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BACKGROUND

- The aerospace industry uses vibration shaker tables to perform
component durability testing.

Measure Field Responses

Acceleration Design Service Environment Specification )

measurements are | A gpecification is Run Test
taken during a field | 4.rived from the

test. measured A laboratory test
accelerations. attempts to hit the
derived
specification.
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BACKGROUND

- Two categories of shaker tables: single-axis and multi-axis.

- They are differentiated by their number of independent degrees of freedom.

- Multi-axis shakers can run more realistic environments but are not yet
common in aerospace due to cost and complexity.

- Sequential single-axis testing attempts to replace a multi-axis shaker
test with three sequential single-axis tests.
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Multi-Axis Testing  Sequential Single-Axis Testing
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BACKGROUND

Unfortunately, sequential single-axis tests do not produce realistic
environments.

Sequential tests assume zero response in the off-axes.

Usually, this is far from true.

If cross-axis responses are significant, then three
sequential tests cause each axis to experience full
duration response three times.

This over-testing leads to unnecessary costs in
strengthening the component design.
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A poorly designed test fixture can also lead to unrealistic tests.

- A test’s goal is to match the
field environment in a
laboratory test.

. The test fixture defines the
test’s boundary condition.

- For various practical and
historic reasons, tests usually
use rigid fixtures.

Field Environment

Field Configuration FRF
M, C,Kor
Shapes, damping,
natural frequency

Laboratory Environment

Laboratory Configuration FRF

M, C,K or
Shapes, damping, natural
frequency

Responses
Acceleration

Stress

The purpose of
the testis to
match responses

Responses
Acceleration

Stress

Schoenherr et al., 2018
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OBJECTIVES -

The problem:

Sequential single-axis testing is unrealistic but
multi-axis shaker tables are not readily available.

A proposed solution:

Approximate a multi-axis test using a single-axis
shaker table and an optimized test fixture.
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OBJECTIVES .

Three strategies to approximate a multi-axis test:
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OBJECTIVES 2

Three strategies to approximate a multi-axis test:

|. A single-input, multiple output (SIMO) test strategy
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OBJECTIVES i

Three strategies to approximate a multi-axis test:

|. A single-input, multiple output (SIMO) test strategy

2. Test fixture optimization
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OBJECTIVES 2

Three strategies to approximate a multi-axis test:

|. A single-input, multiple output (SIMO) test strategy \ ‘
2. Test fixture optimization \

Y
X
3. Angle optimization
|. This helps a single input achieve multiple targets
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OBJECTIVES =

The objectives of the research are as follows:
i. To assess the quality of the proposed method.
ii. To understand how much test quality improvement is possible with a
well-designed test fixture.
iii. To determine the effect of increasing the number of test fixture

optimization parameters.
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Single-axis versus multi-axis
testing

Impedance modification
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Input control approaches
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Literature Review

OVERVIEW OF s
VIBRATION TESTING

- Attempts to improve vibration tests via test
fixture design began in the Apollo era.

- A component’s real boundary condition can
be difficult to reproduce in the lab.

- NASA researchers made early efforts at
quantifying the mechanical impedance of oA
boundary conditions (On, 1967) and T e
matching the field test’s boundary condition
in the lab (Scharton, 1969).

Multimodal test fixture, (Scharton, 1969
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VS

Literature Review
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MULTI-AXIS

- The field and lab environment’s mismatch is exacerbated in sequential
single-axis testing.

Compared to a 6DOF test, sequential single-axis testing produces different...

Location of

; Modal
maximum Von
Mises stress

Failure Maximum Von

Failure times . )
distributions Mises stress

participations

f f
French et al., 2006 Gregory et al., 2009




IMPEDANCE
MODIFICATION
APPROACHES

- Two categories of approaches
are trying to rectify the
mismatch between field and
lab environments:

1. Impedance
modification

2. Input control

Daborn et al., 2014

Hall, 2020

Multi-
modal
test
fixtures

Structural
optimization

Literature Review

Scharton, 1969

Schoenherr, 2018
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INPUT CONTROL |8
APPROACHES

- Two categories of approaches
are trying to rectify the
mismatch between field and
lab environments:

Harvie, 2017

I.  Impedance
modification

2. Input control

Schoenherr et al., 2019
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STRUCTURAL 19
OPTIMIZATION

Topological Angle
Optimization Optimization

Component

Fixture
+

Test Equipment
(Shaker table, drop
tower carriage, etc)

Test
Input

Service
Environment
Load

Jones et al., 2018 Knight et al., 2018
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Case studies
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\

Finite element model

Service environment

Boundary conditions

Test quality metrics

A A U g U g A P

Simulation approach
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The proposed method can be modeled as follows:

Y

vx
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SIMO Multi-Axis Test

The proposed method can be modeled as follows: y

e=7?

Shaker Table
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And a sequential test can be similarly represented:

X-axis test Y-axis test

X

FEEFEIIEEEEE

Rigid Base

EEEEEIEEESS

Rigid Base
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CASE STUDIES 2

* Four case studies are presented to compare sequential testing to the proposed method:

|. Sequential single-axis (single control location)

| Rigid 2. Sequential single-axis (all control locations)
3. SIMO multi-axis (all control locations)
Sequential single-axis

2. SIMO multi-axis

2  Optimized (2 parameters)

|. Sequential single-axis

2. SIMO multi-axis

3  Optimized (4 parameters)

Sequential single-axis

2. SIMO multi-axis

4  Optimized (8 parameters)
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FEA MODEL =

* Simulations were carried out using an Abaqus FEA model consisting of:
|. 2-D BARC without the removable component
2. Test fixture, idealized by sixteen springs
3. Rigid base, representing a vertically-oriented, single-axis shaker

* The test fixture springs have an independent X-axis and Y-axis stiffness.

RTNT

WA, AR
LGN NV

Mode 2: 136.4 Hz Mode 3:437.3 Hz
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FEA MODEL 2

* The shaker input is derived to achieve the lowest possible Measurement Locations

error between a target response and measured response. A15

* The locations where measured response is used to derive a
shaker input are known to as control locations. A33

A4

A24




SERVICE Method

ENVIRONMENT

* A service environment is the real environment the test
article is expected to experience in its lifetime.

MIL-STD-810H Common Carrier Service Environment

s —— Longitudinal (X) * This a common transportation environment base excitation
—— Vertical (Y)

102 * To generate a set of targets from this base excitation...
- |.  Apply X andY excitations simultaneously to the base
S 10 of the model
@ 2. Measure acceleration responses on the BARC

il * Targets were generated using a flexible boundary condition

— 106
10°3

10! 102
Frequency (Hz)

Defense Logistics Agency, 2019
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ENVIRONMENT

X Service Environments Y Service Environments
103 5 10°
107 3 107 5
N 1 N 1
T 10 E = 10 E
~ 3 —~ ]
~ ~
- 2
o 1073 8 10°4
[ i n E
o o 3
10_1 'E 10—1 —§
-2 7
10 102 3
107 1073 1
i . . N . . _ === X Target E
— . . ————
10! 102 == Y Target 101 102
A4, Service Environment Al5, Service Environment A24. Service Environment ~ A33, Service Environment
_ 10?1 —~ 1071 ~ 1077 10?7
N N N ~
- - o - o T
e ~ o ~
D 1001 o 107+ D 1001 o 10° 4
=] o a o
a a & ¢
1072 102 1072 &10-2 1
- —— — - ———rr —— - — —_— - —
10! 10?2 101 102 101 102 101 102

Frequency (Hz) Frequency (Hz) Frequency (Hz) Frequency (Hz)
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The boundary conditions are determined by the test fixture.

In our model, the boundary condition is determined by the stiffness of the springs.
* Lower number of optimization parameters = more tractable search

In Case I, the boundary condition is rigid.

In Cases 2, 3,and 4, the boundary condition is optimized using an increasing number of
parameters to determine how much test fixture complexity contributes to improving the
possible solutions.

0=2 =2
Shaker Table Shaker Table Shaker Table




BOUNDARY Method
CONDITIONS

Test Fixture Design

Optimization Parameters

Sequential Single-Axis SIMO Multi-Axis
I Rigid - 0
- ky k,

2  Optimized (2 parameters) ky ky, 6

3 Optimized (4 parameters) ki1, Kx2, ky1, k)2 k1, kyz, ky1,kyz, 0
ki1, k2, ki3, Ky, ki1, k2, ki3, k

4  Optimized (8 parameters) xS T xb Tk T Tk
Ky, Ky, Kys, Ky Ky, Kz, Ky3, kya, 0

Shaker Table Shaker Table Shaker Table



TEST QUALITY

METRICS

RMS dB Error (RDBE):

RDBE is a scalar metric that represents the average
mismatch between a response PSD and a target PSD
across all frequencies.

n Vi
E (10logqo=h)?
RDBE = i=1 Yi
\1 n

Method
31

Percentage of Frequency Lines within a 3 dB

Tolerance (FTOL):

FTOL is a scalar metric that counts the percentage
of frequency lines where the response PSD differs
from the target PSD by less than 3 dB.

( Vi
1Olog10—l_ <3dB

l

1if

1 —n
% FL = 100*—2 3

nlai_ 5
= 1010g10¥

l

0if > 3 dB

\

In both equations, ; is the value of a response PSD at the i*" frequency line, and y; is the
value of the target PSD at the i*"* frequency line.There are n total frequency lines.



SIMULATION Method

A P P ROAC H X-Axis Sequential Test

SIMO Multi-Axis Test In('tialize
stiffness

Derive X input
o hit X targets

Initialize stiffness
and angle

Y-Axis Sequential Test

Derive angled input to

Compute X
Sy, hit X andY targets

responses Initialize

stiffness

_ DeriveY input
Wylo hitY targets

Check X error

Compute X andY

responses ComputeY @

responses

|
|

|

|

y Ch ec error
Check X andY error
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Case study |

Case study 2

Case study 3

N N -

Case study 4
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Results
34

* For case |, all tests used a rigid fixture (k, and k,, = 10° N/m)

2

3

4

Rigid

Optimized (2 parameters)

Optimized (4 parameters)

Optimized (8 parameters)

l.
2.
3.

Sequential single-axis (single control location)

Sequential single-axis (all control locations)
SIMO multi-axis (all control locations)
Sequential single-axis

SIMO multi-axis

Sequential single-axis

SIMO multi-axis

Sequential single-axis

SIMO multi-axis
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Results
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* For the single control location sequential tests, choosing the best location improves the
RDBE by 2.2 dB and the FTOL by 3.9% over the worst location.

Sequential Single-Axis Sequential Single-Axis
(Worst performing control location) (Best performing control location)

X-Error Y-Error Mean X-Error Y-Error

(avg) (avg) Error (avg) (avg)
{p]:18N 99dB 32dB 6.6 dB RDBE 5.6 dB 3.2 dB
FTOL RZX3A 83.9% 74.3% FTOL 71.6% 84.7%

Mean
Error

4.4 dB

78.2%
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Sequential Single-Axis
(All control locations)

* When the test controls to all

locations, the RDBE further AT L= Mean
decreases to 3.8 dB. (@ve) (@ve) Error
{»]:-18 5.1 dB 2.6 dB 3.8 dB
* It’s interesting that the FTOL
decreases slightly. FToL EEA 859 77.8%

Sequential Single-Axis Sequential Single-Axis
(Worst performing control location) (Best performing control location)

X-Error Y-Error Mean X-Error Y-Error Mean
(avg) (avg) Error (avg) (avg) Error
{p]:1= 9.9 dB 3.2.dB 6.6 dB RDBE 5.6 dB 3.2dB 4.4 dB

FTOL RGO 83.9% 74.3% ie]® 71.6% 84.7% 78.2%
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* The SIMO multi-axis test’s RDBE increases by 1.0 dB while the FTOL falls by 3.8%.
Sequential Single-Axis SIMO Multi-Axis
(All control locations) (All control locations)
X-Error Y-Error M X-Error Y-Error M
(avg) (avg) Error

(avg) (avg) Error

{]:1 0 5.1 dB 2.6 dB 3.8dB [Jiisl:)= 5.7 dB 3.9 dB 4.8 dB
o] BN 70.3% 85.2% 77.8% NalelE 69.2% 78.7% 74.0%

This decrease in measured test quality metrics may be justified because the SIMO
multi-axis test eliminates cross-axis responses that are unavoidable in the sequential
test.
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Optimizing the test fixture stiffness with two parameters:

|. Improved the sequential test by 0.1 dB and 2.2%.

2. Improved the SIMO test by 0.3 dB and |.6%.

Sequential Single-Axis SIMO Multi-Axis
3.7 dB 4.5 dB
80.0% 75.6%




Results
CASE STUDY 2 &

The solution found for each test was:

| For the sequential test, | ky = 3.2 % 10*and k, = 2.7 * 10° N/m.

2. For the SIMO test,| ky = 1.2 % 107,ky = 2.7 % 10° N/m,and 6 = 27°.

Sequential Single-Axis SIMO Multi-Axis
3.7 dB 4.5 dB
80.0% 75.6%
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Sequential RDBE for kx and ky Combinations

1.0 45 38 38 38 38 38 3.8
. . 4.0 45 38 38 38 38 38 38
* The sequential test’s stiffness 6.0
.. . . 19.0 45 38 38 38 38 38 38
optimization found the X-stiffness
had little impact while the Y-stiffness e N >¢ °° 38 38 38 38
needed to be above 1.4 * 105 N/m 370.0 45 38 38 38 38 38 38 e
to Produce good error 1.6E+03 5N 38 3.8 38 38 38 38
7.2E+03 45 38 38 38 38 38 38
£ S
Z 3.2E+04 45 38 38 38 38 38 38 m
3 5.0 =
1.4E+05 45 38 38 38 38 38 38 2
6.1E+05 45 39 38 38 38 38 38
2.7E+06 45 39 38 38 38 38 38 45
1.2E+07 45 39 38 38 38 38 38
5.2E+07 46 39 38 38 38 38 3.8
2.3E+08 45 38 38 38 38 39 39 i 6
1E+09 45 38 38 38 38 39 38

O S S OO P P TP O LSS PP
; SRS 43\0. é/xo @"0 @xo bg,xo Q/xo /\Q/xo Q,xo @xo <<,xo @"0
ky (N/m)
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Sequential RDBE for kx and ky Combinations

1.0

4.0
6.0

* The sequential test’s stiffness
optimization found the X-stiffness
had little impact while the Y-stiffness

needed to be above 1.4 x 10° N/m 370.0
to produce good error. 16E+03

7.2E+03

19.0

84.0

5.5
Optimal stiffness

3.2E+04

kx (N/m)

5.0

(gp) 39Qy

1.4E+05

6.1E+05

2.7E+06 r4.5

1.2E+07

Stiffness used in
5.2E+07 LSS
environment

2.3E+08 4.0

1E+09

O 0 © O O & P L O L QP O
A A ol L% S S M I M M M Y M
© a5 v ™ Y A Vv Vv ) ~
N A- - N . . . .
ky (N/m)
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SIMO RDBE for kx and ky Combinations

(gp) 39ay

1.04 7.6
401 8.0
. 22.5
* The SIMO solution space was
. o o . 19.04 7.8
smooth with a clear minimum region,
84.01 9.3 20.0
but not fully convex.
370.0{ 9.7 94 7.9 80 89 95 12.6 125 124 11590 114 116 11.5 1.5
1.6E+03{ 9.7 97 96 94 107 93 95 10.8 107 107 99 95 96 97 98 17.5
e The minimum region provides good 72E403{98 98 99 100 109 104 87 88 94 88 85 81 81 83 84
£
H H H = ' 15.0
values to start a local optimization. 2326404 {10.0 10.0 10.0 101 11.0 107 95 82 7.8 68 67 64 64 64 65
x
&G
1.4E+05 ({100 I0I0NI0 N0 NNEIIaROI0R 91 & 8.5+ 56 53 53 53 52 52
: t12.5
6.1E+054{10.0 10.0 10.0 10.2 11.2 109 99 92 88 51 46 4.7 48 49 5.0
2.7E+06410.1 10.0 10.1 10.2 11.1 109 99 93 86 51 45 46 4.7 48 438
-10.0
1.2E+07{10.0 10.0 10.0 10,1 11.1 10.8 99 97 88 51 45 46 4.7 4.7 48
5.2E+07{ 9.8 9.8 9.8 100 11.0 108 99 90 79 51 45 46 47 47 438 o
2.3E+08410.7 10.7 10.4 106 114 109 99 88 74 50 46 46 4.7 48 438
1E+09410.3 10.3 10.2 104 113 108 98 87 73 49 46 46 4.7 48 438 5.0

' ”; ”) bt "> 2 o A A () )
h Q Q Q Q Q Q Q Q Q Q
AT x X X X X X X X X X

ky (N/m)
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* The SIMO solution space was
smooth with a clear minimum region.

* The minimum region provides good
values to start a local optimization.

kx (N/m)

Results

44

SIMO RDBE for kx and ky Combinations

|
8.3 B8

22:5

20.0

17.5

15.0

£12.5

-10.0

-7.5

r5.0

1.0{ 7.6
40180 76 86
19.0{ 7.8 7.6 176
840193 76 76 7.7
370.0{ 97 94 79 80 89 l9.5 12.6 12.5 12.4 13.4 11.9 11.4 11.6 11.5 115
16E+03{ 97 97 96 94 107 93 95 10.8 10.7 A;; 99 95 96 97 98
7.2E+031{9.8 98 99 100 109 104 87 88 94 88 85 81 81 83 84
3.2E+04{10.0 10.0 10.0 10.1 11.0 10.7 95 82 7.8 68 67 64 64 64 65
1.4E+05{10.0 10.0 10 Stiffness used in 53 52 52
6.1E+05 {10.0 10.0 10 service 48 49 5.0
environment
2.7E+06 {10.1 10.0 10. . - g 0. 3 8.6 47 48 4.8
1.2E+07 {10.0 10.0 10.0 4.7 47 438
5.2E+07{9.8 9.8 98 10.0 11.0 108 99 9.0 7.9 47 47 4.8
2.3E+08{10.7 10.7 10.4 106 11.4 109 99 88 74 47 48 4.8
1E+09{10.3 10.3 10.2 104 11.3 108 98 87 73 49 46 46 47 48 48
O O ©0 0 0 & D P> O & LA DS ©
Y W 90 @ ,;)\0' Q;ox& q’%x ﬁ&xQ o{(’xéo ‘&xo ,\Q/xo & '{ox ?;,oxo ‘&xo

(gp) 39ay
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RMS dB Error (dB)

25.0

22.5 A

20.0 A1

17.5 1

15.0 1

12.5

10.0 -

7.5 1

5.0 1

Angle vs RMS dB Error

45dB @ 0 = 27°

' 4

0 20 40 60 80

Angle (deg)

Results

40

The SIMO test’s angle optimization has a clear
minimum.
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Results
45

The solution found for each test was:

|. For the sequential test, |ky; = 3.2 10% ky, = 1,ky; = 2.7 x 10°, ky, = 2.7 * 10° N/m.

2. For the SIMO test,

Kyp =19, kyp = 2.3 108, kyy = 2.7 % 10, kyp = 2.7 * 106 N/m, 6 = 27°.

Sequential Single-Axis SIMO Multi-Axis
3.7 dB 4.5 dB
80.0% 75.6%
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The solution found for each test was:

|. For the sequential test, |k = 1k, = 1, kes = 1, kyy = Lky; = 1, ky, = 10% ky3 = 10% kyy = 1 N/m.

2. For the SIMO test, | Kk =10%ky, = 3.2 % 10% kg = 2.7 # 106 kyy = 2.7 ¥ 108, kyy = 2.7 % 105, ky, = 2.7 % 105,
kys = 10°, k,, = 2.7 % 10 N/m, = 27°.

Sequential Single-Axis SIMO Multi-Axis
3.7 dB 4.5 dB
79.6% 75.3%
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Discussion

{Key findings }

* What did we learn from the
results of each case study!?

{ Objectives }

* Were the originally stated
outcomes achieved!?

47
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Discussion

KEY FINDINGS e 48

RMS DB ERROR BY CASE

% OF FRE Q UENCY LINES WITHIN » E Sequent?al s?ngle-axfs (worst control Ioc:fltion)
A 3DB TOLERANCE BY CASE E Sequential single-axis (best control location)

B Sequential single-axis (worst control location)

E Sequential single-axis

& SIMO multi-axis
E Sequential single-axis (best control location)
E Sequential single-axis

& SIMO multi-axis

80.0%

RMS dB Error
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KEY FINDINGS @

Off-axis response occasionally exceeds both the X
andY targets.

_ Case 1, X input | Response: A33 | Control: A15 Case 1, Y input | Response: A33 | Control: A15

Frequency (Hz) Frequency (Hz)
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KEY FINDINGS 50

Off-axis response occasionally exceeds both the X
andY targets.

_Case 1, Xiinput | Response: A33 | Control: ALL Case 1. Y input | Response: A33 | Contr,ZI: ALL

Frequency (Hz) Frequency (Hz)
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KEY FINDINGS

Case 2, Angled input | Response: A33 | Control: ALL

e X
- ¥

— ¥ Service
— Y Service

10
Frequency (Hz)
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The objectives of the research are as follows:

i. To assess the quality of the proposed method.

* The proposed method allowed a single test to approximate a multi-axis test with on-axis
errors only slightly worse than sequential testing.

ii. To understand how much test quality improvement is possible with a well-designed test fixture.
* A dynamically optimized test fixture improved both the sequential test and SIMO test.

iii. To determine the effect of increasing the number of test fixture optimization parameters.
* For this specific model, target, and optimization strategy, more stiffness parameters showed

no improvement beyond the initial optimization.
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Summary

/

Future work

~

/




Conclusions

SUMMARY >4

JAN

- O - A fully validated method

Over-testing was avoided for a small on-axis error .
penalty. would enable wide access

. < to rapid, approximate
Both stiffness and angle optimization were necessary multi-axis vibration teStmg

to produce the best-case SIMO test. and eliminate the over-

J : .
X conservatism of sequential

single-axis testing.

The stiffness solution space was tractable.

\

Increased test fixture complexity did not lead to
better results.




FUTURE WORK

- The proposed method
produced promising
results, but more work
is needed to fully
validate the method...

Conclusions
55

JAN

Robust global optimization + local
optimization.

/

S
-

Assessment of larger target populations.

/

-
~

-

Combine proposed method with input
modification strategies.

/

~

S

Design and validation work to operationalize
the approach.

|
|
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