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Electromagnetic “pinned” solitons in the form of stationary nonlinear waves are stud-
ied within the framework of an inertial magneto-hydrodynamic model. These struc-
tures that can arise when a charged source moves in a magnetized plasma have a
velocity that is equal to the source velocity and hence appear as “pinned” structures
that envelope the source. We investigate the excitation of such solitons in the Low
Earth Orbit (LEO) region due to the passage of charged orbital debris objects. The
spatial size of these electromagnetic solitons, typically of the order of a few ion skin
depths, can be very large in this region. Such solitons can be detected using a variety
of ground-based or orbit based radio sounding techniques and may provide a conve-
nient additional means of tracking small sized orbital debris objects that are difficult

to spot optically.
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I. INTRODUCTION

The population of ‘space debris’ also known as ‘space junk’ or ‘orbital debris’ consisting
of dead or destroyed satellites, their fragmented parts, rocket bodies and mission related
debris continues to grow at an alarming rate thereby posing a serious threat to active
space assets'. Space debris concerns have delayed mission launches and space walks by
astronauts. It is estimated that at the present time there are over half a million pieces of
debris with sizes ranging from 1 to 10 cms and nearly 100 million particles that are less
than a centimetre orbiting the earth?“. The majority of the debris population resides in the
region between 600 kms to 1200 kms altitude in sun-synchronous Low Earth Orbit (LEO)
region where they pose the greatest threat to the high population of active orbiting space
craft!. Since the debris objects have a high orbital velocity (of the order of 8 kms/s in
the LEO region) even a small centimetre sized particle has tremendous kinetic energy and
can cause enormous damage if it collides with a satellite®. According to NASA, a colli-
sion with even a millimeter-size debris at orbital speed can be mission ending®. Individual
small sized objects are difficult to detect using optical techniques or even directly by radar
scatterings. Therefore, modelling the dynamics of these objects and devising better meth-

ods of detecting them remain a high priority research area of Space Situational Awareness™®.

An important physical characteristic of the space debris is that they are highly charged
objects. This is because they are moving in the space plasma environment of the ionosphere
and the flow of electron and ion currents on them can lead to the accumulation of a large
amount of surface charge (usually negative) and the development of a surface potential

on these objects™10.

For a moving object like a debris the charging time can be slightly
increased depending on the speed!'. However, since the charging time is significantly smaller
than the residence time of the debris in the plasma, the debris speed is not relevant to
our present investigation. For our analysis we assume that the charge on the debris has
already reached a steady state. The charged debris are subject to electromagnetic forces
from the surrounding plasma and the ambient magnetic field!® and in turn can also excite
electromagnetic perturbations in the plasma!?. While the electromagnetic forces acting on

the debris have been investigated in detail and found to be negligible to affect orbital motion

compared to other primary forces like gravity'?, the consequences of the charge interactions
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with the ambient plasma leading to electromagnetic emissions by the debris have not received
much attention. In a series of investigations, we examined this topic and suggested an
alternate way of tracking small sized debris by exploiting these collective perturbations
induced by them in the plasma'?'5. The basic idea is that these nonlinear excitations, which
take the form of long-lived soliton structures and travel ahead of the debris object, can give
rise to a cloud of plasma irregularity with a dimension much larger than the debris size.
Such irregularities can be detected from ground or space based radars and thereby provide
an indirect means of detecting the debris object. This theoretical idea of the possibility of
exciting a precursor soliton in a plasma was confirmed experimentally in a laboratory device
using a flowing dusty plasma interacting with a static charged obstacle!®. It was shown
that when the magnitude of the flow exceeded a critical value (in this case the dust acoustic
speed) precursor pulses were created in addition to the customary trailing wake fields. The
pulses were analysed for their propagation characteristics and found to be fast propagating
dust acoustic solitons. Subsequent experiments also explored the nature of these solitons as
a function of the size and shape of the charged obstacle!. In a detailed feasibility study,
Truitt and Hartzell'™!° have worked out the amplitude, width, and production frequency of
ion acoustic solitons that may be produced by millimeter and centimeter-scale orbital debris
as a function of the debris’ size, velocity, and location (altitude, latitude, and longitude)
about the Earth. Finally, another class of solitons, also theoretically predicted earlier'?,
was identified in a dusty plasma experiment?’. These solitons do not move away from the
source but cling to it as an envelope forming an electric sheath around it and are known
as “pinned” solitons. Typically, the envelope can be quite large compared to the normal
Debye shield around the source and could again provide a means of detecting the debris
using radar scattering.

1271720 were confined to electrostatic excitations e.g. ion acoustic

All these past works
waves or dust acoustic waves which are easy to model theoretically and also test experi-
mentally. Ton acoustic waves excited by the debris in the ionosphere are likely to have short
lifetimes due to Landau damping effects particularly in the LEO region where the electron
and ion temperatures are nearly equal??2. Although ion Landau damping can be eliminated
by an inhomogencous ion flow®?, that can arise from a speeding debris, a better alternative

would be to excite electromagnetic waves which would not suffer such damping and can be

longer lived. Electromagnetic solitons would also have a larger spatial extent, of the order



AlIP
Publishing

£

of a few ion skin depths, and would be easier to detect with radar back scattering. Since a
moving charge constitutes a current, the orbiting debris can be seen as current sources and
hence, in principle, should be able to emit electromagnetic waves. In the presence of an am-
bient magnetic field these could be in the form of Alfven waves or magnetosonic waves?429,
However there still remains the question of whether they can emit electromagnetic precur-
sor waves and what would be their characteristics. The question was addressed in Kumar
and Sen?® where particle-in-cell simulations provided a first principles proof of existence of
driven electromagnetic solitons. It was shown that a charge bunch moving in a magnetized
plasma could excite precursor waves in the form of fast magneto-sonic solitons. Under other
conditions, the simulations also observed the existence of fast magneto-sonic pinned solitons.
While the PIC simulations have helped establish the existence of electromagnetic precursor
solitons, for information about their spectrum and physical characteristics a fluid simulation

2728 The present paper is devoted to

is more convenient and provides good physical insights
such an investigation where we look for a wide class of driven nonlinear stationary solutions
of the magneto-hydrodynamic set of equations. We pay special attention to pinned solitons
which move at the same speed as the charge source (the orbital debris object) and discuss
their propagation characteristics. Our results are primarily numerical but we also discuss
analytic solutions and reduced nonlinear models in certain simplifying limits. Finally we

discuss the relevance and applicability of our results to the debris detection problem in the

LEO region.

The paper is organized as follows. The next section, section II, is devoted to a description
of the model equations as well as the equilibrium configuration and parameters. Section
III provides a reduced nonlinear model in the form of a forced Korteweg de Vries (fKdV)
equation that is derived (in Appendix A) from the full model equations by employing
a reductive perturbation method. Some analytic and numerical results of the fKdV are
presented. Section IV presents nonlinear stationary solutions for arbitrary amplitudes in
various regimes through numerical solutions of the full set of model equations in the frame
of the moving source. In section V we discuss the physical significance of our solutions and

their relevance and applicability to the debris detection problem.
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II. MODEL EQUATIONS

Our model equations are derived from the standard two fluid model equations®*?®, by
making the MHD approximation of quasi-neutrality (n. = n; = n) and defining the mass

Me; = me +m; &~ m; and the MHD fluid velocity as, v = {7-¥; + 17~ U, = ;. Here mj, n;, v
ei ei

refer to the two fluid electron (j = ¢) and ion (j = ) quantities.

Then the continuity equation is given by,

on .
E+V~(m})=0 (1)

By adding the electron and ion momentum equations, one gets the following MHD momen-

tum equation,
i 1 -

@ e’ BT

Vp (2)

where .J = en(%; — #,) and p = n(T, + T}). To account for the effect of the moving charged

debris source we introduce an additional current source S in the Ampere’s law which is now

given by,
L 4dr . o
VxB=""J+§ (3)
c

Finally, we have Faraday’s law,

0B .,

— =—-VxFE 4

T x (4)

Using eq. (3) to substitute for .J in eq. (2) we get

dv 1 . - - =
— = VxB)xB-— Sx B
dt 47rnMei( ) 4rnM,; + nM,;

V(p) ()

The electric field is calculated from the ion momentum equation to get,

- 1 = m;dv;
E=-—"#xB+ 2%
(:U Xt e dt
1 = My dv;
~-—-UxB = 6
cv + e dt (6)
Substituting for Ein Faraday’s law one gets,
0B N Mae_  di
ve — B) o ei “ov
T Vx(vx erdt (7)

The last term in eq.(2) comes from retaining the ion inertial contribution and provides a

dispersive contribution. Equations (1),(2) and (7) constitute our full set of model equations.
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FIG. 1: Configuration of the equilibrium magnetic field with respect to the orbital debris
propagation direction. The initial position and velocity direction of the debris object are

shown in a cartoon form in the figure.

We next assume that the debris is moving in the z direction (5‘ = Sé,) and thus only
consider perturbations with z variation. We take the equilibrium magnetic field to be
Bo = Bo.é: + By.é. with By, = Bysinf and By, = Bycost where 0 is the angle between the
magnetic field and z, the direction perpendicular to the direction of the wave propagation
(see Fig.1). We now write eqns.(1), (2) and (7) in component form and further use the

following normalizations,

n=n/ny; 0=10/Vy; E:E/BO
where § = fp, is the ion skin depth, V4 = \/%W is the Alfven velocity and w, =
VA4mnge? /m; is the ion plasma frequency. The normalized set of evolution equations are

6
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then given by,
on 0

S5 T g (0e) =0 ®

e 0 oD (0 cont)? 12 - D ©

0;; vw% = %sin&%bxy + %(COS(G) +0.) (10)

Gt = g = "

% - 7%(%@, — v,sind) + %(%Sinag{t - %) (12)

6865 _ % (vssinf — vy(cos O + B.)) — % (%sin 0% + %(COS(G) + bz)) (13)

where 8 = C?/V} with Cy = /T/m; being the sound velocity. Furthermore, by, b, denote
perturbed magnetic field components and b, = 0 follows from the z component of Faraday’s

law.

For S = 0, linearising the above equations and taking the linear quantities to be of the

form f ~ exp(—iwt + ikz), one gets the following dispersion relation?*:
M{ — M} (14 sin®6 + k*6%sin® 0 + B) + M7 sin® 0 (1 + B(2 — k*6°)) — Bsin" =0 (14)

where My = w/kV,4. The above dispersion relation can be solved to obtain the full spectrum
of MHD waves including the Alfven waves and the fast and slow magneto-sonic waves. The
k252 term in eq. (14) is the ion inertia contribution and provides the essential dispersion
contribution for the formation of a soliton for very low frequency waves in the cold plasma

limit. We will discuss these waves in the context of applications to the LEO region.

IIT. SMALL AMPLITUDE NONLINEAR SOLUTIONS - THE FKDV LIMIT

Before attempting to solve the full set of model equations for arbitrary amplitudes of
the variables, we first discuss a reduced model equation that can be obtained from eqns.
(8-13) in the limit of weak nonlinearity (small but finite amplitude perturbations) and weak
dispersion. This leads to a nonlinear evolution equation in the form of a forced Korteweg de

Vries (fKdV)?%30 equation which is easier to analyze than the full set of model equations. A

7



ing

AIP
Publishi

s

£

systematic derivation of such an equation using the reductive perturbation method is given

in the Appendix. The equation is,

aabZIJrab %Jraagbﬂ—a%
15, 22185 3853_485

(15)

where, £ = ¢"/2(x — ut) is the stretched variable in the wave frame moving with velocity u,
T = €%/?t is a stretched time describing the temporal evolution of the perturbed quantities in
the wave frame and e is the expansion parameter. b, is the first order perturbed variation in
the z component of the wave magnetic field and Sy is the source term which is assumed to be
an order higher than the field perturbations. M the Mach number is defined as M = u/V4
and the coefficients a,, are defined as,

(8 — M?*)((M - B) M(M? — B)(M — B)

ay = (B + M?*) cos(f) —

sin(#) tan(6) +

M cos(0)
ay = QMﬂ_ 3 cos?(6) + (1 - M+ (iib;(g)) ) M]\/[— 3 cos?(6) + W sin?(6)
YoM (M? — B)

(M? — B)(M — B)M?tan(f) sin(6)
(M2 —sin?(6))
a4 = M — ﬁ

az = —

A similar fKdV equation had earlier been derived for the electrostatic case by Sen et. al.'?
to model the excitation of ion acoustic precursor solitons by a charged debris object. The
above eq.(15) models electromagnetic emissions from a moving charged debris and like the
electrostatic case can produce both precursor solitons as well as pinned solitons. For the

case of pinned solitons eq.(15) has some exact analytic solutions'? for particular forms of

Aay Aay — 3Bay
R e

12(13 3(11

AGQ AGQ - 33&4
R B

].2(13 3&1

where A and B are constants. Typically B < 1, since in this approximation the source

Ss. For example if,

S5 = ABsech?

then a solution of eq. (15) is

b1 = Asech?

perturbation is taken to be small. The amplitude of the soliton is larger than the source

8



ing

AIP
Publishi

s

£

(@)

Bz1 (b)

0.6 Bz1
0.030

0.5¢ 0.025

0.4; 0.020

0.3} 0.015

0.2} 0.010

0.4} 0.005

95 100 105 10 15 ¢ T 0.05 0.10 015

FIG. 2: (a)Pinned soliton of (17) for M=0.25, 8 = 1.6, Ay = 0.001, A = 2.0, propagating
at an angle § = 15° In the plot the amplitude of the source has been multiplied by a
factor of 200 to make it visible in the chosen scale and is given by a dashed orange line.
(b)Pinned soliton of (17) for M=0.01, 8 =0, Ag = 1.% 10~",A = 0.002 and 6 = 2.59. The
amplitude of the source has been multiplied by a factor of 10 to make it visible in the

chosen scale of the plot and is given by a solid orange line.

by a factor of 1/B. In other words, the source is enveloped by an electromagnetic structure
that is much larger than the source size. For arbitrary forms of the source one can look for
pinned soliton solutions of eq.(15) by looking for stationary solutions in a frame where the
source travels at the same speed as the soliton. Taking the normalised frame speed to be M

and going to the frame defined by ( = £ — M7 one can convert eq. (15) to,

0b, 0b, 9%, o
7]\4011 a<1 +a2bzla—cl+a3 8C31 = (14(97{2 (16)
This equation can be integrated once to give,
8b, b?
as aCQI + (12?1 - ]Walbzl = (1432 (17)

where we have used the condition that b,; and its derivatives vanish at infinity for soliton
solutions. Eqn.(17) can be solved numerically for arbitrary functional forms of Sy. Fig.2

shows some typical soliton solutions for a Gaussian current source,

with amplitude Ay and width A. The plot in Fig. 2 (a) shows a slow magneto-sonic soliton
with 8 = 1.6 and M = 0.25. Fig. 2(b) shows a much slower ion inertial wave soliton with

B =0and M = 0.01. As we will discuss later, pinned solitons belonging to the inertial

9
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wave branch are likely to be excited in the LEO region since their velocities match with
those of the orbital debris objects in that region. In both the figures it can be seen that the
source is enveloped by a soliton that is several times larger in amplitude. For obtaining our
numerical solutions, we have used a Fourth order Runge Kutta numerical integrator to solve
ODEs in the wave frame and a pseudo-spectral method to solve PDEs for time evolution
of the pinned solitons. To evaluate the Fourier transform, we have used the FFTW library
(version 3.3.8). For each individual case, the grid resolution and time step width have been

chosen to satisfy the CFL (Courant-Friedrichs—Lewy) condition®!.

IV. NONLINEAR STATIONARY SOLUTIONS FOR ARBITRARY
AMPLITUDES

For arbitrary amplitude solitons we look for stationary solutions of the full set of nonlinear
equations (8-13). To get an idea of the basic nature and spectrum of the solitons we first
turn off the source term (S = 0) and also take 3 = 0 to look for the existence of nonlinear

stationary solutions for the above equations.

A. Alfvenic and Ion Inertial Wave Solitons ( S =0, § =0)

As in the KdV case, we convert the partial differential equations (8-13) to ordinary
differential equations by transforming to the frame ( = x — Mt where M is the normalized

velocity of the soliton.

,M‘;LZ + a% (nvy) = 0 (18)

(=M o) G = =2 ((cos(6) + 6. 4 1) (19)

(-1 + )5 = Lein(o) 22 (20)

(=14 05 = Lain(0) (21)

- %bg - 78%(%% — v, sin(f)) + (%(l sill(t?)%%) (22)

P = D in) leos0) 10 - 202 o9
10
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Integrating eq. 18) once and using the asymptotic condition n — 1; v, — 0 as { — co we
get
n(M—v,) =M (24)

Using eq. 24) in eq. (19) we can get,

Mu, = = (b* +2cos(0)b.) (25)

N =

where we have used the conditions b, — 0 as ( — oo. Also b? = bz + b2. In like fashion,

from eq.(20) and eq.(21), we can get,

Muv, = —sin(0)b, (26)
Mv, = —sin(6)b, (27)
From eq. (22) and eq. (23) we get,
. 0b,
—Mb, = sin(0)(nv, + 6—() (28)
. b,
—Mb, = sin()(nv, — 8—C) — nu, cos(f) (29)
Substituting for vy, v, and v, in eq. (28) and eq. (29) we get,
. 0b, sin?(6)
sm(@)ac-i-(M—n i )byzo (30)
., 0by sin?(0) ncosf(b® +2cos(0)b.)
sm(@)a—C - (M —n— b, + Wi =0 (31)
From eq.(24) and eq. (25) we can get,
2
ne 2M (32)

2M? — b? — 2cos(0)b,
Substituting for n in eq. (30) and eq. (31) we get the following two coupled equations for
by and b..

o an. , 202 sin?(6) -
Msln(@)ac +(M T M= = 2cos ()0 b, =0 (33)
., 0by 9 2M?sin?(6) M? cos(0)(b? 4+ 2cos(0)b,)
Msin(0) 52 - (M T —v —2coson. ) T T - —seosop, Y

Similar equations have been derived and discussed earlier3*3? in the context of low fre-

quency nonlinear stationary waves in a magnetised plasma. Some typical solitonic solutions

11
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FIG. 3: Alfvenic solitons for different values of M < 1 and # = 15°. The unipolar curves

(orange) are of b, and the dipolar curves (blue) are of b,.

of the above equations for different values of M and a chosen 6 are shown in Fig. 3. These
solutions have a similarity with the solitary wave solutions obtained by Adlam and Allen3*3°
who considered nonlinear hydromagnetic waves generated by rapid compression of a mag-
netised plasma.

Our numerical investigations show that these solitons, which are pure Alfvenic solitons
(since B = 0), only exist for M < 1. As M — 1, their amplitude decreases very rapidly and

then they cease to exist. One requires a finite 8 to have soliton solutions for M > 1. These

are discussed in the next subsection IV B.

To test whether the arbitrary amplitude stationary solutions are also solutions of the
full set of fluid Egs. (8-13) one can use them as initial conditions and see whether they
propagate. In Fig.4 we show the time evolution of the soliton obtained for M = 0.35 at
0 = 15°. As can be seen, the solution evolves in time without distortion suggesting that
these exact time stationary numerical solutions are indeed also solutions of the full plasma
system. They can thus be excited by an external driving term such as a charged debris to

form a pinned soliton.

12



As one approaches the small M limit the existence region of ion inertial wave solitons is
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FIG. 4: Plot showing the time evolution of the soliton solution with M=0.95 obtained by
simultaneously solving eqns. (8-13) using the solution of eqns. (33) and (34) as an initial
condition. The intensity plot shows the profile of B2. As can be seen the soliton

propagates without distortion.

strongly influenced by 6, the angle of propagation?33. For a given angle of propagation,

soliton solutions cease to exist below a certain value of M. Solitons with very low values of
32,33

M exist for very small values of #. Fig. 5 shows some of these typical low M solitons.

(a) (b)
by,bz by,bz

1.0t 1.0t
0.5/ 0.5—/\

L L L n c' . . . . . .

2 4\ 6 8 AV
—0.5 -0.5

-1.0f -1.0f
-1.5¢ -1.5¢
-2.0F -2.0f

FIG. 5: Ton inertial wave solitons for (a) M = 0.1, 3 =0, § = 5° and (b) M = 0.0185,
B =0 and 6§ = 1°. The unipolar curves (orange) are of b, and the dipolar curves (blue) are

of by.

13
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M_1.1, g=1.2

(a) (b)

FIG. 6: (a) Magnetosonic soliton at M = 1.1, 8 = 1.2. The unipolar curve (blue) is of b,
and the dipolar curve (orange) is of b,. (b) Time evolution of this soliton shown in terms
of b2. This is obtained by simultaneously solving eqns. (8-13), with the initial condition

taken from the solution of eqns. (30, 31) and eqn. (37)

B. Magnetosonic Solitons (S =0, § finite)

We now consider finite 3 effects that allow for the existence of magnetosonic waves. With

finite 3, equ(19) becomes,

ov 10 £ on
M vy = - 0) +b.)*+02) - ==
( +UJ;)8< 2n0<((cos()+ 2)? +02) nC (35)
Integrating once we get,
2
My, = B 200800:) L g (36)

2

Eliminating v, between (24) and (36) one gets a quadratic equation for n whose solutions

are,

_2M?+28—C 4 \/(28+2M? — C)2 — 16M?J
N 23

14
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where C' = (b* 4+ 2cos(6)b,). Note that the limit of 3 — 0 is singular in the above expres-
sion for the density. We can arrive at a proper expression for n in that limit by applying
L‘Hopital’s rule, namely, taking the limit of the ratio of the derivative of the numerator and
the derivative of the denominator w.r.t 8 and then taking the limit of 5 — 0. The choice of
n, gives the correct expression for n for 8 = 0, namely, eqn.(32).

In Fig.6(a) we show a magnetosonic soliton solution for M = 1.1, § = 1.2 by solving
eqns.(30) and (31) with the expression for n given in (37). The time evolution of such a

soliton when used as an initial condition in the full set of equations is shown in Fig.6(b).

C. Pinned Solitons of Ion Inertial Waves (S finite, § = 0)

Our ultimate aim is to excite pinned solitons that envelope a driving current source. For
this we need to look for stationary solutions that travel with the same speed as the source.
In such a case we can assume that the source term S is also a function of ¢ = z — Mt (in
other words vy = M, where v, is the debris velocity).

Then, taking S = 0, eqns.(10), (11), (12) and (13) can be transformed to,

du, . b,
Ma—C = —sin(0) o S(cos(0) +b,) (38)
ov, . ob,
M o —sin(0) aC + Sb, (39)
b, 0 . 0.1 ., b, 0 (Sh,
-M 85 = fa—c(vzby — vy sin(0)) + a—g(ﬁ sin(0) aC )+ o ( nJ) (40)
88—% = % (v, sin(6) — v (cos(0) + b)) — %(% sin(@)%—%’) + (% (S(cos(/:) i bz) (41)
Equations (40) and (41 can be integrated once to get,
- Obe .
sm(ﬁ)a—C + Mby, + nv,sin(f) — S)b, =0 (42)
sin(@)% — Mb, — nv, sin(f) 4+ nv, cos(f) — S(cos(f) +b,) =0 (43)

a¢
where we have used eqn.(24). The expression of n is given by eqn.(32).
We have numerically solved the coupled equations (38), (39), (42) and (43) with a source
term of the form S = Age ¢*/2” where Ay and A are constants. A plot of a typical pinned

soliton at M = 0.0185 in the presence of a weak source term, with Ay = 1.5 x 1076 and

15
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FIG. 7: (a) Pinned Ion inertial wave soliton with M = 0.0185, 3 =0, § = 1°,

A0 =1.5x107% and A = 0.2. The source term (orange) is multiplied by 4 x 10* to make it
visible on plot. (b) The density perturbation corresponding to the magnetic field
perturbations of (a). (c¢) Time evolution of this soliton shown in terms of b,. This is
obtained by simultaneously solving eqns. (8-13), with the initial condition taken from the
solution of eqns. (42, 43) and eqn. (32)
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A = 0.2 is shown in Fig.7a. The amplitude of the source term is multiplied by a factor of
5 x 10* to display it on the same plot. Fig.7b shows the corresponding perturbed density
profile of the soliton which can be seen to be quite large and to span a large spatial extent.
The density perturbations also constitute a significant fraction of the background density
value and can therefore be above the level of natural density fluctuations in the region. In
Fig.7c we show the time evolution plot of this soliton. The nature of the pinned soliton is
quite similar to the one that was obtained with the reduced model equation, namely, the
fKdV equation (15) with # = 0. This can be understood from the linear dispersion relation
given by eq.(14). Putting § = 0 and taking the limit of small 0 it can be easily shown that
the linear ion inertial wave solution takes the form,

w
My = Y 1 k2
v T

which has the same form as the dispersion relation for an ion acoustic wave. The dispersion
in this case is provided by the ion inertial contribution £26% instead of the thermal pressure
term. Thus in the small propagation angle limit, the region where these small M solitons

exist, the fKdV equation provides a good model description.

V. DISCUSSION AND CONCLUSIONS

To summarize, we have generalized our electrostatic formalism of debris generated
solitons!? to electromagnetic and investigated the existence and nature of electromagnetic
solitons that can be excited by an external moving current source term. We have done this
in the framework of an inertial magneto-hydrodynamic model. Our numerical and analytic
solutions in special limits, reveal a rich variety of soliton solutions that can arise from the
nonlinear evolution of Alfvén waves, magneto-sonic waves or the low frequency inertial
ion waves. These can have a wide variety of applications in situations where a current
source traverses through a magnetised plasma. Our particular motivation for studying these
nonlinear structures is to exploit them for the identification and tracking of small sized
(sub-cm) orbital space debris objects that are difficult to track optically. In our earlier
study'?, carried out for electrostatic ion acoustic waves, it was suggested that detection
of precursor ion acoustic solitons emitted by the charged debris object, could provide an

indirect means of tracking the trajectory of orbital debris objects. Our present work extends
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this concept in two directions. Firstly, we propose that another class of solitons discussed
by us earlier'?, called pinned solitons, which can also be excited by the moving source, may
provide a more direct means of tracking the debris objects as they travel with the same
speed as the object and remain pinned to the object. Secondly, as electromagnetic nonlinear
structures, their spatial widths are typically of the order of a few ion skin depths, that are
much larger than the Debye length envelopes provided by the electrostatic solitons. Thus
these electromagnetic solitons would be easier to detect by radar scattering techniques. As a
historical aside, and to put our present work in the broader context of previous research and
other approaches, it is worth mentioning that the topic of interaction of a fast moving body
with the ionosphere and lower atmosphere had received considerable attention in the late

3839 in the context of determining satellite drag. The development

fifties®63” and early sixties
of wave structures like the bow wave in front of the satellite and a wake structure trailing
the satellite were discussed®. The bow wave resulting from an accumulation of particles
due to reflection off the satellite surface is always present and surrounds the front portion
of the traveling body. Such a density build up has a strong similarity with the “pinned”
soliton discussed by us. However, it should be noted that the bow wave structures discussed
in these past works had been obtained from a linear analysis of the plasma equations as
distinct from our present nonlinear analysis. Our electromagnetic nonlinear structures in
the form of pinned solitons are therefore quite distinct from the linear bow wave solutions.
They are part of a larger class of nonlinear solutions that include precursor solitons, shock

structures and oscillatory nonlinear wake fields.

We now discuss our results in the context of the LEO region. The typical plasma

parameters?h2? in this region at an altitude of around 600 kms are, ng, ~ ng; ~ 105cm=3; T, ~
2200K;T; ~ 600K = 7 = + where m; = 16m,, is the mass of the ion and m, is the

mass of the proton. The ion species is predominantly O in this region. ng,.,ny denote
the number densities of the electrons and ions respectively while T, and 7; are the electron
and ion temperatures. The electron plasma skin length for these parameters is about 5.3 m
whereas the ion skin depth is around 1 km.

The typical magnetic field in this region is of the order of 0.3 to 0.5 Gauss. The Alfven
velocity is then in the range of 160km/s to 320km/s. The debris velocity in this region is
about 8km/s. Hence in order for the debris to latch on to a pinned soliton traveling at its

own velocity we need to consider solitons that have a Mach number that is less than ~ 0.05.
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Also the plasma §3 in this region is of the order of 107* and hence has a negligible effect on
the dynamics. Thus the pinned soliton solutions that are relevant for this region are the low
Mach number ion inertial wave solitons, a typical example of which is shown in Fig.7. It
should be mentioned that we have not taken collisional effects into account which could lead
to damping or other structural changes of the soliton. This could be important for precursor
solitons which once created detach themselves from the driving source and propagate freely
in the plasma ahead of the source. These solitons would then suffer exponential damping
in their amplitude as has been shown experimentally for dust acoustic precursor solitons
by Jaiswal et al.'®. The effect has also been studied theoretically using numerical solutions
of the fKdV equation modified to include damping by Truitt and Hartzell'®. However, for
pinned solitons, the subject of our present analysis, collisions/dissipation effects do not have
any significant effect as the solitons are continuously being fed energy from the driving

source. This has also been pointed out by Truitt and Hartzell'®.

Although the primary focus of this article is to generalize our electrostatic formalism
for the forced KdV solitons to the electromagnetic regime, we note that there are means of
detecting such soliton structures. In addition, a major thrust of the Intelligence Advanced
Research Project Activity (IARPA) initiative is to develop other means for detection,
especially those with poor signal to noise ratios. While a detailed discussion of detection
techniques is beyond the scope of this article, we note that nonlinear coherent structures
consisting of large amplitude density fluctuations or magnetic field perturbations naturally
exist in the ionosphere from nonlinear saturation of instabilities of various plasma modes in
the system. A few examples of such structures are ion or electron acoustic solitons and dou-
ble layers found in the satellite measurements of broadband electrostatic noise (BEN) (see

review by Lakhina et. al.%!

and references therein), equatorial plasma bubbles (EPBs) found
in the F region (see review by Bhattacharyya?? and references therein) and magnetosonic
solitons found in the magnetopause boundary layer?®. These nonlinear plasma irregularities
that span a wide range of space and time scales are routinely measured using a variety
of instruments such as digisondes, coherent and incoherent scatter radars, in-situ space

41 Since the debris induced solitons are large amplitude

probes, and airglow photometers
fluctuations and have scale sizes that fall in the range of the irregularities like the Equatorial

Spread F (ESF) or EPBs, they should be detectable by these methods. A majority of the
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detection techniques rely on the scattering of a radio wave off the plasma fluctuation struc-
ture. For example, the incoherent scattering of a transmitted radar wave propagating in the
ionosphere normally occurs due to the ambient thermal fluctuations giving rise to a weak
scattered signal. The presence of a structure like a soliton or a bubble, that has a large den-
sity perturbation, can lead to a strong coherent back scatter signal that can show up against
the background of the weak incoherent scatter data as a distinct signature of the soliton
presence. There can also be noticeable changes in the incoherent spectra. For example, the
presence of a low frequency soliton (e.g. ion acoustic or magnetosonic soliton) can give rise
to spectrally uniform enhancement in the incoherent ion-line**. Such observations have been
reported by the EISCAT Svalbard Radar (ESR) and could serve as a useful diagnostic for
detecting the presence of debris induced magneto-sonic solitons*®. The scattering data can
be generated using either ground based radar facilities or by satellite based top sounders?6.
A related technique is to observe the scintillations produced by the scattering of the top side
injected radio wave as it passes through the nonlinear structure*?. Such measurements have
yielded useful information about the structure and dynamics of EPBs*? and can be adapted
for debris induced solitons in the LEO region. It should be mentioned here that large sized
(> 10 cm) debris are routinely tracked and catalogued using a combination of ground based
and space based measurements®*748. However, radar observations of small sized debris still
pose a challenge and are normally carried out in the ‘staring’ mode of the radar that mea-
sures the debris flux passing through the beam width. This provides important statistical
information regarding the distribution of small sized debris in a particular environment and
helps in the construction of debris population models*>°. Present technological advances
are rapidly enhancing the potential capabilities of ground based radars and also developing
space based radar scattering facilities using micro-satellites® and CUBE-SATS®2. Some
of these planned future devices, such as EISCAT-3D aim to directly track sub-cm debris

objects®3 %%

in the coherent scattering mode. These radars would also be engaged in doing
incoherent scattering experiments and could therefore additionally provide information on

the soliton structures induced by the debris.

To conclude, in our present work we have provided a conceptual extension of our earlier
work on electrostatic pinned solitons to electromagnetic ones. There are inherent advantages

to using electromagnetic solitons versus electrostatic ones to detect orbital debris, namely,
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their scale sizes are larger and they are free of Landau damping effects which would suggest
they are longer lived. Their scale sizes and amplitudes fall in the range of many natu-
rally occurring plasma irregularities and hence they should be detectable using present day
ground based and satellite based radar scattering techniques. As in the case of electrostatic
solitons the detection and tracking of these electromagnetic solitons could prove useful in
the detection of small sized orbital debris objects. A practical scheme to exploit this con-
cept needs to be further developed keeping in mind the presently existing debris detection
capabilities. It is hoped that our results will stimulate such development activities and
lead to engineering feasibility studies. This study is particularly relevant and timely now
because orbital debris related hazards are beginning to threaten our on-demand access to
space, and in response IARPA, U.S.A., has initiated a debris-generated soliton tracking and

detection program®’. Use of radars to detect solitons is one of the objectives of this program.

Appendix A: Derivation of the fKdV equation

We briefly outline here the derivation of the fKdV equation (15), by applying a reduction
perturbation analysis to the set of equations (8 - 13). We adopt the following expansion for

the physical quantities, f = {n, vy, vy,v;, By, By, B},
f=fot+tefi+ €2f2 + 63f3 + 0(64)

where fo = {1,0,0,0,sin(6),0,cos(0)} and f; = {nj, v, vyj,0z5,0,by5, 0,5} with j =
1,2,3,... We also take
S = 6232

and define the following set of stretched variables,
E=Pz—Mt) ; 7=

where M is the normalized wave velocity. Expressing the differential operators in terms of

these stretched variable gives us,

2 2
9 _apd 0 yapd  sp0 O 0

e o€ ot o€ or 022 ‘oe?
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Using the above expansions in the equations (8-13) and following the standard procedure

of collecting terms of the same order of €, we can obtain the following from each of the

equations,
3/2 8n1 81)901 -0
o0& o0&
5 Ong  Ony  O(mug)  Ovg
5/2 —MJ 1 1Vz1 T2 _
o€ 0 o€ o0& 0
v b an
3/2 _ zl z1 ony
€ M o€ + cost o€ + 0 7€ 0
ov. ov. ov. b av. ab on
5/2 . _ x2 xl xl 22 _ xl z1 2 _
e’ —M 7€ 5, +v$1—8§ +cos€—8§ Mnl—a£ erzl—8£ +ﬂ—8£
ov b
3/2 o yl yl _
€ M B¢ sinf B¢ 0
v dv v ab ob
5/2 B 2 y1 yl s y2 . 'yl _
M o€ o + Vg1 B¢ smt9—aé Jrsmﬂm—ag 0
ov ob
3/2. z1 e z1 _
€ o€ sinf BT 0
v v v b v
5/2 _ 22 z1 z1 _ 22 _ z1 _
€ M 7€ o Vgl o€ ind o€ Mnq BT 0
b v
3/2 _ yl - ylq _
M—8£ inf o 1=0
ob b . Ov O(vz1by1)
52, vz Tl Tz TAelyl)
M o 3 inb B¢ + 7€
ob ov v
3/2 o z1 ed z1 y xl _
M a¢ ind 7€ + cosb B¢ 0
ob ob . Ov O(vg1b21) v, %,
5/2 . M 22 z1 _ 22 x1Vz1 x2 _ yl
€= 7€ + 5y sind o T + cos(f) o€ o6
7005(6’)%5;2 0
22
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Integrating equations (A1),(A3), (A7) and (A1l) we get,

—M?’Ll + Up1 = 0
—Muv,, + cosbb,, + pny =0
—Muv, — sinfb,; =0

—M B, — sinfv,; + cosfv, =0

From eqns. (A13) we get a dispersion relation,

This is the dispersion relation for magneto-sonic waves. Next we consider eqns

M?*(M? — 1) + B(sin®0 — M?) =0

(A8), (A12) and rewrite them as follows,

B%—T? — M%LZQ + 00396%22 =-T
fMagEQ - né’a;? =T
—M8£22 - mea(;? + 5(9)8;22 =-Ty
where,
T = % + um%—rg + m@ggl
T = ag:_l + Uzl% — Mny 8(;?
T, = 3619;1 8(1)21;21) - Ma(;zgl - cos(@)aa—iz
The set of equations (A15) can be expressed in the form,
-M 1 0 0 Ony /0 =T
g -M 0 costl Ovya /O =T,
0 0 —-M -—sinf 0v,2/0€ N T3
0 cost —sin —M 0b,o/0¢ -1y
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To obtain the solvability condition for the set of equations (A17) one can start by con-

structing an extended matrix,

M 1 0 0 | T
-M 0 0 | T

o cost | T2 (A18)
0 0 —-M —sinf| T

0 cos® —sind —M | T,

which by a few simple matrix operations, (A17) can be converted to the following form,

1-1/M0 0 | —TyM

N 0 1 0 — cosf /M | (BT /M?4Ty /M)

5 _ 1-6/M7) (1-B/M?) (A19)
0 0 1 sind/M | —T3/M
0O 0 0 D | Dy

where Dy = M%(1 + ) — M* — Bsin®0 and Dy = Ty x M x cosf x 3+ Ty x cosf x M? +
Ty x sinf x (8 — M?) + Ty x M x (M? — B3). For (A17) to have solutions the entries in the
bottom row of E:’2 should all be zero. Now D; = 0 by virtue of the dispersion relation (A14).
So the solvability condition is Dy = 0 Substituting for 71,75, T3 and Ty in Dy we get,

8n1 8n1 81)1-1 9 81),;1 szl 81;1.1 6bz1
AL SN0} M - M
50059{87_ + U1 o€ +nq o€ } + cos@{aT + Vg1 T n1 7€ + b1 7€
. v,y v,y v,y
p— 2 [ — —_
+ (8 — M?)sinf [ 5 + vp1 o Mn, 8&}
Ob.1 | O(varba) %vy 05,
M(M? — -M— - =2 = A2
+ M( ﬁ){c%_ + a€ o cos(0) o 0 (A20)
From (A9) and (A13) we can get,
by =M e =B, o, Msin® (M - ) Ova
A Ve T VPR T, Ry o o€

Using the above relations we can express eqn. (A20) in terms of a single variable, namely,

b,1. The final equation is,

b, 0b.1 Pby 05,
ay g +agbzla—€ + as ae cos(@)a—g

(A21)

where,

(B —M*)((M —P)
M

M(M? — B)(M — )

ar = (B + M?*)cos(6) — cos(0)

sin(0)tan(0) +
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sin?(6)

as = ZLCOSQ(G) + (1 - M+

(M—mﬁ A (M2 = B)(1 = M)
M-8

cos?(0) | M — [3’6082(0) + M
+2M(M? - B)

(M? — B)(M — B)M?tan(8)sin(0)

(M2 — sin2(9))

az = —
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