to the magnetic field B and
using a cylindrical (R, ¢, Z) coordinate system centered at the symmetric axis and dropping the
toroidal ¢-dependent terms

AY = —poRj, (R, ¥), (35
jo = RP'(p) + 22200, (36)

Here, the operator A*= R?V. (V/R?). The magnetic field can be conveniently represented as
B ="My + vy x V. (37)

The first term in Eq. (37) represents the toroidal component of B, whereas the second term
represents the poloidal component.

The GS equilibrium, Eq. (35), is based on the cylindrical (R, ®,Z) coordinate system. An
alternative coordinate system is the inverse magnetic-flux coordinate system (p, 6, ¢) using a flux-
surface label p(y) and a poloidal angle 6 as independent variables (Boozer, 2005). The GS Egq.
(35) can then be transformed to become the inverse GS equation for R(p,8) or Z(p,8) (Lao
1981). Since the pressure P (1) is constant on a flux surface, the inverse magnetic-flux coordinate
system (p, 6, @) provides a particularly convenient coordinate system to study plasma equilibrium,
transport, and stability physics. In the case of a diverted plasma, the use of the magnetic-flux
coordinate system is restricted to the nested magnetic-surface region within the plasma to avoid
the singularity at the separatrix surface that appears in the Jacobian for transformation from the
(R, p,Z) to the (p, 8, ¢) coordinate system.

Equation (35) represents a differential form of the GS equation. It acts as a constraint linking the
derivatives of 1 to the current sources. Given two stream functions describing the toroidal current
density source such as P (1) and F (1) as shown in Eq. (36) and appropriate boundary conditions,
Eq. (35) can be solved for the poloidal flux function 1. Two other forms of the GS Eq. (35) useful
for finding equilibrium solutions are the integral and the variational Lagrangian form (Grad 1956,
Lao 1981, Lao 1985a, Lao 2005)

Y)=3; Gy(x, XD + [, Gp(xx)jy [R'P(xD], (38

Bp _ Bf
2

o — T — PYdQ. (39)

W= J, (

Here G, (x,x’) is the Green induction function relating 1)(x) to the current source at x'. The
variation Lagrangian form Eq. (39) provides a systematic mean to transform the solution Y (R, Z)
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of the 2D GS equilibrium Eq. (35) into a series of 1D moment equations for the Fourier amplitudes
of R(p,0) or Z(p,0) (Lao, 1981). The 2D variational moment approach has been successfully
generalized to provide a robust and efficient method to find equilibrium solutions in 3D toroidal
geometry with nested magnetic surfaces (Bhattacharjee 1983, Hirshman 1983, Lao 1985c¢).

Analytical solutions exist when the current source Eq. (36) has simple forms (Solovev 1968,
Srinivasan 2010) or when the magnetic surface has simple circular geometry (Lao 1981). In
general, the GS Eq. (35) or its integral or variation form Eq. (38) or (39) must be solved
numerically (Johnson 1979, Takeda 1991). Many tools are available to numerically search and
compute the equilibrium solutions given two stream functions describing the toroidal current
density source and appropriate boundary conditions (Lao 1984, Lao 1985a, Haney 1995, Ivanov
2009). One class of applications is to find a solution that best matches a specified target plasma
boundary given the two stream functions, a set of external poloidal-field coils, and a surrounding
limiter. An example of a DIII-D equilibrium computed with the EFIT code (Lao 1985a) is given
in Fig. 2. Another class of applications is to find a solution that best matches a specified target
plasma boundary but with the two stream functions self-consistently computed based on the
plasma transport properties (Grad 1970, Hirshman 1979, Meneghini 2016).

Axisymmetric External

Axis ) e foils

DIII-D Tokamak

Fig. 2. Poloidal cross-section of a DIII-D tokamak lower single-null equilibrium computed using
the EFIT equilibrium code. Also shown is a photo of the DIII-D tokamak with its toroidal- and
poloidal-field coils.

Equilibrium Reconstruction

Reconstruction of experimental MHD equilibria is fundamental to tokamak research and operation
and is an important part of fusion data analysis and plasma control. Equilibrium reconstruction
provides essential magnetic geometry and current and pressure profiles information necessary to
support tokamak operation and data analysis, and has contributed to several major physics
discoveries, such as the experimental validation of theoretically predicted [ stability limits (Strait
1994a) and the negative central-shear operating regime (Levinton 1995, Strait 1995).

A particular important application of the GS Eq. (35) is to reconstruct the experimental plasma
equilibrium from various available measurements such as external magnetic and internal current
and kinetic profile diagnostics (Lao 1985a, Lao 1990, Lao 2005.) The amount of plasma
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information that can be reconstructed increases with the availability of the measurements. External
magnetic measurements alone can only yield the plasma boundary shape and global plasma

pressure and current profile parameters, such as poloidal § , Bp = [ OQB PdQ/(QgBE4/2u,), and

internal inductance of the plasma current density profile £; = (? E B,ZJdQ/ (QBBIZ, 4)sand Bp, =
o) e Bp dl, /$ e dl, is the average poloidal magnetic field along the plasma boundary surface (Lao

1985b, Braams 1991). For critical applications such as analysis and control of MHD instabilities
that require detailed pressure and current profile information, accurate full equilibrium
reconstruction with kinetic and internal current profiles in addition to external magnetic
measurements is required, as well as high spatial-resolution and tightly converged equilibrium
solutions (Lao 1990, Ren 2011). Plasma control also imposes a stringent requirement on the
equilibrium reconstruction computational speed. Various efficient numerical algorithms and high-
performance computation technology have been developed and employed to reconstruct tokamak
experimental equilibria in real time to provide the information necessary for plasma control
(Ferron 1998, Moret 2015, Rampp 2017, Huang 2020).

MHD stability
Introduction and overview

In principle, the full nonlinear (Extended) MHD model should be reliable under the conditions that
the plasma be quasi-neutral and that the length and time scales be long: specifically that the length
scales be of the order of the plasma minor radius, and much larger than microscopic scales like the
Larmor radius, and that the time scales are much slower than Alfvenic times.

Experimental diagnostic capabilities have been developed to the point where detailed predictions
from MHD theory can be productively tested. As discussed in the previous Equilibrium
Reconstruction Section, the key to this development has been the progress in reconstructing
equilibria obeying MHD force balance and consistent with experimentally measured kinetic
profiles (Lao 1990). The linear MHD stability predictions using high quality discharge full
equilibrium reconstructions have been thoroughly tested against observations for the principal
limiting phenomena and MHD generally predicts ideal current and pressure limits well (Turnbull
2002, Turnbull 2005). In particular, global pressure driven instabilities are predicted to be unstable
when the plasma [ exceeds a value typically of a few percent. S measures the amount of thermal
energy the plasma can hold for a given magnetic field strength.

A series of numerical ideal MHD stability calculations in the mid 1980’s discovered that the
limiting S obeys a scaling known as the Troyon limit, given originally as

B < Brrov = Cr (Kolp) / (aBr), (40)

where Cr=2.8 if Ip is in Amperes and By is in Tesla (Troyon 1984). This was immediately
confirmed by experiments on a number of tokamaks (Stambaugh 1984) and is commonly referred
to as the Troyon beta limit?

Br= BN Ip(MA)/ (aBy), 41

2 This has been a point of confusion; the difference between C; and Si*** has erroneously been claimed to be a
discrepancy.
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with fy***=3.5. In subsequent years, the Troyon limit scaling has been modified to account for

the major profile and shaping effects. The most recent version replaces a constant [Sy***= 3.5 by
BN = kgt (42)

where £; is the internal inductance of the current density profile and kg varies from 2.5 for

conventional elongated, single null, low-triangularity plasmas to kg = 4 for high-triangularity

double-null plasmas. In spherical tokamaks, the value can be much higher (Sabbagh 2006). The

£; dependence is consistent with results from an analytical ideal ballooning B-limit study (Lao
1992), and a numerical study of the n=1 ideal kink (3-limit (Howl 1992).

ldeal linear MHD stability and Energy Principle

In the ideal case, the equations have special properties that lead to efficient numerical calculation
schemes, the most important of which is the ideal MHD energy principle for linear stability against
small departures from equilibrium. Assuming an ideal equilibrium without flows vo = 0 and a
scalar pressure, the dynamic quantities can be linearized in the small perturbation: P(xX,t) =
Py(x) + P(x,t); J(x,t) = jo(X) + J1(x,t); and B(x,t) = By(x) + B;(x,t), with each
perturbed quantity assumed much smaller than the equilibrium term, yielding an equation for the
equilibrium and an equation describing the linear first-order force balance

VPy = o X By = (1/,,,)(V x B) x By, (43)

,00(%)4' VP, =j; X By + jo X B;. (44)

From here, in order to simplify the subsequent notation, we write B = By, and §B,, = B, and

similarly for j = j, and 6j, = j;. The ideal MHD frozen flux relation becomes a relation
between the perturbed field 6B, and fluid displacement §;

OB, =V X (£ xXB). (45)

¢ X B is the perturbed vector potential. After some algebra, one finds an equation of motion for
the small displacement & (X, t) and perturbed velocity v, (x, t) = £(x, t);

poé (1) = F(E(x, 1)), (46)
with (&) a linear operator on &: §(&) = F(x) - ¢;

F() =F(x)- & = (i) ((vx 6B,) x B) + ((V x B) x 6B, )| + V(& - VP +yPV-&). (47)

F(x) is known as the (linearized) force operator. The solutions to é(X,t) must be temporally
exponential, §(x,t) = &(x)e'?, leading to an eigenvalue equation for the spatial variation of the
displacement, é (x) and its eigenvalue w?;

po F(x) - §(x) = —w?§(x). (48)

Note that éT-F- & = F(&) - &T represents the work done by the infinitesimal force §(¢) against the
infinitesimal displacement &.

Boundary conditions need to be applied by specifying the displacement of the plasma boundary.
For a plasma surrounded by a vacuum region and possibly a conducting wall outside, this is not
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explicitly known. Boundary conditions can be set, however, by solving simultaneously for §B,,
and &(x) and the ideal frozen flux relation linking them, and solving for the perturbed vacuum
field, 6B, in the annulus between the plasma and the wall.

Vx §B,=V-B, =0, (49)
which is most easily solved in terms of a magnetic potential, 6B, = V;
Vio = 0. (50)

An appropriate magnetic boundary condition for a conducting wall, or for a wall at infinity can
then be applied;

fi- V|, = 0. (51)

The perturbed fields must then be matched across the plasma boundary. This condition is
complicated since they must be matched across the perturbed boundary;

fi-6By| = f- VOl (52)

The matrix F(x) is self-adjoint (or Hermitian); ét-F-&=&-F- &7,

The Hermitian property provides a number of computational advantages (Bernstein 1957).
Notably, the eigenvalues —w? are purely real. Thus, the solutions are either purely growing or
damped or are purely oscillatory. The Hermitian property also means one can conveniently
reformulate the dynamic problem as a variational problem. Pre-multiplying the equation of motion
in the plasma by the adjoint, £T, and integrating over all space, one obtains a variational principle
(Bernstein 1957). Application of physically relevant boundary conditions in the variational
formulation is non-trivial. This is solved by deriving an extended form of the energy principle in
which conditions across the plasma vacuum interface, Eq. (52), above are automatically satisfied
by the variational solutions. Formulated as a statement of conservation of energy, the extended
form of the energy principle is;

SW — w?8K = 0, (53)
W (¢ &t 6B, 6B,") = W, (& ¢T) + SW,(8B,,6B,"), (54)

SK(£,EN) =1/5 [ poGo (£ ) d*x, (55)
W, (8.61) = 1y, [ (6T F) - €) dx, (56)
sW,(5B,,6B,") =1/, o fp(a‘BUT - 5B, d3x. (57)

&W, is the vacuum energy contribution from perturbing the plasma boundary. The integrals §K and
O0W, are over the plasma volume, and 6W,, is over the annular vacuum region. SW represents the
total potential energy and 5K is the kinetic energy of the perturbing motion. Then 6W, is the plasma
potential energy. The energy principle states that if a physically permissible displacement ¢ can be
found such that §W(§,&1) > 0, then the plasma is unstable. The energy principle can therefore be
used in a trial function approach. Finding a physically permissible trial function, &;, for which

5W(EO,§’§ ) > 0, thus guarantees instability. Note, however, that the trial function is not
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necessarily the instability that would appear. The variational principle only implies that this or
another more unstable mode will be destabilized.

Substituting for F(x), the Extended MHD Principle potential energy becomes after some algebra:

2
W, = %fff [513317/#0 — & -(Jx 6By) + (§L.VP)V & +yP|V- §|2] d3x. (58)

The integral in §W,, is over the plasma and the condition applied is simply that 6B, = 6B, at the
plasma vacuum interface. The terms in W, can be interpreted physically. The first term in W,
represents the energy required to bend the field lines. It is always stabilizing — it takes energy
input to create this; it is the energy in the perturbed field. The second term, &} - (j x §B,) is the
destabilization from the current density. The third term is the pressure drive through &,.VP. The
final term represents the energy associated with plasma compression. §W, can be rewritten in the
alternative form;

oW = 211 [*P4 sy + (B ) 10+ €1 + 26, w12 = W/ (61 % B). 6B, — 206, 9P) (1 -0 +
yPlV-le] d3x. (59)

This shows more clearly the physical meaning of the terms. The first represents the energy
required to bend field lines. The second corresponds to the energy involved in compression of the
field. The third and fourth terms are respectively the destabilization from current driven modes,
proportional to |j;/B| and VP, respectively. The last term, again is the energy from the fluid
compression.

The MHD model works extremely well in most situations. In particular, the plasma cross section
shape is easily included, at least in numerical calculations as boundary conditions, thus fully
capturing the most basic zeroth order effect. MHD is now recognized as an indispensable guide to
any design efforts.

Pressure effects

Plasma equilibrium pressure is mostly destabilizing for MHD modes. Associated with the
destabilization is the free energy contained in the pressure gradient. This is evident from the ideal
MHD energy principle, where the term —(&, - VP)(&] - k) from Eq. (59), integrated over the
plasma volume, can be negative and thus provides destabilization. This is the drive term for the
ballooning and interchange instabilities. Both the pressure gradient and the global or local value
of the pressure amplitude, when exceeding certain critical values, trigger MHD instabilities. Below
are important examples. The pressure driven ideal external kink mode becomes unstable when the
(global) plasma pressure (often measured in a normalized manner i.e., Br/[Ip/(aBr)]) exceeds the
Troyon limit (Troyon 1984)°. The ideal internal kink mode becomes unstable when the plasma
pressure (often measured in poloidal beta value f3,) exceeds the Bussac limit (Bussac 1975). The

infernal mode becomes unstable when f,, exceeds a critical value which linearly scales with Ag,

which measures proximity of the global or local q,,,;,, value to a rational number. The NTM, which
is generally a non-linear MHD mode, requires a seed island of finite size which scales with f3,.

3 Being a global instability, the external kink mode is not sensitive to the local pressure gradient, but is still driven by
the “global” pressure gradient which is often measured by the so-called pressure peaking factor.
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Besides these direct drives, equilibrium plasma pressure gradient also induces bootstrap optimized*
which in turn can drive MHD instabilities.

The plasma equilibrium pressure (or pressure gradient) can also be stabilizing for certain MHD
modes. The most prominent example is probably the second ballooning stability regime, which is
largely due to the large Shafranov shift induced field line compressing at the low-field side of the
plasma, where the ballooning mode is typically located due to unfavorable magnetic curvature. In
a tokamak plasma, the interchange index Dy can be negative and scales with the local equilibrium
pressure gradient at the mode rational surface. This leads to tearing mode stabilization from the
favorable average curvature effect (Glasser 1975).

Current effects

Plasma equilibrium current is often a major driving force for MHD instabilities in a tokamak
plasma. Being a large quantity in a tokamak, the plasma current can easily offer free energy if the
current density profile is not well optimized®. In terms of the MHD energy principle, the current

drive term is associated with the plasma volume integral of — % | I / IBB| (f *l X IEB). 6B, term from Eq.

(59),1.e.,the primary drive is due to the equilibrium parallel current j;. In MHD theory, the current
drive often manifests in the value of safety factor g, which is roughly inversely proportional to the
toroidal current integrated over a plasma volume enclosed by the given magnetic flux surface as
shown in Eq. (1). Therefore, many current driven MHD instabilities are controlled by the safety
factor g. Below is a list of important MHD modes that are at least partly driven by the plasma
current.

The most important current driven MHD mode is the n=1 ideal EK, which becomes unstable when
the edge safety factor drops below 2 in a tokamak plasma®. This results in the ideal external kink
instability which usually leads to plasma disruption. It is difficult to overcome this stability limit
but partial success has been achieved in recent experiments via active control of this instability
(Hanson 2014, Piovesan 2014). A less severe, but often observed current driven instability is the
IK mode, which can be unstable when the core safety factor g drops below 1. This is often
manifested as the sawtooth instability in experiments. At higher values of edge g close to a low
order rational number, the edge localized kink-peeling mode can be unstable. Similarly, if the
safety factor profile is non-monotonic along the plasma minor radius and ¢,,;, (the minimum ¢
value) is close to a low order rational number, an unstable infernal mode can occur’. Finally, the
plasma current density profile, alone or in combination with the plasma pressure, determines the
tearing-mode index A" (Glasser 1975) from the ideal region, which directly affects the tearing
mode instability. The plasma current density profile is also directly related to the magnetic shear.
A strong (positive) magnetic shear is generally stabilizing for most of MHD modes?®.

* The bootstrap current is a toroidal current driven by non-ideal effects by the temperature and density gradients. It
arises from trapped particle effects.

> We note that large plasma current offers good energy confinement in tokamak plasmas.
% The edge safety factor is measured in terms of the edge g_for a limiter plasma, and is often measured in terms of
445 (q at normalized 3 = 0.95) for a divertor plasma.

7 More precisely, a finite pressure gradient is also required to drive the instability. The infernal mode can therefore be
regarded as a MHD instability driven by both plasma current and pressure.

8 Negative magnetic shear (which occurs in plasmas with non-monotonic g-profiles) can stabilize tearing mode.
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Resistivity effects

Many ideal MHD instabilities have resistive counterparts. Typically, the most interesting situation
is that the ideal branch is stable within certain parameter space, but taking into account the finite
plasma resistivity qualitatively changes the picture by rendering the mode unstable, resulting in a
resistive instability. Prominent examples are the tearing mode, the resistive interchange, the
resistive internal kink, and the resistive external kink mode. Of course, the plasma resistivity also
modifies (mostly enhances) the growth rate of an unstable ideal counterpart and the degree depends
on the corresponding ideal instability®.

Within the MHD theory, the key physics associated with the plasma resistivity is that the ideal
frozen-flux constraint is not valid. The plasma displacement and the magnetic field perturbation
can evolve separately!?, creating additional freedom for the plasma motion and for the perturbation
to grow. This is the fundamental mechanism for the destabilization of the resistive instability when
the ideal counterpart is stable.

On the other hand, there are also cases where the plasma resistivity plays a stabilizing role by
dissipating free MHD energy via the resistive layer. One example is the fishbone instability, which
is stabilized by finite plasma resistivity (Biglari 1986, Wu 2018). Another example is the resistive-
plasma resistive-wall mode (RPRWM), where the global ideal MHD instability resistive-wall
mode (RWM) couples to the tearing mode localized near a rational surface. The favorable average
curvature stabilization of the tearing component within the resistive layer helps to stabilize the
RPRWM (He 2014). This mechanism applies when the coupling between the ideal and the resistive
components is strong.

The TM is probably the most studied resistive instability (Glasser 1975, Hegna 1994). Both linear
and non-linear theories are well developed. Several approaches have been established to study
resistive instabilities, including the asymptotic matching, typically employed in analytic theory but
also be useful in numerical codes.

Effects of plasma toroidal flow

Equilibrium toroidal plasma flow, as well as flow shear can affect MHD instabilities''. The
stabilization mechanism varies depending on the type of MHD mode. First, for the effect purely
from the flow amplitude, imagine a flow that is uniform along the plasma minor radius. For many
localized MHD modes, this uniform flow merely introduces a Doppler shift to the mode frequency
(a change of reference from the laboratory frame to the rotating plasma frame), without modifying
the mode growth rate. This may, however, be different for more global (in terms of plasma
displacement) MHD modes. Two important examples are the RWM and the internal kink (IK)
modes. The RWM does not rotate with the plasma and therefore is subject to continuum wave

? For instance, the plasma resistivity typically has very minor effect on an ideal external kink mode which grows at
the Alfvenic time scale.

10 Asa consequence, the magnetic topology is allowed to change near a mode rational surface, resulting in magnetic
islands.

' Plasma poloidal flow can in principle also affect MHD instabilities such as the RWM, but this is often not a

significant concern, because poloidal flow is often slow in a tokamak plasma due to neoclassical damping. Parallel
plasma flow (along magnetic field lines) typically does not have significant effect on the MHD instability (Xia 2019).
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damping due to plasma flow. The IK is subject to a gyroscopic stabilization when the Mach number
reaches a value comparable to the inverse aspect ratio.

On the other hand, flow shear typically destabilizes macroscopic MHD modes (unlike microscopic
instabilities for which flow shear often plays a stabilizing role). The fundamental destabilization
physics originates from the Kelvin-Helmholtz mechanism, where two adjacent fluid elements
flowing at different velocities develop an unstable motion that eventually leads to turbulent flow.
Flow shear destabilization has been found for many MHD modes, such as the RWM and the IK.

On the other hand, flow shear may help to stabilize certain MHD modes. One example is the
observed 3/2 NTM island reduction from plasma flow in DIII-D experiments (La Haye 2009.
Reduction of the tearing instability index by plasma flow shear was proposed as an explanation,
and experimentally, the mode is observed to grow when the rotation is reduced (Politzer 2008,
Solomon 2013). Differential flow also helps to stabilize the double tearing mode (Dewar 1993),
by decoupling the two rational surfaces.

Energetic-particle effects

Energic particles (EPs), although a minority particle species in fusion plasmas in terms of particle
number density, often play important roles in MHD instabilities. There are two main reasons for
this. (1) EPs have much higher energy than the background particle species, so that the EP pressure,
which is the product of the particle density and temperature, can sometimes contribute a significant
fraction to the total plasma equilibrium pressure'2. This modification of equilibrium pressure due
to EPs changes the MHD stability behavior of pressure driven modes. (ii) EPs can also directly
interact with MHD perturbations and thus modifying the instability and even triggering new
instabilities.

There are two key physics mechanisms involved in the direct interaction between EPs and MHD
modes. One is the wave-particle Landau resonance'?, where certain frequencies associated with
the EP motion match the frequency of the MHD perturbation. Free energy transfer between EPs
and the MHD mode then ensues. The direction of the energy transfer, which determines whether
the MHD mode is stabilized or destabilized, depends on many factors. The other physics
mechanism is associated with trapped EPs, whose bounce motion forms a banana orbit that rotates
along the toroidal angle of a tokamak. This toroidal motion of the banana orbit tends to conserve
the vertical flux enclosed by the center line of the banana (Northop 1963). If the toroidal rotation
frequency of the banana orbit is faster than the perturbation frequency, the mode can be stabilized.

Examples of EP stabilization of MHD modes include the internal kink (Porcelli 1991, Graves
2004), the RWM (Chapman 2009, Liu 2010), and the TM and NTM (Hegna 1989, Cai 2011)!“.
Examples of EP triggering of MHD instabilities include the fishbone (Chen 1984, Coppi 1986), e-
fishbone (Wong 2000), Alfven eigenmodes (Fu 1989), and energetic particle modes (Chen 1994).

12 As an example, fusion born alphas contribute more than 20% to the total pressure in an ITER advanced plasma
scenario (Liu 2010).

13 MHD modes can often be treated as (stable or unstable) waves. Wave-particle Landau resonances are used in many
contexts in fusion devices. An important application is plasma heating by launching radial waves with frequency
matching the cyclotron frequency of thermal ions or electrons.

14 TM/NTM stabilization by EPs may involve either direct interaction (Hegna 1989) or another, indirect way where
EPs modify the external tearing index (Liu 2012).
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Principal MHD instabilities
Overview

MHD instabilities are generally driven by a combination of electromagnetic and thermodynamic
forces. The basic equilibrium relation Eq. (33) VP = j X B describes the balance of these forces.
Normally, instabilities are categorized as being either ‘current-driven’ or ‘pressure-driven’
depending on what is considered to be the major drive. For example, at zero pressure, the
instabilities are naturally considered as ‘current-driven’. Onset criteria can be obtained in this
limit. With pressure, instabilities that arise when the current driven mode onset criteria are not
satisfied are then usually considered as pressure-driven. This categorization works quite well in
most cases since there are features in the mode structure that correspond to the distinction.

Within this categorization, a number of other labels are applied to various MHD instabilities. Early
in the history of MHD, the first instabilities studied were called kink, flute, and sausage modes.
The label ‘kink’ or ‘External kink’ is largely synonymous with ‘current driven kink’. These are
driven by a current density gradient or jump at the edge. Flute modes are an alternative term for
pressure driven interchange modes. The sausage instability corresponds to pressure driven modes
with poloidal mode number m = 0. Peeling modes are a subcategory of the external kink,
corresponding to toroidal mode numbers n > 1.

(@)IK | (b) EK (c) PM (d) BM

(e) IF () T™M (g)IC

r r r

Fig. 3. Sketch of eigenmode structure, in terms of radial plasma displacement, for typical MHD
instabilities: (a) internal kink (IK), (b) external kink (EK), (c) peeling mode (PM), (d) ballooning mode
(BM), (e) infernal mode (IF), (f) tearing mode (TM), (g) interchange mode (IC).

Ballooning modes are pressure driven. Normally the label is applied to the high-n version but
pressure driven modes at intermediate and low n all have the characteristic ‘ballooning structure’
with a large coherent motion on the outboard side as field lines interchange locally there.
Interchange modes are simply ballooning modes in the low shear limit where the interchange is
global along the field line. Infernal modes, similarly refer to localized instabilities destabilized by
a large pressure gradient in a locally low shear region. Bear in mind that these labels are really
only valid in certain limits; most instabilities in real plasmas are a mixture of different features.
The peeling-ballooning modes understood to be responsible for ELMs are a prime example of
instabilities that defy characterization as either current driven or pressure driven (Snyder 2002).
Both the pressure and current-density gradients are important drivers. The internal kink,
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responsible for the sawtooth phenomenon in tokamaks is another example. In a torus, the ideal

internal kink is stable at zero pressure (Bussac 1975), but has a very low f limit. The f limit also
vanishes if the wall is removed (Turnbull 1989).

Axisymmetric modes are the ideal n = 0 instabilities. These are essentially current-driven in the
sense that they are largely independent of the pressure and depend only on the gross features of
the current profile. For a circular cross section, this mode is stable. In an elongated tokamak, the
mode is a vertical shift (m = +1).

For non-ideal modes, resistivity is an important driver of instabilities. Resistivity allows rational
closed field lines to break and reconnect with a different topology. Two different modes can form
corresponding to two different parities. An external kink can result when two adjacent flux surfaces
interchange position by breaking and reconnecting. This is the resistive version of the ideal kink
mode. Alternatively, the closed rational surface can split with the two parts moving apart and
opening up a magnetic island. The tearing apart of the surface provides the name ‘tearing mode’.
This mode has no counterpart in ideal MHD. Figure 3 shows how various MHD instabilities
qualitatively look like, in terms of the radial distortion of the plasma caused by the instabilities.
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Fig. 4. Regions in parameter space of different modes in the q, , qs parameter space. Here, q
and qg are the safety factor on axis and at the edge.

Wesson identified the regions unstable to current driven modes in a model cylindrical plasma in
the space of q, and q,/q, (Wesson 1978). Here, q, and q, are the safety factor on axis and at the
edge. These are the most important parameters determining current-driven instabilities. Figure 4
is a corresponding ‘Wesson diagram’ replotted in terms of qo and g, for a generic strong Dee
shape in toroidal geometry with a monotonic current density profile and zero f. The boundary
follows a generic stair-step pattern with steps at or near rational values of either g, or g5. Changes
in the current profile shape for fixed q, and g, change the steepness of the staircase. Pressure tends
to smear the boundaries. However, there is no stable range in particular for g5 < 2 for any current
profile. Superimposed is the axisymmetric stability boundary and the general form of the stability
limit against pressure driven kink modes for a fixed, finite 8,. The stable region is in the center.
The slope of the axisymmetric boundary varies with £;. With increasing f3,,, the pressure driven
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kink boundary dips to lower gs. A generic ballooning stability boundary is also shown; again, the
slope in this diagram varies with £;, also with f3,,.

Axisymmetric modes

The axisymmetric instability is a vertical displacement of the plasma cross section in a vertical
magnetic field. The plasma consists of a toroidal current in a vertical magnetic field. One can
imagine a rigid elliptical cross section like an egg being squeezed by the vertical field. The shape
of the egg diverts the lateral squeezing forces into a net vertical force and the egg slips rigidly in
the field. Stability is determined then by the shape of the egg relative to the vertical field. With
an elliptical cross section, the egg slips easily. Image currents in the wall generated by Lenz’s
Law, however, provide a stabilizing reaction force by opposing the fields generated by the vertical
motion.

For a circular cross section plasma, the current loop is stable to a vertical shift. Essentially, for the
plasma to slip up or down from its equilibrium position, it has to compress the external vertical
field, requiring a source of energy. However, an elongated elliptical plasma can slip vertically
with less distortion of the vertical field. For some elongation, the plasma becomes unstable to this
motion and disrupts. For a large aspect ratio ellipse, the eigenmode is the pure axisymmetric
vertical shift characterized by toroidal mode number n = 0 and an equal mix of poloidal mode
numbers m = 1 with constant amplitude as a function of radius;

£(r,0,¢) =& (e +e ) ~ &cosb. (60)

In a torus there is some deviation from this due to the 1/R dependence of the fields. Additional
m = 3 components appear in a Dee shape and a stronger radial profile dependence of them = 1
shift plus higher m components appear with higher order shaping.

In actual experiments, the instability is stabilized by a nearby surrounding conducting wall in
which image currents are induced to oppose the magnetic field changes, preventing the perturbed
flux from penetrating the wall (Lenz’s Law). With finite resistivity, the image currents decay in a
characteristic L/R time and requires active feedback to fully stabilize it. The axisymmetric
instability is well understood. Calculations of the ideal eigenfunctions have been shown to match
the measured boundary displacements. In most cases, the observed open loop resistive wall growth
rate can easily be fitted by simple plasma models assuming a rigid vertical displacement, sufficient
for the feedback algorithms.

Internal kink, sawtooth, and fishbone

The IK mode, with the toroidal mode number of n=1 and the poloidal mode number of m=1," is
an instability predicted by ideal MHD theory in early stage of fusion research. However, some of
the aspects associated with this mode, in particular the non-linear aspects and the interaction
between this mode and energetic particles, are still active research areas.'®

From the MHD viewpoint, the primary driving mechanism for the IK instability is the free energy
associated with the plasma current. More precisely, a critical condition for the mode instability is
that the safety factor on the magnetic axis, go, should be below 1. This condition is, however, not

15 In a toroidal plasma, the n=1 internal kink mode, as a linear eigenmode, has many poloidal harmonics. The m=1
harmonic is the dominant one.

16 For recent research on the internal kink and sawteeth, see for example (Jardin 2020).
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sufficient for an unstable IK. In a tokamak plasma, the IK becomes unstable only if the plasma
pressure exceeds certain critical value. The mode growth rate y, within the MHD framework, is in
fact proportional to (1 — q,) (ﬁgcr - ,85), where B, is the critical value typically below 0.4. This
is the well-known Bussac criterion (Bussac 1975) for the IK instability. This criterion shows that
the IK is also partly driven by the plasma pressure.

Because the mode growth rate is proportional to (1 — q,) (provided that the Bussac pressure limit
is exceeded), the IK instability strength depends critically on the proximity of the on-axis safety
factor to unity. In typical tokamak discharges, the on-axis safety factor is not far from 1, resulting
in an IK that is not far from the marginal stability. A weakly unstable IK is subject to a range of
non-ideal effects beyond the ideal single-fluid MHD description. Important effects include the
plasma diamagnetic stabilization'’, the plasma resistivity, the drift kinetic effects associated with
plasma particles. On top of these non-ideal effects, the plasma equilibrium toroidal flow also
affects the mode stability. In what follows, we briefly discuss each of these effects.

A weakly unstable IK is often subject to strong diamagnetic stabilization in a tokamak plasma.
This is because the typical mode growth rate in this case is comparable to the thermal ion
diamagnetic frequency. The dispersion relation for the mode (complex) frequency w satisfies
[w(w} — w)]%5 = —6W, where w; is the thermal ion diamagnetic frequency and W is the
normalized perturbed potential energy.'® In the absence of the diamagnetic stabilization and for a
purely growing IK mode, the mode growth rate scales linearly with the perturbed potential energy.

Plasma toroidal flow can be either stabilizing or destabilizing to the IK. The fundamental physics
mechanism for the flow stabilization of the IK is the so-called gyroscopic stabilization (Wahlberg
2000), where the perturbation, which has a rigid structure, is stabilized by fast rotation. The
required rotation speed for full stabilization of the mode has to be very large (a large fraction of
sound speed). The flow shear, on the other hand, can destabilize the IK essentially due to the
Kelvin-Helmholtz type of mechanism. Associated with toroidal flow are various inertial forces
(centrifugal and Coriolis forces), which can be either stabilizing or destabilizing depending on the
equilibrium profiles (Wu 2019).

Non-linear evolution of the IK often manifests itself as the sawtooth phenomenon, which is
observed in experiments. There are different theoretical models for sawteeth. The first and
probably the most well-known model is the cold bubble model (Kadomtsev 1975), where full
magnetic reconnection was assumed within the g=1 surface during the non-linear evolution.

Lastly, drift kinetic effects, in particular those associated with toroidal precession of trapped
energetic particles (EPs), can have significant influence on the IK stability and the sawteeth
behavior.!” These effects are well summarized by the Porcelli model (Porcelli 1991), where three
different criteria were proposed to judge the IK instability and the subsequent onset of sawteeth.

7 The diamagnetic stabilization of IK is often referred to as the finite Larmor radius (FLR) effect in literature, since
this effect eventually originates from the FLR of thermal ions.

18 SW here is normalized by the plasma inertia. As usual, SW < 0 indicates free potential energy that drives
instability.

19 Drift kinetic effects from thermal particles can also stabilize the IK (Hu 2006), although the effect is often not
dramatic.
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These Porcelli criteria have been successfully applied to interpret many experimental results in
tokamak plasmas.

Drift kinetic effects of EPs not only stabilize the IK, but can also drive a new type of instability
called the fishbone mode (FB)? (Chen 1984, Porcelli 1991). The fundamental physics here is the
wave-particle Landau resonance, where an otherwise stable IK absorbs free energy from EPs, and
thus becomes unstable. Since the mode is driven unstable by EP, the mode frequency matches that
of the characteristic frequency of the drift motion of EPs. The most common case is again the
toroidal precession of trapped EPs. Another drive is associated with diamagnetic rotation of EPs.
Plasma resistivity often stabilizes the FB (Biglari 1986, Wu 2018) — an effect opposite to that for
the IK. For the FB, the resistive layer dissipates the free energy.

EK/Resistive-wall modes (RWMs)

There are two drive mechanisms for the external kink instability, the plasma pressure and the
plasma current. The purely current driven EK mode has been studied since early on in fusion
research (Shafranov 1970, Wesson 1978). A key milestone in realizing the importance of pressure
effects was the discovery of the Troyon S limit (Troyon 1984), showing that the maximal
achievable normalized plasma pressure, before the discharge disrupts, scales in proportion to the
normalized plasma current, as shown in Eq. (41).

Plasma pressure is the most typical drive in present and future tokamak devices. This mechanism
resembles the ballooning drive. In fact, the eigenmode associated with the pressure driven EK is
typically localized at the outboard low-field side of the torus, similar to ballooning instability. This
type of EK is therefore also often called kink-ballooning instability. An important distinction with
the ballooning instability, however, is the toroidal mode number associated with the perturbation.
The EK is the long wavelength global MHD instability along toroidal (and poloidal as well) angle,
with the typical toroidal mode number of n = 1 — 3, while the ballooning instability has typical
toroidal mode numbers greater than 10.

For the EK driven unstable in a low-pressure plasma by the plasma current, when the nqg value
(in a limiter plasma) is just below an integer m, an instability results with toroidal mode number
n, and predominantly poloidal mode number m, which causes a large plasma displacement near
the plasma edge. Forn > 1 and m > 2, this instability is often called a kink-peeling mode. When
the plasma current is sufficiently high in a limiter plasma that g is below 2 (Wesson 1978), this
always triggers a strongly unstable n = 1 EK which leads to plasma disruption if not suppressed.

In a plasma with a divertor configuration, the edge safety factor is large (mathematically infinite
at the separatrix). The associated large magnetic shear near the plasma edge can stabilize the
resulting mode (Webster 2009). Despite the magnetic shear stabilization, a disruptive instability is
still often observed in divertor experiments, when the safety factor at the 95% flux surface, qqs,
approaches 2.0. This puzzle was recently resolved by invoking the effect from a steep edge plasma
resistivity profile (Turnbull 2016).

Independent of the drive mechanism, it has been found that the presence of an ideal conducting
wall, located sufficiently close to the plasma, can stabilize the ideal EK instability up to a certain
limit. In reality, the wall almost always has finite conductivity. This allows partial escape of the

20 The word “fishbone” originates from the characteristic magnetic signals observed in experiments, which is actually
a result of non-linear interaction between the instability and EPs.
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perturbed radial magnetic field, at a time scale comparable to the eddy current decay time in the
resistive wall. As a result, the EK again becomes unstable in the g or qos5 parameter windows as
described above, but now on a much longer time scale. This slowly growing instability is called
the RWM (Chu 2010). Note that the resistivity here refers to that of the resistivity wall, not the
plasma.?!

The eigenmode structure of the RWM still remains global, similar to that the EK.?> The mode
growth rate is, however, significantly reduced as mentioned. This has several significant
implications. (1) The presence of this residual instability means that the RWM can potentially still
cause a serious disruption of the plasma. (ii) The much lower growth rate, or in general much
lower (complex) mode frequency, implies other physics beyond ideal MHD may play important
roles. (ii1) The much longer time scale of the RWM growth, in milliseconds or longer, also makes
it practical to design an active control system to actively stabilize the mode.

There exist several passive stabilization mechanisms for the RWM utilizing additional physics
beyond ideal MHD. The first important effect is continuum resonance damping of the mode in a
toroidally rotating plasma. Unlike many other MHD modes, the RWM, even in the linear regime,
does not rotate with the plasma. A tokamak plasma typically rotates at a frequency of several
percent of the Alfven frequency along the toroidal direction.?* The RWM, on the other hand, has
a frequency that is of the same order of the much smaller inverse wall time; the RWM appears to
be essentially “locked” to the resistive wall. The mode thus rotates in the plasma frame, opening
the possibility of Landau resonances between the mode and various continuous waves (which
rotate together with the plasma) in the plasma, such as the shear Alfven waves and sound waves
(more precisely slow magneto-acoustic waves). Since these continuum waves are stable, they can
tap free energy from the RWM through resonances, thus stabilizing the mode. Such a mechanism
was discovered numerically in a seminal work by Bondeson (Bondeson 1994) and later
analytically confirmed (Betti 1995).

Numerical modeling finds that the above stabilization mechanism often requires a plasma toroidal
rotation of several percent of Alfven frequency (Bondeson 1994, Chu 1995, La Haye 2004), in
order to fully suppress the RWM in a tokamak plasma. Later experiments (Reimerdes 2007), where
the plasma toroidal flow was intentionally kept slow by balanced neutral-beam injection, the RWM
instability did not occur even when the plasma pressure exceeded the no-wall Troyon limit,
contradicting theory predictions. The puzzle is resolved by evoking additional physics, namely
drift kinetic theory (Hu 2004), where Landau resonances between the mode and the drift motion
of plasma thermal particle species become important. Indeed, because the toroidal precessional
drift frequency of trapped thermal particles (both ions and electrons) is typically very low (well
below the thermal particle diamagnetic drift frequency), a strong resonance occurs if the RWM
also happen to have small frequency in the plasma frame, which is the case when the plasma
toroidal rotation is slow. Since then, precessional drift-kinetic stabilization of the RWM has been

21 The resistive-plasma resistive-wall mode is another interesting topic that has been under extensive studies in recent
years (Betti 1998, Finn 2006).

22 Subtle differences in the mode structure for the resonant harmonics near the mode rational surfaces appear for the
RWM in a toroidal plasma, which often do not play a significant role.

23 There are many reasons for finite toroidal rotation, e.g., due to toroidal momentum source associated with tangential
neutral-beam injection, the presence of intrinsic toroidal torque.
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confirmed by extensive numerical modeling work (Liu 2008, Chapman 2009, Berkery 2010). The
MHD-kinetic hybrid description of the RWM instability still remains an active research area.

Resistive interchange/TM/NTM/locked modes

The resistive interchange (RI) mode and the TM are the two most important spatially localized
resistive instabilities. There are many interchange instabilities in fusion plasmas?*, but those with
finite toroidal mode number and poloidal mode number m > 1 are most important Compared to
the TM, the interchange mode has opposite parity. More specifically, if we define the mode parity
by the associated radial plasma displacement®, the interchange mode has even parity (i.e.,
symmetric about the mode rational surface) and the TM has odd parity (i.e., anti-symmetric about
the mode rational surface).

Both instabilities are driven by finite plasma resistivity (assuming that the ideal counterparts are
stable), by allowing a change in the magnetic topology near the rational surface. According to the
Mercier criterion (Mercier 1960), the ideal interchange is unstable if a quantity D; = Dg + 3 is
positive. Dy is proportional to the equilibrium pressure gradient at the mode rational surface.
However, the resistive interchange is unstable if Dy is positive. An equilibrium with zero or
negative Dy, on the other hand, can be unstable to the TM. Since the latter typically holds for a
tokamak plasma, the RI mode is usually not as critical as the TM?°. The following will therefore
focus on the TM and its neoclassical counterpart, the NTM.

The linear TM instability is often driven unstable by the plasma current profile. Because the mode
displacement is strongly localized near a rational surface, the instability is often studied via a
matching procedure, where the ideal MHD equations at marginal stability?’ are solved and the
solution is matched to that of the resistive MHD equations within a narrow layer around the rational
surface. Typically, the perturbed radial field (or magnetic flux) is used to perform the matching
procedure. The logarithmic derivative of the outer ideal solution experiences a jump across the
mode rational surface. This jump, denoted as A’, characterizes the free energy associated with the
equilibrium current density gradient that drives the TM unstable. The outer solutions are matched
to the non-ideal solution obtained in a narrow inner layer around the rational surface to produce a
continuous solution. In a pressure-less plasma, the matching condition yields a simple relation
between the mode growth rate y and A’,: Ay5/4n=3/% = A’, with 1) being the plasma resistivity and
A > 0 a geometric factor. This dispersion relation implies that the TM is unstable whenever the
tearing index A’ is positive, and that the mode growth rate scales as y~n3/ 5,

In an equilibrium with finite pressure (more precisely with finite negative Dg), an important, so-
called favorable average curvature, effect becomes important and modifies the TM dispersion
relation to a form Ay5/#n=3/4(1 — BDgy~3/?n'/2 ) = A’, where B > 0 is now another geometric
factor (Glasser 1975). This new physical effect, coming from the resistive layer solution,
qualitatively changes the TM stability criterion. Then, A’ has to be larger than a critical positive

24 For instance, the so-called sausage instability in a Z-pinch can also be viewed as an interchange instability based
on the fundamental drive mechanism.

25 The parity of the perturbed radial field is opposite to that of the radial displacement due to the ideal MHD constraint.
26 Byen if a resistive interchange is unstable in a tokamak plasma, it can be easily stabilized by plasma rotation.

%7 This assumption is valid for the TM, because the mode frequency is several orders of magnitude smaller than the
Alfven frequency. The latter is characteristic for the ideal region solution.
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number, in order to ensure the TM instability. In other words, this average curvature effect plays
a stabilizing role (thus “favorable”) to the TM instability. This is one of the key physics associated
with the TM in a toroidal plasma?®.

Because of the strong radial localization of the instability, non-linear effects are important for the
TM. A critical consequence of a developing TM instability is the change of the magnetic topology
near the mode rational surface, where a chain of magnetic islands with helical structure forms.
Essentially all the non-linear effects are related to the local change of the plasma current in the
presence of magnetic islands. The first non-linear effect was identified by Furth et al. (Furth 1963),
leading to an algebraically (instead of exponentially) growing magnetic island. Later studies
identified an important role played by the neoclassical effect associated with the bootstrap current
(Qu 1985, Fitzpatrick 1995, Wilson 1996), that modifies the TM stability and results in the
neoclassical tearing mode (NTM). The bootstrap current is stabilizing to the TM. If, however, a
portion of the bootstrap current is missing in the presence of 3D magnetic islands®®, the stabilizing
role is reduced and the NTM can be triggered. Note that all these effects involve the finite island
size and are thus intrinsically non-linear, requiring a threshold in the island size®.

The time evolution of the NTM islands is well described by the quasi-linear Modified Rutherford
Equation (MRE), which includes these effects, but excludes nonlinear coupling to other toroidal
mode components with different n. The other non-linear effect is the interplay between a growing
island and the plasma toroidal rotation. This is important for a full understanding of locked modes
(LMs), which correspond to the locking of an NTM to the wall. This is, in fact one of the major
causes of plasma disruptions in experiments (besides VDE and EK discussed before). Mode
locking, as well as NTM control, will be presented in a later section on MHD stability control.

Toroidal Alfven eigenmodes?!

The Hermitian nature of ideal MHD implies that the squared frequency, w?, which is the
eigenvalue, is always real. Stable modes correspond to those with non-negative w?. In the
cylindrical approximation, it can be shown that the ideal MHD spectrum consists of a possible set
of discrete or isolated unstable modes and a continuum of irregular modes on the stable side arising
where the coefficient of the second order term in the eigenvalue equation vanishes. These
continuum modes are highly localized at the point where the coefficient vanishes and actually
consist of two overlapping continua corresponding to sound waves and Alfven waves,
respectively. In the ideal limit, they have infinite energy but are regularized by non-ideal effects.
On the unstable side, the eigenmodes correspond to the array of physical ideal MHD instabilities
discussed above. There can be a finite (or zero) number of unstable modes or a countably infinite
number. In the latter case, generally corresponding to violation of the local Mercier criterion, the

28 Later studies found additional interesting layer physics that modify the TM dispersion relation, e.g., the large island
correction that restores the y~n3/° scaling at high resistivity value (Militello 2004), the cancellation effect (to the
favorable curvature stabilization) due to anisotropic thermal transport (Lutjens 2001, Connor 2015).

29 There can be different ways to change the bootstrap current, e.g., due to particle flattening of the plasma pressure
profile inside the magnetic islands (Fitzpatrick 1995) or due to induced polarization current (Wilson 1996).

39 There have been discussions on triggerless/seedless NTM which likely originates from a linearly unstable TM due
to large and positive A’.

31 See Chapter 12.08 of this encyclopedia by Gorelenkov and Sharapov for a detailed discussion on EP-driven MHD
instabilities.
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eigenvalues have an accumulation point at marginal stability. The stable spectrum is shown in
Fig. 5. In ideal MHD the stable continuum modes of course are purely oscillatory and have no
damping or drive, lying on the imaginary axis in w space. In reality, they tend to be strongly
damped by various non-ideal effects, most notably ion Landau damping.
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Fig.5.(a) The continuous spectrum formed from frequencies w?, at which the coefficient vanishes
against radius for different m and showing the TAE BAE and EAE gaps. (b) TAE mode structure
consisting of coupled m and m + 1 components.

This situation persists in toroidal geometry but with an important modification. In the cylinder,
there is a separate continuum for each poloidal mode number m. In the torus, the equations for
different m are coupled and near the crossing points, degenerate perturbation theory applies and
the curve crossings are replaced by the reconnected curves shown, leaving gaps in the frequency.
This is shown in Fig. 5(a). Within the gaps, global regular eigenmodes appear in the Alfven
continuum at isolated frequencies. These consist of coupled m and m + 1 components with a
typical example shown in Fig. 5(b). Again, in ideal MHD these are purely oscillatory modes with
no damping. However, the non-ideal damping of the irregular continuum modes is inversely
proportional to the radial wavelength and is greatly weakened for this global mode. In particular,
when the gaps overlap across a wide radius, there is no radius at which this global mode interacts
with or couples to a localized continuum mode and the damping becomes small. Instead, these
modes are relatively easily driven unstable. These are known as the toroidal Alfven modes (TAEs).

The frequencies of typical TAE and other similar higher frequency global modes are generally
sufficiently high that the damping rates are much smaller; Wrag > Vaamp~Yarive- In that case,
the ideal estimate of the real frequency is generally sufficiently accurate and the drive and damping
can be computed using the computed ideal mode. The non-ideal effects simply add an additional
imaginary part to Wryag = Wrag + i(ydrwe - ydamp) , corresponding to a growth or damping rate.
For most situations this is a valid assumption. In addition to the weakened ion Landau damping,
several other non-ideal mechanisms dampen the TAE and other stable global modes. The most
important of these is the so-called ‘continuum damping’, which results when an open gap does not
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extend all the way across the radius. In that case, the TAE at one broad location couples directly
to a continuum mode (irregular in ideal MHD), inheriting its large inherent ion Landau damping.
Several kinetic effects provide additional damping sources but more important, result in a second
global mode in the gap at higher frequency. This is known as the Kinetic Toroidal Alfven
Eigenmode (KTAE) and has no MHD counterpart. The instability drive of most interest is from
fast non-thermal ions via an inverse ion Landau process. Such ions are typically present in current
experiments as a result of external ion heating of the plasma by either neutral-beam injection or
RF waves. In future experiments, the concern is that energetic alpha particles from the fusion
reaction would provide the drive.

In the case of RF waves, the waves themselves can be designed to resonate at Alfven-like
frequencies and used to probe the plasma. When the external RF wave resonates with a stable
MHD plasma wave as the frequency is varied, the width of the resonance peak provides a measure
of the inverse of the damping rate of the mode. This technique, called MHD Spectroscopy, has
been used to study the stable Alfven continuum spectrum as well as low frequency marginally
stabilized MHD kink modes.

In addition to toroidicity, other geometric effects can couple the poloidal harmonics and break
open new gaps in the continuum. The most important of these are ellipticity and triangularity,
with their corresponding global Ellipticity Alfven Eigenmode (EAE) and Triangularity Alfven
Eigenmode. With finite B, the Alfven continuum lifts off the marginal point w? = 0 leaving
another gap below with width proportional to . The gap is filled with sound wave continua.
With respect to the discrete frequencies of these modes and their gaps, the effect of finite  appears
to raise them by an amount roughly proportional to Sp. However, relative to the gap, the global
mode moves slightly down in frequency with increasing £, (Turnbull 1993).

This lower gap is known as the Beta-induced Alfven Eigenmode (BAE) gap (Turnbull 1993).
Early experiments searching for the TAE mode also found global Alfven-like modes within the
BAE gap. Numerical searching subsequently found global largely single harmonic modes sitting
in this gap. Theory is somewhat complicated for these modes since the usual assumptions of small
coupling to the sound waves are not really valid (the numerical calculations included it). The key
physics in this mode is compressibility. The gap and mode are associated with the energy required
by a global Alfven wave to compress as it moves in the curved torus. This is in contrast to a sound
wave that propagates as an actual compressional wave. Ignoring compressibility to eliminate the
sound waves also eliminates the BAE physics.

Several other Alfven eigenmodes were discovered in experiments that revealed so-called ‘chirping
modes’, in which the observed frequency ‘chirped up’ until the mode disappeared or would be
converted to a TAE mode. Ideal stable modes associated with these were subsequently found in
continuum gaps that resulted from these particular discharges having an off-axis reversal in the
q profile. Hence, they were called Reverse-shear Alfven Eigenmodes (RSAEs) (Kramer 2006).
The gap was determined at any time by ¢,,;, wWhich varied in time and explained the chirping
behavior. Intermittent behavior sometimes results from a periodic expulsion of the fast ions
driving the mode unstable, thereby suddenly stabilizing it, and a reforming of the previous beam
distribution and plasma conditions.

Edge localized modes (ELMs)
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Edge localized modes (ELMs) are instabilities driven by the large edge pedestal pressure gradient
and its associated bootstrap current in tokamak H-mode plasmas. ELMs are generally divided into
different types such as Type I-IV and “grassy” (Leonard 2014). Not all these types of ELMs are
driven by macroscopic MHD modes*2. The focus in the following discussion is on Type-I ELMs
which have macroscopic MHD origin. More importantly, Type-I ELMs have been experimentally
demonstrated to lead to unacceptable material erosion in future reactor-scale tokamaks by inducing
thermal and particle fluxes onto the plasma facing components.

Type-1 ELMs can be explained by a model for edge localized modes as predominantly ideal
instabilities with low to intermediate toroidal mode number. This idea was around for some years
(Turnbull 1986, Strait 1994b), and was proposed in later years on the basis of ideal MHD stability
calculations for DIII-D discharges using a model for the pressure driven bootstrap current included
in the equilibrium reconstruction and DIII-D ELM experiments (Zohm 1995, Ferron 2000, Lao
2001, Snyder 2002). This current produces a large current density peak near the edge of the plasma
sufficient to destabilize low to intermediate n instabilities driven partly by that current density
gradient (peeling mode component) and partly by the edge pressure gradient (ballooning mode
component). The peeling-ballooning model has since been incorporated into a model known as the
EPED model that combines the MHD peeling-ballooning stability limit with other non-MHD
limits to predict the actual ELM onset (Snyder 2009, Snyder 2011). This was made possible by the
development of the ELITE (Edge Localized Instabilities in Tokamak Experiments) edge stability
code to efficiently compute intermediate to high » modes (Wilson 2002, Snyder 2002).

The basic MHD instabilities behind Type I ELMs are known as peeling-ballooning modes. The
external kink mode, when becoming unstable at relatively high edge safety factor (more precisely
at high nqqs), tends to localize near the plasma edge with a large kink component driven by the
strong bootstrap current gradient, as well as a peeling component at the separatrix, and a low to
intermediate n toroidal mode number. This is called kink-peeling mode or simply peeling mode.
The other component of the Type I ELM is the ballooning mode, which is typically a short
wavelength perturbation along both toroidal and poloidal angle, and is geometrically localized near
the plasma outboard edge at the low field side**. The ballooning instability is driven by the plasma
pressure, more precisely the large pressure gradient near the plasma edge. Since large pressure
gradient often occurs in a H-mode plasma with large edge pedestal, the latter is the primary free
energy source driving ballooning instability in a tokamak plasma.** Because the ballooning mode
is a high-n perturbation, the full MHD equations can be significantly reduced in order to efficiently
but approximately describe this instability, by dropping higher order terms in 1/n. A critical
analytic development is discovery of the so-called ballooning representation (Connor1978), which
allows a more natural (in physics sense) representation of the eigenmode structure and
substantially facilitates theoretical (and often numerical as well) analysis of this mode. The

32 For instance, type-1II ELM is believed to be driven by micro-tearing mode (Snipes 1998).

33 The ballooning mode is described as local instability here in a relative sense. Sometimes, the mode with finite (but
large n) is referred to as non-local, in comparison to the infinite-n ballooning mode which is localized on magnetic
flux surfaces.

3% With further increase of the plasma pressure, the ballooning mode can enter into a second stability regime (Greene

1981). This is primarily because higher pressure increases the Shafranov shift and compresses the equilibrium
magnetic field lines in the low field side of a tokamak plasma, which is stabilizing for MHD instabilities.
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extension of the ballooning formalism to higher order in 1/n enabled development of the ELITE
code (Wilson 2002, Snyder 2002).

The ballooning mode is also subject to many physics effects beyond the single-fluid ideal MHD
description (Connor 1988). The most important one among these effects is the diamagnetic
stabilization of the mode (Rogers 1999, Hastie 2000, Snyder 2011). Based on understanding of
both the ideal and non-ideal physics, a theoretical model - the EPED model (Snyder 2009, Snyder
2011) - has been developed to predict the plasma pedestal conditions for onset of Type I ELMs.
The key idea of the model is the realization that the pedestal structure — both the height and width
— can be constrained by two modes in a tokamak H-mode plasma. One is the peeling-ballooning
constraint and the other constraint is due to a more localized, transport type of instability such as
the kinetic ballooning mode. These two modes constrain the pedestal height and width following
two different scaling curves, and their intersection indicates what is realizable in experiments. The
EPED model has been successfully applied to a range of tokamak experiments (Snyder 2011). In
addition, the model predicted the existence of, and the access route to, a new high performance
plasma regime called super-H mode that was subsequently realized in experiments (Solomon 2014,
Snyder 2015, Solomon 2016, Hughes 2018, Snyder 2019, Knolker 2020).

The EPED model reproduces the triggering mechanism of type I ELMs well (Snyder 2011).
However, the ELMs observed experimentally represent a highly non-linear stage of the instability.
For instance, the filamentary structure that is observed in experiments inside the plasma separatrix
is no longer a linear ballooning instability. This is an ongoing area of theoretical research.

Finally, there are ELM-stable regimes in tokamak plasmas. These ELM-stable regimes are
favorable for tokamak operations due to their benign feature and thus minimizing bursts of heat
and particle fluxes reaching the plasma facing components. The L-mode is ELM-stable but is not
particularly attractive in terms of energy confinement. Staying within high confinement
regime, the QH-mode (Burrell 2001, Burrell 2016) and I-mode (Whyte 2010) regimes are two
promising candidates without ELMs. The former often has a saturated MHD instability (the so-
called Edge Harmonic Oscillation EHO) that helps to provide necessary transport in the pedestal
region to avoid ELMs*. The latter does not require an edge pedestal in the plasma density, only
pedestal in plasma temperature, which helps avoid ELM triggering but meanwhile maintains good
particle and energy confinement. Furthermore, application of 3D magnetic perturbations near the
plasma edge also helps to suppress ELMs and produces ELM-stable regimes (Evans 2004). Of
particular recent interest is plasma with negative triangularity shape (Medvedev 2015, Ren 2016,
Austin 2019, Kikuchi 2019), which can also provide an ELM-stable high confinement regime.
Negative triangularity equilibria generally do not have favorable average magnetic curvature,
resulting in strong ballooning instabilities that suppress the formation of an edge pedestal and
hence in many cases the discharges remain in L-mode, with no ELMs, even at high power.

Stable plasma response to external 3D fields

Since plasmas consist of unbound free charges, the charges individually respond and the plasma
collectively responds to applied external fields. The predominant immediate response is
electromagnetic and the MHD formalism captures this well. In essence, the plasma responds by

35 Recent studies also identified a QH-regime with wide pedestal and peculiar plasma edge flow condition, where no
EHOs are needed to provide transport (Burrel 2016).
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setting up Alfven waves that propagate through the system and re-establish local force balance
everywhere forming a new 3D equilibrium state:

V- (P +6P) = po(Vx (B+6B)) x (B+5B). (61)

This state generally has different transport properties from the original unperturbed state. For
example, topological changes, particularly the presence of open field lines, can modify transport
dramatically. Hence, following the MHD response, there is a longer term, transport response.

The response of the plasma is important for understanding several related phenomena. Early in
tokamak fusion research, the phenomenon of locked modes plagued progress. Depending on the
density, a rotating tearing mode would arise and as it grew, slow the plasma, amplifying the growth
further, until the plasma locked to an error field fixed with respect to the vessel wall and usually
subsequently disrupted. In studying resistive wall modes, near the stability limit it was observed
that non-axisymmetric error fields were strongly amplified (Wang 2015). Third, in experiments
designed to suppress ELMs, suppression was found but not by the mechanism expected. The
mechanism involves the plasma response but is still not fully explained. One robust indicator of
ELM controllability appears to be the edge-peeling response of the plasma to the applied 3D fields
(Liu 2016), valid for both mitigation (Liu 2011, Ryan 2015, Li 2016) and suppression (Paz-Soldan
2015, Yang 2016).

When an external field is applied, the most obvious response on a particle level is that, just as in
any conductor, currents flow in the plasma to oppose the changes by excluding the field from
penetrating the plasma. Thus, the first response is for skin currents to flow in the edge. These
currents are singular on closed rational field lines that resonate with a harmonic of the perturbed
normal field: when g = m/n, for a field harmonic 6B, , (r)eimf-na9) with a delta function
radial dependence of the current density. However, finite resistivity in the plasma implies these
currents decay and, unless regenerated, the field slowly penetrates. Effective regeneration of the
currents can occur from plasma rotation. In pioneering work, Fitzpatrick and coworkers
(Fitzpatrick 1991, Fitzpatrick 1993, Fitzpatrick 1995) demonstrated that non MHD effects result
in a complex nonlinear interaction between the rotation and the perturbing 3D field where the field
slowly removes and dissipates rotational energy as it penetrates, slowing the rotation further, and
enhancing the penetration. The result is a bifurcation in the rotation, with two dynamically stable
states, one at high rotation with little penetration and the other at low rotation, essentially locked
in the laboratory frame, with a fully penetrated field. In between is an inaccessible dynamically
unstable state. The net result of this is that by applying an external 3D field, the plasma
subsequently slows rotation and locks to the wall. The plasma response at first expels the external
field but subsequently incorporates it but in a locked stationary state. The response is a nonlinear
dynamic response with suppression occurring first followed by a slow penetration depending on
the resistivity and the plasma rotation.

The second major component of the plasma response is generally an amplification. This was first
noted in numerical calculations of the linear MHD response where the expected suppression of
specific field harmonics of the normal field component was observed at the respective rational
surfaces but became finite again inside. This was attributed to coupling of the poloidal harmonics:
non-resonant harmonics penetrate beyond the rational surface and drive the suppressed component
back up, amplifying it.
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These two parts of the MHD response are, in fact, inseparable. The total linearized response can
be expressed as an expansion in the eigenfunctions of the linear eigenmodes of the ideal MHD
operator 02§ /0t? — LE = 0,sothat & = Y5, ay &, where L&, = A&, = —wi&,, with 4, being
the eigenvalue and w, the frequency. The eigenmodes ¢}, inherently include the suppression of the
resonant field harmonics at the rational surfaces and amplification in their structure. For ideal
MHD, the eigenmodes of £ form a complete orthonormal basis so any possible ideal response can
be expressed completely in the expansion. The non-ideal response, however, can have
contributions not in the basis corresponding to tearing solutions.

By applying an external RF field with different frequencies, the ideal MHD eigenmodes can be
probed by measuring the response. For this case, by substituting the expansion for the response ¢
in terms of the &, into the dynamic equation of motion for a driven perturbation, 3%¢ /0t? — L& =
Age'®ot one finds

E(rt) = Yimalay/ (wi — w§)]é (), (62a)
a, = [&(r,t) Age'@otd3r. (62b)

The response has a resonant denominator proportional to wZ — wZ that vanishes whenever the
driving frequency w, coincides with a characteristic frequency of the ideal system. By measuring
an aspect of the response as the frequency is varied, a series of peaks appears at these
eigenfrequencies. It can also be shown that the width in frequency of the peaks is inversely
proportional to the (non-ideal) damping rate. This procedure, dubbed ‘MHD spectroscopy’
(Reimerdes 2004) has been used in experiments to probe both the stable Alfven spectrum,
identifying TAE and other Alfven eigenmodes, as well as marginally stabilized kink modes. The
technique seems likely to become more prominent in the future.

The transport response follows from the changes in topology, edge conditions, and profiles due to
the initial MHD response. With no topological changes, the local transport coefficients can be
different as a result of changes in local profiles. When islands form, the transport is completely
changed, not only from the island itself, but also because island formation necessitates formation
of an associated local chaotic region. In the chaotic regions, parallel transport becomes important
and competitive with perpendicular transport. Finally, when the field lines open and leave the
plasma region, the global transport becomes a complex mixture of parallel and perpendicular
transport, with various chaotic structures playing important roles.

There are several characteristic transport effects that are typically observed. Foremost of these is
the observed rotation drag discussed above. The rotation screens the applied fields from
penetrating the plasma, essentially by regenerating the screening currents formed at rational
surfaces. However, the fields themselves provide a back effect by slowing the rotation. As the
rotation slows, the fields are able to penetrate more easily and finally the rotation collapses to a
new bifurcated locked state with fully penetrated field and decayed singular currents. The second
most important observed effect is the ‘pump-out’ effect. The root cause of this is the formation of
open field lines connecting the edge plasma layers to the exterior vacuum and material structures.
Along with this pump-out effect is a generally observed reduction in core impurities.

Numerical tools

Many numerical tools have been developed for modeling MHD instabilities in fusion devices, and
these tools can be classified in many different ways. We will pursue two ways of classifications
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here for a list of well-known MHD codes, one is based on whether the code solves linear or non-
linear MHD equations, and the other is based on which physics are included into the codes. We
emphasize that what we provide below is not a full list of MHD codes that have been developed
and used by the MHD community.

Many codes have been developed during the last forty years, that are capable of solving linear
MHD equations in full toroidal geometry, and are well validated against experiments. Linear
stability problem can always be solved as an eigenvalue problem. These codes are therefore mostly
written as eigenvalue solvers, including PEST (Grimm 1976), ERATO (Gruber 1981), GATO
(Bernard 1981), NOVA (Cheng 1987), MARS (Bondeson 1992), DCON (Glasser 1997), KINX
(Degtyarev 1997), MISHKA (Mikhailovskii 1997), MARG2D (Tokuda 1999), MARS-F (Liu
2000a), ELITE (Wilson 2002, Snyder 2007), AEGIS (Zheng 2006), MINERVA (Aiba 2009).
Some of the codes were also developed into new versions with significant inclusion of drift kinetic
effects, such as NOVA-K (Cheng 1992), MARS-K (Liu 2008), AEGIS-K (Zheng 2010). The non-
linear MHD codes include NIMROD (Glasser 1999, Sovinec 2004), M3D (Park 1999), M3D-C1
(Ferraro 2009), JOREK (Huysmans 2007, Pamela 2020), BOUT (Xu 1998), BOUT++ (Dudson
2009). There are also codes that solve quasi-linear MHD equations such as MARS-Q (Liu 2013).

In terms of physics, several early codes solve ideal, single-fluid MHD equations, such as ERATO,
GATO, NOVA, DCON. These are all linear codes. Because associated with ideal MHD is the
energy principle which has the important Hermitian property, most of these ideal MHD codes were
developed based on the ideal MHD energy principle (the energy approach)*. There are also linear
MHD codes that solve resistive MHD equations. These are typically based on the normal mode
eigenvalue approach, such as the MARS code. Codes that solve extended MHD equations
(including two-fluid) are often non-linear codes, such as M3D-C1, NIMROD, JOREK, BOUT++,
etc. Codes that solve hybrid MHD-kinetic equations include NOVA-K, M3D-K, MARS-K,
AEGIS-K, NIMROD (a version with kinetic treatment of energetic particles).

Principles of control for MHD instabilities

Fusion gain can be expressed from the fusion power Prp and input power P; as Q =
Pp /P, ~15 B* B?>~1g PP B?%,where 1 is the energy confinement time and the pressure profile
peaking factor py is defined as p}% = < p?>/<p>?%and B* = pyBr. Thus, Q can be increased
by increasing fr and keeping all other factors constant. But, from the Troyon limit equation, Eqs.
(41) and (42), By is limited by stability. Hence, one needs to optimize B < 7 = kgt l-( L,/ aBT)
against all the important instabilities. A useful view can be reached by then rewriting the maximum
fusion gain as (Lazarus 1997)

Q = [(R3BZ] x [ps kyt; (S%/x) (H?/q2)]. (63)

Here, H is a confinement enhancement factor relative to H-mode (1 < H < 2), and g, is the
boundary q, or for a divertor plasma, qgs. Ry = (Rjax + Rmin)/2 is the average of the maximum
and minimum of the major radius of the plasma boundary. The plasma shaping enters here directly
in terms of the shaping factor § = qs( L,/ aBT) and the elongation k. The current profile
dependence appears directly through the internal inductance parameter ¢;.

36 Exception is the AEGIS code which is based on the shooting method. There is also the SPEC code based on
energy principle applied to multiple ideal regions coupled by special interface conditions.
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The first factor enclosed in square brackets is a technological factor and a reactor has a direct cost
roughly proportional to this factor. The rest contains quantities directly related to plasma physics.
All but the confinement factor H are stability related and can be increased by optimization with
respect to pressure peaking, cross section shape, and safety factor. The improvement in stability
against pressure driven modes from cross section shaping is embodied largely in the factor S /k.
Q can be increased by simply increasing this factor, thereby increasing I,,/(aBr) and hence fSr.
This reflects the fact that n > 0 stability is improved by increasing S. However, $%/k is limited
by axisymmetric stability.

Optimization from profiles is embodied in the factors py ksf; and 1/ q%. The pressure profile
peaking factor py is limited by n > 0 stability. There is also a synergistic dependence of the fr
limit on cross section and profiles. For high S, the limiting stable kz has an inverse dependence
on pr and the product is generally optimized by low pf, whereas at low S, the dependence of kg
on py is weaker. The current profile factor #; is limited by n = 0 stability. Stability to current
driven modes provides a limit on how low g, can be.

Advanced Tokamak Operation

By optimizing against the second factor in the expression for Q above, essentially maximizing the
Br limit, BT a smaller, more compact tokamak with reduced major radius R, and By can match
the performance of larger, high field machines by compensating the reduction. Ultimately, this
requires the stabilization of instabilities. The Advanced Tokamak (AT) concept follows this route.
Most AT approaches require some level of feedback. Control of the profiles pushes the discharge
into a state with higher stability limits and maintains it there.

Control requires three key elements, namely sensors to detect deviations in the system state from
the desired values, actuators to reposition the system toward the desired state, and control
algorithms to convert the sensor signals to actuator commands. In the fusion plasma context, the
sensors are diagnostic techniques for measuring the required aspects of the plasma state. The
actuators are the means of affecting the plasma, for example, external heating, current drive and
fueling systems, as well as external fields used to reconfigure the equilibrium or induce a particular
plasma response. The control algorithms are essentially mathematical prescriptions, usually based
on simplified (reduced) models for determining the actuator commands from diagnostic
measurements.

In an AT, control of the equilibrium profiles is an essential element. This includes startup of the
discharge, a steady state period, and a final shutdown. In the startup and shutdown phases, the
major issue in practice is maintaining MHD stability of the plasma. In the steady state phase, the
major issue is to optimize the profiles for high performance, while still avoiding MHD unstable
states. Evolutionary paths to this state need to be stable at each point. Active feedback control of
incipient instabilities is also essential. Active feedback stabilization of the axisymmetric (vertical)
instability is routine. Typically, the plasma position (for example the current centroid) or a number
of points on the plasma boundary, the iso-flux control points, are found and, if displaced from its
target position or target boundary points, additional axisymmetric fields are used to reposition it
(Ferron 1998, Huang 2020) by programming the currents in the external poloidal-field coils.
Active stabilization of the non-axisymmetric RWM is similar in principal but requires a more
complex set of sensors and applied field distribution (Liu 2000b, Liu 2004). In practice, as
discussed, sufficient plasma rotation passively stabilizes the RWM but the marginal RWM
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amplifies error fields which then slow the rotation, leading to destabilization of the RWM. In a
reactor, active feedback stabilization of the RWM is likely required. Control of intermittent
instabilities such as sawteeth and ELMs typically take the approach of either mitigating their
effects or avoiding them through control of the equilibrium profiles. The other major control issue
is the need to avoid and mitigate disruptions, which will be discussed in the next Section.

MHD theory provides the basis for defining the algorithms used to relate diagnostic sensor
measurements to actuator controls. Typically, the algorithms use simplified models but these are
often derived from full MHD predictions and are generally tested against them.

Control of MHD instabilities

Sawteeth result in a transfer of the core energy inside the ¢ = 1 surface to the outside. They are
normally relatively benign but if the g=1 radius is large and the core pressure high, an abnormally
large amount of energy can be lost. This can happen in cases where the sawtooth period is very
long, the so-called giant sawteeth, allowing a large amount of energy to build up in the core,
followed by a large and fast crash that disturbs a large part of the cross section. These need to be
avoided. Note that, like ELMs, sawteeth can be beneficial by periodically expelling impurities
from the fusing core. Thus, means to avoid sawteeth are desirable. Alternatively, it is in many
cases advantageous to control the sawtooth rate, keeping it short. Control options that have been
considered involve controlling the radius of the g = 1 surface. Control using RF waves,
particularly ECCD, ICCD has been considered to modify the current and pressure profiles around
the ¢ = 1 surface and tried. Another option is to run in sawtooth free regimes. This simply means
controlling the profiles so that g remains well above one, avoiding completely the 1/1 internal
mode (ideal or resistive). This is the solution envisaged in the Advanced Tokamak concept.

TMs born rotating with frequency near local plasma rotation and saturate at some amplitude. But
these islands slow the plasma rotation (Fitzpatrick 1991) and the plasma and mode lock. At that
point, the mode generally grows rapidly as wall stabilization is lost, and disrupts the plasma. The
mode typically locks in a fixed phase relationship with a pre-existing error field. Threshold
scalings have been obtained from experiments and can be used to avoid low and high-density
locked modes. The thresholds also depend on the pre-existing error field. These modes can be
partially controlled by maintaining the plasma rotation against the natural slowing that results from
the incipient instability. This entails feedback on the momentum input to the plasma.

Control of NTMs has been demonstrated (La Haye 2002) using ECCD to replace the reduced
bootstrap current that results from the reduced pressure gradient inside the islands. A control
scheme called ‘search and suppress’ has been developed whereby the island is detected and ECCD
is directed using mirrors to locally be deposited in the island center. An alternative strategy under
development is to modify the local current density using ECCD, essentially changing the local A’.
This can also be modified by applying additional helical fields. For tearing modes that are
destabilized by proximity to the ideal MHD £ limit (Brennan 2002), the modes are linearly
unstable and A" provides the major drive and this is the most promising strategy.

Control of the RWM follows the same strategy as the routine stabilization of the axisymmetric
mode. For that case, the technique has been in use routinely since the 1970’s and refined since the
1990’s (Lazarus 1990, Ferron 1998, Liu 2000b, Strait 2015). The ideal instability is slowed by a
resistive wall from a growth time of the order of a plasma Alfven time 7,~107° sec to the wall
L/R time — the time scale for stabilizing image currents to decay. The fields are then sensed and
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growing fields suppressed by applying an opposing field. In the non-axisymmetric case the major
complication is the need for more sensors and actuators.

ELM control falls into four major categories usually referred to as ELM-stable, ELM-free, ELM
mitigation, or ELM suppression. The first refers to plasma configurations such as QH mode or I-
mode in which there are no ELMs. Control in this case is mostly concerned with maintaining the
plasma operating conditions so that it stays in QH or I-mode. The second refers to plasma
configurations for which the peeling-ballooning instability is suppressed for a long period.
Typically, however, these are not stationary and an ELM finally appears that is larger than usual,
similar to the situation with giant sawteeth. Control in this case appears to require control of the
equilibrium profiles to avoid the final instability. ELM mitigation means changing conditions to
replace the large Type-I ELMs by smaller, more frequent ELMs, either small Type I or Type II or
Type III. Suppression, in contrast, refers to removal by full stabilization of the Type-I ELMs.
ELM-free regimes however, suffer from the problem that, without ELMs, impurities and density
build up in the core. ELMs do have a beneficial effect of removing core impurities, or helium ash
in the case of a reactor. Mitigation solves this problem. Control of the ELM frequency in this
case can be done using ELM pacing, with triggering by pellets (Lang 2004a, Baylor 2013), vertical
kicks (Lang 2004b), applied non-axisymmetric fields (Canik 2010), or applied modulated non-
axisymmetric fields (Solomon 2012). On the other hand, ELM suppression regimes do not result
in an impurity buildup. These are obtained for certain plasma parameter regimes by applying non-
axisymmetric fields (Evans 2004).

Disruption physics, prediction, prevention, and mitigation

A critical issue in tokamak experiments is the occurrence of plasma disruption, where the
discharges abruptly terminate with many undesirable consequences (ITER Physics Basis Editors
1999b, Hender 2007). The causes of disruption are complicated and are not always fully
understood. These can be grossly divided into MHD and non-MHD causes. We will mainly discuss
the MHD causes here.’

As described before, there are several macroscopic MHD instabilities that can cause plasma
disruption. One is the external kink mode including the resistive wall mode. The current-driven
external kink becomes very dangerous when the edge safety factor (g, for limiter plasmas and ggs
for divertor plasmas) approaches the value of 2. The pressure-driven external kink can cause
disruption when the Troyon limit is exceeded. The other important MHD cause is mode locking,
which typically occurs when the 2/1 tearing mode becomes unstable and large magnetic islands
are created which (at least locally) break the plasma toroidal rotation.

A typical plasma disruption has two characteristic time scales, related to the thermal quench (TQ)
and current quench (TQ). The first process, where the plasma thermal energy is rapidly lost,
typically lasts a couple of milliseconds. This is a very fast process, likely involving many non-
linear MHD events. The TQ is followed by the much longer CQ phase, where the plasma current
resistively decays and eventually vanishes (together with the magnetic energy stored in the
plasma). The time scale of the CQ depends on tokamak devices and in particular on the poloidal
cross-section area (ITER Physics Basis Editors 1999b, Hender 2007).

37 Many non-MHD causes are often directly or indirectly related to MHD events, e.g., the presence of MHD
precursors, the presence of large magnetic islands in the radiative cooling model that explains the plasma density limit
induced disruption (Gates 2012).
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There are two important consequences associated with plasma disruption. One is the
electromagnetic force acting on the conducting structures surrounding the plasma, typically the
vacuum vessel and the supporting structures. This force can be large during disruption and can
potentially damage the PFCs and in-vessel structures. The other critical consequence is the
generation of high-energy electrons with speed close to the light speed. These so-called runaway
electrons can potentially melt the PFCs, and thus must to controlled in future reactor scale devices
such as ITER.

Disruption prediction and avoidance

As mentioned before, since disruption may have different origins, predicting plasma disruption is
generally challenging. If a disruption is caused by MHD event, there are often magnetic precursors
that can be employed, but the reliability is always an issue. Since about late 1990’s, methods based
on artificial intelligence (AI) have been used for the purpose of disruption prediction in tokamak
experiments (Wroblewski 1997), with significant progress being made during recent years (Kates
2019). This approach requires a large operation database to train the Al algorithm (e.g., the neural
network), before it can be used for predicting future experiments. Proper selection of the
equilibrium input data, besides the Al architecture and the training algorithm, is critical for the
success of the Al based approaches. For predicting specific classes of disruption, model-based
approaches are also highly valuable. Examples are the DECAF model (Berkery 2017) based on
various MHD events, and the recent initiative of the predict-first approach (Lyons 2018).

Disruption avoidance is a passive way of operating the plasma discharge. Based on a-priori
knowledge, certain types of disruptions, in particular those involving MHD instabilities, are well
known and predictable. This knowledge can be used to constrain the discharge parameters to avoid
entering into the dangerous “corner”. For instance, the plasma pressure can be limited to be below
the Troyon limit (often following certain ¢; scaling curve) during the operation. The plasma
current and toroidal field can be designed to avoid the edge safety factor closing to 2. The plasma
toroidal rotation speed can be maintained to certain level (by various methods) to avoid locked
modes. With both disruption prediction and avoidance, it is important to realize that accurate and
fast equilibrium reconstruction is a critical element.

Disruption mitigation

As discussed, development of effective strategies to mitigate and control tokamak disruption is
critical to reduce and avoid potential damage to the PFCs and in-vessel structures. All mitigation
methods rely on rapid injection of high atomic-number Z impurities into the plasma to radiate
away most of the plasma thermal energy. MHD provides a useful model to develop and test
techniques to mitigate and control MHD instabilities.

A leading candidate for a disruption mitigation system (DMS) is the shattered pellet injection (SPI)
approach in which a stream of cryogenic cooled pellets is injected into a bended tube and shattered
into small fragments before entering into the plasma to allow higher assimilation and more rapid
delivery of injected impurities than a gas injection system (Shiraki 2016, Baylor 2019). Another
promising technique is the dispersive shell-pellet injection (DSPI) method in which a low-Z hollow
shell filled with a dispersive payload is injected into the plasma to allow a deep penetration of
impurities into the plasma core and a more effective inside-out thermal quench (Izzo 2017,
Hollman 2019).
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Fig. 6. NIMROD animation of a DIII-D dual-injector SPI simulation showing magnetic field lines

and contours of plasma radiation and injected impurity concentration. Courtesy of C.C. Kim (Kim
2020).

An accurate disruption mitigation simulation requires integration of a global 3D MHD code with
a local pellet ablation code (Kim 2019, Bosviel 2021). Progress has been made to model disruption
mitigation by impurity injection and interpretation of DMS and DSPI experiments with the
NIMROD (Kim 2019, Izzo 2020), M3D-C1 (Lyons 2019, Ferraro 2019) and JOREK (Hu 2018,
Pamela 2020) 3D MHD codes using simplified reduced pellet ablation models. NIMROD
predictions of DIII-D SPI and DSPI results are consistent with DIII-D experimental observations.
An animation of a NIMROD simulation of DIII-D dual-injector SPI simulation is illustrated in
Fig. 6 (Kim 2020). However, significant challenges remain to develop a robust and effective
disruption mitigation technique and their simulations and validations that can address all the
disruption issues, particularly regarding the generation and mitigation of runaway electrons
(Boozer 2017, Lehnen 2020, Sweeney 2020).

Summary

MHD provides a useful model to describe the crucial plasma macroscopic equilibrium and stability
behaviors in toroidal tokamak devices. The MHD equations provide a set of comprehensive
physics constrains to understand and interpret tokamak macroscopic instabilities. Principal MHD
instabilities include the internal kink modes, sawtooth, fishbone, external kink, resistive wall mode
(RWM), resistive interchange, tearing and neoclassical tearing modes (NTMs), locked modes,
toroidal Alfven eigenmodes (TAEs), and edge localized modes (ELMs). Predictions from MHD
theory are consistent with many observed features of these instabilities. Fast-growing MHD
instabilities can lead to an abrupt plasma disruption and termination that can potentially damage
the device PFCs and in-vessel structures. An important MHD application is to develop robust
techniques to mitigate and control instabilities. These include control of NTMs and RWMs,
mitigation and suppression of ELMs, and disruption avoidance and mitigation.
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