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Synopsis 
Magnetohydrodynamics (MHD) provides a useful model to describe the crucial plasma 
macroscopic equilibrium and stability behaviors in toroidal tokamak devices by considering the 
plasma as a conducting fluid interacting with a surrounding confining electromagnetic field. MHD 
is the most basic plasma model, incorporating most large-scale phenomena, including plasma 
equilibrium and all major instabilities. MHD equations are obtained by taking moments of the 
Boltzmann equations for different plasma species. They provide a set of comprehensive physics 
constrains to compute and optimize the equilibrium plasma shape and pressure and current profiles 
that are critical to its stability and performance. In the ideal case, the equations have special 
properties that lead to efficient numerical calculation schemes, the most important of which is the 
ideal MHD energy principle for linear stability against small departures from equilibrium. In a 
tokamak plasma, equilibrium pressure is mostly destabilizing for MHD modes, whereas 
equilibrium current is also often a major driving force.  Plasma resistivity creates new freedom for 
a MHD instability to grow, but there are also cases where the plasma resistivity plays a stabilizing 
role.  Equilibrium toroidal flow and/or flow shear can affect MHD instabilities. Principal MHD 
instabilities include the internal kink mode, sawtooth, fishbone, external kink, resistive wall mode, 
resistive interchange, tearing and neoclassical tearing modes (NTMs), locked modes, toroidal 
Alfven eigenmodes (TAEs), and edge localized modes (ELMs). Fast-growing MHD instabilities 
can lead to an abrupt plasma disruption and termination that can potentially damage the device 
plasma facing components (PFCs) and in-vessel structures. An important MHD application is to 
develop robust techniques to mitigate and control MHD instabilities. 

Keywords:  Magnetohydrodynamics, MHD equilibrium, MHD stability, MHD instabilities, Grad-
Shafranov equation, ideal linear stability, energy principle, Troyon limit, tokamak disruption, 
shattered pellet injection, dispersive pellet injection, disruption prediction and avoidance, 
disruption mitigation 

Glossary 
Alfven velocity  Alfven wave travelling velocity 
Beta    The ratio of plasma stored energy to confining magnetic energy 
DIII-D    Doublet III dee-shaped tokamak  
Disruption   Rapid termination of a plasma discharge 
EFIT    Equilibrium reconstruction and fitting code 
ELM    Edge localized mode 
Flow shear   A measure of radial variation of plasma angular flow across  
    magnetic surfaces 
H-mode   High confinement mode 
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ITER    International thermonuclear experimental reactor, an international  
    project constructing tokamak designed to study fusion plasma  
    production in deuterium-tritium plasmas 
Magnetic shear  A measure of radial variation of safety factor across magnetic  
    surfaces 
Magnetic surface  A surface formed by magnetic-field lines 
MHD    Magnetohydrodynamics 
Mode rational surface  A magnetic surface where the safety factor has a rational value 
RWM    Resistive wall mode 
Safety factor   The number of toroidal transits for each poloidal transit when  
    following a magnetic-field line 
Sawtooth   A periodic relaxation in the tokamak plasma central region 
Tokamak    A donut shaped toroidal confinement device 
VDE    Vertical displacement event 

Introduction 
In magnetic-fusion confinement devices such as tokamaks, to remain confined and produce fusion 
power, the plasma must be maintained in a force-balance equilibrium state and stable to 
perturbations around this state.  To keep the plasma away from the surrounding vacuum vessel, 
the expanding hot-plasma pressure force, and the centrifugal force if the plasma is rotating, must 
be balanced by a counter magnetic force driven by electrical currents flowing in the external coils. 
As schematically illustrated in Figs. 1(a) and 1(b), a stationary ball sitting in the bottom of a valley 
represents a stable equilibrium state, whereas the one sitting on the top of a hill represents an 
unstable equilibrium state.  

 
(a)    (b) 

 

 

 

 

 

Fig. 1. (a) A stable equilibrium state, (b) an unstable equilibrium state. 

Magnetohydrodynamics (MHD) (Bateman 1978, Freidberg 1982) provides a useful model to 
describe and evaluate this macroscopic plasma equilibrium and stability state by considering the 
plasma as a conducting fluid confined in a restricted region of space by the electromagnetic force 
from an externally imposed magnetic field. The magnetic field can be conveniently visualized and 
represented using magnetic field lines (Boozer 2005). In an axisymmetric toroidal tokamak device, 
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the magnetic field lines form a set of nested magnetic surfaces in a donut shape. The geometric 
and topological properties of the magnetic surfaces such as the aspect ratio, elongation, 
triangularity and squareness play important roles in determining the stability and performance of 
tokamak plasmas, and can be controlled using a set of external poloidal-field coils.   

An important MHD application is to design an optimal set of external poloidal magnetic-field coils 
to produce a target plasma equilibrium shape that are stable to instabilities. An essential magnetic-
fusion research element is to develop the physics basis to support such activities. This requires 
design and performance of experiments to test the equilibrium and stability properties of the 
plasma, development and validation of MHD equilibrium and stability physics models to explain 
the experimental observations, and development of diagnostics and computational tools to 
accurately measure and efficiently reconstruct the plasma state to interpret the measurements and 
facilitate the validation. 

In an ideal perfectly conducting plasma, the plasma is tied to the magnetic surfaces. In the absence 
of collisions among ions and electrons and without large drift motions due to magnetic-field 
gradient and curvature in the magnetic-field lines, the magnetic surfaces act as a container to keep 
the plasma away from the surrounding vacuum-vessel wall and plasma facing components. The 
hot plasma pressure and current flowing along the magnetic field lines can act as free-energy 
sources to drive the plasma away from the desired equilibrium and into various unstable states 
depending on the particular plasma operating configurations and conditions. The tension and shear 
in the magnetic-field lines can act as restoring forces to stabilize and keep the plasma in a stable 
equilibrium state. An excessive amount of plasma stored energy relative to the confining toroidal 
magnetic field energy or a large amount of flowing plasma current relative to the confining toroidal 
magnetic-field coil current can drive MHD instabilities that can potentially damage and shorten 
the lifetime of the confining device PFCs and in-vessel structures.  
Two useful physics parameters to describe these important plasma stability properties are the 
safety factor q and the plasma b. For an axisymmetric toroidal device such as a tokamak, these are 
defined as  
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Here, 𝐵- 	and 𝐵/	are the toroidal and poloidal component of the magnetic field 𝔹 from the electric 
currents flowing within the plasma plus those flowing in the external toroidal and poloidal 
magnetic-field coils. 𝐹(𝜓) = 2𝜋𝑅𝐵-/𝜇3	is the poloidal current stream function, 𝑅 is the plasma 
major radius,  𝜓 is the poloidal flux per radian of the toroidal angle, and  𝐵-3 is the vacuum toroidal 
magnetic field at the geometric center of the plasma boundary surface. The line integration in   Eq. 
(1) is along a poloidal cross section of a magnetic flux surface labeled by 𝜓, Ω(𝜓) is the volume 
enclosed by the magnetic surface  𝜓, and 	Ω) is the plasma volume. The safety factor q describes 
the average pitch of the magnetic field lines along a magnetic surface weighted by the geometric 
properties of the surface.  q represents the number of turns a magnetic field line has to traverse 
toroidally before completing a poloidal turn.   
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Additionally, depending on the plasma transport conditions, strong pressure or current gradients 
can develop locally in a small region near a transport barrier that can act as free-energy source to 
drive the plasma into an unstable state (Lao 2000). In the tokamak high confinement mode (H-
mode) regime (Wagner 2007, Burrell 1987), a large edge pedestal pressure gradient can develop 
leading to ELMs (Leonard 2014). Large ELMs can shorten the life time of the divertor wall. 
MHD is also applied to develop robust techniques to mitigate and control MHD instabilities 
(Igochine 2015). At high 𝛽- or low q, a small perturbation can lead to unstable plasma motion that 
strongly distorts the magnetic surfaces allowing the plasma to quickly release its thermal and 
magnetic energy in a very short time scale, which can potentially damage the plasma-facing 
components (PFCs) and in-vessel structures. Additionally, at rational q surfaces the magnetic field 
lines close on themselves rather than spanning the entire surface.  A magnetic perturbation that has 
toroidal and poloidal mode numbers in sync with the pitch of the magnetic field lines can then 
interact resonantly with the magnetic field and strongly distort the magnetic surfaces, thus allowing 
the heat flux to quickly transport and escape to the surrounding vacuum-vessel wall. Additionally, 
together with the plasma resistivity and toroidal asymmetry, magnetic islands and stochastic 
regions can form around the rational 𝑞 surfaces within the plasma that can tear open the magnetic 
surfaces and allow particle and heat flux to also redistribute and escape to the vessel wall.  
Impurities sputtered from the wall can then enter and accumulate in the plasma and can lead to a 
radiation induced thermal collapse and rapid decay of the plasma current. The shrinkage of the 
current channel in the plasma column can make it susceptible to vertical displacement events 
(VDEs) and then disruption, which can potentially damage the device PFCs and in-vessel 
structures due to the large attached halo current induced in the surrounding wall (Boozer 2012, 
Lao 1991, Lehnen 2015, Clauser 2019).  
In this Chapter, the physics principles of toroidal tokamak equilibrium and stability are first 
discussed, including the derivation of the MHD equations from the Boltzmann kinetic equation. 
This is then followed by a section on toroidal equilibrium including a description of equilibrium 
reconstruction and the inverse representation. A discussion of MHD stability including linear 
stability and the energy principle, the effects of plasma resistivity, energetic particles, and plasma 
toroidal flow is then discussed. A discussion of major MHD instabilities including axisymmetric 
modes, internal kinks (IKs), resistive-wall modes (RWMs), ELMs, tearing modes (TMs), and 
TAEs then follows. The plasma response to external 3D magnetic fields and numerical tools to 
compute MHD instabilities are also described. Lastly, a short discussion of methods and 
techniques to mitigate and control plasma instabilities including disruptions is given. 

Physics principles of toroidal equilibrium and stability 
 MHD model and equations 
MHD is the most basic plasma model, incorporating most large-scale phenomena, including all 
major instabilities.  The model is formally derived from the fundamental Bogoliubov–Born–
Green–Kirkwood–Yvon (BBGKY) (Bogoliubov 1946) equations describing an N-body system of 
𝑁4	charged particles of various species in an electromagnetic field 𝔼 and 𝔹, coupled with 
Maxwell’s equations for the fields.  Each individual particle with (vector) position 𝕩5 and velocity 
	𝕧5 is acted on by the sum of the Lorentz forces from all other particles of the same or other species 

  𝑚5𝕩̈𝑛 = 𝑚5𝕧̇𝑛 = ∑ 𝑞6
7'
685 (𝔼 + 𝕧𝑘 × 𝔹).     (3) 
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Note that the 𝕩6 , 𝕧6  refer to the particles of various species 𝑠; the species label is suppressed here 
to keep the notation simple.  These equations are intractable since 𝑁4~10%3.  A more tractable 
form is obtained by replacing the full particle distribution function for 𝑁4 particles of various 
species, 𝐹4?𝕩1, 𝕧1, 𝕩2, 𝕧2, … 𝕩𝑁𝑠 , 𝕧𝑁𝑠@, by a sequence of partial distribution functions,  𝑓4

(5), 𝑛	 =
	1,2, … ,𝑁𝑠 − 1, obtained by integrating over the eliminated variables, so that, 

𝑓4
(59*)(𝕩1, 𝕧1, 𝕩2, 𝕧2, … 𝕩𝑛, 𝕧𝑛) ≡ ∬𝑓4

(5)(𝕩1, 𝕧1, 𝕩2, 𝕧2, … 𝕩𝑛, 𝕧𝑛, 𝕩𝑛+1, 𝕧𝑛+1)𝑑3𝕩𝑛+1𝑑3𝕧𝑛+1, (4) 

with  𝑓4
(7'9*)?𝕩1, 𝕧1, 𝕩2, 𝕧2, … 𝕩𝑁𝑠 , 𝕧𝑁𝑠@ ≡ 𝐹4?𝕩1, 𝕧1, 𝕩2, 𝕧2, … 𝕩𝑁𝑠 , 𝕧𝑁𝑠@. 

These are the so-called BBGKY equations.  These contain similar information as 
𝐹4?𝕩1, 𝕧1, 𝕩2, 𝕧2, … 𝕩𝑁𝑠 , 𝕧𝑁𝑠@, namely the position and velocity of every particle of species 𝑠.  The 
final so-called single particle distribution function is then, 

 𝑓4(𝕩, 𝕧) ≡ 𝑓4
(3)(𝕩1, 𝕧1) = ∬∬…𝐹4?𝕩1, 𝕧1, 𝕩2, 𝕧2, … 𝕩𝑁𝑠 , 𝕧𝑁𝑠@∏ ?𝑑3𝕩𝑘𝑑3𝕧𝑘@

7'
6:% . (5) 

Combining this with the equations of motion for the particles then yields the Boltzmann Equation 
for 𝑓4(𝕩, 𝕧) (Colonna 2016): 

 ;<'
;=
+ 𝕧 ∙ ∇𝕩𝑓4 +

𝑞4 𝑚4J [𝔼(𝕩, 𝑡) + 𝕧	 × 𝔹(𝕩, 𝑡)	] ∙ ∇𝕧	𝑓4 = 𝐶4?𝑓? , 𝑓@ , 𝑓A , … , 𝑓4, … 𝑓B@.  (6) 

Here, ∇𝕩𝑓4 means 	∇𝕩𝑓4 	≡ P;<'	
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the transpose). This coupled set of equations for various particle species (a,b,…,…s,…,z) 
describes the evolution of the probability of finding a particle of species 𝑠 at any given point (𝕩, 𝕧) 
in phase space at any given time due to electrodynamic and thermodynamic forces.  The final term 
on the right side formally represents the effects of collisions between species, including those of 
the same species.  For a collisionless plasma, 𝐶4 = 0, and the equation is called the Vlasov 
Equation (Colonna 2016). Combined with Maxwell’s Equations for the fields, the equations give 
a complete self-consistent account of the system of charged particles.   

The MHD equations are obtained by taking velocity moments of the Boltzmann equations, for 
electrons and each ion species.  For the velocity 𝕧 ≡ (𝑉4C 𝑉4D 𝑉4E)-, the velocity moments are 
defined by,  

   < 𝑉4G𝑉4
@ . . 𝑉4

B >4	≡
∫𝑉G𝑉@ . . 𝑉B𝑓4(𝑋, 𝑉)𝑑H𝕧

∫𝑓4(𝑋, 𝑉)𝑑H𝕧
Y  , (7) 

for each of the coordinates, 𝛼, 𝛽, … , 𝜁 ∈ {𝑋, 𝑌, 𝑍}.  We will use the notation 𝑉4G (with the s 
subscript) when designating the velocity moments.  Without the subscript they refer to dummy 
integration variables.  The first velocity moment (zeroth order) is just the number density defined 
as: 

   𝑛4(𝕩) 	=< 𝑛4 >		= ∫𝑓4(𝕩, 𝕧)𝑑H𝕧.    (8) 

The second is the species single-fluid velocity, with three different moments corresponding to 
the three coordinate directions: 

   𝑉4G(𝕩) 	=< 𝑉4G >		=
∫𝑉G 	𝑓4(𝕩, 𝕧)𝑑H𝕧

∫ 𝑓4(𝕩, 𝕧)𝑑H𝕧
Y . (9) 
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The third describes the energy for each species defined as: 

 1
2
𝑛4(𝕩)𝑇4

G,@(𝕩) 	= ∫ 1
2
𝑚4?𝑉G − 𝑉4G(𝕩)@ P𝑉@ − 𝑉4

@(𝕩)Q	𝑓4(𝕩, 𝕧)𝑑H𝕧.   (10) 

This is a symmetric tensor and the temperature for each species is then just found from  

   𝑇4(𝕩) 	= [𝑇4
J,J(𝕩) +	𝑇4

K,K(𝕩) + 𝑇4
L,L(𝕩)]/3,   (11) 

   𝑇4
G,G(𝕩) 	=	< 𝑚4?𝑉G − 𝑉4G(𝕩)@

% >4.   (12) 

A pressure tensor for each species can also be defined.  This is a symmetric tensor, ℙ, with 
components 

𝑃4
G,@(𝕩) 	≡ 𝑛4(𝕩)𝑇4

G,@(𝕩) =< 𝑚4?𝑉G − 𝑉4G(𝕩)@ P𝑉@ − 𝑉4
@(𝕩)Q >4 ∫𝑓4(𝕩, 𝕧)𝑑H𝕧. (13) 

The tensor 𝕋 and the temperature 𝑇4(𝕩) are in units of energy so 𝑇4(𝕩) is really 𝑘 times the 
temperature in Kelvins, where 𝑘 is the Boltzmann’s constant. 
The full set of moment equations coupled with Maxwell’s equations provides a complete formal 
description of the system. The first two moments provide a set of equations that essentially describe 
mass and momentum conservation for each species.  For a plasma of just two species, ions and 
electron, one can recombine these first moment equations into a single-fluid form by replacing 
each pair of species equations by their weighted sum and difference to eliminate 𝕧M and  𝕧N by the 
fluid velocity 𝕧, which is the common velocity of the two species, 

   𝕧 ≡ (𝑚M𝑛M𝕧M +𝑚N𝑛N𝕧N) (𝑚M𝑛M +𝑚N𝑛N)⁄ ,   (14) 

 and the velocity difference represented by the current density, 

   𝕛 =  (𝑞M𝑛M𝕧M + 𝑞N𝑛N𝕧N).     (15) 

The total mass density is, 

   rO =  (𝑚M𝑛M +𝑚N𝑛N),     (16) 

and the total (tensor) pressure is, 

   	ℙ = ℙM + ℙN.       (17) 

Then, the zeroth-order moment becomes the particle conservation equation; 

   ;P
;=
+ ∇ ∙ (𝜌𝕧) = 0,      (18) 

familiar from conventional fluid theory.  The first order moment equations become a simple force 
balance momentum conservation equation, which can be written as the vector equation, 

   𝜌 P;𝕧
;=
+ (𝕧 ∙ ∇)𝕧Q + ∇ ∙ ℙ − (𝕛 × 𝔹) = 0.   (19) 

The first two terms on the left represent the inertia.  The other two terms are the pressure force and 
the electromagnetic force.  In equilibrium, with 𝕧 = 0 , the pressure and electromagnetic forces 
are balanced. While at this point the model is two-fluid, these equations are in a single-fluid form. 
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In general, higher velocity moments from higher order equations are required in each new 
equation, and at second order, the situation becomes significantly more complicated.  The 
individual electron and ion terms cannot be completely eliminated without additional 
approximations.  At second order, one obtains two equations.  One is effectively a generalized 
Ohm’s Law 

  𝔼 + 𝕧 × 𝔹 = 	𝜂𝕛 + ℝ.       (20) 

ℝ = ?1 𝑞N𝑛NJ @∇ ∙ ℙM + P
∆𝑛N 𝑛NJ Q𝔼 + ?𝑚M 𝑞MJ @ n

𝜕𝕧
𝜕𝑡 +

(𝕧 ∙ ∇)𝕧p + 

																																																																	?𝑚N 𝑞NJ @ n;(𝕧,9𝕧-)
;=

+ (𝕧 ∙ ∇)(𝕧M − 𝕧N)p . (21) 

ℝ contains the remaining unbalanced two-fluid terms, including the Hall effect.  Most are small 
and can normally be neglected.  The other is a tensor equation for the evolution of the pressure 
tensor, ℙ given below. 
Truncating the separate ion and electron equations at this order, then one obtains the full set of 
MHD equations: 

  ;P
;=
+ ∇ ∙ (𝜌𝕧) = 0,       (22) 

  ;Q
;=
+ ∇ ∙ 𝕛 = 0,        (23) 

  ;𝔹
;=
+ ∇ × (𝔼) = 0,       (24) 

  − *
S"

;𝔼
;=
+ ∇ × (𝔹) = 𝜇3𝕛,      (25) 

  ∇ ∙ 𝔹 = 0,        (26) 

  ∇ ∙ 𝔼 = 𝜖39*𝜎	,        (27) 

  𝜌 P;𝕧
;=
+ (𝕧 ∙ ∇)𝕧Q = 	𝜎𝔼 + 	𝕛 × 𝔹 − ∇ ∙ ℙ,    (28) 

  𝔼 + 𝕧 × 𝔹 = 	𝜂𝕛 + ℝ.       (29) 

  ;
;=
ℙ +	(𝕧 ∙ ∇)ℙ = ∇ ∙ 𝕋 + 	𝕢,      (30) 

with 𝕋 representing a (generalized) stress-energy tensor and 𝕢 an energy (heat) flux. In this general 
form, MHD is a full two-fluid theory but it is not closed. The stress-energy tensor and energy flux 
in Eq. (30), are obtained formally from the higher order truncated terms but most closures involve 
specifying them independently instead, along with several simplifying assumptions for ℝ. 
Various closure schemes are possible and these lead to different versions of MHD. The most 
important approximation is the Darwin Approximation; 

    *
S"

;𝔼
;=
≪	∇ × 𝔹	~𝜇3𝕛,      (31) 

which essentially eliminates propagating purely electromagnetic waves from the system.  This is 
almost always a good approximation and is consistent with the ignoring of relativistic dynamics. 
Of the various simplified MHD models, the Darwin approximation is the most valid and is almost 
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always assumed. With the Darwin approximation, the remaining equations are usually referred to 
as the ‘Two-Fluid MHD Equations”, or sometimes, with an appropriate closure, as the Extended 
MHD Equations.  

The remaining common assumptions such as no resistivity 𝜂 = 0, isotropic pressure 𝑝U = 𝑝∥ , or 
𝑇N = 𝑇M are variously valid under different circumstances. These are usually based on 
approximations from fluid dynamics and thermodynamics. For example, relations between ℙ and 
the mass density for each species, or an assumption for off-diagonal pressure (stress) terms in ℙ 
are often used. Separate leftover electron terms of the full two-fluid model (Hall and ∇𝑝N terms) 
are commonly dropped as small leaving simpler single-fluid equations.  These are usually referred 
to as ‘the MHD Equations’ or the ‘Single-Fluid MHD’ equations. Assuming a scalar pressure, one 
obtains a much simpler system with relatively simple closure options.  An alternative is the Chew-
Goldberger-Low CGL model (Hunana 2019) which allows for pressure anisotropy 𝑃U ≠ 𝑃∥. 
Finally, if the resistivity is also ignored,  𝜂𝕛 ≪ 𝕧 × 𝔹	~	𝔼, then 𝔼 + 𝕧 × 𝔹	~0 and 

    ;𝔹
;=
=	∇ × (𝕧 × 𝔹),     (32) 

implies that the fluid moves with the fields; there is no slippage between them. This condition is 
called the frozen flux theorem and the resulting MHD model is commonly referred to as ‘ideal 
MHD’. In addition, since the equations are physically intuitive, representing various conservation 
laws, ad-hoc phenomenological terms can be included as closures to model effects that have been 
eliminated, for example, fast-particle drive effects, or neoclassical effects.  

 Toroidal equilibrium 
The shape of the equilibrium magnetic surfaces plays an important role in determining its stability 
and performance. The ideal MHD momentum balance Eq. (19) provides a comprehensive physics 
constraint to compute and optimize the required external poloidal magnetic-field coil set and its 
currents necessary to produce a target plasma boundary shape (defined as the largest closed 
magnetic surface enclosed by the surrounding limiter and vacuum vessel), and the diversion of the 
external magnetic-field lines to direct the particle and heat flux to the divertor collecting plate.  

At equilibrium and in the absence of plasma flow and pressure anisotropy, the MHD equilibrium 
Eq. (19) and Ampere’s law Eq. (25) become 

     ∇𝑃 = 	𝕛 × 𝔹,     (33) 

     ∇ × 𝔹 = 𝜇3𝕛.     (34) 

It follows from Eqs. (33) and (34) that the confining magnetic force is in the direction 
perpendicular to the magnetic field lines. At equilibrium, the pressure must be constant on a 
magnetic flux surface 𝑃 = 𝑃(𝜓)	and the plasma current density 𝕛 flows along the surface.  
In a toroidal axisymmetric device such as tokamak, a set of 2D nested magnetic surfaces is formed 
using a toroidal-field and a poloidal-field coil set.  A dedicated Ohmic-coil set is also sometimes 
employed to drive the toroidal current flowing within the plasma to ease control as in the DIII-D 
(Luxon 2002) and ASDEX Upgrade (Gruber 1986) tokamaks, rather than combining the 
functionality into a single set of poloidal-field coils for both shaping and driving Ohmic current as 
in more recent superconducting long-pulse tokamak devices such as EAST (Wan 2006), KSTAR 
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(Lee 1999), JT-60SA (Kamada 2011), and ITER1 (ITER Physics Basis Editors 1999a). In the 
presence of toroidal asymmetry, magnetic islands and stochastic regions can form that can degrade 
the plasma confinement and make it more susceptible to MHD instabilities.   

 Axisymmetric 2D Grad-Shafranov equilibrium 

In an axisymmetric toroidal device such as a tokamak, Eqs. (33) and (34) can be combined to yield 
a 2D elliptic equilibrium equation, the Grad-Shafranov (GS) equation (Grad 1956, Shafranov 
1958), by considering force balance in the direction perpendicular to the magnetic field 𝔹 and 
using a cylindrical (𝑅, 𝜑, 𝑍) coordinate system centered at the symmetric axis and dropping the 
toroidal 𝜑-dependent terms 

     ∆∗𝜓 = −𝜇3𝑅𝑗X(𝑅, 𝜓),   (35) 

     𝑗X = 𝑅𝑃Y(𝜓) + 1%!!Y(#)
Z&"+

.   (36) 

Here, the operator ∆∗= 𝑅%∇. (∇ 𝑅%)⁄ . The magnetic field can be conveniently represented as   

     𝔹 = 1%!(#)
%&

∇𝜑 + ∇𝜓 × ∇𝜑.   (37) 

The first term in Eq. (37) represents the toroidal component of 𝔹, whereas the second term 
represents the poloidal component.  

The GS equilibrium, Eq. (35), is based on the cylindrical (𝑅, 𝜑, 𝑍) coordinate system. An 
alternative coordinate system is the inverse magnetic-flux coordinate system (𝜌, 𝜃, 𝜑) using a flux-
surface label 𝜌(𝜓) and a poloidal angle 𝜃 as independent variables (Boozer, 2005).  The GS Eq. 
(35) can then be transformed to become the inverse GS equation for  𝑅(𝜌, 𝜃) or Z(𝜌, 𝜃) (Lao 
1981). Since the pressure 𝑃(𝜓) is constant on a flux surface, the inverse magnetic-flux coordinate 
system (𝜌, 𝜃, 𝜑) provides a particularly convenient coordinate system to study plasma equilibrium, 
transport, and stability physics. In the case of a diverted plasma, the use of the magnetic-flux 
coordinate system is restricted to the nested magnetic-surface region within the plasma to avoid 
the singularity at the separatrix surface that appears in the Jacobian for transformation from the 
(𝑅, 𝜑, 𝑍) to the (𝜌, 𝜃, 𝜑) coordinate system. 
Equation (35) represents a differential form of the GS equation. It acts as a constraint linking the 
derivatives of 𝜓 to the current sources. Given two stream functions describing the toroidal current 
density source such as  𝑃(𝜓) and 𝐹(𝜓) as shown in Eq. (36) and appropriate boundary conditions, 
Eq. (35) can be solved for the poloidal flux function 𝜓. Two other forms of the GS Eq. (35) useful 
for finding equilibrium solutions are the integral and the variational Lagrangian form (Grad 1956, 
Lao 1981, Lao 1985a, Lao 2005) 

   𝜓(𝕩)= ∑ 𝐺#([ 𝕩, 𝕩′)𝐼N[ +	∫ 𝐺#(𝕩, 𝕩′)𝑗X
	
0$

[𝑅Y, 𝜓(𝕩Y)], (38) 

     W=	∫ ( ).
"

%1%

	
0$

− )&
"

%1%
− 𝑃)𝑑Ω.   (39) 

Here 𝐺#(𝕩, 𝕩′) is the Green induction function relating 𝜓(𝕩) to the current source at 𝕩′. The 
variation Lagrangian form Eq. (39) provides a systematic mean to transform the solution 𝜓(𝑅, 𝑍) 

	
1	https://www.iter.org/	



	

	 10	

of the 2D GS equilibrium Eq. (35) into a series of 1D moment equations for the Fourier amplitudes 
of 𝑅(𝜌, 𝜃) or Z(𝜌, 𝜃) (Lao, 1981). The 2D variational moment approach has been successfully 
generalized to provide a robust and efficient method to find equilibrium solutions in 3D toroidal 
geometry with nested magnetic surfaces (Bhattacharjee 1983, Hirshman 1983, Lao 1985c). 

Analytical solutions exist when the current source Eq. (36) has simple forms (Solovev 1968, 
Srinivasan 2010) or when the magnetic surface has simple circular geometry (Lao 1981). In 
general, the GS Eq. (35) or its integral or variation form Eq. (38) or (39) must be solved 
numerically (Johnson 1979, Takeda 1991). Many tools are available to numerically search and 
compute the equilibrium solutions given two stream functions describing the toroidal current 
density source and appropriate boundary conditions (Lao 1984, Lao 1985a, Haney 1995, Ivanov 
2009). One class of applications is to find a solution that best matches a specified target plasma 
boundary given the two stream functions, a set of external poloidal-field coils, and a surrounding 
limiter. An example of a DIII-D equilibrium computed with the EFIT code (Lao 1985a) is given 
in Fig. 2. Another class of applications is to find a solution that best matches a specified target 
plasma boundary but with the two stream functions self-consistently computed based on the 
plasma transport properties (Grad 1970, Hirshman 1979, Meneghini 2016). 

 
 
 
 
 
 

 
 
 
 

 

Fig. 2. Poloidal cross-section of a DIII-D tokamak lower single-null equilibrium computed using 
the EFIT equilibrium code.  Also shown is a photo of the DIII-D tokamak with its toroidal- and 
poloidal-field coils. 

 

 Equilibrium Reconstruction 

Reconstruction of experimental MHD equilibria is fundamental to tokamak research and operation 
and is an important part of fusion data analysis and plasma control.  Equilibrium reconstruction 
provides essential magnetic geometry and current and pressure profiles information necessary to 
support tokamak operation and data analysis, and has contributed to several major physics 
discoveries, such as the experimental validation of theoretically predicted b stability limits (Strait 
1994a) and the negative central-shear operating regime (Levinton 1995, Strait 1995).  

A particular important application of the GS Eq. (35) is to reconstruct the experimental plasma 
equilibrium from various available measurements such as external magnetic and internal current 
and kinetic profile diagnostics (Lao 1985a, Lao 1990, Lao 2005.) The amount of plasma 
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information that can be reconstructed increases with the availability of the measurements. External 
magnetic measurements alone can only yield the plasma boundary shape and global plasma 
pressure and current profile parameters, such as poloidal 𝛽 ,  𝛽/ = ∫ 𝑃𝑑Ω0$

3 (Ω)𝐵/\% 2𝜇3⁄J ), and 
internal inductance of the plasma current density profile ℓ* = ∫ 𝐵𝑃2𝑑Ω

Ω𝐵
0 (Ω𝐵𝐵𝑃𝐴

2 )/ , and  𝐵/\ =
∮ 𝐵/
	
#$

𝑑𝑙c ∮ 𝑑𝑙c
	
#$

J  is the average poloidal magnetic field along the plasma boundary surface (Lao 
1985b, Braams 1991). For critical applications such as analysis and control of MHD instabilities 
that require detailed pressure and current profile information, accurate full equilibrium 
reconstruction with kinetic and internal current profiles in addition to external magnetic 
measurements is required, as well as high spatial-resolution and tightly converged equilibrium 
solutions (Lao 1990, Ren 2011). Plasma control also imposes a stringent requirement on the 
equilibrium reconstruction computational speed. Various efficient numerical algorithms and high-
performance computation technology have been developed and employed to reconstruct tokamak 
experimental equilibria in real time to provide the information necessary for plasma control 
(Ferron 1998, Moret 2015, Rampp 2017, Huang 2020). 

 MHD stability 
 Introduction and overview 

In principle, the full nonlinear (Extended) MHD model should be reliable under the conditions that 
the plasma be quasi-neutral and that the length and time scales be long: specifically that the length 
scales be of the order of the plasma minor radius, and much larger than microscopic scales like the 
Larmor radius, and that the time scales are much slower than Alfvenic times.   

Experimental diagnostic capabilities have been developed to the point where detailed predictions 
from MHD theory can be productively tested.  As discussed in the previous Equilibrium 
Reconstruction Section, the key to this development has been the progress in reconstructing 
equilibria obeying MHD force balance and consistent with experimentally measured kinetic 
profiles (Lao 1990). The linear MHD stability predictions using high quality discharge full 
equilibrium reconstructions have been thoroughly tested against observations for the principal 
limiting phenomena and MHD generally predicts ideal current and pressure limits well (Turnbull 
2002, Turnbull 2005). In particular, global pressure driven instabilities are predicted to be unstable 
when the plasma 𝛽- 	exceeds a value typically of a few percent.			𝛽- 	measures	the	amount	of	thermal	
energy	the	plasma	can	hold	for	a	given	magnetic	field	strength.			
A series of numerical ideal MHD stability calculations in the mid 1980’s discovered that the 
limiting  𝛽- obeys a scaling known as the Troyon limit, given originally as 

   β	- ≤ β-+dD ≡ C- 		(µ3𝐼/) ⁄ (𝑎𝐵-),   (40) 

where CT=2.8 if 	𝐼/ is in Amperes and  𝐵- is in Tesla (Troyon 1984).  This was immediately 
confirmed by experiments on a number of tokamaks (Stambaugh 1984) and is commonly referred 
to as the Troyon beta limit2 

    β	- ≤		𝛽7O?J𝐼/(MA) ⁄ (𝑎𝐵-),   (41) 

	
2	This has been a point of confusion; the difference between 𝐶0 and 𝛽1234 has erroneously been claimed to be a 
discrepancy.	
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with 𝛽7O?J= 3.5. In subsequent years, the Troyon limit scaling has been modified to account for 
the major profile and shaping effects.  The most recent version replaces a constant  𝛽7O?J= 3.5 by 

    𝛽7O?J = 𝑘@ℓM     (42)  
where ℓM is the internal inductance of the current density profile and 𝑘@ varies from 2.5 for 
conventional elongated, single null, low-triangularity plasmas to 𝑘@ = 4 for high-triangularity 
double-null plasmas. In spherical tokamaks, the value can be much higher (Sabbagh 2006). The  
ℓM 	dependence is consistent with results from an analytical ideal ballooning β-limit study (Lao 
1992), and a numerical study of the n=1 ideal kink β-limit (Howl 1992). 

	 	Ideal linear MHD stability and Energy Principle	
In the ideal case, the equations have special properties that lead to efficient numerical calculation 
schemes, the most important of which is the ideal MHD energy principle for linear stability against 
small departures from equilibrium.  Assuming an ideal equilibrium without flows	𝕧3 = 0	and a 
scalar pressure, the dynamic quantities can be linearized in the small perturbation:	𝑃(𝕩, 𝑡) =
	𝑃3(𝕩) + 	𝑃(𝕩, 𝑡);	 𝕛(𝕩, 𝑡) = 	 𝕛3(𝕩) +	𝕛*(𝕩, 𝑡);	 and	 𝔹(𝕩, 𝑡) = 	𝔹3(𝕩) +	𝔹*(𝕩, 𝑡),	 with each 
perturbed quantity assumed much smaller than the equilibrium term,	yielding an equation for the 
equilibrium and an equation describing the linear first-order force balance	

	    ∇𝑃+ = 𝕛+ × 𝔹+ = 41 𝜇+/ 6(∇ × 𝔹+) × 𝔹+,  (43) 

	 	 	 	 𝜌+ :
,𝕧"
,.
; +	∇𝑃/ = 𝕛/ × 𝔹+ + 𝕛+ × 𝔹/.   (44) 

From here, in order to simplify the subsequent notation, we write 𝔹 = 𝔹3,	and	𝛿𝔹c = 𝔹*	and 
similarly for 	𝕛 = 𝕛3		and	𝛿𝕛c = 𝕛*.		The ideal MHD frozen flux relation becomes a relation 
between the perturbed field	𝛿𝔹c	and fluid displacement	𝜉;	

	 	 	 	 	 𝛿𝔹0 = ∇ × (𝜉 × 𝔹).	 	 	  (45)	

𝜉 × 𝔹 is the perturbed vector potential.  After some algebra, one finds an equation of motion for 
the small displacement 𝜉(𝕩, 𝑡) and perturbed velocity 𝕧*(𝕩, 𝑡) ≡ 𝜉̇(𝕩, 𝑡); 

     𝜌3𝜉̈(𝕩, 𝑡) = 𝔉?𝜉(𝕩, 𝑡)@,   (46) 

with 𝔉(𝜉) a linear operator on 𝜉:  𝔉(𝜉) ≡ 𝔽(𝕩) ∙ 𝜉; 

𝔉(𝜉) ≡ 𝔽(𝕩) ∙ 𝜉 ≡ P *
1%
Q �P?∇ × 𝛿𝔹c@ × 𝔹Q + P(∇ × 𝔹) × 𝛿𝔹cQ� +	∇(𝜉 ∙ ∇𝑃 + 𝛾𝑃∇ ∙ 𝜉).  (47) 

𝔽(𝕩) is known as the (linearized) force operator. The solutions to 𝜉(𝕩, 𝑡)  must be temporally 
exponential,  𝜉(𝕩, 𝑡) ≡ 	𝜉(𝕩)𝑒Me=, leading to an eigenvalue equation for the spatial variation of the 
displacement, 𝜉(𝕩) and its eigenvalue 𝜔%; 

     𝜌39*𝔽(𝕩) ∙ 𝜉(𝕩) = −𝜔%𝜉(𝕩).   (48) 

Note that  𝜉1 ∙ 𝔽 ∙ 𝜉 = 𝔉(𝜉) ∙ 𝜉1 represents the work done by the infinitesimal force 𝔉(𝜉) against the 
infinitesimal displacement 𝜉.   

Boundary conditions need to be applied by specifying the displacement of the plasma boundary.  
For a plasma surrounded by a vacuum region and possibly a conducting wall outside, this is not 
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explicitly known.  Boundary conditions can be set, however, by solving simultaneously for 𝛿𝔹c 
and 𝜉(𝕩) and the ideal frozen flux relation linking them, and solving for the perturbed vacuum 
field, 𝛿𝔹f, in the annulus between the plasma and the wall. 

     ∇ × 	𝛿𝔹f = ∇ ∙ 𝔹f = 0,   (49) 

which is most easily solved in terms of a magnetic potential, 𝛿𝔹f = ∇Φ; 

      ∇%Φ = 0.    (50)   

An appropriate magnetic boundary condition for a conducting wall, or for a wall at infinity can 
then be applied; 

      𝕟D ∙ ∇Φ|2 = 0.    (51) 

The perturbed fields must then be matched across the plasma boundary.  This condition is 
complicated since they must be matched across the perturbed boundary;  

      𝕟D ∙ 𝛿𝔹0H03 = 𝕟D ∙ ∇Φ|03.  (52) 

The matrix 𝔽(𝕩) is self-adjoint (or Hermitian);  𝜉1 ∙ 𝔽 ∙ 𝜉 = 𝜉 ∙ 𝔽 ∙ 𝜉1. 

The Hermitian property provides a number of computational advantages (Bernstein 1957).  
Notably, the eigenvalues −𝜔4 are purely real.  Thus, the solutions are either purely growing or 
damped or are purely oscillatory.  The Hermitian property also means one can conveniently 
reformulate the dynamic problem as a variational problem.  Pre-multiplying the equation of motion 
in the plasma by the adjoint, 𝜉1 , and integrating over all space, one obtains a variational principle 
(Bernstein 1957).  Application of physically relevant boundary conditions in the variational 
formulation is non-trivial.  This is solved by deriving an extended form of the energy principle in 
which conditions across the plasma vacuum interface, Eq. (52), above are automatically satisfied 
by the variational solutions.  Formulated as a statement of conservation of energy, the extended 
form of the energy principle is; 

     	𝛿𝑊 − 𝜔4𝛿𝐾 = 0,    (53) 

   𝛿𝑊4𝜉, 𝜉1, 𝛿𝔹3 , 𝛿𝔹3
16 ≡ 	𝛿𝑊04𝜉, 𝜉16 + 	𝛿𝑊34𝛿𝔹3 , 𝛿𝔹3

16, (54) 

   𝛿𝐾4𝜉, 𝜉16 ≡ 1
2/ ∫ 𝜌+(𝕩)	4𝜉1 ∙ 𝜉6

	
0 𝑑6𝕩,    (55) 

   𝛿𝑊04𝜉, 𝜉16 ≡ 1
2𝜇+/ ∫ 4𝜉1 ∙ 𝔽(𝕩) ∙ 𝜉6	

0 𝑑6𝕩,   (56) 

   𝛿𝑊34𝛿𝔹3 , 𝛿𝔹3
16 ≡ 1

2𝜇+/ ∫ 4𝛿𝔹3
1 ∙ 𝛿𝔹36

	
0 𝑑6𝕩.   (57) 

𝛿𝑊3 is the vacuum energy contribution from perturbing the plasma boundary. The integrals 𝛿𝐾 and 
𝛿𝑊0 are over the plasma volume, and 𝛿𝑊3 is over the annular vacuum region.  𝛿𝑊 represents the 
total potential energy and 𝛿𝐾 is the kinetic energy of the perturbing motion. Then 𝛿𝑊0 is the plasma 
potential energy. The energy principle states that if a physically permissible displacement 𝜉 can be 
found such that 𝛿𝑊4𝜉, 𝜉16 > 0, then the plasma is unstable. The energy principle can therefore be 
used in a trial function approach. Finding a physically permissible trial function, 𝜉3, for which 
𝛿𝑊?𝜉3, 𝜉3

g@ > 0, thus guarantees instability.  Note, however, that the trial function is not 
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necessarily the instability that would appear.  The variational principle only implies that this or 
another more unstable mode will be destabilized. 
Substituting for 𝔽(𝕩), the Extended MHD Principle potential energy becomes after some algebra: 

 𝛿𝑊0 =
/
4∭P𝛿𝔹0

4

𝜇+Q − 𝜉7∗ ∙ 4𝕛 × 𝛿𝔹06 + (𝜉7∙∇𝑃)∇ ∙ 𝜉7∗ + 𝛾𝑃|∇ ∙ 𝜉|4S 𝑑6𝕩 . (58) 

The integral in 𝛿𝑊0 is over the plasma and the condition applied is simply that 𝛿𝔹0 = 𝛿𝔹3 at the 
plasma vacuum interface. The terms in 𝛿𝑊0 can be interpreted physically.  The first term in 𝛿𝑊0 
represents the energy required to bend the field lines.  It is always stabilizing – it takes energy 
input to create this; it is the energy in the perturbed field.  The second term, 𝜉7∗ ∙ 4𝕛 × 𝛿𝔹06 is the 
destabilization from the current density.  The third term is the pressure drive through 𝜉7∙∇𝑃.  The 
final term represents the energy associated with plasma compression.  𝛿𝑊0 can be rewritten in the 
alternative form; 

𝛿𝑊0 =
/
4∭P𝛿𝔹7

4
𝜇+/ + :𝔹

4
𝜇+/ ; |∇ ∙ 𝜉7 + 2𝜉7 ∙ 𝜅|4 − U

𝕛∥
𝔹/ U (𝜉7∗ × 𝔹). 𝛿𝔹7 − 2(𝜉7∙∇𝑃)(𝜉7∗ ∙ 𝜅) +

																																															𝛾𝑃|∇ ∙ 𝜉|4S 𝑑6𝕩	.      (59) 

This shows more clearly the physical meaning of the terms.  The first represents the energy 
required to bend field lines.  The second corresponds to the energy involved in compression of the 
field.  The third and fourth terms are respectively the destabilization from current driven modes, 
proportional to H𝕛∥ 𝔹⁄ H and ∇𝑃, respectively.  The last term, again is the energy from the fluid 
compression. 

The MHD model works extremely well in most situations.  In particular, the plasma cross section 
shape is easily included, at least in numerical calculations as boundary conditions, thus fully 
capturing the most basic zeroth order effect. MHD is now recognized as an indispensable guide to 
any design efforts. 

	 	Pressure effects 

Plasma equilibrium pressure is mostly destabilizing for MHD modes. Associated with the 
destabilization is the free energy contained in the pressure gradient. This is evident from the ideal 
MHD energy principle, where the term –(𝜉U ⋅ ∇𝑃)(𝜉U∗ ⋅ 𝜅) from Eq. (59), integrated over the 
plasma volume, can be negative and thus provides destabilization. This is the drive term for the 
ballooning and interchange instabilities. Both the pressure gradient and the global or local value 
of the pressure amplitude, when exceeding certain critical values, trigger MHD instabilities. Below 
are important examples. The pressure driven ideal external kink mode becomes unstable when the 
(global) plasma pressure (often measured in a normalized manner i.e.,	bT/[Ip/(aBT)])	exceeds the 
Troyon limit (Troyon 1984)3. The ideal internal kink mode becomes unstable when the plasma 
pressure (often measured in poloidal beta value 𝛽c) exceeds the Bussac limit (Bussac 1975). The 
infernal mode becomes unstable when 𝛽c exceeds a critical value which linearly scales with Dq,	
which measures proximity of the global or local 𝑞OM5	value to a rational number. The NTM, which 
is generally a non-linear MHD mode, requires a seed island of finite size which scales with 𝛽c.	

	
3 Being a global instability, the external kink mode is not sensitive to the local pressure gradient, but is still driven by 
the “global” pressure gradient which is often measured by the so-called pressure peaking factor.   
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Besides these direct drives, equilibrium plasma pressure gradient also induces bootstrap optimized4 
which in turn can drive MHD instabilities. 
The plasma equilibrium pressure (or pressure gradient) can also be stabilizing for certain MHD 
modes. The most prominent example is probably the second ballooning stability regime, which is 
largely due to the large Shafranov shift induced field line compressing at the low-field side of the 
plasma, where the ballooning mode is typically located due to unfavorable magnetic curvature. In 
a tokamak plasma, the interchange index 𝐷+ 	can be negative and scales with the local equilibrium 
pressure gradient at the mode rational surface. This leads to tearing mode stabilization from the 
favorable average curvature effect (Glasser 1975). 

 Current effects  
Plasma equilibrium current is often a major driving force for MHD instabilities in a tokamak 
plasma. Being a large quantity in a tokamak, the plasma current can easily offer free energy if the 
current density profile is not well optimized5.  In terms of the MHD energy principle, the current 
drive term is associated with the plasma volume integral of	− *

%
�𝕛∥ 𝔹⁄ �?𝜉⊥

∗ × 𝔹@. 𝛿𝔹⊥	term from Eq. 
(59), i.e., the primary drive is due to the equilibrium parallel current j||. 	In MHD theory, the current 
drive often manifests in the value of safety factor q, which is roughly inversely proportional to the 
toroidal current integrated over a plasma volume enclosed by the given magnetic flux surface as 
shown in Eq. (1). Therefore, many current driven MHD instabilities are controlled by the safety 
factor q. Below is a list of important MHD modes that are at least partly driven by the plasma 
current. 
The most important current driven MHD mode is the n=1 ideal EK, which becomes unstable when 
the edge safety factor drops below 2 in a tokamak plasma6. This results in the ideal external kink 
instability which usually leads to plasma disruption. It is difficult to overcome this stability limit 
but partial success has been achieved in recent experiments via active control of this instability 
(Hanson 2014, Piovesan 2014). A less severe, but often observed current driven instability is the 
IK mode, which can be unstable when the core safety factor q drops below 1. This is often 
manifested as the sawtooth instability in experiments. At higher values of edge q close to a low 
order rational number, the edge localized kink-peeling mode can be unstable. Similarly, if the 
safety factor profile is non-monotonic along the plasma minor radius and 𝑞OM5  (the minimum q 
value) is close to a low order rational number, an unstable infernal mode can occur7. Finally, the 
plasma current density profile, alone or in combination with the plasma pressure, determines the 
tearing-mode index ∆Y  (Glasser 1975) from the ideal region, which directly affects the tearing 
mode instability.  The plasma current density profile is also directly related to the magnetic shear. 
A strong (positive) magnetic shear is generally stabilizing for most of MHD modes8. 

	
4 The bootstrap current is a toroidal current driven by non-ideal effects by the temperature and density gradients.  It 
arises from trapped particle effects. 
5 We note that large plasma current offers good energy confinement in tokamak plasmas. 
6 The edge safety factor is measured in terms of the edge  𝑞𝑠 for a limiter plasma, and is often measured in terms of 
𝑞95 (q at normalized 𝜓 = 0.95) for a divertor plasma.  
7 More precisely, a finite pressure gradient is also required to drive the instability. The infernal mode can therefore be 
regarded as a MHD instability driven by both plasma current and pressure.  
8 Negative magnetic shear (which occurs in plasmas with non-monotonic q-profiles) can stabilize tearing mode.  
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	 Resistivity effects  
Many ideal MHD instabilities have resistive counterparts. Typically, the most interesting situation 
is that the ideal branch is stable within certain parameter space, but taking into account the finite 
plasma resistivity qualitatively changes the picture by rendering the mode unstable, resulting in a 
resistive instability. Prominent examples are the tearing mode, the resistive interchange, the 
resistive internal kink, and the resistive external kink mode. Of course, the plasma resistivity also 
modifies (mostly enhances) the growth rate of an unstable ideal counterpart and the degree depends 
on the corresponding ideal instability9.   

Within the MHD theory, the key physics associated with the plasma resistivity is that the ideal 
frozen-flux constraint is not valid. The plasma displacement and the magnetic field perturbation 
can evolve separately10,  creating additional freedom for the plasma motion and for the perturbation 
to grow. This is the fundamental mechanism for the destabilization of the resistive instability when 
the ideal counterpart is stable.    
On the other hand, there are also cases where the plasma resistivity plays a stabilizing role by 
dissipating free MHD energy via the resistive layer. One example is the fishbone instability, which 
is stabilized by finite plasma resistivity (Biglari 1986, Wu 2018). Another example is the resistive-
plasma resistive-wall mode (RPRWM), where the global ideal MHD instability resistive-wall 
mode (RWM) couples to the tearing mode localized near a rational surface. The favorable average 
curvature stabilization of the tearing component within the resistive layer helps to stabilize the 
RPRWM (He 2014). This mechanism applies when the coupling between the ideal and the resistive 
components is strong.  
The TM is probably the most studied resistive instability (Glasser 1975, Hegna 1994). Both linear 
and non-linear theories are well developed. Several approaches have been established to study 
resistive instabilities, including the asymptotic matching, typically employed in analytic theory but 
also be useful in numerical codes. 
	 Effects of plasma toroidal flow  

Equilibrium toroidal plasma flow, as well as flow shear can affect MHD instabilities11. The 
stabilization mechanism varies depending on the type of MHD mode. First, for the effect purely 
from the flow amplitude, imagine a flow that is uniform along the plasma minor radius. For many 
localized MHD modes, this uniform flow merely introduces a Doppler shift to the mode frequency 
(a change of reference from the laboratory frame to the rotating plasma frame), without modifying 
the mode growth rate. This may, however, be different for more global (in terms of plasma 
displacement) MHD modes. Two important examples are the RWM and the internal kink (IK) 
modes. The RWM does not rotate with the plasma and therefore is subject to continuum wave 

	
9 For instance, the plasma resistivity typically has very minor effect on an ideal external kink mode which grows at 
the Alfvenic time scale. 
10 As a consequence, the magnetic topology is allowed to change near a mode rational surface, resulting in magnetic 
islands. 
11 Plasma poloidal flow can in principle also affect MHD instabilities such as the RWM, but this is often not a 
significant concern, because poloidal flow is often slow in a tokamak plasma due to neoclassical damping. Parallel 
plasma flow (along magnetic field lines) typically does not have significant effect on the MHD instability (Xia 2019). 
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damping due to plasma flow. The IK is subject to a gyroscopic stabilization when the Mach number 
reaches a value comparable to the inverse aspect ratio.  
On the other hand, flow shear typically destabilizes macroscopic MHD modes (unlike microscopic 
instabilities for which flow shear often plays a stabilizing role). The fundamental destabilization 
physics originates from the Kelvin-Helmholtz mechanism, where two adjacent fluid elements 
flowing at different velocities develop an unstable motion that eventually leads to turbulent flow. 
Flow shear destabilization has been found for many MHD modes, such as the RWM and the IK. 

On the other hand, flow shear may help to stabilize certain MHD modes. One example is the 
observed 3/2 NTM island reduction from plasma flow in DIII-D experiments (La Haye 2009.  
Reduction of the tearing instability index by plasma flow shear was proposed as an explanation, 
and experimentally, the mode is observed to grow when the rotation is reduced (Politzer 2008, 
Solomon 2013). Differential flow also helps to stabilize the double tearing mode (Dewar 1993), 
by decoupling the two rational surfaces.  

 Energetic-particle effects  

Energic particles (EPs), although a minority particle species in fusion plasmas in terms of particle 
number density, often play important roles in MHD instabilities. There are two main reasons for 
this. (i) EPs have much higher energy than the background particle species, so that the EP pressure, 
which is the product of the particle density and temperature, can sometimes contribute a significant 
fraction to the total plasma equilibrium pressure12. This modification of equilibrium pressure due 
to EPs changes the MHD stability behavior of pressure driven modes. (ii) EPs can also directly 
interact with MHD perturbations and thus modifying the instability and even triggering new 
instabilities.  
There are two key physics mechanisms involved in the direct interaction between EPs and MHD 
modes. One is the wave-particle Landau resonance13, where certain frequencies associated with 
the EP motion match the frequency of the MHD perturbation. Free energy transfer between EPs 
and the MHD mode then ensues. The direction of the energy transfer, which determines whether 
the MHD mode is stabilized or destabilized, depends on many factors. The other physics 
mechanism is associated with trapped EPs, whose bounce motion forms a banana orbit that rotates 
along the toroidal angle of a tokamak. This toroidal motion of the banana orbit tends to conserve 
the vertical flux enclosed by the center line of the banana (Northop 1963). If the toroidal rotation 
frequency of the banana orbit is faster than the perturbation frequency, the mode can be stabilized.  

Examples of EP stabilization of MHD modes include the internal kink (Porcelli 1991, Graves 
2004), the RWM (Chapman 2009, Liu 2010), and the TM and NTM (Hegna 1989, Cai 2011)14. 
Examples of EP triggering of MHD instabilities include the fishbone (Chen 1984, Coppi 1986), e-
fishbone (Wong 2000), Alfven eigenmodes (Fu 1989), and energetic particle modes (Chen 1994).  

	
12 As an example, fusion born alphas contribute more than 20% to the total pressure in an ITER advanced plasma 
scenario (Liu 2010). 
13 MHD modes can often be treated as (stable or unstable) waves. Wave-particle Landau resonances are used in many 
contexts in fusion devices. An important application is plasma heating by launching radial waves with frequency 
matching the cyclotron frequency of thermal ions or electrons. 
14 TM/NTM stabilization by EPs may involve either direct interaction (Hegna 1989) or another, indirect way where 
EPs modify the external tearing index (Liu 2012). 
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Principal MHD instabilities 
 Overview 
MHD instabilities are generally driven by a combination of electromagnetic and thermodynamic 
forces.  The basic equilibrium relation Eq. (33)  ∇𝑃 = 	𝕛 × 𝔹 describes the balance of these forces.  
Normally, instabilities are categorized as being either ‘current-driven’ or ‘pressure-driven’ 
depending on what is considered to be the major drive.  For example, at zero pressure, the 
instabilities are naturally considered as ‘current-driven’.  Onset criteria can be obtained in this 
limit.  With pressure, instabilities that arise when the current driven mode onset criteria are not 
satisfied are then usually considered as pressure-driven.  This categorization works quite well in 
most cases since there are features in the mode structure that correspond to the distinction. 
Within this categorization, a number of other labels are applied to various MHD instabilities.  Early 
in the history of MHD, the first instabilities studied were called kink, flute, and sausage modes. 
The label ‘kink’ or ‘External kink’ is largely synonymous with ‘current driven kink’.  These are 
driven by a current density gradient or jump at the edge.  Flute modes are an alternative term for 
pressure driven interchange modes.  The sausage instability corresponds to pressure driven modes 
with poloidal mode number 𝑚 = 0.  Peeling modes are a subcategory of the external kink, 
corresponding to toroidal mode numbers 𝑛 > 1. 
 

Fig. 3. Sketch of eigenmode structure, in terms of radial plasma displacement, for typical MHD 
instabilities: (a) internal kink (IK), (b) external kink (EK), (c) peeling mode (PM), (d) ballooning mode 
(BM), (e) infernal mode (IF), (f) tearing mode (TM), (g) interchange mode (IC). 
 
Ballooning modes are pressure driven.  Normally the label is applied to the high-𝑛 version but 
pressure driven modes at intermediate and low n all have the characteristic ‘ballooning structure’ 
with a large coherent motion on the outboard side as field lines interchange locally there.  
Interchange modes are simply ballooning modes in the low shear limit where the interchange is 
global along the field line.  Infernal modes, similarly refer to localized instabilities destabilized by 
a large pressure gradient in a locally low shear region.  Bear in mind that these labels are really 
only valid in certain limits; most instabilities in real plasmas are a mixture of different features. 
The peeling-ballooning modes understood to be responsible for ELMs are a prime example of 
instabilities that defy characterization as either current driven or pressure driven (Snyder 2002).  
Both the pressure and current-density gradients are important drivers.  The internal kink, 
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responsible for the sawtooth phenomenon in tokamaks is another example.  In a torus, the ideal 
internal kink is stable at zero pressure (Bussac 1975), but has a very low 𝛽 limit.  The 𝛽 limit also 
vanishes if the wall is removed (Turnbull 1989).  

Axisymmetric modes are the ideal 𝑛 = 0 instabilities.  These are essentially current-driven in the 
sense that they are largely independent of the pressure and depend only on the gross features of 
the current profile.  For a circular cross section, this mode is stable.  In an elongated tokamak, the 
mode is a vertical shift (𝑚 = ±1). 
For non-ideal modes, resistivity is an important driver of instabilities.  Resistivity allows rational 
closed field lines to break and reconnect with a different topology. Two different modes can form 
corresponding to two different parities. An external kink can result when two adjacent flux surfaces 
interchange position by breaking and reconnecting.  This is the resistive version of the ideal kink 
mode.  Alternatively, the closed rational surface can split with the two parts moving apart and 
opening up a magnetic island.  The tearing apart of the surface provides the name ‘tearing mode’.  
This mode has no counterpart in ideal MHD. Figure 3 shows how various MHD instabilities 
qualitatively look like, in terms of the radial distortion of the plasma caused by the instabilities. 
 

 
Fig. 4. Regions in parameter space of different modes in the 𝑞3 , 𝑞4 parameter space.  Here, 𝑞3 
and 𝑞4 are the safety factor on axis and at the edge.   
Wesson identified the regions unstable to current driven modes in a model cylindrical plasma in 
the space of 𝑞3 and 𝑞4 𝑞3⁄  (Wesson 1978). Here, 𝑞3 and 𝑞4 are the safety factor on axis and at the 
edge. These are the most important parameters determining current-driven instabilities.   Figure 4 
is a corresponding ‘Wesson diagram’ replotted in terms of  𝑞3 and 𝑞4 for a generic strong Dee 
shape in toroidal geometry with a monotonic current density profile and zero 𝛽.  The boundary 
follows a generic stair-step pattern with steps at or near rational values of either 𝑞3 or 𝑞4.  Changes 
in the current profile shape for fixed 𝑞3 and 𝑞4 change the steepness of the staircase. Pressure tends 
to smear the boundaries. However, there is no stable range in particular for 𝑞4 < 2 for any current 
profile. Superimposed is the axisymmetric stability boundary and the general form of the stability 
limit against pressure driven kink modes for a fixed, finite 𝛽c.  The stable region is in the center.  
The slope of the axisymmetric boundary varies with ℓ*.  With increasing 𝛽c, the pressure driven 
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kink boundary dips to lower 𝑞4.  A generic ballooning stability boundary is also shown; again, the 
slope in this diagram varies with ℓ*,  also with 𝛽c. 

 Axisymmetric modes  
The axisymmetric instability is a vertical displacement of the plasma cross section in a vertical 
magnetic field.  The plasma consists of a toroidal current in a vertical magnetic field. One can 
imagine a rigid elliptical cross section like an egg being squeezed by the vertical field.  The shape 
of the egg diverts the lateral squeezing forces into a net vertical force and the egg slips rigidly in 
the field.  Stability is determined then by the shape of the egg relative to the vertical field.  With 
an elliptical cross section, the egg slips easily.  Image currents in the wall generated by Lenz’s 
Law, however, provide a stabilizing reaction force by opposing the fields generated by the vertical 
motion. 
For a circular cross section plasma, the current loop is stable to a vertical shift.  Essentially, for the 
plasma to slip up or down from its equilibrium position, it has to compress the external vertical 
field, requiring a source of energy.  However, an elongated elliptical plasma can slip vertically 
with less distortion of the vertical field.  For some elongation, the plasma becomes unstable to this 
motion and disrupts.  For a large aspect ratio ellipse, the eigenmode is the pure axisymmetric 
vertical shift characterized by toroidal mode number 𝑛 = 0 and an equal mix of poloidal mode 
numbers 𝑚 = ±1 with constant amplitude as a function of radius; 

    𝜉(𝑟, 𝜃, 𝜙) = 𝜉3?𝑒Mh + 𝑒9Mh@	~	𝜉3cos 𝜃.              (60) 

In a torus there is some deviation from this due to the 1/𝑅 dependence of the fields.  Additional 
𝑚 = ±3 components appear in a Dee shape and a stronger radial profile dependence of the 𝑚 = 1 
shift plus higher 𝑚 components appear with higher order shaping. 
In actual experiments, the instability is stabilized by a nearby surrounding conducting wall in 
which image currents are induced to oppose the magnetic field changes, preventing the perturbed 
flux from penetrating the wall (Lenz’s Law).  With finite resistivity, the image currents decay in a 
characteristic L/R time and requires active feedback to fully stabilize it.  The axisymmetric 
instability is well understood.  Calculations of the ideal eigenfunctions have been shown to match 
the measured boundary displacements.  In most cases, the observed open loop resistive wall growth 
rate can easily be fitted by simple plasma models assuming a rigid vertical displacement, sufficient 
for the feedback algorithms. 

 Internal kink, sawtooth, and fishbone  
The IK mode, with the toroidal mode number of n=1 and the poloidal mode number of m=1,15 is 
an instability predicted by ideal MHD theory in early stage of fusion research. However, some of 
the aspects associated with this mode, in particular the non-linear aspects and the interaction 
between this mode and energetic particles, are still active research areas.16  
From the MHD viewpoint, the primary driving mechanism for the IK instability is the free energy 
associated with the plasma current. More precisely, a critical condition for the mode instability is 
that the safety factor on the magnetic axis, q0, should be below 1. This condition is, however, not 

	
15 In a toroidal plasma, the n=1 internal kink mode, as a linear eigenmode, has many poloidal harmonics. The m=1 
harmonic is the dominant one. 
16 For recent research on the internal kink and sawteeth, see for example (Jardin 2020). 
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sufficient for an unstable IK. In a tokamak plasma, the IK becomes unstable only if the plasma 
pressure exceeds certain critical value. The mode growth rate g, within the MHD framework, is in 
fact proportional to (1 − 𝑞3)?𝛽cSi% − 𝛽c%@, where 𝛽cSi is the critical value typically below 0.4. This 
is the well-known Bussac criterion (Bussac 1975) for the IK instability. This criterion shows that 
the IK is also partly driven by the plasma pressure.  

Because the mode growth rate is proportional to (1 − 𝑞3) (provided that the Bussac pressure limit 
is exceeded), the IK instability strength depends critically on the proximity of the on-axis safety 
factor to unity. In typical tokamak discharges, the on-axis safety factor is not far from 1, resulting 
in an IK that is not far from the marginal stability. A weakly unstable IK is subject to a range of 
non-ideal effects beyond the ideal single-fluid MHD description. Important effects include the 
plasma diamagnetic stabilization17,  the plasma resistivity, the drift kinetic effects associated with 
plasma particles. On top of these non-ideal effects, the plasma equilibrium toroidal flow also 
affects the mode stability. In what follows, we briefly discuss each of these effects. 

A weakly unstable IK is often subject to strong diamagnetic stabilization in a tokamak plasma.  
This is because the typical mode growth rate in this case is comparable to the thermal ion 
diamagnetic frequency. The dispersion relation for the mode (complex) frequency 𝜔 satisfies  
[𝜔(𝜔M∗ − 𝜔)]3.k = −𝛿𝑊, where 𝜔M∗ is the thermal ion diamagnetic frequency and 𝛿𝑊 is the 
normalized perturbed potential energy.18 In the absence of the diamagnetic stabilization and for a 
purely growing IK mode, the mode growth rate scales linearly with the perturbed potential energy.  

Plasma toroidal flow can be either stabilizing or destabilizing to the IK. The fundamental physics 
mechanism for the flow stabilization of the IK is the so-called gyroscopic stabilization (Wahlberg 
2000), where the perturbation, which has a rigid structure, is stabilized by fast rotation. The 
required rotation speed for full stabilization of the mode has to be very large (a large fraction of 
sound speed). The flow shear, on the other hand, can destabilize the IK essentially due to the 
Kelvin-Helmholtz type of mechanism. Associated with toroidal flow are various inertial forces 
(centrifugal and Coriolis forces), which can be either stabilizing or destabilizing depending on the 
equilibrium profiles (Wu 2019).   

Non-linear evolution of the IK often manifests itself as the sawtooth phenomenon, which is 
observed in experiments. There are different theoretical models for sawteeth. The first and 
probably the most well-known model is the cold bubble model (Kadomtsev 1975), where full 
magnetic reconnection was assumed within the q=1 surface during the non-linear evolution.  

Lastly, drift kinetic effects, in particular those associated with toroidal precession of trapped 
energetic particles (EPs), can have significant influence on the IK stability and the sawteeth 
behavior.19  These effects are well summarized by the Porcelli model (Porcelli 1991), where three 
different criteria were proposed to judge the IK instability and the subsequent onset of sawteeth. 

	
17 The diamagnetic stabilization of IK is often referred to as the finite Larmor radius (FLR) effect in literature, since 
this effect eventually originates from the FLR of thermal ions. 
18 𝛿𝑊 here is normalized by the plasma inertia. As usual, 𝛿𝑊 < 0 indicates free potential energy that drives 
instability.  
19 Drift kinetic effects from thermal particles can also stabilize the IK (Hu 2006), although the effect is often not 
dramatic. 



	

	 22	

These Porcelli criteria have been successfully applied to interpret many experimental results in 
tokamak plasmas.  
Drift kinetic effects of EPs not only stabilize the IK, but can also drive a new type of instability 
called the fishbone mode (FB)20 (Chen 1984, Porcelli 1991). The fundamental physics here is the 
wave-particle Landau resonance, where an otherwise stable IK absorbs free energy from EPs, and 
thus becomes unstable. Since the mode is driven unstable by EP, the mode frequency matches that 
of the characteristic frequency of the drift motion of EPs. The most common case is again the 
toroidal precession of trapped EPs. Another drive is associated with diamagnetic rotation of EPs. 
Plasma resistivity often stabilizes the FB (Biglari 1986, Wu 2018) – an effect opposite to that for 
the IK. For the FB, the resistive layer dissipates the free energy. 
 EK/Resistive-wall modes (RWMs)  
There are two drive mechanisms for the external kink instability, the plasma pressure and the 
plasma current. The purely current driven EK mode has been studied since early on in fusion 
research (Shafranov 1970, Wesson 1978). A key milestone in realizing the importance of pressure 
effects was the discovery of the Troyon 𝛽 limit (Troyon 1984), showing that the maximal 
achievable normalized plasma pressure, before the discharge disrupts, scales in proportion to the 
normalized plasma current, as shown in Eq. (41).  

Plasma pressure is the most typical drive in present and future tokamak devices. This mechanism 
resembles the ballooning drive. In fact, the eigenmode associated with the pressure driven EK is 
typically localized at the outboard low-field side of the torus, similar to ballooning instability. This 
type of EK is therefore also often called kink-ballooning instability. An important distinction with 
the ballooning instability, however, is the toroidal mode number associated with the perturbation. 
The EK is the long wavelength global MHD instability along toroidal (and poloidal as well) angle, 
with the typical toroidal mode number of 𝑛	 = 	1 − 3, while the ballooning instability has typical 
toroidal mode numbers greater than 10.  

For the EK driven unstable in a low-pressure plasma by the plasma current, when the 𝑛𝑞4 value 
(in a limiter plasma) is just below an integer 𝑚, an instability results with toroidal mode number 
𝑛, and predominantly poloidal mode number 𝑚, which causes a large plasma displacement near 
the plasma edge.  For 𝑛 > 1 and 𝑚 > 	2, this instability is often called a kink-peeling mode. When 
the plasma current is sufficiently high in a limiter plasma that 𝑞4 is below 2 (Wesson 1978), this 
always triggers a strongly unstable 𝑛	 = 	1 EK which leads to plasma disruption if not suppressed.   
In a plasma with a divertor configuration, the edge safety factor is large (mathematically infinite 
at the separatrix). The associated large magnetic shear near the plasma edge can stabilize the 
resulting mode (Webster 2009). Despite the magnetic shear stabilization, a disruptive instability is 
still often observed in divertor experiments, when the safety factor at the 95% flux surface, 𝑞lk, 
approaches 2.0. This puzzle was recently resolved by invoking the effect from a steep edge plasma 
resistivity profile (Turnbull 2016). 
Independent of the drive mechanism, it has been found that the presence of an ideal conducting 
wall, located sufficiently close to the plasma, can stabilize the ideal EK instability up to a certain 
limit. In reality, the wall almost always has finite conductivity. This allows partial escape of the 

	
20 The word “fishbone” originates from the characteristic magnetic signals observed in experiments, which is actually 
a result of non-linear interaction between the instability and EPs.		
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perturbed radial magnetic field, at a time scale comparable to the eddy current decay time in the 
resistive wall. As a result, the EK again becomes unstable in the 𝑞4 or 𝑞lk parameter windows as 
described above, but now on a much longer time scale. This slowly growing instability is called 
the RWM (Chu 2010). Note that the resistivity here refers to that of the resistivity wall, not the 
plasma.21  

The eigenmode structure of the RWM still remains global, similar to that the EK.22 The mode 
growth rate is, however, significantly reduced as mentioned. This has several significant 
implications. (i) The presence of this residual instability means that the RWM can potentially still 
cause a serious disruption of the plasma.  (ii) The much lower growth rate, or in general much 
lower (complex) mode frequency, implies other physics beyond ideal MHD may play important 
roles. (iii) The much longer time scale of the RWM growth, in milliseconds or longer, also makes 
it practical to design an active control system to actively stabilize the mode.  

There exist several passive stabilization mechanisms for the RWM utilizing additional physics 
beyond ideal MHD. The first important effect is continuum resonance damping of the mode in a 
toroidally rotating plasma. Unlike many other MHD modes, the RWM, even in the linear regime, 
does not rotate with the plasma. A tokamak plasma typically rotates at a frequency of several 
percent of the Alfven frequency along the toroidal direction.23 The RWM, on the other hand, has 
a frequency that is of the same order of the much smaller inverse wall time; the RWM appears to 
be essentially “locked” to the resistive wall. The mode thus rotates in the plasma frame, opening 
the possibility of Landau resonances between the mode and various continuous waves (which 
rotate together with the plasma) in the plasma, such as the shear Alfven waves and sound waves 
(more precisely slow magneto-acoustic waves). Since these continuum waves are stable, they can 
tap free energy from the RWM through resonances, thus stabilizing the mode. Such a mechanism 
was discovered numerically in a seminal work by Bondeson (Bondeson 1994) and later 
analytically confirmed (Betti 1995).  
Numerical modeling finds that the above stabilization mechanism often requires a plasma toroidal 
rotation of several percent of Alfven frequency (Bondeson 1994, Chu 1995, La Haye 2004), in 
order to fully suppress the RWM in a tokamak plasma. Later experiments (Reimerdes 2007), where 
the plasma toroidal flow was intentionally kept slow by balanced neutral-beam injection, the RWM 
instability did not occur even when the plasma pressure exceeded the no-wall Troyon limit, 
contradicting theory predictions. The puzzle is resolved by evoking additional physics, namely 
drift kinetic theory (Hu 2004), where Landau resonances between the mode and the drift motion 
of plasma thermal particle species become important. Indeed, because the toroidal precessional 
drift frequency of trapped thermal particles (both ions and electrons) is typically very low (well 
below the thermal particle diamagnetic drift frequency), a strong resonance occurs if the RWM 
also happen to have small frequency in the plasma frame, which is the case when the plasma 
toroidal rotation is slow. Since then, precessional drift-kinetic stabilization of the RWM has been 

	
21 The resistive-plasma resistive-wall mode is another interesting topic that has been under extensive studies in recent 
years (Betti 1998, Finn 2006). 
22 Subtle differences in the mode structure for the resonant harmonics near the mode rational surfaces appear for the 
RWM in a toroidal plasma, which often do not play a significant role. 
23 There are many reasons for finite toroidal rotation, e.g., due to toroidal momentum source associated with tangential 
neutral-beam injection, the presence of intrinsic toroidal torque. 
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confirmed by extensive numerical modeling work (Liu 2008, Chapman 2009, Berkery 2010). The 
MHD-kinetic hybrid description of the RWM instability still remains an active research area.  

	 Resistive	interchange/TM/NTM/locked	modes		
The resistive interchange (RI) mode and the TM are the two most important spatially localized 
resistive instabilities. There are many interchange instabilities in fusion plasmas24, but those with 
finite toroidal mode number and poloidal mode number 𝑚 > 1 are most important Compared to 
the TM, the interchange mode has opposite parity. More specifically, if we define the mode parity 
by the associated radial plasma displacement25, the interchange mode has even parity (i.e., 
symmetric about the mode rational surface) and the TM has odd parity (i.e., anti-symmetric about 
the mode rational surface).  
Both instabilities are driven by finite plasma resistivity (assuming that the ideal counterparts are 
stable), by allowing a change in the magnetic topology near the rational surface. According to the 
Mercier criterion (Mercier 1960), the ideal interchange is unstable if a quantity	𝐷m = 𝐷+ + 8

"	 is 
positive. 𝐷+ 	is proportional to the equilibrium pressure gradient at the mode rational surface. 
However, the resistive interchange is unstable if 𝐷+ 	 is positive. An equilibrium with zero or 
negative 𝐷+, on the other hand, can be unstable to the TM.  Since the latter typically holds for a 
tokamak plasma, the RI mode is usually not as critical as the TM26. The following will therefore 
focus on the TM and its neoclassical counterpart, the NTM. 

The linear TM instability is often driven unstable by the plasma current profile. Because the mode 
displacement is strongly localized near a rational surface, the instability is often studied via a 
matching procedure, where the ideal MHD equations at marginal stability27 are solved and the 
solution is matched to that of the resistive MHD equations within a narrow layer around the rational 
surface. Typically, the perturbed radial field (or magnetic flux) is used to perform the matching 
procedure. The logarithmic derivative of the outer ideal solution experiences a jump across the 
mode rational surface. This jump, denoted as ∆Y,	characterizes the free energy associated with the 
equilibrium current density gradient that drives the TM unstable. The outer solutions are matched 
to the non-ideal solution obtained in a narrow inner layer around the rational surface to produce a 
continuous solution. In a pressure-less plasma, the matching condition yields a simple relation 
between the mode growth rate	𝛾	and	∆Y,: 𝐴𝛾k Z⁄ 𝜂9H Z⁄ = ∆Y,	with	𝜂	being the plasma resistivity and	
𝐴 > 0	a geometric factor. This dispersion relation implies that the TM is unstable whenever the 
tearing index D’	is positive, and that the mode growth rate scales as 𝛾~𝜂H k⁄ .	 

In an equilibrium with finite pressure (more precisely with finite negative 𝐷+), an important, so-
called favorable average curvature, effect becomes important and modifies the TM dispersion 
relation to a form	𝐴𝛾k Z⁄ 𝜂9H Z⁄ ?1 − 𝐵𝐷+𝛾9H %⁄ 𝜂* %⁄ 		@ = ∆Y,	where	𝐵 > 0	is now another geometric 
factor (Glasser 1975). This new physical effect, coming from the resistive layer solution, 
qualitatively changes the TM stability criterion. Then,	∆Y	has to be larger than a critical positive 

	
24 For instance, the so-called sausage instability in a Z-pinch can also be viewed as an interchange instability based 
on the fundamental drive mechanism. 
25 The parity of the perturbed radial field is opposite to that of the radial displacement due to the ideal MHD constraint.  
26 Even if a resistive interchange is unstable in a tokamak plasma, it can be easily stabilized by plasma rotation.  
27 This assumption is valid for the TM, because the mode frequency is several orders of magnitude smaller than the 
Alfven frequency. The latter is characteristic for the ideal region solution. 
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number, in order to ensure the TM instability. In other words, this average curvature effect plays 
a stabilizing role (thus “favorable”) to the TM instability. This is one of the key physics associated 
with the TM in a toroidal plasma28.	
Because of the strong radial localization of the instability, non-linear effects are important for the 
TM.  A critical consequence of a developing TM instability is the change of the magnetic topology 
near the mode rational surface, where a chain of magnetic islands with helical structure forms. 
Essentially all the non-linear effects are related to the local change of the plasma current in the 
presence of magnetic islands. The first non-linear effect was identified by Furth et al. (Furth 1963), 
leading to an algebraically (instead of exponentially) growing magnetic island. Later studies 
identified an important role played by the neoclassical effect associated with the bootstrap current 
(Qu 1985, Fitzpatrick 1995, Wilson 1996), that modifies the TM stability and results in the 
neoclassical tearing mode (NTM). The bootstrap current is stabilizing to the TM. If, however, a 
portion of the bootstrap current is missing in the presence of 3𝐷 magnetic islands29,  the stabilizing 
role is reduced and the NTM can be triggered. Note that all these effects involve the finite island 
size and are thus intrinsically non-linear, requiring a threshold in the island size30.  
The time evolution of the NTM islands is well described by the quasi-linear Modified Rutherford 
Equation (MRE), which includes these effects, but excludes nonlinear coupling to other toroidal 
mode components with different 𝑛. The other non-linear effect is the interplay between a growing 
island and the plasma toroidal rotation. This is important for a full understanding of locked modes 
(LMs), which correspond to the locking of an NTM to the wall. This is, in fact one of the major 
causes of plasma disruptions in experiments (besides VDE and EK discussed before). Mode 
locking, as well as NTM control, will be presented in a later section on MHD stability control.  

	 Toroidal	Alfven	eigenmodes31	

The Hermitian nature of ideal MHD implies that the squared frequency,	 𝜔%,	 which is the 
eigenvalue, is always real.  Stable modes correspond to those with non-negative	𝜔%.	 	 In the 
cylindrical approximation, it can be shown that the ideal MHD spectrum consists of a possible set 
of discrete or isolated unstable modes and a continuum of irregular modes on the stable side arising 
where the coefficient of the second order term in the eigenvalue equation vanishes.  These 
continuum modes are highly localized at the point where the coefficient vanishes and actually 
consist of two overlapping continua corresponding to sound waves and Alfven waves, 
respectively.  In the ideal limit, they have infinite energy but are regularized by non-ideal effects.  
On the unstable side, the eigenmodes correspond to the array of physical ideal MHD instabilities 
discussed above.  There can be a finite (or zero) number of unstable modes or a countably infinite 
number.  In the latter case, generally corresponding to violation of the local Mercier criterion, the 

	
28 Later studies found additional interesting layer physics that modify the TM dispersion relation, e.g., the large island 
correction that restores the 𝛾~𝜂9 :⁄ 	scaling at high resistivity value (Militello 2004), the cancellation effect (to the 
favorable curvature stabilization) due to anisotropic thermal transport (Lutjens 2001, Connor 2015).  
29 There can be different ways to change the bootstrap current, e.g., due to particle flattening of the plasma pressure 
profile inside the magnetic islands (Fitzpatrick 1995) or due to induced polarization current (Wilson 1996). 
30 There have been discussions on triggerless/seedless NTM which likely originates from a linearly unstable TM due 
to large and positive ∆<. 
31 See Chapter 12.08 of this encyclopedia by Gorelenkov and Sharapov for a detailed discussion on EP-driven MHD 
instabilities. 
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eigenvalues have an accumulation point at marginal stability.  The stable spectrum is shown in 
Fig. 5.  In ideal MHD the stable continuum modes of course are purely oscillatory and have no 
damping or drive, lying on the imaginary axis in	𝜔	space. In reality, they tend to be strongly 
damped by various non-ideal effects, most notably ion Landau damping. 

(a)       (b)   

	
Fig. 5. (a) The continuous spectrum formed from frequencies 𝜔%, at which the coefficient vanishes 
against radius for different 𝑚 and showing the TAE BAE and EAE gaps. (b) TAE mode structure 
consisting of coupled 𝑚 and 𝑚 + 1 components. 

This situation persists in toroidal geometry but with an important modification.  In the cylinder, 
there is a separate continuum for each poloidal mode number 𝑚.  In the torus, the equations for 
different 𝑚 are coupled and near the crossing points, degenerate perturbation theory applies and 
the curve crossings are replaced by the reconnected curves shown, leaving gaps in the frequency. 
This is shown in Fig. 5(a). Within the gaps, global regular eigenmodes appear in the Alfven 
continuum at isolated frequencies. These consist of coupled 𝑚 and 𝑚 + 1 components with a 
typical example shown in Fig. 5(b).  Again, in ideal MHD these are purely oscillatory modes with 
no damping.  However, the non-ideal damping of the irregular continuum modes is inversely 
proportional to the radial wavelength and is greatly weakened for this global mode.  In particular, 
when the gaps overlap across a wide radius, there is no radius at which this global mode interacts 
with or couples to a localized continuum mode and the damping becomes small.  Instead, these 
modes are relatively easily driven unstable. These are known as the toroidal Alfven modes (TAEs). 

The frequencies of typical TAE and other similar higher frequency global modes are generally 
sufficiently high that the damping rates are much smaller; 𝜔-\n ≫ 𝛾'?Oc~𝛾'iMfN.  In that case, 
the ideal estimate of the real frequency is generally sufficiently accurate and the drive and damping 
can be computed using the computed ideal mode.  The non-ideal effects simply add an additional 
imaginary part to 𝜔-\n → 𝜔-\n + 𝑖?𝛾'iMfN − 𝛾'?Oc@, corresponding to a growth or damping rate.   
For most situations this is a valid assumption.  In addition to the weakened ion Landau damping, 
several other non-ideal mechanisms dampen the TAE and other stable global modes.  The most 
important of these is the so-called ‘continuum damping’, which results when an open gap does not 
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extend all the way across the radius.  In that case, the TAE at one broad location couples directly 
to a continuum mode (irregular in ideal MHD), inheriting its large inherent ion Landau damping.  
Several kinetic effects provide additional damping sources but more important, result in a second 
global mode in the gap at higher frequency.  This is known as the Kinetic Toroidal Alfven 
Eigenmode (KTAE) and has no MHD counterpart.  The instability drive of most interest is from 
fast non-thermal ions via an inverse ion Landau process.  Such ions are typically present in current 
experiments as a result of external ion heating of the plasma by either neutral-beam injection or 
RF waves.  In future experiments, the concern is that energetic alpha particles from the fusion 
reaction would provide the drive. 
In the case of RF waves, the waves themselves can be designed to resonate at Alfven-like 
frequencies and used to probe the plasma.  When the external RF wave resonates with a stable 
MHD plasma wave as the frequency is varied, the width of the resonance peak provides a measure 
of the inverse of the damping rate of the mode.  This technique, called MHD Spectroscopy, has 
been used to study the stable Alfven continuum spectrum as well as low frequency marginally 
stabilized MHD kink modes. 

In addition to toroidicity, other geometric effects can couple the poloidal harmonics and break 
open new gaps in the continuum.  The most important of these are ellipticity and triangularity, 
with their corresponding global Ellipticity Alfven Eigenmode (EAE) and Triangularity Alfven 
Eigenmode.  With finite 𝛽, the Alfven continuum lifts off the marginal point 𝜔% = 0 leaving 
another gap below with width proportional to 𝛽/.  The gap is filled with sound wave continua.  
With respect to the discrete frequencies of these modes and their gaps, the effect of finite 𝛽 appears 
to raise them by an amount roughly proportional to 𝛽/.  However, relative to the gap, the global 
mode moves slightly down in frequency with increasing 𝛽c (Turnbull 1993). 

This lower gap is known as the Beta-induced Alfven Eigenmode (BAE) gap (Turnbull 1993).  
Early experiments searching for the TAE mode also found global Alfven-like modes within the 
BAE gap.  Numerical searching subsequently found global largely single harmonic modes sitting 
in this gap.  Theory is somewhat complicated for these modes since the usual assumptions of small 
coupling to the sound waves are not really valid (the numerical calculations included it).  The key 
physics in this mode is compressibility.  The gap and mode are associated with the energy required 
by a global Alfven wave to compress as it moves in the curved torus.  This is in contrast to a sound 
wave that propagates as an actual compressional wave.  Ignoring compressibility to eliminate the 
sound waves also eliminates the BAE physics.   

Several other Alfven eigenmodes were discovered in experiments that revealed so-called ‘chirping 
modes’, in which the observed frequency ‘chirped up’ until the mode disappeared or would be 
converted to a TAE mode.  Ideal stable modes associated with these were subsequently found in 
continuum gaps that resulted from these particular discharges having an off-axis reversal in the 
𝑞	profile.  Hence, they were called Reverse-shear Alfven Eigenmodes (RSAEs) (Kramer 2006). 
The gap was determined at any time by 𝑞OM5 which varied in time and explained the chirping 
behavior.  Intermittent behavior sometimes results from a periodic expulsion of the fast ions 
driving the mode unstable, thereby suddenly stabilizing it, and a reforming of the previous beam 
distribution and plasma conditions.  

 Edge localized modes (ELMs)  
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Edge localized modes (ELMs) are instabilities driven by the large edge pedestal pressure gradient 
and its associated bootstrap current in tokamak H-mode plasmas.  ELMs are generally divided into 
different types such as Type I-IV and “grassy” (Leonard 2014). Not all these types of ELMs are 
driven by macroscopic MHD modes32. The focus in the following discussion is on Type-I ELMs 
which have macroscopic MHD origin. More importantly, Type-I ELMs have been experimentally 
demonstrated to lead to unacceptable material erosion in future reactor-scale tokamaks by inducing 
thermal and particle fluxes onto the plasma facing components. 

Type-I ELMs can be explained by a model for edge localized modes as predominantly ideal 
instabilities with low to intermediate toroidal mode number.  This idea was around for some years 
(Turnbull 1986, Strait 1994b), and was proposed in later years on the basis of ideal MHD stability 
calculations for DIII-D discharges using a model for the pressure driven bootstrap current included 
in the equilibrium reconstruction and DIII-D ELM experiments (Zohm 1995, Ferron 2000, Lao 
2001, Snyder 2002).  This current produces a large current density peak near the edge of the plasma 
sufficient to destabilize low to intermediate n instabilities driven partly by that current density 
gradient (peeling mode component) and partly by the edge pressure gradient (ballooning mode 
component). The peeling-ballooning model has since been incorporated into a model known as the 
EPED model that combines the MHD peeling-ballooning stability limit with other non-MHD 
limits to predict the actual ELM onset (Snyder 2009, Snyder 2011). This was made possible by the 
development of the ELITE (Edge Localized Instabilities in Tokamak Experiments) edge stability 
code to efficiently compute intermediate to high n modes (Wilson 2002, Snyder 2002). 

The basic MHD instabilities behind Type I ELMs are known as peeling-ballooning modes. The 
external kink mode, when becoming unstable at relatively high edge safety factor (more precisely 
at high 𝑛𝑞lk), tends to localize near the plasma edge with a large kink component driven by the 
strong bootstrap current gradient, as well as a peeling component at the separatrix, and a low to 
intermediate n toroidal mode number. This is called kink-peeling mode or simply peeling mode. 
The other component of the Type I ELM is the ballooning mode, which is typically a short 
wavelength perturbation along both toroidal and poloidal angle, and is geometrically localized near 
the plasma outboard edge at the low field side33. The ballooning instability is driven by the plasma 
pressure, more precisely the large pressure gradient near the plasma edge. Since large pressure 
gradient often occurs in a H-mode plasma with large edge pedestal, the latter is the primary free 
energy source driving ballooning instability in a tokamak plasma.34 Because the ballooning mode 
is a high-n perturbation, the full MHD equations can be significantly reduced in order to efficiently 
but approximately describe this instability, by dropping higher order terms in 1/𝑛. A critical 
analytic development is discovery of the so-called ballooning representation (Connor1978), which 
allows a more natural (in physics sense) representation of the eigenmode structure and 
substantially facilitates theoretical (and often numerical as well) analysis of this mode. The 

	
32 For instance, type-III ELM is believed to be driven by micro-tearing mode (Snipes 1998). 
33 The ballooning mode is described as local instability here in a relative sense. Sometimes, the mode with finite (but 
large n) is referred to as non-local, in comparison to the infinite-n ballooning mode which is localized on magnetic 
flux surfaces. 
34 With further increase of the plasma pressure, the ballooning mode can enter into a second stability regime (Greene 
1981). This is primarily because higher pressure increases the Shafranov shift and compresses the equilibrium 
magnetic field lines in the low field side of a tokamak plasma, which is stabilizing for MHD instabilities.  
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extension of the ballooning formalism to higher order in 1/𝑛 enabled development of the ELITE 
code (Wilson 2002, Snyder 2002). 
The ballooning mode is also subject to many physics effects beyond the single-fluid ideal MHD 
description (Connor 1988). The most important one among these effects is the diamagnetic 
stabilization of the mode (Rogers 1999, Hastie 2000, Snyder 2011). Based on understanding of 
both the ideal and non-ideal physics, a theoretical model - the EPED model (Snyder 2009, Snyder 
2011) - has been developed to predict the plasma pedestal conditions for onset of Type I ELMs. 
The key idea of the model is the realization that the pedestal structure – both the height and width 
– can be constrained by two modes in a tokamak H-mode plasma. One is the peeling-ballooning 
constraint and the other constraint is due to a more localized, transport type of instability such as 
the kinetic ballooning mode. These two modes constrain the pedestal height and width following 
two different scaling curves, and their intersection indicates what is realizable in experiments. The 
EPED model has been successfully applied to a range of tokamak experiments (Snyder 2011). In 
addition, the model predicted the existence of, and the access route to, a new high performance 
plasma regime called super-H mode that was subsequently realized in experiments (Solomon 2014, 
Snyder 2015, Solomon 2016, Hughes 2018, Snyder 2019, Knolker 2020). 

The EPED model reproduces the triggering mechanism of type I ELMs well (Snyder 2011). 
However, the ELMs observed experimentally represent a highly non-linear stage of the instability. 
For instance, the filamentary structure that is observed in experiments inside the plasma separatrix 
is no longer a linear ballooning instability. This is an ongoing area of theoretical research. 

Finally, there are ELM-stable regimes in tokamak plasmas. These ELM-stable regimes are 
favorable for tokamak operations due to their benign feature and thus minimizing bursts of heat 
and particle fluxes reaching the plasma facing components. The L-mode is ELM-stable but	is	not	
particularly	 attractive	 in	 terms	 of	 energy	 confinement.	 Staying	 within	 high	 confinement 
regime, the QH-mode (Burrell 2001, Burrell 2016) and I-mode (Whyte 2010) regimes are two 
promising candidates without ELMs. The former often has a saturated MHD instability (the so-
called Edge Harmonic Oscillation EHO) that helps to provide necessary transport in the pedestal 
region to avoid ELMs35. The latter does not require an edge pedestal in the plasma density, only 
pedestal in plasma temperature, which helps avoid ELM triggering but meanwhile maintains good 
particle and energy confinement. Furthermore, application of 3D magnetic perturbations near the 
plasma edge also helps to suppress ELMs and produces ELM-stable regimes (Evans 2004). Of 
particular recent interest is plasma with negative triangularity shape (Medvedev 2015, Ren 2016, 
Austin 2019, Kikuchi 2019), which can also provide an ELM-stable high confinement regime. 
Negative triangularity equilibria generally do not have favorable average magnetic curvature, 
resulting in strong ballooning instabilities that suppress the formation of an edge pedestal and 
hence in many cases the discharges remain in L-mode, with no ELMs, even at high power. 

Stable plasma response to external 3D fields  
Since plasmas consist of unbound free charges, the charges individually respond and the plasma 
collectively responds to applied external fields.  The predominant immediate response is 
electromagnetic and the MHD formalism captures this well.  In essence, the plasma responds by 

	
35 Recent studies also identified a QH-regime with wide pedestal and peculiar plasma edge flow condition, where no 
EHOs are needed to provide transport (Burrel 2016). 
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setting up Alfven waves that propagate through the system and re-establish local force balance 
everywhere forming a new 3𝐷 equilibrium state: 

   ∇ ∙ (ℙ + 𝛿ℙ) = 𝜇3?∇ × (𝔹 + 𝛿𝔹)@ × (𝔹 + 𝛿𝔹).  (61) 

This state generally has different transport properties from the original unperturbed state.  For 
example, topological changes, particularly the presence of open field lines, can modify transport 
dramatically.  Hence, following the MHD response, there is a longer term, transport response. 
The response of the plasma is important for understanding several related phenomena.  Early in 
tokamak fusion research, the phenomenon of locked modes plagued progress.  Depending on the 
density, a rotating tearing mode would arise and as it grew, slow the plasma, amplifying the growth 
further, until the plasma locked to an error field fixed with respect to the vessel wall and usually 
subsequently disrupted.  In studying resistive wall modes, near the stability limit it was observed 
that non-axisymmetric error fields were strongly amplified (Wang 2015). Third, in experiments 
designed to suppress ELMs, suppression was found but not by the mechanism expected.  The 
mechanism involves the plasma response but is still not fully explained. One robust indicator of 
ELM controllability appears to be the edge-peeling response of the plasma to the applied 3D fields 
(Liu 2016), valid for both mitigation (Liu 2011, Ryan 2015, Li 2016) and suppression (Paz-Soldan 
2015, Yang 2016).  

When an external field is applied, the most obvious response on a particle level is that, just as in 
any conductor, currents flow in the plasma to oppose the changes by excluding the field from 
penetrating the plasma.  Thus, the first response is for skin currents to flow in the edge.  These 
currents are singular on closed rational field lines that resonate with a harmonic of the perturbed 
normal field: when 𝑞 = 𝑚 𝑛⁄ , for a field harmonic 𝛿𝐵5,O(𝑟)𝑒M(Oh95oX), with a delta function 
radial dependence of the current density.  However, finite resistivity in the plasma implies these 
currents decay and, unless regenerated, the field slowly penetrates.  Effective regeneration of the 
currents can occur from plasma rotation.  In pioneering work, Fitzpatrick and coworkers 
(Fitzpatrick 1991, Fitzpatrick 1993, Fitzpatrick 1995) demonstrated that non MHD effects result 
in a complex nonlinear interaction between the rotation and the perturbing 3𝐷 field where the field 
slowly removes and dissipates rotational energy as it penetrates, slowing the rotation further, and 
enhancing the penetration.  The result is a bifurcation in the rotation, with two dynamically stable 
states, one at high rotation with little penetration and the other at low rotation, essentially locked 
in the laboratory frame, with a fully penetrated field. In between is an inaccessible dynamically 
unstable state.  The net result of this is that by applying an external 3𝐷 field, the plasma 
subsequently slows rotation and locks to the wall.  The plasma response at first expels the external 
field but subsequently incorporates it but in a locked stationary state. The response is a nonlinear 
dynamic response with suppression occurring first followed by a slow penetration depending on 
the resistivity and the plasma rotation. 

The second major component of the plasma response is generally an amplification.  This was first 
noted in numerical calculations of the linear MHD response where the expected suppression of 
specific field harmonics of the normal field component was observed at the respective rational 
surfaces but became finite again inside.  This was attributed to coupling of the poloidal harmonics: 
non-resonant harmonics penetrate beyond the rational surface and drive the suppressed component 
back up, amplifying it.  
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These two parts of the MHD response are, in fact, inseparable.  The total linearized response can 
be expressed as an expansion in the eigenfunctions of the linear eigenmodes of the ideal MHD 
operator 𝜕%𝜉 𝜕𝑡%⁄ − ℒ𝜉 = 0, so that 𝜉 = ∑ 𝑎6p

6:* 𝜉6, where  ℒ𝜉6 = 𝜆6𝜉6 = −𝜔6%𝜉6, with 𝜆6 being 
the eigenvalue and 𝜔6 the frequency. The eigenmodes 𝜉6 inherently include the suppression of the 
resonant field harmonics at the rational surfaces and amplification in their structure.  For ideal 
MHD, the eigenmodes of ℒ form a complete orthonormal basis so any possible ideal response can 
be expressed completely in the expansion. The non-ideal response, however, can have 
contributions not in the basis corresponding to tearing solutions. 
By applying an external RF field with different frequencies, the ideal MHD eigenmodes can be 
probed by measuring the response.  For this case, by substituting the expansion for the response 𝜉 
in terms of the 𝜉6 into the dynamic equation of motion for a driven perturbation, 𝜕%𝜉 𝜕𝑡%⁄ − ℒ𝜉 =
𝐴3𝑒Me%=, one finds 

    𝜉(𝑟, 𝑡) = ∑ [𝑎6 (𝜔6% − 𝜔3%)⁄ ]𝜉6(𝑟)p
6:* ,  (62a) 

    𝑎6 ≡ ∫𝜉(𝑟, 𝑡) 𝐴3𝑒Me%=𝑑H𝑟.    (62b) 

The response has a resonant denominator proportional to 𝜔6% − 𝜔3% that vanishes whenever the 
driving frequency 𝜔3 coincides with a characteristic frequency of the ideal system.  By measuring 
an aspect of the response as the frequency is varied, a series of peaks appears at these 
eigenfrequencies.  It can also be shown that the width in frequency of the peaks is inversely 
proportional to the (non-ideal) damping rate.  This procedure, dubbed ‘MHD spectroscopy’ 
(Reimerdes 2004) has been used in experiments to probe both the stable Alfven spectrum, 
identifying TAE and other Alfven eigenmodes, as well as marginally stabilized kink modes.  The 
technique seems likely to become more prominent in the future. 

The transport response follows from the changes in topology, edge conditions, and profiles due to 
the initial MHD response.  With no topological changes, the local transport coefficients can be 
different as a result of changes in local profiles.  When islands form, the transport is completely 
changed, not only from the island itself, but also because island formation necessitates formation 
of an associated local chaotic region.  In the chaotic regions, parallel transport becomes important 
and competitive with perpendicular transport.  Finally, when the field lines open and leave the 
plasma region, the global transport becomes a complex mixture of parallel and perpendicular 
transport, with various chaotic structures playing important roles. 

There are several characteristic transport effects that are typically observed. Foremost of these is 
the observed rotation drag discussed above.  The rotation screens the applied fields from 
penetrating the plasma, essentially by regenerating the screening currents formed at rational 
surfaces.  However, the fields themselves provide a back effect by slowing the rotation.  As the 
rotation slows, the fields are able to penetrate more easily and finally the rotation collapses to a 
new bifurcated locked state with fully penetrated field and decayed singular currents.  The second 
most important observed effect is the ‘pump-out’ effect.  The root cause of this is the formation of 
open field lines connecting the edge plasma layers to the exterior vacuum and material structures.  
Along with this pump-out effect is a generally observed reduction in core impurities.   

	 Numerical tools 
Many numerical tools have been developed for modeling MHD instabilities in fusion devices, and 
these tools can be classified in many different ways. We will pursue two ways of classifications 
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here for a list of well-known MHD codes, one is based on whether the code solves linear or non-
linear MHD equations, and the other is based on which physics are included into the codes. We 
emphasize that what we provide below is not a full list of MHD codes that have been developed 
and used by the MHD community. 

Many codes have been developed during the last forty years, that are capable of solving linear 
MHD equations in full toroidal geometry, and are well validated against experiments. Linear 
stability problem can always be solved as an eigenvalue problem. These codes are therefore mostly 
written as eigenvalue solvers, including PEST (Grimm 1976), ERATO (Gruber 1981), GATO 
(Bernard 1981), NOVA (Cheng 1987), MARS (Bondeson 1992), DCON (Glasser 1997), KINX 
(Degtyarev 1997), MISHKA (Mikhailovskii 1997), MARG2D (Tokuda 1999), MARS-F (Liu 
2000a), ELITE (Wilson 2002, Snyder 2007), AEGIS (Zheng 2006), MINERVA (Aiba 2009). 
Some of the codes were also developed into new versions with significant inclusion of drift kinetic 
effects, such as NOVA-K (Cheng 1992), MARS-K (Liu 2008), AEGIS-K (Zheng 2010). The non-
linear MHD codes include NIMROD (Glasser 1999, Sovinec 2004), M3D (Park 1999), M3D-C1 
(Ferraro 2009), JOREK (Huysmans 2007, Pamela 2020), BOUT (Xu 1998), BOUT++ (Dudson 
2009). There are also codes that solve quasi-linear MHD equations such as MARS-Q (Liu 2013).  

In terms of physics, several early codes solve ideal, single-fluid MHD equations, such as ERATO, 
GATO, NOVA, DCON. These are all linear codes. Because associated with ideal MHD is the 
energy principle which has the important Hermitian property, most of these ideal MHD codes were 
developed based on the ideal MHD energy principle (the energy approach)36. There are also linear 
MHD codes that solve resistive MHD equations. These are typically based on the normal mode 
eigenvalue approach, such as the MARS code. Codes that solve extended MHD equations 
(including two-fluid) are often non-linear codes, such as M3D-C1, NIMROD, JOREK, BOUT++, 
etc. Codes that solve hybrid MHD-kinetic equations include NOVA-K, M3D-K, MARS-K, 
AEGIS-K, NIMROD (a version with kinetic treatment of energetic particles). 
Principles of control for MHD instabilities  

Fusion gain can be expressed from the fusion power 𝑃! and input power 𝑃m as 𝑄 =
	𝑃! 𝑃m⁄ ~𝜏n 	𝛽∗	𝐵%~𝜏n 	𝑝<𝛽- 	𝐵%,where 𝜏n is the energy confinement time and the pressure profile 
peaking factor 𝑝< is defined as 𝑝<% ≡ < 𝑝% > < 𝑝 >%⁄ , and 𝛽∗ ≡ 𝑝<𝛽-.  Thus, 𝑄 can be increased 
by increasing 𝛽- and keeping all other factors constant. But, from the Troyon limit equation, Eqs. 
(41) and (42), 𝛽- is limited by stability. Hence, one needs to optimize 𝛽- ≲ 𝛽SiM= = 𝑘𝛽ℓM?	𝐼c 𝑎𝐵-⁄ @  
against all the important instabilities. A useful view can be reached by then rewriting the maximum 
fusion gain as (Lazarus 1997) 

   𝑄 = [(𝑅3%𝐵-%] × ¨𝑝<	𝑘𝛽ℓM (𝑆% 𝜅⁄ ) (𝐻% 𝑞4%⁄ )«.  (63) 

Here, 𝐻 is a confinement enhancement factor relative to H-mode (1 ≤ 𝐻 ≤ 2), and 𝑞4 is the 
boundary 𝑞, or for a divertor plasma, 𝑞lk. 𝑅3 = (𝑅O?J + 𝑅OM5)/2 is the average of the maximum 
and minimum of the major radius of the plasma boundary. The plasma shaping enters here directly 
in terms of the shaping factor 𝑆 = 𝑞4?	𝐼c 𝑎𝐵-⁄ @ and the elongation 𝜅.  The current profile 
dependence appears directly through the internal inductance parameter ℓM. 

	
36 Exception is the AEGIS code which is based on the shooting method.  There is also the SPEC code based on 
energy principle applied to multiple ideal regions coupled by special interface conditions. 
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The first factor enclosed in square brackets is a technological factor and a reactor has a direct cost 
roughly proportional to this factor. The rest contains quantities directly related to plasma physics. 
All but the confinement factor 𝐻 are stability related and can be increased by optimization with 
respect to pressure peaking, cross section shape, and safety factor.  The improvement in stability 
against pressure driven modes from cross section shaping is embodied largely in the factor 𝑆% 𝜅⁄ .  
𝑄 can be increased by simply increasing this factor, thereby increasing 	𝐼c (𝑎𝐵-)⁄  and hence 𝛽-.  
This reflects the fact that 𝑛	 > 	0 stability is improved by increasing 𝑆. However, 𝑆% 𝜅⁄   is limited 
by axisymmetric stability.  

Optimization from profiles is embodied in the factors 𝑝<	𝑘𝛽ℓM and 1 𝑞4%⁄ . The pressure profile 
peaking factor 𝑝< is limited by 𝑛	 > 	0 stability. There is also a synergistic dependence of the 𝛽- 
limit on cross section and profiles.  For high 𝑆, the limiting stable 𝑘= has an inverse dependence 
on 𝑝< and the product is generally optimized by low 𝑝<, whereas at low 𝑆, the dependence of 𝑘= 
on 𝑝< is weaker. The current profile factor ℓM is limited by 𝑛	 = 	0 stability. Stability to current 
driven modes provides a limit on how low 𝑞4 can be.  
 Advanced Tokamak Operation   

By optimizing against the second factor in the expression for 𝑄 above, essentially maximizing the 
𝛽- limit, 𝛽SiM=, a smaller, more compact tokamak with reduced major radius 𝑅3 and 𝐵- can match 
the performance of larger, high field machines by compensating the reduction.  Ultimately, this 
requires the stabilization of instabilities.  The Advanced Tokamak (AT) concept follows this route.  
Most AT approaches require some level of feedback.  Control of the profiles pushes the discharge 
into a state with higher stability limits and maintains it there.   
Control requires three key elements, namely sensors to detect deviations in the system state from 
the desired values, actuators to reposition the system toward the desired state, and control 
algorithms to convert the sensor signals to actuator commands.  In the fusion plasma context, the 
sensors are diagnostic techniques for measuring the required aspects of the plasma state. The 
actuators are the means of affecting the plasma, for example, external heating, current drive and 
fueling systems, as well as external fields used to reconfigure the equilibrium or induce a particular 
plasma response.  The control algorithms are essentially mathematical prescriptions, usually based 
on simplified (reduced) models for determining the actuator commands from diagnostic 
measurements. 
In an AT, control of the equilibrium profiles is an essential element.  This includes startup of the 
discharge, a steady state period, and a final shutdown.  In the startup and shutdown phases, the 
major issue in practice is maintaining MHD stability of the plasma.  In the steady state phase, the 
major issue is to optimize the profiles for high performance, while still avoiding MHD unstable 
states.  Evolutionary paths to this state need to be stable at each point. Active feedback control of 
incipient instabilities is also essential. Active feedback stabilization of the axisymmetric (vertical) 
instability is routine.  Typically, the plasma position (for example the current centroid) or a number 
of points on the plasma boundary, the iso-flux control points, are found and, if displaced from its 
target position or target boundary points, additional axisymmetric fields are used to reposition it 
(Ferron 1998, Huang 2020) by programming the currents in the external poloidal-field coils.  
Active stabilization of the non-axisymmetric RWM is similar in principal but requires a more 
complex set of sensors and applied field distribution (Liu 2000b, Liu 2004).  In practice, as 
discussed, sufficient plasma rotation passively stabilizes the RWM but the marginal RWM 
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amplifies error fields which then slow the rotation, leading to destabilization of the RWM.  In a 
reactor, active feedback stabilization of the RWM is likely required.  Control of intermittent 
instabilities such as sawteeth and ELMs typically take the approach of either mitigating their 
effects or avoiding them through control of the equilibrium profiles.   The other major control issue 
is the need to avoid and mitigate disruptions, which will be discussed in the next Section.   
MHD theory provides the basis for defining the algorithms used to relate diagnostic sensor 
measurements to actuator controls.  Typically, the algorithms use simplified models but these are 
often derived from full MHD predictions and are generally tested against them. 

 Control of MHD instabilities 

Sawteeth result in a transfer of the core energy inside the 𝑞 = 1 surface to the outside. They are 
normally relatively benign but if the q=1 radius is large and the core pressure high, an abnormally 
large amount of energy can be lost. This can happen in cases where the sawtooth period is very 
long, the so-called giant sawteeth, allowing a large amount of energy to build up in the core, 
followed by a large and fast crash that disturbs a large part of the cross section. These need to be 
avoided.  Note that, like ELMs, sawteeth can be beneficial by periodically expelling impurities 
from the fusing core.  Thus, means to avoid sawteeth are desirable.  Alternatively, it is in many 
cases advantageous to control the sawtooth rate, keeping it short.  Control options that have been 
considered involve controlling the radius of the 𝑞 = 1 surface.  Control using RF waves, 
particularly ECCD, ICCD has been considered to modify the current and pressure profiles around 
the 𝑞 = 1 surface and tried. Another option is to run in sawtooth free regimes.  This simply means 
controlling the profiles so that 𝑞 remains well above one, avoiding completely the 1/1 internal 
mode (ideal or resistive). This is the solution envisaged in the Advanced Tokamak concept. 
TMs born rotating with frequency near local plasma rotation and saturate at some amplitude.  But 
these islands slow the plasma rotation (Fitzpatrick 1991) and the plasma and mode lock.  At that 
point, the mode generally grows rapidly as wall stabilization is lost, and disrupts the plasma.  The 
mode typically locks in a fixed phase relationship with a pre-existing error field.  Threshold 
scalings have been obtained from experiments and can be used to avoid low and high-density 
locked modes.  The thresholds also depend on the pre-existing error field.  These modes can be 
partially controlled by maintaining the plasma rotation against the natural slowing that results from 
the incipient instability.  This entails feedback on the momentum input to the plasma. 
Control of NTMs has been demonstrated (La Haye 2002) using ECCD to replace the reduced 
bootstrap current that results from the reduced pressure gradient inside the islands.  A control 
scheme called ‘search and suppress’ has been developed whereby the island is detected and ECCD 
is directed using mirrors to locally be deposited in the island center. An alternative strategy under 
development is to modify the local current density using ECCD, essentially changing the local ∆Y.  
This can also be modified by applying additional helical fields.  For tearing modes that are 
destabilized by proximity to the ideal MHD 𝛽 limit (Brennan 2002), the modes are linearly 
unstable and ∆Y provides the major drive and this is the most promising strategy. 
Control of the RWM follows the same strategy as the routine stabilization of the axisymmetric 
mode. For that case, the technique has been in use routinely since the 1970’s and refined since the 
1990’s (Lazarus 1990, Ferron 1998, Liu 2000b, Strait 2015).  The ideal instability is slowed by a 
resistive wall from a growth time of the order of a plasma Alfven time 𝜏\~109q sec to the wall 
𝐿/𝑅 time – the time scale for stabilizing image currents to decay. The fields are then sensed and 
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growing fields suppressed by applying an opposing field.  In the non-axisymmetric case the major 
complication is the need for more sensors and actuators.   
ELM control falls into four major categories usually referred to as ELM-stable, ELM-free, ELM 
mitigation, or ELM suppression. The first refers to plasma configurations such as QH mode or I-
mode in which there are no ELMs. Control in this case is mostly concerned with maintaining the 
plasma operating conditions so that it stays in QH or I-mode. The second refers to plasma 
configurations for which the peeling-ballooning instability is suppressed for a long period.  
Typically, however, these are not stationary and an ELM finally appears that is larger than usual, 
similar to the situation with giant sawteeth.  Control in this case appears to require control of the 
equilibrium profiles to avoid the final instability.  ELM mitigation means changing conditions to 
replace the large Type-I ELMs by smaller, more frequent ELMs, either small Type I or Type II or 
Type III.  Suppression, in contrast, refers to removal by full stabilization of the Type-I ELMs. 
ELM-free regimes however, suffer from the problem that, without ELMs, impurities and density 
build up in the core.  ELMs do have a beneficial effect of removing core impurities, or helium ash 
in the case of a reactor.  Mitigation solves this problem.  Control of the ELM frequency in this 
case can be done using ELM pacing, with triggering by pellets (Lang 2004a, Baylor 2013), vertical 
kicks (Lang 2004b), applied non-axisymmetric fields (Canik 2010), or applied modulated non-
axisymmetric fields (Solomon 2012). On the other hand, ELM suppression regimes do not result 
in an impurity buildup.  These are obtained for certain plasma parameter regimes by applying non-
axisymmetric fields (Evans 2004).   

Disruption physics, prediction, prevention, and mitigation  
A critical issue in tokamak experiments is the occurrence of plasma disruption, where the 
discharges abruptly terminate with many undesirable consequences (ITER Physics Basis Editors  
1999b, Hender 2007). The causes of disruption are complicated and are not always fully 
understood. These can be grossly divided into MHD and non-MHD causes. We will mainly discuss 
the MHD causes here.37 

As described before, there are several macroscopic MHD instabilities that can cause plasma 
disruption. One is the external kink mode including the resistive wall mode. The current-driven 
external kink becomes very dangerous when the edge safety factor (𝑞4 for limiter plasmas and 𝑞lk 
for divertor plasmas) approaches the value of 2. The pressure-driven external kink can cause 
disruption when the Troyon limit is exceeded. The other important MHD cause is mode locking, 
which typically occurs when the 2/1 tearing mode becomes unstable and large magnetic islands 
are created which (at least locally) break the plasma toroidal rotation. 

A typical plasma disruption has two characteristic time scales, related to the thermal quench (TQ) 
and current quench (TQ). The first process, where the plasma thermal energy is rapidly lost, 
typically lasts a couple of milliseconds. This is a very fast process, likely involving many non-
linear MHD events. The TQ is followed by the much longer CQ phase, where the plasma current 
resistively decays and eventually vanishes (together with the magnetic energy stored in the 
plasma). The time scale of the CQ depends on tokamak devices and in particular on the poloidal 
cross-section area (ITER Physics Basis Editors 1999b, Hender 2007).  

	
37 Many non-MHD causes are often directly or indirectly related to MHD events, e.g., the presence of MHD 
precursors, the presence of large magnetic islands in the radiative cooling model that explains the plasma density limit 
induced disruption (Gates 2012). 
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There are two important consequences associated with plasma disruption. One is the 
electromagnetic force acting on the conducting structures surrounding the plasma, typically the 
vacuum vessel and the supporting structures. This force can be large during disruption and can 
potentially damage the PFCs and in-vessel structures. The other critical consequence is the 
generation of high-energy electrons with speed close to the light speed. These so-called runaway 
electrons can potentially melt the PFCs, and thus must to controlled in future reactor scale devices 
such as ITER.  

 Disruption prediction and avoidance  
As mentioned before, since disruption may have different origins, predicting plasma disruption is 
generally challenging. If a disruption is caused by MHD event, there are often magnetic precursors 
that can be employed, but the reliability is always an issue. Since about late 1990’s, methods based 
on artificial intelligence (AI) have been used for the purpose of disruption prediction in tokamak 
experiments (Wroblewski 1997), with significant progress being made during recent years (Kates 
2019). This approach requires a large operation database to train the AI algorithm (e.g., the neural 
network), before it can be used for predicting future experiments. Proper selection of the 
equilibrium input data, besides the AI architecture and the training algorithm, is critical for the 
success of the AI based approaches. For predicting specific classes of disruption, model-based 
approaches are also highly valuable. Examples are the DECAF model (Berkery 2017) based on 
various MHD events, and the recent initiative of the predict-first approach (Lyons 2018).  

Disruption avoidance is a passive way of operating the plasma discharge. Based on a-priori 
knowledge, certain types of disruptions, in particular those involving MHD instabilities, are well 
known and predictable. This knowledge can be used to constrain the discharge parameters to avoid 
entering into the dangerous “corner”. For instance, the plasma pressure can be limited to be below 
the Troyon limit (often following certain ℓM scaling curve) during the operation.  The plasma 
current and toroidal field can be designed to avoid the edge safety factor closing to 2. The plasma 
toroidal rotation speed can be maintained to certain level (by various methods) to avoid locked 
modes. With both disruption prediction and avoidance, it is important to realize that accurate and 
fast equilibrium reconstruction is a critical element. 

 Disruption mitigation  
As discussed, development of effective strategies to mitigate and control tokamak disruption is 
critical to reduce and avoid potential damage to the PFCs and in-vessel structures. All mitigation 
methods rely on rapid injection of high atomic-number Z impurities into the plasma to radiate 
away most of the plasma thermal energy. MHD provides a useful model to develop and test 
techniques to mitigate and control MHD instabilities. 
A leading candidate for a disruption mitigation system (DMS) is the shattered pellet injection (SPI) 
approach in which a stream of cryogenic cooled pellets is injected into a bended tube and shattered 
into small fragments before entering into the plasma to allow higher assimilation and more rapid 
delivery of injected impurities than a gas injection system (Shiraki 2016, Baylor 2019). Another 
promising technique is the dispersive shell-pellet injection (DSPI) method in which a low-Z hollow 
shell filled with a dispersive payload is injected into the plasma to allow a deep penetration of 
impurities into the plasma core and a more effective inside-out thermal quench (Izzo 2017, 
Hollman 2019).  
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Fig. 6. NIMROD animation of a DIII-D dual-injector SPI simulation showing magnetic field lines 
and contours of plasma radiation and injected impurity concentration. Courtesy of C.C. Kim (Kim 
2020). 

An accurate disruption mitigation simulation requires integration of a global 3D MHD code with 
a local pellet ablation code (Kim 2019, Bosviel 2021). Progress has been made to model disruption 
mitigation by impurity injection and interpretation of DMS and DSPI experiments with the 
NIMROD (Kim 2019, Izzo 2020), M3D-C1 (Lyons 2019, Ferraro 2019) and JOREK (Hu 2018, 
Pamela 2020) 3D MHD codes using simplified reduced pellet ablation models. NIMROD 
predictions of DIII-D SPI and DSPI results are consistent with DIII-D experimental observations. 
An animation of a NIMROD simulation of DIII-D dual-injector SPI simulation is illustrated in 
Fig. 6 (Kim 2020). However, significant challenges remain to develop a robust and effective 
disruption mitigation technique and their simulations and validations that can address all the 
disruption issues, particularly regarding the generation and mitigation of runaway electrons 
(Boozer 2017, Lehnen 2020, Sweeney 2020). 

Summary 
MHD provides a useful model to describe the crucial plasma macroscopic equilibrium and stability 
behaviors in toroidal tokamak devices.  The MHD equations provide a set of comprehensive 
physics constrains to understand and interpret tokamak macroscopic instabilities. Principal MHD 
instabilities include the internal kink modes, sawtooth, fishbone, external kink, resistive wall mode 
(RWM), resistive interchange, tearing and neoclassical tearing modes (NTMs), locked modes, 
toroidal Alfven eigenmodes (TAEs), and edge localized modes (ELMs). Predictions from MHD 
theory are consistent with many observed features of these instabilities. Fast-growing MHD 
instabilities can lead to an abrupt plasma disruption and termination that can potentially damage 
the device PFCs and in-vessel structures. An important MHD application is to develop robust 
techniques to mitigate and control instabilities. These include control of NTMs and RWMs, 
mitigation and suppression of ELMs, and disruption avoidance and mitigation. 
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