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INTRO

Introduction

2

• What is the context of 
this thesis?

Background

• What are the desired 
outcomes?

Objectives



BACKGROUND

• The aerospace industry uses vibration shaker tables to perform 

component durability testing.

Introduction

3

Measure Field Responses

Acceleration 
measurements are 
taken during a field 
test.

Design Service Environment Specification

A specification is 
derived from the 
measured 
accelerations.

Run Test

A laboratory test 
attempts to hit the 
derived 
specification.



BACKGROUND

• Two categories of shaker tables: single-axis and multi-axis.

• They are differentiated by their number of independent degrees of freedom.

• Multi-axis shakers can run more realistic environments but are not yet 

common in aerospace due to cost and complexity.

• Sequential single-axis testing attempts to replace a multi-axis shaker 

test with three sequential single-axis tests.

Introduction

4



BACKGROUND
Introduction

5

Multi-Axis Testing

VERTICAL LONGITUDINAL TRANSVERSE

Sequential Single-Axis Testing



BACKGROUND

Sequential tests assume zero response in the off-axes.

Usually, this is far from true.

If cross-axis responses are significant, then three 
sequential tests cause each axis to experience full 
duration response three times.

This over-testing leads to unnecessary costs in 
strengthening the component design.

Introduction
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Unfortunately, sequential single-axis tests do not produce realistic 

environments.
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• A test’s goal is to match the 

field environment in a 

laboratory test.

• The test fixture defines the 

test’s boundary condition.

• For various practical and 

historic reasons, tests usually 

use rigid fixtures.

Schoenherr et al., 2018

A poorly designed test fixture can also lead to unrealistic tests.
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Introduction

8

The problem: 

Sequential single-axis testing is unrealistic but 

multi-axis shaker tables are not readily available.

A proposed solution:

Approximate a multi-axis test using a single-axis 

shaker table and an optimized test fixture.



OBJECTIVES
Introduction

9

Three strategies to approximate a multi-axis test:
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Three strategies to approximate a multi-axis test:

1. A single-input, multiple output (SIMO) test strategy

X

Y
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Three strategies to approximate a multi-axis test:

1. A single-input, multiple output (SIMO) test strategy

2. Test fixture optimization

X

Y
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Three strategies to approximate a multi-axis test:

1. A single-input, multiple output (SIMO) test strategy

2. Test fixture optimization

3. Angle optimization 

1. This helps a single input achieve multiple targets

X

Y
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The objectives of the research are as follows:

i. To assess the quality of the proposed method.

ii. To understand how much test quality improvement is possible with a 

well-designed test fixture.

iii. To determine the effect of increasing the number of test fixture 

optimization parameters. 



LITERATURE
REVIEW

Literature Review

14
Overview of vibration testing 
literature

Single-axis versus multi-axis 
testing

Impedance modification 
approaches

Input control approaches

Structural optimization



OVERVI EW OF 
V I BRAT I ON T ES T I NG

Literature Review
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• Attempts to improve vibration tests via test 

fixture design began in the Apollo era.

• A component’s real boundary condition can 

be difficult to reproduce in the lab.

• NASA researchers made early efforts at 

quantifying the mechanical impedance of 

boundary conditions (On, 1967) and 

matching the field test’s boundary condition 

in the lab (Scharton, 1969). 

Multimodal test fixture, (Scharton, 1969)



SI NGLE - AXI S  
VS 

MULT I - A XI S

Literature Review
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• The field and lab environment’s mismatch is exacerbated in sequential 

single-axis testing.

Compared to a 6DOF test, sequential single-axis testing produces different…

Failure times
Failure 
distributions

Maximum Von 
Mises stress

Location of 
maximum Von 
Mises stress

Modal 
participations

French et al., 2006 Gregory et al., 2009



I MPEDANCE 
MODI FI CAT I ON 

A PPROACHES

Literature Review
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• Two categories of approaches 

are trying to rectify the 

mismatch between field and 

lab environments:

1. Impedance 

modification 

2. Input control

Multi-
modal 

test 
fixtures

Scharton, 1969

IMMATDaborn et al., 2014

Structural 
optimization Schoenherr, 2018

N+1 
fixtures

Hall, 2020



I NPUT CONTROL 
A PPROACHES

Literature Review

18

Frequency based 
sub-structuring 

modeling
Harvie, 2017

6DOF shaker 
testingSchoenherr et al., 2019

• Two categories of approaches 

are trying to rectify the 

mismatch between field and 

lab environments:

1. Impedance 

modification 

2. Input control



S TRUCTURAL 
OPT I MI ZAT I ON

Literature Review
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Knight et al., 2018Jones et al., 2018

Topological 

Optimization

Angle 

Optimization



METHOD

Method

20

Case studies

Finite element model

Service environment

Boundary conditions

Test quality metrics

Simulation approach
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X

Y

The proposed method can be modeled as follows:



CASE STUDIES
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X

Y

The proposed method can be modeled as follows:

SIMO Multi-Axis Test
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And a sequential test can be similarly represented:

Y-axis testX-axis test

X  input

y

y

y

Y  input

y

x

y

x

x

x

x
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• Four case studies are presented to compare sequential testing to the proposed method:

Case Test Fixture Design Comparisons

1 Rigid

1. Sequential single-axis (single control location)

2. Sequential single-axis (all control locations)

3. SIMO multi-axis (all control locations)

2 Optimized (2 parameters)
1. Sequential single-axis

2. SIMO multi-axis

3 Optimized (4 parameters)
1. Sequential single-axis

2. SIMO multi-axis

4 Optimized (8 parameters)
1. Sequential single-axis

2. SIMO multi-axis



FEA MODEL
Method

25

• Simulations were carried out using an Abaqus FEA model consisting of:

1. 2-D BARC without the removable component

2. Test fixture, idealized by sixteen springs

3. Rigid base, representing a vertically-oriented, single-axis shaker

• The test fixture springs have an independent X-axis and Y-axis stiffness.

Mode 1: 135.5 Hz Mode 2: 136.4 Hz Mode 3: 437.3 Hz



FEA MODEL
Method
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• The shaker input is derived to achieve the lowest possible 

error between a target response and measured response.

• The locations where measured response is used to derive a 

shaker input are known to as control locations.

Measurement Locations



SERVICE 
ENVIRONMENT

Method
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• A service environment is the real environment the test 

article is expected to experience in its lifetime.

Defense Logistics Agency, 2019

• This a common transportation environment base excitation

• To generate a set of targets from this base excitation…

1. Apply X and Y excitations simultaneously to the base 

of the model

2. Measure acceleration responses on the BARC

• Targets were generated using a flexible boundary condition 

(𝑘𝑥 and 𝑘𝑦 = 106 𝑁/𝑚)



SERVICE 
ENVIRONMENT

Method
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BOUNDARY 
CONDITIONS

Method
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• The boundary conditions are determined by the test fixture.

• In our model, the boundary condition is determined by the stiffness of the springs.

• Lower number of optimization parameters → more tractable search

• In Case 1, the boundary condition is rigid. 

• In Cases 2, 3, and 4, the boundary condition is optimized using an increasing number of 

parameters to determine how much test fixture complexity contributes to improving the 

possible solutions.
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CONDITIONS
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Case Test Fixture Design Optimization Parameters

Sequential Single-Axis SIMO Multi-Axis

1 Rigid - 𝜽

2 Optimized (2 parameters)
𝒌𝒙, 𝒌𝒚 𝒌𝒙, 𝒌𝒚, 𝜽

3 Optimized (4 parameters) 𝒌𝒙𝟏, 𝒌𝒙𝟐, 𝒌𝒚𝟏, 𝒌𝒚𝟐 𝒌𝒙𝟏, 𝒌𝒙𝟐, 𝒌𝒚𝟏, 𝒌𝒚𝟐, 𝜽

4 Optimized (8 parameters)
𝒌𝒙𝟏, 𝒌𝒙𝟐, 𝒌𝒙𝟑, 𝒌𝒙𝟒,

𝒌𝒚𝟏, 𝒌𝒚𝟐, 𝒌𝒚𝟑, 𝒌𝒚𝟒

𝒌𝒙𝟏, 𝒌𝒙𝟐, 𝒌𝒙𝟑, 𝒌𝒙𝟒
𝒌𝒚𝟏, 𝒌𝒚𝟐, 𝒌𝒚𝟑, 𝒌𝒚𝟒, 𝜽
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RMS dB Error (RDBE):

RDBE is a scalar metric that represents the average 

mismatch between a response PSD and a target PSD 

across all frequencies.

𝑅𝐷𝐵𝐸 =

෍
𝑖=1

𝑛

(10 log10
ෝ𝑦𝑖
𝑦𝑖
)2

𝑛

Percentage of Frequency Lines within a 3 dB 

Tolerance (FTOL):

FTOL is a scalar metric that counts the percentage 

of frequency lines where the response PSD differs 

from the target PSD by less than 3 dB.

%𝐹𝐿 = 100 ∗
1

𝑛
෍

𝑖=1

𝑛
1 𝑖𝑓 10 log10

ෝ𝑦𝑖
𝑦𝑖

≤ 3 𝑑𝐵

0 𝑖𝑓 10 log10
ෝ𝑦𝑖
𝑦𝑖

> 3 𝑑𝐵

In both equations, ෝ𝑦𝑖 is the value of a response PSD at the 𝑖𝑡ℎ frequency line, and 𝑦𝑖 is the 

value of the target PSD at the 𝑖𝑡ℎ frequency line. There are 𝑛 total frequency lines.
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Initialize
stiffness

Derive X input 
to hit X targets

Compute X 
responses

Check X error

Y-Axis Sequential Test

Initialize stiffness 
and angle

Derive angled input to 
hit X and Y targets

Compute X and Y 
responses

Check X and Y error

Initialize
stiffness

Derive Y input 
to hit Y targets

Compute Y 
responses

Check Y error

X-Axis Sequential Test

SIMO Multi-Axis Test
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Case study 1

Case study 2

Case study 3

Case study 4
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• For case 1, all tests used a rigid fixture (𝑘𝑥 and 𝑘𝑦 = 109 𝑁/𝑚)

Case Test Fixture Design Comparisons

1 Rigid

1. Sequential single-axis (single control location)

2. Sequential single-axis (all control locations)

3. SIMO multi-axis (all control locations)

2 Optimized (2 parameters)
1. Sequential single-axis

2. SIMO multi-axis

3 Optimized (4 parameters)
1. Sequential single-axis

2. SIMO multi-axis

4 Optimized (8 parameters)
1. Sequential single-axis

2. SIMO multi-axis
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Sequential Single-Axis 

(Worst performing control location)

Sequential Single-Axis

(Best performing control location)

X-Error 

(avg)

Y-Error 

(avg)

Mean 

Error
X-Error 

(avg)

Y-Error 

(avg)

Mean 

Error

RDBE 9.9 dB 3.2 dB 6.6 dB RDBE 5.6 dB 3.2 dB 4.4 dB

FTOL 64.6% 83.9% 74.3% FTOL 71.6% 84.7% 78.2%

• For the single control location sequential tests, choosing the best location improves the 

RDBE by 2.2 dB and the FTOL by 3.9% over the worst location.
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Sequential Single-Axis 

(Worst performing control location)

Sequential Single-Axis

(Best performing control location)

X-Error 

(avg)

Y-Error 

(avg)

Mean 

Error
X-Error 

(avg)

Y-Error 

(avg)

Mean 

Error

RDBE 9.9 dB 3.2 dB 6.6 dB RDBE 5.6 dB 3.2 dB 4.4 dB

FTOL 64.6% 83.9% 74.3% FTOL 71.6% 84.7% 78.2%

• When the test controls to all 

locations, the RDBE further 

decreases to 3.8 dB.

• It’s interesting that the FTOL 

decreases slightly. 

Sequential Single-Axis 

(All control locations)

X-Error 

(avg)

Y-Error 

(avg)

Mean 

Error

RDBE 5.1 dB 2.6 dB 3.8 dB

FTOL 70.3% 85.2% 77.8%
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Sequential Single-Axis 

(All control locations)

SIMO Multi-Axis

(All control locations)

X-Error 

(avg)

Y-Error 

(avg)

Mean 

Error
X-Error 

(avg)

Y-Error 

(avg)

Mean 

Error

RDBE 5.1 dB 2.6 dB 3.8 dB RDBE 5.7 dB 3.9 dB 4.8 dB

FTOL 70.3% 85.2% 77.8% FTOL 69.2% 78.7% 74.0%

• The SIMO multi-axis test’s RDBE increases by 1.0 dB while the FTOL falls by 3.8%.

This decrease in measured test quality metrics may be justified because the SIMO 

multi-axis test eliminates cross-axis responses that are unavoidable in the sequential 

test. 
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Mean Error

Sequential Single-Axis SIMO Multi-Axis

RDBE 3.7 dB 4.5 dB

FTOL 80.0% 75.6%

Optimizing the test fixture stiffness with two parameters: 

1. Improved the sequential test by 0.1 dB and 2.2%.

2. Improved the SIMO test by 0.3 dB and 1.6%.
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Mean Error

Sequential Single-Axis SIMO Multi-Axis

RDBE 3.7 dB 4.5 dB

FTOL 80.0% 75.6%

The solution found for each test was:

1. For the sequential test,       kx = 3.2 ∗ 104 and ky = 2.7 ∗ 106 N/m.

2. For the SIMO test,    kx = 1.2 ∗ 107, ky = 2.7 ∗ 106 N/m, and θ = 27°. 
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• The sequential test’s stiffness 

optimization found the X-stiffness 

had little impact while the Y-stiffness 

needed to be above 1.4 ∗ 105 𝑁/𝑚
to produce good error.
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• The sequential test’s stiffness 

optimization found the X-stiffness 

had little impact while the Y-stiffness 

needed to be above 1.4 ∗ 105 𝑁/𝑚
to produce good error.

Optimal stiffness

Stiffness used in 

service 

environment
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• The SIMO solution space was 

smooth with a clear minimum region, 

but not fully convex.

• The minimum region provides good 

values to start a local optimization.
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• The SIMO solution space was 

smooth with a clear minimum region.

• The minimum region provides good 

values to start a local optimization.

Optimal stiffness

Stiffness used in 

service 

environment
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4.5 dB @ θ = 27°

• The SIMO test’s angle optimization has a clear 

minimum.
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Mean Error

Sequential Single-Axis SIMO Multi-Axis

RDBE 3.7 dB 4.5 dB

FTOL 80.0% 75.6%

The solution found for each test was:

1. For the sequential test,  kx1 = 3.2 ∗ 104, kx2 = 1 , ky1 = 2.7 ∗ 106 , ky2 = 2.7 ∗ 106 N/m.

2. For the SIMO test, kx1 = 19 , kx2 = 2.3 ∗ 108 , ky1 = 2.7 ∗ 106 , ky2 = 2.7 ∗ 106 N/m, θ = 27°. 
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Mean Error

Sequential Single-Axis SIMO Multi-Axis

RDBE 3.7 dB 4.5 dB

FTOL 79.6% 75.3%

The solution found for each test was:

1. For the sequential test,   kx1 = 1, kx2 = 1, kx3 = 1, k𝑥4 = 1, ky1 = 1, ky2 = 109, ky3 = 109, k𝑦4 = 1 N/m.

2. For the SIMO test,      kx1 = 109, kx2 = 3.2 ∗ 104, kx3 = 2.7 ∗ 106 , k𝑥4 = 2.7 ∗ 106 , ky1 = 2.7 ∗ 106, ky2 = 2.7 ∗ 106,  

ky3 = 109,  k𝑦4 = 2.7 ∗ 106 N/m,  θ = 27°. 
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• What did we learn from the 
results of each case study?

Key findings

• Were the originally stated 
outcomes achieved?

Objectives
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6.6

4.4

3.8 3.7 3.7 3.7

4.8
4.5 4.5 4.5

Case 1 Case 2 Case 3 Case 4
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o

r

RMS DB ERROR BY CASE
Sequential single-axis (worst control location)

Sequential single-axis (best control location)

Sequential single-axis

SIMO multi-axis

74.3%

78.2%
77.8%

80.0% 80.0%
79.7%

74.3%

75.6% 75.6%
75.3%

Case 1 Case 2 Case 3 Case 4
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% OF FREQUENCY LINES WITHIN 

A 3DB TOLERANCE BY CASE

Sequential single-axis (worst control location)

Sequential single-axis (best control location)

Sequential single-axis

SIMO multi-axis

KEY FI NDI NGS
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Case 1, X input | Response: A33 | Control: A15 Case 1, Y input | Response: A33 | Control: A15

Off-axis response occasionally exceeds both the X 

and Y targets.
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Case 1, X input | Response: A33 | Control: A15 Case 1, Y input | Response: A33 | Control: A15Case 1, X input | Response: A33 | Control: ALL
Case 1, Y input | Response: A33 | Control: ALLCase 1, X input | Response: A33 | Control: ALL

Off-axis response occasionally exceeds both the X 

and Y targets.
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Case 2, Angled input | Response: A33 | Control: ALL
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The objectives of the research are as follows:

i. To assess the quality of the proposed method.

• The proposed method allowed a single test to approximate a multi-axis test with on-axis 

errors only slightly worse than sequential testing.

ii. To understand how much test quality improvement is possible with a well-designed test fixture.

• A dynamically optimized test fixture improved both the sequential test and SIMO test.

iii. To determine the effect of increasing the number of test fixture optimization parameters. 

• For this specific model, target, and optimization strategy, more stiffness parameters showed 

no improvement beyond the initial optimization.



CONCLUSIONS

Conclusions

53

Summary

Future work
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Over-testing was avoided for a small on-axis error 
penalty.

Both stiffness and angle optimization were necessary 
to produce the best-case SIMO test.

The stiffness solution space was tractable.

Increased test fixture complexity did not lead to 
better results.

• A fully validated method 

would enable wide access 

to rapid, approximate 

multi-axis vibration testing 

and eliminate the over-

conservatism of sequential 

single-axis testing.
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• The proposed method 

produced promising 

results, but more work 

is needed to fully 

validate the method…

Robust global optimization + local 
optimization.

Assessment of larger target populations.

Combine proposed method with input 
modification strategies.

Design and validation work to operationalize 
the approach.
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