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1 Executive Summary264

It is currently understood that there are four fundamental forces in nature: gravitational, electromagnetic,265

weak and strong forces. The strong force governs the interactions between quarks and gluons, elementary266

particles whose interactions give rise to the vast majority of visible mass in the universe. The mathematical267

description of the strong force is provided by the non-Abelian gauge theory Quantum Chromodynamics (QCD).268

While QCD is an exquisite theory, constructing the nucleons and nuclei from quarks, and furthermore explaining269

the behavior of quarks and gluons at all energies, remain to be complex and challenging problems. Such270

challenges, along with the desire to understand all visible matter at the most fundamental level, position the271

study of QCD as a central thrust of research in nuclear science. Experimental insight into the strong force can272

be gained using large particle accelerator facilities, which are necessary to probe the very short distance scales273

over which quarks and gluons interact. The Long Range Plans (LRPs) exercise of 1989 and 1996 led directly to274

the construction of two world-class facilities: the Continuous Electron Beam Accelerator Facility (CEBAF) at275

Jefferson Lab (JLab) that is focused on studying how the structure of hadrons emerges from QCD (cold QCD276

research), and the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab (BNL) that aims at the277

discovery and study of a new state of matter, the quark-gluon plasma (QGP), at extremely high temperatures (hot278

QCD research). The different collision systems used to access the incredibly rich field of hot and cold QCD in279

the laboratory are illustrated in Fig. 1.280

Figure 1: Experimental methods to study Cold and Hot QCD using electron-nucleon (nucleus) scattering (top
left) and heavy-ion collisions (top right), respectively. The Electron-Ion Collider (bottom), to be realized within
the next LRP period, will bring new, exciting experimental programs to QCD research.

These past investments have produced major advances. Nucleons and nuclei are being studied with increasing281

7



precision with a unified description of the partonic structure utilizing multi-dimensional imaging. Significant282

progress has been made, paving the way towards a complete picture of how quarks and gluons give rise to283

the mass, spin, and momentum of the nucleon. In hot QCD, the QGP is created in the collisions of nuclei at284

RHIC and the Large Hadron Collider (LHC) and is observed to behave like a fluid with very low specific shear285

viscosity; the current goals are to understand how the fluid behavior emerges from QCD and to characterize286

the temperature (and chemical potential) dependence of the properties of the QGP. As this White Paper is287

written, current experimental programs at CEBAF, RHIC and the LHC continue to provide exciting near term288

opportunities to capitalize on the investments in experimental equipment and accelerator operations. Most289

importantly, the QCD community looks forward to the construction of the Electron Ion Collider (EIC) as a major290

new facility to push forward QCD research in the next decades, with significant focus on exploring the properties291

of gluons, the mediators of the strong force.292

1.1 QCD Community Input293

This White Paper presents the community inputs and scientific conclusions from the Hot and Cold QCD294

Town Meeting that took place September 23-25, 2022 at MIT [1], as part of the Nuclear Science Advisory295

Committee (NSAC) 2023 Long Range Planning process. A total of 424 physicists registered for the meeting. The296

meeting agenda is included in the Appendix. The meeting highlighted progress in QCD nuclear physics since the297

2015 LRP (LRP15) [2] and identified key questions and plausible paths to obtaining answers to those questions,298

defining priorities for our research over the coming decade. In defining the priority of outstanding physics299

opportunities for the future, both prospects for the short (∼ 5 years) and longer term (5-10 years and beyond) are300

identified together with the facilities, personnel and other resources needed to maximize the discovery potential301

and maintain United States leadership in QCD physics worldwide.302

We would like to note in preparation for this white paper, numerous excellent white papers were prepared303

by members of our community. We drew upon these documents wherever appropriate. This White Paper is304

organized as follows: In the next part of this Executive Summary, we detail the Recommendations and Initiatives305

that were presented and discussed at the Town Meeting, and their supporting rationales. A survey was sent306

to all town meeting participants upon conclusion of the discussion to solicit community input. A total of307

342 community members completed the survey, and the results are included here. Section 2 highlights major308

progress and accomplishments of the past seven years. It is followed, in Section 3, by an overview of the physics309

opportunities for the immediate future, and in relation with the next QCD frontier: the EIC. Section 4 provides310

an overview of the physics motivations and goals associated with the EIC. Section 6 is devoted to the workforce311

development and support of diversity, equity and inclusion. This is followed by a dedicated section on computing312

in Section 7. Section 8 describes the national need for nuclear data science and the relevance to QCD research.313

1.2 Recommendations314

We present the recommendations agreed on at the QCD Town Meeting along with the survey results to315

indicate the strength of community support for each recommendation. The four recommendations listed here316

received the consensus support of attendees at the QCD Town Meeting.317

Recommendation 1: Capitalizing on past investments (Yes: 335; No: 3; No Answer: 4)318

The highest priority for QCD research is to maintain U.S. world leadership in nuclear science for the next decade319

by capitalizing on past investments. Maintaining this leadership also requires recruitment and retention of a320

diverse and equitable workforce.321

We recommend support for a healthy base theory program, full operation of the CEBAF 12-GeV and322

RHIC facilities, and maintaining U.S. leadership within the LHC heavy-ion program, along with other323

running facilities, including the valuable university-based laboratories, and the scientists involved in all324

these efforts.325
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This includes the following, unordered, programs:326

• The 12-GeV CEBAF hosts a forefront program of using electrons to unfold the quark and gluon structure327

of visible matter and probe the Standard Model. We recommend executing the CEBAF 12-GeV program at328

full capability and capitalizing on the full intensity potential of CEBAF by the construction and deployment329

of the Solenoidal Large Intensity Device (SoLID).330

• The RHIC facility revolutionized our understanding of QCD, as well as the spin structure of the nucleon.331

To successfully conclude the RHIC science mission, it is essential to complete the sPHENIX science332

program as highlighted in the 2015 LRP, the concurrent STAR data taking with forward upgrade, and the333

full data analysis from all RHIC experiments.334

• The LHC facility maintains leadership in the (heavy ion) energy frontier and hosts a program of using335

heavy-ion collisions to probe QCD at the highest temperature and/or energy scales. We recommend the336

support of continued U.S. leadership across the heavy ion LHC program.337

• Theoretical nuclear physics is essential for establishing new scientific directions, and meeting the chal-338

lenges and realizing the full scientific potential of current and future experiments. We recommend339

increased investment in the base program and expansion of topical programs in nuclear theory.340

Recommendation 2: We recommend the expeditious completion of the EIC as the highest priority for341

facility construction. (Yes: 325; No: 10; No Answer: 7)342

The Electron-Ion Collider (EIC) is a powerful and versatile new accelerator facility, capable of colliding high-343

energy beams ranging from heavy ions to polarized light ions and protons with high-energy polarized electron344

beams. In the 2015 Long Range Plan the EIC was put forward as the highest priority for new facility construction345

and the expeditious completion remains a top priority for the nuclear physics community. The EIC, accompanied346

by the general-purpose large-acceptance detector, ePIC, will be a discovery machine that addresses fundamental347

questions such as the origin of mass and spin of the proton as well as probing dense gluon systems in nuclei.348

It will allow for the exploration of new landscapes in QCD, permitting the “tomography", or high-resolution349

multidimensional mapping of the quark and gluon components inside of nucleons and nuclei. Realizing the EIC350

will keep the U.S. on the frontiers of nuclear physics and accelerator science technology.351

• Building on the recent EIC project CD-1 approval, the community-led Yellow-Report, and detector352

proposals, the QCD research community is committed to continue the development and timely realization353

of the EIC and its first detector, ePIC. We recommend supporting the growth of a diverse and active354

research workforce for the ePIC collaboration, in support of the expeditious realization of the first EIC355

detector.356

• We recommend new investments to establish a national EIC theory alliance to enhance and broaden the357

theory community needed for advancing EIC science and the experimental program. This theory alliance358

will contribute to a diverse workforce through a competitive national EIC theory fellow program and359

tenure-track bridge positions, including appointments at minority serving institutions.360

Recommendation 3: Workforce and Conduct (Yes: 296; No: 19; No Answer: 27)361

Increasing the U.S. QCD research workforce and participation of international collaborators is vital for the362

successful realization of the field’s science mission. In addition, the nuclear physics research program serves363

an important role in developing a diverse STEM workforce for the critical needs of the nation. Creating and364

maintaining an equitable, productive working environment for all members of the community is a necessary part365

of this development.366

We recommend enhanced investment in the growth and development of a diverse, equitable workforce.367
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• Part of recruiting and maintaining a diverse workforce requires treating all community members with368

respect and dignity. Supporting the recent initiatives by the APS (American Physical Society) and DNP369

(Division of Nuclear Physics) to develop community-wide standards of conduct, we recommend that host370

labs and user facilities require the establishment and/or adoption of enforceable conduct standards by all371

of the experimental and theoretical collaborations they support. The enforcement of such standards is372

the combined responsibility of all laboratories, theoretical and experimental collaborations, conference373

organizers, and individual investigators supported by the nuclear physics research program.374

• We recommend development and expansion of programs that enable participation in research by students375

from under-represented communities at National Labs and/or Research Universities, including extended376

support for researchers from minority-serving and non-PhD granting institutions.377

• We recommend development and expansion of programs to recruit and retain diverse junior faculty and378

staff at universities and national laboratories through bridge positions, fellowships, traineeships, and other379

incentives.380

Recommendation 4: Computing (Yes: 302; No: 20; No Answer: 20)381

High-performance and high-throughput computing are essential to advance nuclear physics at the experimental382

and theory frontiers. Increased investments in computational nuclear physics will facilitate discoveries and383

capitalize on previous investments.384

• We recommend increased investments for software and algorithm development, including in AI/ML, by385

strengthening and expanding programs and partnerships, such as the DOE SciDAC and NSF CSSI and AI386

institutes.387

• We recommend increased support for dedicated high-performance and high-throughput mid-scale compu-388

tational hardware and high-capacity data systems, as well as expanding access to leadership computing389

facilities.390

• Advanced computing is an interdisciplinary field. We recommend establishing programs to support the391

development and retention of a diverse multi-disciplinary workforce in high-performance computing and392

AI/ML.393

1.3 Initiatives394

The Initiatives listed here are the product of input from the QCD community. They represent a broad range395

of projects and ideas that were proposed and discussed at the Town Meeting, but they do not necessarily have as396

high or as focused priority that the Recommendations have.397

Initiative: We recommend targeted efforts to enable the timely realization of a second, complementary398

detector at the Electron-Ion Collider. (Yes: 262; No: 54; No Answer: 26)399

The EIC is a transformative accelerator that will enable studies of nuclear matter with unprecedented precision.400

The EIC encapsulates a broad physics program with experimental signatures ranging from exclusive production401

of single particles in ep scattering to very high multiplicity final states in eA collisions. Two detectors will402

expand the scientific opportunities, draw a more complete picture of the science, and mitigate the inherent risks403

that come with exploring uncharted territory by providing independent confirmation of discovery measurements.404

High statistical precision matched with a similar or better level of systematic precision is vital for the EIC405

and this can only be achieved with carefully optimized instrumentation. A natural and efficient way to reduce406

systematic errors is to equip the EIC with two complementary detectors using different technologies. The407

second detector effort will rely heavily on the use of generic detector R&D funds and accelerator design effort to408

integrate the detector into the interaction region. The design and construction of such a complementary detector409

and interaction region are interwoven and must be synchronized with the current EIC project and developed in410

the context of a broad and engaged international EIC community.411
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Initiative: We recommend the allocation of necessary resources to develop high duty-cycle polarized412

positron beams at CEBAF. (Yes: 192; No: 91; No Answer: 59)413

Using the existing 12 GeV CEBAF and capitalizing on innovative concepts for a positron source developed at414

Jefferson Lab, a high duty-cycle polarized positron beam will enable a unique science program at the luminosity415

and precision frontier. It will comprise the mapping of two-photon exchange effects as well as essential416

measurements of the 3D structure of hadrons. It will also offer new opportunities to investigate electroweak417

physics and physics beyond the standard model.418

The PEPPo experiment (2012) demonstrated a new technique for the production of polarized positrons (PRL419

116, 2016) at the CEBAF injector. Since then, an extensive physics program has been developed. First presented420

in 2018 to the Jefferson Lab Program Advisory Committee (PAC), it was then expanded and summarized in 20421

peer-reviewed publications (EPJ A58, 2022). Two experiments were already approved by the Jefferson Lab422

PAC in 2020. The PAC has encouraged a vigorous effort to explore the technical feasibility of such a unique423

facility. A positron injector concept has emerged with the help of FY21 LDRD funds and an upcoming FY23424

LDRD project will study the efficiency of transporting a beam with emittance comparable to the one expected in425

a positron beam through CEBAF. Following these advances over the last decade, expeditious development of426

this outstanding worldwide capability now appears achievable.427

Initiative: Capitalizing on recent science insights and US-led accelerator science and technology innova-428

tions, we recommend a targeted effort to develop a cost-effective technical approach for an energy upgrade429

of CEBAF. This would provide capabilities to enable a worldwide unique nuclear science program at the430

luminosity frontier. (Yes: 140; No: 147; No Answer: 55)431

The last decade has provided multiple science surprises such as the discovery of exotic states in the charmonium432

sector at facilities worldwide, the so-called “XYZ” states. Studies of the 3D structure of hadrons and hadroniza-433

tion provided deeper access to quark-gluon dynamics and opened new opportunities for understanding QCD434

in its full complexity. In addition, mysteries of the visible matter around us remain unsolved, such as a small435

enhancement of partons found in nuclei at the interface of the quark- and gluon-dominated regions, the so-called436

“anti-shadowing” region, that to date lacks explanation and can only be further studied at the luminosity frontier.437

Capitalizing on recent innovations enabled by accelerator science and technology, a cost-effective energy438

upgrade of the 12-GeV CEBAF at Jefferson Lab to a 22 GeV facility may become feasible. Such an upgrade439

would permit a worldwide unique nuclear science program with fixed targets at the luminosity frontier, roughly440

five decades above that possible with a collider. Beyond its nuclear science opportunities, this will further441

steward best-in-class accelerator technology within the US.442

Initiative: U.S. Participation in LHC Detector Upgrades and Partnership with CERN Initiative443

(Yes: 255; No: 49; No Answer: 38)444

The LHC will remain at the energy frontier of nuclear and particle physics in the coming two decades. Detector445

upgrades enabled by novel technologies will maximize the potential of the planned high luminosity upgrade and446

open new opportunities in QCD research.447

To maintain U.S. leadership in the nuclear physics program at the LHC, we recommend exploring and448

supporting targeted detector R&Ds and upgrades to the LHC experiments, led by U.S. groups, that449

provide unique capabilities. These projects will open new physics opportunities, further stimulate the synergy450

between US-EIC and CERN-LHC in nuclear science, accelerator and detector technology, and also strengthen451

partnerships with the international community.452

Initiative: Exploring opportunities for US participation in international facilities at the high baryon453

density frontier (Yes: 157; No: 129; No Answer: 56)454

We wish to maintain US leadership in the exploration of the QCD phase diagram at high baryon density after455

the completion of the RHIC BES-II program and to build on the success of the BES program, including the456
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search for the QCD critical point, the extraction of the hyperon-nucleon interaction, and the determination of457

constraints on the nuclear matter equation of state at high baryon density.458

We recommend exploring opportunities for targeted US participation in international facilities that will459

probe the physics of dense baryon-rich matter and constrain the nuclear equation of state in a regime460

relevant to binary neutron star mergers and supernovae. The upcoming results from RHIC BES-II will help461

assess which international experiments present the highest potential for new discoveries at high baryon density.462

Initiative: Nuclear Data (Yes: 274; No: 22; No Answer: 46)463

Nuclear data play an essential if sometimes unrecognized role in all facets of nuclear physics. Access to accurate,464

reliable nuclear data is crucial to the success of important missions such as nonproliferation and defense, nuclear465

forensics, homeland security, space exploration, and clean energy generation, in addition to the basic scientific466

research underpinning the enterprise. These data are also key to innovations leading to new medicines, automated467

industrial controls, energy exploration, energy security, nuclear reactor design, and isotope production. It is thus468

crucial to maintain effective US stewardship of nuclear data.469

• We recommend identifying and prioritizing opportunities to enhance and advance stewardship of nuclear470

data and maximize the impact of these opportunities.471

• We recommend building and sustaining the nuclear data community by recruiting, training, and retaining a472

diverse, equitable and inclusive workforce.473

• We recommend identifying crosscutting opportunities for nuclear data with other programs, both domesti-474

cally and internationally, in particular with regard to facilities and instrumentation.475

2 Progress Since the Last LRP476

2.1 Progress in Hot QCD477

Over the last several years major advances have been made through the experimental programs at RHIC and478

the LHC. At RHIC, this includes the successful data taking within the Beam Energy Scan II (BES-II) program,479

gathering unprecedented statistics on Au+Au collisions probing the QCD phase diagram from moderate to high480

net baryon number densities, as well as the collection and analysis of data from the isobar program, which used481

Ru+Ru and Zr+Zr collisions to search for the chiral magnetic effect (CME). At the LHC, the Run 2 heavy-ion482

program provided more than an order of magnitude increase in luminosity for Pb+Pb collisions (compared483

with Run 1) and explored the first experiments at LHC energies utilizing nuclei other than lead with Xe+Xe484

collisions. Additionally, there has been a lot of progress in the relevant theory and computation, including485

Bayesian analyses providing improved extraction of the QGP transport properties. This section highlights some486

of the major advances in this area as well as connections between studies of the QGP and other areas of physics.487

2.1.1 Macroscopic QGP Properties488

A major goal of the study of heavy-ion collisions is to determine the properties of the hot and dense489

matter created. This includes the QCD equation of state (see Sec. 2.1.6) and the transport properties of the490

QGP, including its shear and bulk viscosities and the partonic transport coefficient q̂. While first-principles491

calculations using e.g. lattice QCD or effective models can provide results for these properties, these methods492

are either extremely difficult (in case of lattice QCD, from which so far only the equation of state at zero baryon493

chemical potential, and the heavy quark diffusion coefficient have been reliably determined, see Sec. 3.1.2) or494

only approximate QCD (see Sec. 3.1.3), such that comparison of phenomenological models to experimental495

measurements provides the most fruitful approach to determine QGP properties. A representation of the evolution496

of a heavy ion collision is shown in Fig. 2, indicating the different stages and time scales, and showing the various497

final state particles that carry all accessible information. In the following we will discuss the most important498

observables that carry information on the macroscopic QGP properties and then move to discussing advances in499

the phenomenological modeling and data-theory comparisons.500
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Figure 2: The stages of a relativistic heavy ion collision. Figure adapted from [3, 4].

Experimental observables Over past years, experimental measurements to quantify bulk and collective501

properties of the QGP have achieved a new level of precision for a wide variety of differential observables.502

Azimuthal anisotropies of the transverse momentum distribution of produced particles, elliptic (v2) and higher-503

order (vn) flow coefficients that are particularly sensitive to the QGP’s shear viscosity and equation of state, have504

been measured to unprecedented precision over a wide range of a wide range of initial system size, collision505

geometry, and phase space [5–14]. Figure 3 shows v2 and v3 results over a wide multiplicity (or, equivalently,506

centrality) range in Au+Au, U+U, and d+Au collisions at RHIC (left panel) as well as in Pb+Pb, Xe+Xe, and507

p+Pb collisions at the LHC (right panel), indicating collective flow of the medium, originally not expected in508

case of small systems (see Sec. 2.1.5). For central collisions of large systems, the v2 and v3 data follow precisely509

the trend expected by the initial geometry and its fluctuations. Extending to very peripheral regions where the510

system size is diminishing, the finite system size effect and viscous corrections become significant. The observed511

trends are captured by state-of-the-art hybrid hydrodynamic calculations from the most central events down to512

dN/dη ∼ 10–20.513

Additionally, new experimental techniques are expected to increase the precision of the QGP transport514

property extraction in the near future. The vn of identified particles, especially those which contain strange515

quarks, can test the expected mass dependence of hydrodynamic flow and can be used to constrain the impact516

of the hadronic rescattering phase on the measured anisotropies [15–17] (the extension of these measurements517

to hadrons containing heavy quarks is discussed in Sec. 2.1.3). Event-by-event fluctuations of the v2 flow518

coefficient have been measured using multiparticle cumulants; these are used to extract moments of the vn519

distributions [18–26]. Also, symmetric cumulants measure the correlated fluctuations of different orders of flow520

coefficients [27–29]. Mixed-higher-order flow harmonics measured up to 7th order can uniquely probe linear and521

nonlinear hydrodynamic responses [30, 31]. The vn-⟨pT ⟩ correlation, with unique sensitivity to the correlation522

between the system size and shape, has already been used to constrain the shape of the xenon nucleus using523

LHC Xe+Xe data [32, 33]; it also has the potential to disentangle different origins of momentum anisotropy524

[34, 35]. Further, femtoscopic observables are sensitive to the system size and provide additional information to525

disentangle medium and initial state properties [36–41]. More observables, such as electromagnetic probes, hard526
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probes including jets and heavy flavors, as well as measurements at varying collision energy and for different527

system sizes can aide in the determination of QGP properties. We will discuss each of them below.528
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Figure 3: Experimental data on v2{2} and v3{2} from the STAR [42, 43], PHENIX [44], and ALICE [25]
Collaborations, with theory results from the IPGlasma+MUSIC+UrQMD model. Figure adapted from [45].

Phenomenological modeling of heavy ion collisions There has been significant progress over the last several529

years in the modeling of heavy ion collisions over a wide range of energies and collision systems. In particular,530

there has been progress in modeling the initial state (see Sec. 2.1.4), with three-dimensional dynamic initial states,531

that progressively deposit energy into the hydrodynamic medium [46], with initial conditions for fluctuating532

conserved charges [47], as well as extensions to three dimensions in the color glass condensate (CGC) based533

models [48, 49]. Smoothly connecting the initial state to hydrodynamics has been significantly improved by534

means of QCD effective kinetic theory [50].535

Extending the applicability of fluid dynamics can also be achieved with anisotropic fluid dynamics, which536

allows for larger differences between the longitudinal and transverse pressure in the system and therefore applies537

at earlier times than second-order viscous hydrodynamics [51, 52]. Further extensions of fluid dynamics include538

spin [53] and chiral currents [54, 55], triggered by interest in chiral magnetic effect and polarization observables539

(see Sec. 2.1.7).540

Equations of state were constructed with input from lattice QCD, in the space of temperature and chemical541

potentials of the conserved charges [56–59], with some of them including a critical point (see Sec. 2.1.6 and542

[60] for a review). These equations of state require extrapolations, for example into the region of high baryon543

chemical potential where lattice QCD cannot directly provide results. Constraints in that region can be obtained544

from thermal perturbation theory, effective models of QCD (see Sec. 3.1.3), or calculations of strongly-coupled545

gauge theories that have known holographic duals, and are similar to QCD [61].546

Progress has also been made in describing the evolution of hydrodynamic and critical fluctuations by547

solving stochastic differential equations [62, 63] or employing the hydro-kinetic formalism [64–71], as well as548

the conversion from fluids to particles that respects local conservation laws [72, 73]. Both developments are549

particularly relevant for including effects related to the existence of the critical point. Core-corona models, in550

which regions of high energy density are described using hydrodynamics, while low energy density matter is551

described using particle degrees of freedom throughout the evolution, have also been advanced significantly in552

the past years. Such models allow for a unified description across systems sizes and produced particle transverse553

momenta [74].554

Purely hadronic transport simulations are essential for constraining the dense nuclear matter equation of555

state (EOS) and interpreting experimental results from collisions at very low to intermediate beam energies,556
√

sNN ≈ 1.9 to
√

sNN ≈ 8.0 GeV, where equilibrium is not typically expected to be reached, and, therefore, a557
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hydrodynamic description is not possible. Comparisons of hadronic transport simulations with experimental558

data can reveal not only the EOS of symmetric nuclear matter [75–78], but can also help constrain the isospin-559

dependence of the EOS (e.g., by using meson yields [79–84], proton and neutron flow [79, 85–90], or pion flow560

[91]) and help understand strange interactions (e.g., by using strange particle flow [92–94]). The influence of the561

possible QCD critical point on the hadronic evolution, either within purely hadronic transport simulations or562

in afterburner calculations, can also be explored using hadronic potentials, enabling description of non-trivial563

features at high baryon densities [95]. Significant theoretical, conceptual, and modeling work remains, however,564

to ensure valid conclusions can be discerned from the heavy-ion data.565

Extracting QGP properties using Bayesian inference An important tool that has helped precision extraction566

of information is Bayesian inference, which has been increasingly used over the last few years to constrain the567

temperature dependence of η/s and ζ/s, as well as other quantities such as q̂. Bayesian inference determines568

the probability that certain values of shear and bulk viscosity, and any other model parameter, are consistent569

with a set of measurements and their uncertainties. The resulting posterior probability distribution, which has570

the dimension of the number of parameters, can be projected to lower dimensions by marginalizing over all but571

one or two parameters, or by calculating credible intervals, providing interpretable constraints on the model572

parameters.573
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Figure 4: Constraints on η/s and ζ/s from Ref. [96], as represented by the 90% credible intervals for the posterior
and the prior, along with their corresponding information gain (Kullback-Leibler divergence DKL).

A number of different constraints on the QGP shear and bulk viscosities have been obtained over the past574

decade [96–108]. The analyses differ because of the uncertainties in (i) modelling the pre-equilibrium stage, (ii)575

the equation of state, (iii) the assumed functional form of shear and bulk viscosity, (iv) the higher-order transport576

coefficients, and (v) the conversion from fluids to particles. An additional source of uncertainty is emulation,577

often used to circumvent the otherwise prohibitive computational requirements of running the model. Critically,578

the set of measurements used to calibrate the model vary considerably between the different analyses.579

Reference [103] marked a step forward by studying simultaneously the temperature dependence of the shear580

and bulk viscosities with flexible parametrizations and using a state-of-the-art model. The employed software is581

publicly available and formed the basis of almost all Bayesian inference studies that followed. Reference [102]582

and later Refs. [105, 106] added data from small system (p+Pb) collisions, with the later papers also including583

a larger set of measurements in Pb+Pb collisions, a different pre-hydrodynamic phase, and a study of second584

order transport coefficients. As an example, we show results for the posterior distributions of temperature585

dependent bulk and shear viscosities (compared to the assumed priors) from Refs. [96, 104] in Fig. 4. These586

studies combined RHIC and LHC measurements, and included particlization uncertainties for the first time.587

The difference between the prior and the posterior, quantified by the Kullback-Leibler divergence DKL in the588
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bottom panel of Fig. 4, highlights that most information is gained at temperatures below T = 200 MeV. How to589

improve constraints at higher temperature is one of the major questions going forward. Additional advances in590

the past years include (i) the use of closure tests [104, 109] as validation of Bayesian analysis and as a method591

to estimate the impact of future measurements [107], (ii) non-parametric methods [110, 111] to reduce bias592

when constraining model parameter that are functions rather than scalar values, and (iii) increasing attention to593

correlations between measurements and their uncertainties [103, 104, 112–114].594

2.1.2 Accessing QGP Evolution and Chiral Symmetry Breaking Using Electromagnetic Probes595

By virtue of their negligible interaction with the quark-gluon plasma, electroweak probes provide invaluable596

information on the physics of heavy-ion collisions. Low-energy photons and low-mass dileptons are radiated597

directly by the hot and dense plasma produced in the collisions but then do not interact further with the QGP,598

providing a window into the thermal properties of the plasma. Additionally, high-energy photons, dileptons599

and weak bosons are mainly produced when the nuclei initially collide, and can provide important information600

regarding the initial properties of the collisions [115].601

Removing the contribution from photons emerging from hadronic decays leads to a “direct” photon signal.602

Measurements of the low-energy direct photon spectra and azimuthal anisotropies, vγn, have been released by603

ALICE, PHENIX and STAR. At RHIC, there is tension between the STAR [116] and PHENIX results [117–604

119] for the photon spectra. Measurements are also available from ALICE at 2.76 TeV [120], which show an605

enhancement over expectations based on perturbative QCD in the transverse momentum region of 2–5 GeV which606

is consistent with the thermal radiation from the QGP. Values of vγn have been measured by both ALICE [121]607

and PHENIX [122]. The results are found to be compatible with each other but the measured values are608

systematically larger than the model results [123]. The source of this large vγn in the data is not understood.609

Inclusive dileptons that include hadronic decays have been measured in ALICE [124] and found to be610

consistent in the low-mass limit with inclusive real photon measurements. Measurements of dileptons for611

collision energies between 19.6–200 GeV are also available [125–128]. Models that include an in-medium612

broadening of the ρ-meson spectral function consistently describe the observed excess over the hadronic decay613

contributions [129].614

Significant advances have been made in the theoretical description of photon and dilepton production in615

heavy-ion collisions. Calculations of the thermal production of photons [123, 130–137] and dileptons [138–140]616

in viscous hydrodynamic backgrounds have been improved by including the effects of shear and bulk viscosity on617

the emission rates [123, 130, 139, 141, 142], and electromagnetic emission channels have been included in the618

hadronic transport stage [143, 144]. This brings the sophistication of thermal photon and dilepton calculations on619

par with those of soft hadrons. Various new calculations of photon emission rates have emerged [131, 141, 144–620

150], including from lattice QCD [151–155]. Results from Refs. [156–158] using anisotropic hydrodynamics621

and electromagnetic emission rates from a momentum-anisotropic quark-gluon plasma further contribute to622

better understanding non-equilibrium effects. Works on other topics include predictions for the direct photon623

Hanbury Brown Twiss (HBT) interferometry [133], studying photons that originate from the hadronization624

of intermediate energy hadrons [159], additional photon production mechanisms [160, 161], and relativistic625

transport studies of electromagnetic probes [162].626

Invariant mass spectra of dileptons also provide a unique opportunity to study the effects of chiral symmetry627

restoration on hadrons, such as the ρ meson and its chiral partner, the a1. Vector meson spectral functions628

in the medium can be computed in a variety of frameworks, including lattice QCD, massive Yang Mills, and629

hadronic many-body theory, or the analytically-continued functional renormalization group (FRG) method [115].630

Theoretical calculations predict melting of the ρ meson in the medium, indicating a transition from hadronic631

degrees of freedom to a quark-antiquark continuum that is consistent with chiral symmetry restoration. This632

picture is consistent [129] with dilepton data from NA60 [163] and STAR [164]. Furthermore, chiral partners633

become degenerate at the ground state mass in a way that the chiral mass splitting disappears but the ground-state634

mass remains [115, 165].635
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2.1.3 QGP Tomography with Hard Probes636

The goal of using hard probes to study the QGP is to understand the emergent phenomena which give rise to637

the nearly perfect liquid QGP that has been described in previous sections. Hard probes, such as jets, open heavy638

flavor and quarkonia, probe the QGP on varying short distance scales, as with a microscope. Because the QGP639

is short-lived, the probes are generated in the same nuclear collisions which create the QGP itself. The three640

Upsilon states and jets are examples of important probes. The Υ(1S ), Υ(2S ), and Υ(3S ) states each characterize641

the QGP on a separate length scale that depends on its binding energy. Jets probe the QGP on a variety of length642

scales depending on their energy and the characteristics of the jet structure. LRP15 [2] discussed the importance643

of measurements of these observables at both RHIC and LHC in order to understand the temperature dependence644

of QGP properties. Over the last several years there have been new measurements from LHC experiments and645

the existing RHIC detectors. Crucially, sPHENIX is about to begin its physics program, which focuses on jets646

and Upsilons.647

Jets QCD jets arise from the hard scattering of quarks and gluons (collectively, partons) in hadronic and nuclear648

collisions. This is a process that can be well described by perturbative QCD (pQCD) calculations [166, 167]. Jets649

are measured as a collimated spray of particles carrying approximately the energy of the scattered parton. These650

particles and/or their energies is clustered together to form measured jets. Some of the earliest measurements at651

RHIC and LHC in heavy-ion collisions were about the reduction in the rate of these jets in heavy-ion collisions652

compared to expectations from p+p collisions [168–172]. This phenomenon is called jet quenching. Our653

understanding of how jets are quenched in heavy-ion collisions has evolved dramatically in the last several654

years driven by increasingly precise and differential measurements from the LHC and RHIC and improvements655

in theory. Additionally, the techniques used to measure jet substructure have advanced and the number of jet656

substructure measurements available has increased dramatically. The current focus is on understanding how jet657

quenching depends on the structure of the parton shower and the length of the QGP the jet travels though. In658

addition to the modification and quenching of the jet itself it is of great interest to study how the QGP responds659

to the passage of the jet through it. Some of the highlights are listed here.660

The population of jets in heavy-ion collisions has been measured to have different internal structure [173–661

176] and substructure [177, 178] than jets in p+p collisions. The distribution of jets as a function of the angle662

between the two hardest subjets in the event, θg (or rg ≡ Rθg, where R is the jet cone size) has been measured663

and is shown in Fig. 5. These studies have shown that wider fragmenting jets are suppressed more by the QGP664

than narrower fragmenting jets, providing possible new connections to the color coherence length scale of the665

QGP [179–182]: Only structures in the parton shower that are larger than the coherence scale are seen by the666

QGP as separate color charges and thus quenched separately.667

Measurements have been made of the interjet angular correlations in Pb+Pb collisions [170, 183–185].668

Recent measurements have been inspired by calculations of potential quasiparticles in the QGP [186–190]. No669

evidence of this has been found to date.670

In addition to measuring the jet substructure directly, it is possible to change the quark and gluon fractions in671

a particular jet sample with respect to the inclusive sample by looking at jets balanced by a photon or Z-boson672

rather than another jet. At leading order, the dominant process for photon-jet production is q + g → q + γ,673

which selects on quark jets. Additionally, it is possible to select on b-jets [191, 192], which also provides an674

enhanced quark sample of jets. Due to the larger color charge of the gluon compared to the quark, gluon jets are675

broader and expected to lose more energy on average than quark jets. Several measurements of b-jets found the676

suppression to be consistent with inclusive jets [191, 193], while recent results for samples of jets with increased677

quark fractions are found to have reduced jet quenching compared to inclusive jets [192, 193]. We note that678

recent theoretical developments point to possible future methods for data-driven extraction of quark and gluon jet679

modification in heavy ion collisions [194, 195]. Additional insights into the mechanisms of energy loss were also680

obtained from studying the semi-inclusive distribution of jets recoiling from a high-pT trigger hadron [185, 196].681

The response of the QGP to the passage of a jet is characterized by an increased amount of low momentum682

particles within and around the jet [171, 175, 205–208]. Reference [175] found an excess of particles in Pb+Pb683
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The ALICE experiment - A journey through QCD ALICE Collaboration

Figure 52, left panel, shows the measurement of zg, which exhibits no significant modification of the zg
distribution in Pb–Pb collisions compared to pp collisions. This is consistent within uncertainties with a
variety of jet quenching models, also shown.
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Figure 52: Jet zg (left) and qg (right) in 0–10% centrality for R = 0.2 charged-particle jets [640]. The ratio of the
distributions in Pb–Pb and pp collisions is shown in the bottom panels and is compared to various jet quenching
calculations.

These analysis techniques also enable measurements of the angular distribution qg, which has been pre-
dicted to be sensitive to the quark-gluon fraction, splitting formation time, and colour coherence [623,
625]. In contrast to the zg distribution, Fig. 52 (right) shows a significant narrowing of the qg (Rg) dis-
tribution in central Pb–Pb collisions compared to pp collisions, which provides direct evidence of the
modification of the angular scale of jets in the quark–gluon plasma. This narrowing is consistent with
models implementing (transverse) incoherent interaction of the jet shower constituents with the medium,
but also with medium-modified quark-to-gluon fractions and fully coherent energy loss; further mea-
surements will be needed to characterise the mechanism underlying the narrowing. Taken together, these
measurements suggest that the hard substructure of jets is consistent with (i) little-to-no modification
of the momentum splitting, and (ii) stronger suppression of jets with wide fragmentation patterns. This
indicates that the medium has a significant resolving power for splittings with a particular dependence
on the angular scale, preserving narrow jets or filtering out wider jets.

Jet shapes. Jet substructure observables can also be used to probe soft non-perturbative physics by
studying the distribution of radiation inside the jet, without selecting on the hard structure. Such un-
groomed observables can probe the interplay between the modification of the jet structure and the re-
sponse of the medium to the jet propagating through it.

Jet shape is measured both by jet-by-jet functions of the jet constituent momentum, such as jet mass
and width, and by inclusive and semi-inclusive measurements of intra- and inter-jet distributions, such
as the ratio of jet yields measured with different R. The jet-by-jet jet shapes in particular are sensitive to
the underlying soft physics. The first radial moment [641], or the angularity (girth or width), probes the
radial energy profile of the jet. The jet mass, which is related to the second radial moment [641], captures
the virtuality of the original parton that produced the jet and increases with increasing contribution of
large-angle, typically soft particles [642]. These observables are complementary to measurements of the
jet fragmentation using the longitudinal momentum fraction of the jet by ATLAS [612] and CMS [643]
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collisions relative to p+p collisions below 4 GeV inside the jet cone (of size R = 0.4). The size of this excess684

was largely independent of the jet transverse momentum, suggesting that its properties were characteristic of685

the QGP and not of the jet itself (see Fig. 6). The pT > 4 GeV component of the fragmentation function was686

found to be qualitatively similar to that for jets in p+p collisions [209]. Measurements of the angular distribution687

of the low momentum particles near the jet have shown that they have a wider distribution than those from the688

jet itself [207, 208]. This suggests that measuring jets with increasingly large radii might allow recovery of the689

energy lost by the jet and incorporated into the QGP. Measurements of the jet cone size dependence of the jet690

yields in heavy-ion collisions have been made at RHIC [210] and the LHC [172, 211–213]. Jets with a large cone,691

R = 1, were measured for the first time in Pb+Pb collisions [213] (see Fig. 6). This measurement is sensitive to692

the interplay between the angular dependence of the energy lost by the jet and the energy incorporated into the693

medium as medium response. The current measurement does not show a strong cone size dependence to the694

jet quenching, in contrast to many, but not all, theoretical models. Tagged (e.g. with Z-bosons)jets can provide695

further information on the parton medium interactions [214].696

The azimuthal anisotropy, vn of jets [219, 220] and hadrons from jets [6] has been measured to be non-zero697

in Pb+Pb collisions. The values of v2 are measured to be significantly larger than zero over a wide range of698

centrality and to have a centrality dependence that is similar to that seen from hydrodynamic flow for lower699

momentum particles. This is expected if the amount of jet quenching depends on the path length of the jet700

through the QGP. In [221] v3 was found to be consistent with zero, while a non-zero v3 of jets was observed in701

Ref. [220]. The v3 component can be explained by sensitivity to the geometrical fluctuations in the initial state702

of the collision. The values of v4 are consistent with zero over all measured centralities [220, 221].703

Over the last several years, there have been significant advances in the extraction of the parameter controlling704

the strength of jet quenching in the QGP, q̂. Extractions from a number of groups use hydrodynamical models of705

the QGP combined with state-of-the-art jet quenching calculations to extract q̂ from experimental data on the706

RAA of jets and hadrons at the LHC and RHIC [110, 111, 113, 217] using Bayesian techniques. Improvements in707

the models and the experimental data have contributed to stronger constraints on the temperature dependence of708
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q̂. Figure 7 shows the q̂/T 3 extractions from four models [110, 113, 217, 218]. Refeference [218] was published709

in 2013 and has large uncertainties and a small temperature range. The more recent calculations [110, 113, 217]710

provide much more information, however there is still tension between the three model results.711

Open heavy flavor and quarkonia Heavy-flavor particles, charm and bottom quarks and the hadrons they712

constitute, are versatile probes of the QCD medium formed in nuclear collisions [222, 223]. The heavy713

quark mass, mQ, provides a large scale relative to typical temperatures in nuclear collisions, providing unique714

opportunities to investigate the short distance scale behavior of the QGP [2, 224]. Suppression of quarkonia,715

heavy quark-antiquark bound states, is sensitive to the temperature of the medium: different states dissociate at716

different temperatures, depending on the size of the bound state [225]. Quarkonia may also be (re-)generated by717

uncorrelated Q and Q coalescence when multiple QQ pairs are produced in a heavy-ion collision.718

Calculational advances in the description of quarkonium and open heavy flavor production have been made719

in a number of directions, including transport calculations, effective field theory approaches, and lattice QCD720

calculations. The understanding of quarkonium dynamics inside the QGP was greatly advanced since LRP15 by721

the application of the open quantum system framework (recent reviews can be found in Refs. [226–229]). Very722

recently, the first 1/mQ-correction to the heavy quark diffusion coefficient has been worked out [230]. Significant723

noise reduction was obtained in quenched QCD using gradient flow [231, 232]. Heavy quark diffusion has been724

implemented in different transport approaches and used to constrain the QGP transport coefficients [233, 234].725

Measurements of the Λc/D0 ratio in heavy-ion collisions at RHIC [235] and LHC [236–238] have provided726

new constraints on models of hadron formation. Two coalescence models [239, 240], have been compared727

to data from both RHIC and LHC [235–237], see Fig. 8. Other models have been compared to one of the728

data sets [241–244]. More precise data, necessary to fully constrain heavy-flavor hadron formation in the729

QGP, will be available in the future, see Sec. 3.2.3. In addition, recent data on the ratios D+s /D
0 at both RHIC730

and LHC [245, 246] show significant enhancement at intermediate pT relative to more elementary collisions,731

suggesting that hadronization proceeds via coalescence in heavy-ion collisions. Measurements of B0
s/B+ in732

Pb+Pb collisions are also available which hint at an enhancement of this ratio in Pb+Pb collisions compared to733
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Figure 7: Four extractions of the
strength of the jet quenching parame-
ter q̂/T 3 as a function of the tempera-
ture T of the QGP. The figure is from
Ref. [110] and the calculations are from
Refs. [110, 113, 217, 218].
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transverse momentum compared to several models as discussed in the text.

p+p collisions [247].734

Effective theories for charm and bottom quark jets in QCD matter have been developed [248, 249] and used735

to improve the description of heavy flavor parton showers and advanced the understanding of heavy flavor jet736

propagation in medium. At high pT , QCD predicts an energy loss hierarchy: ∆Eb < ∆Ec < ∆Eq < ∆Eg [250].737

Heavy quark jet substructure can provide clean information on the “dead-cone” effect [251]. Following upon738

lower energy results by CMS [191], ATLAS made the first observation of a larger RAA for b-quark initiated jets739

than light quark jets [192]. The RAA of D mesons at RHIC and the LHC shows a suppression pattern similar to740

that of light hadrons while RAA data from B decays show less suppression than charm, revealing the anticipated741

mass hierarchy of parton energy loss [252–258]. Recent calculations have predicted that, for pT < 30 GeV, the742

QGP-induced modification is largest for bottom quark jets [259]. This inversion of the mass hierarchy of jet743

quenching relative to QCD expectations [251] can be explored by sPHENIX.744

Lattice QCD-based studies determine the in-medium properties of hadrons and their dissolution through745

correlation functions, the Laplace transform of the spectral function. The main challenge of reconstructing the746

spectral functions is the limited Euclidean time direction extent. Lattice calculations of heavy flavor probes have747

matured significantly since LRP15 For example, lattice calculations with Nτ = 12 [260] determined that the real748

part of the potential is not screened and is, instead, about the same as that in vacuum [260]. The imaginary part749

of the potential, on the other hand, is quite sizable and increases with both temperature and the quark-antiquark750

separation [260]. Current lattice data on charm fluctuations and charm baryon number correlations hint at751
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the existence of charm mesons and baryons above the crossover temperature [261], and bottomonium spatial752

correlation functions provide constraints on the melting temperature of different bottomonium states [262].753

To address medium thermalization and extract the heavy quark diffusion coefficient, high precision data on754

the collective behavior of open heavy flavor hadrons, especially at low pT , are needed. At the time of LRP15,755

little was known about charm quark diffusion due to the lack of experimental data so that the value of the charm756

quark scaled diffusion coefficient, 2πTDs, extracted from various models, varied widely [224]. Recent data757

provide precision measurements of D-meson RAA and v2 over a wide pT region at both RHIC and LHC (left758

and center panels of Fig. 9) [256, 263–267]. The right-hand side of Fig. 9 shows the temperature dependence
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759

of 2πTDs [222], constrained to be ∼2–5 near Tc. The spatial diffusion coefficient is proportional to the charm760

relaxation time, which can give a hint as to why charm participates in the flow of the system, as it was extracted761

to be smaller than the system lifetime from D0 measurements [14, 268].762

Quarkonium measurements have been carried out at RHIC and the LHC in a variety of small and large763

systems. At
√

sNN = 200 GeV, the J/ψ is suppressed in the most central collisions by a factor of 4-5 at both mid764

and forward rapidity [269]. Precise J/ψ data from d+Au [270] collisions at
√

sNN = 200 GeV showed a ∼ 60%765

suppression at forward rapidity, making it clear that cold nuclear matter (CNM) effects are important [271]).766

Incorporating these CNM effects, the RHIC quarkonium data are well described by transport calculations767

including dissociation in the medium as well as production by coalescence. Transport models also provided768

successful predictions for the energy dependence of J/ψ production at RHIC [272, 273] and LHC [274], with769

coalescence playing an important role at the highest energies. Coalescence may also be responsible for J/ψ v2,770

small at RHIC [275] but significant at the LHC [276]. The RHIC J/ψ v2 measurements in Au+Au collisions771

will still improve through analysis of the final PHENIX data and data from future STAR runs.772

Comparative studies of quarkonia production in small systems at RHIC [277–279] and at the LHC [280–284]773

found a factor of two greater suppression of the ψ(2S) compared to the J/ψ at backward rapidity (where the774

final-state multiplicity is highest) while the modifications are similar at forward rapidity. The strong ψ(2S)775

suppression at backward rapidity may be due to the formation of small QGP droplets in p+A collisions. Similarly,776

CMS has found a sequential suppression pattern of upsilon states in p+Pb collisions [285]. Measurements in777

large systems [255, 286] and comparisons with calculations of transport and statistical models provide insight778

into the existence and properties of charmonium states in the QGP at the LHC.779

Detailed studies of the modifications of the three Υ states at the energy densities produced at RHIC and780

LHC can provide strong constraints on models. At the LHC, CMS can fully resolve the three Υ states and has781

measured their modification in Pb+Pb collisions [287]. The existing Υ data from RHIC [288–290] are more782
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limited due to a combination of smaller production rates, acceptance, and mass resolution.783

2.1.4 Initial State and Small-x784

The description of the initial state in heavy ion collisions has improved due to the use of high precision785

measurements of new observables and theoretical advances, for example the development of sophisticated three786

dimensional and dynamical initial state models, and extensive Bayesian analyses.787

Nucleon substructure has been found to play a crucial role, in particular in small collision systems, where788

its inclusion is required to produce sufficient fluctuations to reproduce the anisotropy coefficients [102, 291].789

Constraints on the subnucleon size scales have been obtained from both diffractive vector meson production at the790

Hadron-Electron Ring Accelerator (HERA) [292] as well as studies of p + A collisions [102]. At small x, within791

the CGC framework, direct constraints on the gluon distributions can be obtained from a variety of processes,792

including diffractive dijet and vector meson production, deeply virtual Compton scattering, or inclusive dijet793

production, and certain angular dependencies in all cases [293–296]. Once constrained by measurements of794

these processes in ultraperipheral heavy ion collisions or future measurements at the EIC, the gluon distributions795

(Wilson lines) can be directly used in the same framework to describe the initial state in heavy ion collisions796

[297–301]. This includes the transverse spatial distribution as well as longitudinal dependence obtained from797

small-x evolution [48, 49].798

In addition to the initialization of the energy momentum tensor, sophisticated calculations require an initial799

condition for the ideally three dimensional distribution of conserved charges, including net-baryon, isospin, and800

strangeness densities (see e.g. [47]). Fluctuating initial net baryon distributions are particularly important when801

exploring net-proton fluctuations in the search for the QCD critical point [60]. We will discuss other theoretical802

aspects, including pre-equilibrium evolution and the transition to hydrodynamics, in Sec. 3.1.3.803

It is also desirable to identify experimental information that isolates the impact of the initial conditions in804

order to determine initial conditions and transport properties of the evolving matter individually. For example,805

correlations of flow harmonics with the mean transverse momentum fluctuations have proven to be sensitive806

to initial state properties like the nucleon size and nuclear deformation, while being mostly insensitive to the807

transport properties of the medium [302, 303]. The nucleon size, or more precisely the hot spot size in the initial808

energy density, has also been better constrained by using experimental information on the nuclear cross section809

in Bayesian analyses [304, 305].810

A powerful method to extract initial state properties is to consider collisions of systems with similar mass811

but different structural properties and compute the ratio of a given observable O in collisions of isobars X and Y .812

Such a study was performed already using 96Ru+96Ru and 96Zr+96Zr collisions at RHIC [306]. Ratios of more813

than ten observables have been measured, all displaying distinct and centrality-dependent deviations of up to814

8% from unity, two of which are reported in the right panel of Fig. 10 [306]. The ratios in central collisions are815

mostly impacted by deformation, while in mid-central collisions they are impacted by the nuclear radius and816

the surface diffuseness [307–310]. The behavior of v2 and v3 suggests a large octupole deformation in Zr, β3,Zr,817

not predicted by mean field structure models [311]. Such rich and versatile information provides a new type of818

constraint on the initial conditions.819

Another promising experimental tool to reveal the initial state of heavy nuclei is through photon-induced820

interactions, commonly known as ultra-peripheral collision (UPCs), for which the impact parameter b between821

the two colliding nuclei is greater than the sum of their radii - 2RA. Here, one or multiple photons emitted from822

one nucleus, interact with the other nucleus. Due to the large mass of the heavy nucleus, the emitted photons823

have very small virtualities or transverse momenta. There are generally three types of UPC physics processes824

studied: i) inclusive production; ii) semi-inclusive and/or jet production; iii) exclusive production. In the past825

decade, most of the UPC measurements focused on exclusive production, dominated by diffractive vector meson826

production. However, since LRP15, there has been an increasing number of studies on jet and inclusive particle827

photoproduction. For reviews of UPCs, see Refs. [312–317].828

Exclusive vector meson (VM) photoproduction at high energy can be described as a quasi-real photon829

fluctuating into a quark-antiquark pair, which scatters off the target nucleus via a color neutral two-gluon830
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Figure 10: Impact of isobar-like collisions on the initial condition of QGP. Better control on the initial condition
can be achieved by exploiting the constraints from both the ratios of final-state observables (v2 and v3 on the
right side [306]) and the nuclear structure knowledge (left side).

exchange and then forms a VM. The sensitivity of this process to the spatial shape of the target makes it831

particularly valuable for constraining the initial conditions of nuclear collisions. At leading order, the cross832

section of this interaction scales as the square of the gluon density, which makes it a sensitive probe of the833

nuclear parton distribution functions (nPDFs). However, in a recent next-to-leading order (NLO) study [318],834

the dependence on the gluon density is found to be different. Complementary studies of e.g. photoproduction835

of dijets or open heavy flavor proceed via only a single gluon exchange, making them less sensitive to such836

theoretical uncertainties. Here, the Q2 is set by the pair or dijet invariant mass, making it possible to probe parton837

distributions over a wide range of Q2 with a single process.838

Exclusive ρ0 and J/ψ production in UPCs have been systematically measured at RHIC and LHC [319–331].839

Although the systematic uncertainty related to the incoherent background is large, Ref. [322] provided a first840

measurement of parton distributions inside a heavy nucleus by Fourier transforming the ρ0 |t| distribution to841

impact parameter space. A recent STAR measurement [332] of azimuthal correlations of ρ0 decays, has captured842

the nuclear geometry of an Au nucleus via quantum interference, linking UPC physics to quantum information843

science, and providing the first measurement of neutron skin from UPCs.844

Measurements at the LHC [323–327, 329–331] have shown a significant suppression of exclusive J/ψ845

photoproduction in heavy nuclei over a wide range of rapidity, with respect to a free nucleon. This observation846

is qualitatively consistent with both the nuclear shadowing model in the leading twist approximation and847

gluon saturation models. Besides UPC VM in heavy nuclei, new experimental measurements of exclusive848

VM photoproduction in non-UPC heavy-ion collisions [333–335] can provide insight into the dynamics of849

photoproduction and nuclear reactions. Measurements in asymmetric collision systems [336] can probe the850

structure of the smaller nucleus at small x.851

Exclusive dijets in Pb+Pb UPCs have recently been measured by CMS [337]. The dijet system can be used852

to reconstruct the initial scattering kinematics, and study the nPDFs, providing early access to some of the853

important physics goals of the EIC. Dijet events have also been observed by ATLAS in events with no activity in854

either Zero Degree Calorimeter (ZDC) (0n0n), and the distributions have been found to resemble expectations855

from diffractive dijet production [338]. Diffractive dijet production is sensitive to the gluon distributions in856

nuclei, as well as their polarization, which is expected to lead to distinctive angular correlations [294, 339]. CMS857

measured angular correlations between two jets in events with rapidity gaps in both directions [337]. Model858

comparisons [340–342] indicate that more work is needed to fully capture the interesting underlying physics.859

2.1.5 Small Size Limit of the QGP860

The discovery of flow-like signatures in p+p and p+Pb collisions at the LHC [343–346] opened up a new861

field of study of the small size limit of QGP formation (for recent reviews see Refs. [347, 348]). Studies862

revealed a striking collective behavior of the measured vn for particles emitted in p+p and p+Pbcollisions [17,863

23, 28, 349–355]. A stringent control experiment was performed at RHIC, using three small collision systems:864

p+Au, d+Au, and 3He+Au. The observed v2 and v3 results were found to agree with calculations in which865
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Figure 11: Measurement of v2 (top) and v3 (bottom) for charged particles in p+Au, d+Au, and 3He+Au collisions
as a function of pT . Calculations from two hydrodynamic models [356, 357] and a CGC based model [358] are
shown. Figure from Ref. [9].

the vn values have their origin in the hydrodynamic evolution of the initial collision geometry in the three866

systems [9], confirming expectations that the geometry of the initial collision drives the observed vn values867

in small systems. The measurements in the three collision systems, shown in Fig. 11, agree well with two868

hydrodynamic calculations [356, 357] and disagree with a calculation based on a picture where the observed869

anisotropies have non-hydrodynamic origin [358]. However, the vn signal is found to be sensitive to the choices870

of η range used in the two-particle correlation method [359], which suggests either a significant longitudinal871

decorrelation effect or a possible role of subnucleonic fluctuations (also see [359]). Measurements of the872

production of strange hadrons in high multiplicity p+p collisions smoothly connect to what is seen in p+Pb873

collisions [360], with this trend continuing towards the largest systems. Additionally, v2 and v3 have been874

shown to be finite in high multiplicity photo-nuclear Pb+Pb collisions [361] (but consistent with zero in e+ + e−875

[362], e + p [363, 364], and γ + p [365] collisions). In high multiplicity photo-nuclear Pb+Pb collisions, the876

dominant processes are those in which the photon fluctuates into a vector meson such as the ρ or ω [312], which877

then interacts with the lead nucleus in much the same way a proton would. First hydrodynamic calculations878

applied to this system show behavior consistent with experimental results [366]. The signatures of collectivity in879

small systems have expanded the range of systems in which the QGP is studied and hydrodynamic models are880

challenged to be reliable in these smaller, more intense, shorter lived systems. The theoretical challenges are881

discussed in more detail in Sec. 3.1.3.882

In addition to hydrodynamic signatures, hints at a modification of the hadron formation process for mesons883

containing heavy quarks has been observed in small collision systems relative to expectations from e+e− collisions.884

These measurements are related to similar measurements in heavy ion collisions discussed in Sec. 2.1.3. LHCb885

has measured the charged particle multiplicity dependence of the B0
s/B0 ratio as a function of the multiplicity of886

charged particles in p+p collisions [367]. They have found that the ratio shows little multiplicity dependence for887

high transverse momentum mesons, but has a clear increase with the number of charged particles for mesons888
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Figure 12: Ratio of B0
s/B0 in p+p collisions as a function of the charged particle multiplicity scaled by the average

multiplicity in p+p collisions for three meson pT selections: 0–6 GeV (left), 6–12 GeV (middle), 12–20 GeV
(right). Expectations for production using the PYTHIA generator (with and without color reconnections) are
also shown, along with the ranges measured previously in e+e− collisions. Figure from Ref. [367].

with pT < 6 GeV, see Fig. 12.889

QGP formation is typically accompanied by evidence of jet quenching. However, no direct evidence of jet890

quenching has been found in small collision systems [368, 369]. The nuclear modification factors for jets [370–891

373] and hadrons [368, 374–376] show no significant suppression at mid-rapidity, and measurements of the892

semi-inclusive distribution of charged jets recoiling from a high pT hadron trigger indicate little to no energy893

loss in small systems [377]. One indirect suggestion of jet quenching is the observation of a non-zero v2 for894

charged particles in p+Pb collisions at high pT [378]. In Pb+Pb collisions, the non-zero v2 is typically attributed895

to the path length dependence of jet quenching within the QGP. However, in p+Pb collisions, these charged896

particles are not significantly suppressed and no existing model has been able to explain both the overall rate and897

the v2 of these high pT charged particles in p+Pb collisions. The origin of this effect in p+Pb collisions is not898

known. Observation of heavy flavor hadron v2 in p+p and p+Pb also provides indirect evidence for interactions899

of hard probes with a QGP medium in small systems [379–383].900

The most direct way to understand this potential tension is to measure small, symmetric collisions at RHIC901

and the LHC. O+O collisions have been run at RHIC and proposed for the LHC in Run 3. This system avoids902

the large theoretical and experimental uncertainties associated with jet quenching measurements in peripheral903

collisions and provides a system size, in terms of the number of participating nucleons, very similar to peripheral904

Pb+Pb collisions. This will provide a benchmark for how much jet quenching (if any) is present in such small905

collision systems, and provide the crucial link between understanding the QGP in large, symmetric collision906

systems and small asymmetric collision systems.907

2.1.6 Mapping the QCD Phase Diagram908

Based on lattice QCD calculations, the QGP-hadron gas transition at vanishing net-baryon density is909

understood to be a smooth crossover with the transition temperature Tc = 156 ± 1.5 MeV [384]. Model studies910

indicate a first-order phase boundary at large net-baryon density (baryon chemical potential µB) [385]. If there is a911

crossover and a first order transition line, they will be joined at the QCD critical point [386–388]. State-of-the-art912

lattice calculations further predicted that the chiral crossover region extends into the finite chemical potential913

region µB/T ≤ 2 [389], see Fig. 13. Precise calculations in the higher µB region become more difficult and914

experimental measurements are essential to determine if a QCD critical point exists.915

The BES program at RHIC, colliding heavy nuclei in the center of mass energy range
√

sNN = 3 – 200 GeV,916

was initiated in 2008 in order to search for the QCD critical point and study the nuclear matter EoS in the high917

baryon density region [2, 224]. The BES phase-I (BES-I) program was conducted during 2010–2014, covering918
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Figure 13: Left: Sketch of the QCD phase diagram, incorporating a conjectured critical end point and first order
transition. The yellow line indicates the region of the phase diagram where lattice QCD can reliably predict
the smooth crossover region of the hadron-QGP transition, up to µB/T ≤ 2. Figure adapted from [2]. Right:
Energy dependence of the net-proton (filled circles) and proton (open squares) high moments from Au+Au
collisions [390–392]. Model results from Hadron-Resonance Gas (HRG) model [393], and UrQMD [394, 395]
are shown. The thin red and blue dot-dashed lines are qualitative predictions [396] in the presence of a critical
point. Adapted from Ref. [392].

the collision energies between 7.7 and 200 GeV (solid white line in Fig. 13 (left) indicating the µB range). BES-II919

took place during 2019–2021, focusing on the center of mass energy range
√

sNN = 3 – 19.6 GeV (dashed white920

line in Fig. 13). While data from the energy range 7.7 – 19.6 GeV were collected in collider mode, data from921

fixed-target mode was also collected in the range 3 – 13.1 GeV (see e.g. [397]). In the overlapping energy range,922

the event statistics from BES-II were improved by a factor of 20 to 40 compared to that of BES-I. In order to923

reach the desired luminosity, RHIC underwent an electron cooling upgrade, Low Energy RHIC electron Cooling924

(LEReC), which began operation during the BES-II RHIC Runs in 2019–2021. To maximize the physics output,925

the STAR detector has implemented a series of key subsystem upgrades: the inner Time Projection Chamber926

(iTPC), the Event Plane Detector (EPD) and the endcap Time-of-Flight (eTOF) Detector to enhance particle927

identification capabilities and extend kinematic coverages.928

All of the BES-I data have been analysed and most of the results are published. Evidence for the dominance929

of the QGP phase or the hadronic phase at different collision energies have been demonstrated in three key930

observations. (i) High-pT Parton Energy Loss: the strong suppression in the leading hadron RAA at pT ≥ 5931

GeV/c, a signature of the formation of QGP, in central Au+Au collisions at
√

sNN = 200 GeV was found to932

gradually disappear and RAA became even larger than unity in central Au+Au collisions for energies lower than933

19.6 GeV [398]. (ii) Partonic Collectivity: Quark number scaling, found in the v2 for all hadrons, an indication934

of QGP formation, has been found to persist down to 7.7 GeV Au+Au collisions [399]. This implies that the935

partonic degrees of freedom remain dominant in these collisions. (iii) Critical Fluctuation: Moments (and their936

ratios) of net-baryon fluctuations are expected to be sensitive to the existence of critical point and phase boundary.937

High moments of net-protons (a proxy for net-baryons) from central 200 GeV in Au+Au collisions, C4/C2,938

C5/C1, and C6/C2, are all found to be consistent with lattice QCD predictions of a smooth crossover chiral939

transition [384, 400–402]. Hydrodynamic calculations of non-critical contributions to proton number cumulants940

indicate that the Au+Au data are consistent with non-critical physics at center of mass energies above 20 GeV941

[403]. In Au+Au collisions at 3 GeV, on the other hand, hadronic interactions are evident from the measurements942

of moments of proton distributions, collective flow and strangeness production [392, 404, 405]. These results943

imply that the QCD critical point, if it exists, should be accessible in collisions with center of mass energies944

between 3 and 20 GeV.945
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Figure 13 (right) shows recent results on the fourth-order net-proton and proton high moments in central946

Au+Au collisions measured in BES-I [392, 400, 406] compared to models. The thin red and blue dot-dashed947

lines are expected from a qualitative prediction [396] due to critical phenomena. The hadronic transport model948

Ultrarelativistic Quantum Molecular Dynamics (UrQMD) [394, 395] and a thermal model with a canonical949

ensemble [393] represent non-critical baselines. Current error bars do not allow for a clear conclusion, but950

RHIC BES-II results will provide significantly improved statistical precision (and likely reduced systematic951

uncertainties), as indicated by the green band in the figure. The extended acceptance and particle identification952

in a larger rapidity region (from |y| <0.5 to |y| <0.8) will allow more systematic investigation into the nature953

of these fluctuations. Much progress has also been made by the BEST Collaboration [60] and others towards954

establishing a framework for calculations of observables sensitive to the critical point and a first order phase955

transition. This includes lattice QCD and effective field theory calculations, further discussed in Sec. 3.1.3, as956

well as improvements to the initial state and hydrodynamic description, especially the inclusion of propagation957

of stochastic and critical fluctuations, discussed in Sec. 2.1.1.958

2.1.7 Chirality and Vorticity in QCD959

Searches for the chiral magnetic effect The creation of electric current in the direction of a magnetic field960

due to the imbalance of chirality is called the chiral magnetic effect (CME). A decisive experimental test of961

this phenomenon in a QCD medium has been among the major scientific goals of the RHIC and LHC heavy962

ion programs. The existence of the CME in the QCD medium formed in relativistic collisions would establish963

the existence of chiral fermions over sufficient timescales and therefore the restoration of chiral symmetry of964

QCD in these collisions. It would also indicate that such collisions form regions of space where the left-right965

symmetry (UA(1)) is broken by local P and CP symmetry breaking in the strong interaction. Finally, it would966

also prove that ultra-strong electromagnetic fields are created in such collisions [407, 408]. Other observables967

potentially sensitive to the creation of a strong magnetic field were also discussed in the literature [409–413].968

STAR overview, P. Tribedy, QM 2022, Krakow, Poland 8

Chiral magnetic effect search in isobar collisions

Blind analysis performed with pre-defined criteria for primary CME sensitive observable: 

No pre-defined signature of CME is observed in isobar collisions, possible 
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Figure 14: Ratios of observables in Ru+Ru over Zr+Zr collisions from the STAR isobar blind analysis [306].
The ratios of the CME-sensitive observables (solid markers) are found to be below unity and close to the ratio of
inverse multiplicities (Noffline

trk ). The tan and aqua bands show background estimates calculated using data and the
HIJING model [414]. No significant CME signal difference between the two isobars is observed.

In heavy-ion experiments, a signal of the CME is the separation of charge across the reaction plane,969

oriented perpendicularly to the magnetic field direction in non-central collisions [415]. Evidence of such charge970

separation was first reported by the STAR collaboration in Au+Au and Cu+Cu collisions [416]. However,971

backgrounds driven by flow, coupled with local charge conservation [417–421] and non-flow effects, dominate972

the measurements [267, 416, 422–435]. A similar charge separation observed in small colliding systems, where973

there is no correlation between the magnetic field direction and reaction plane, at both the LHC [428] and RHIC974

[431] confirmed the dominance of the background. Subsequent measurements used novel approaches to reduce975

or eliminate background contributions to the CME. Using event-shape engineering techniques, the CMS and976
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ALICE collaborations found an upper limits of 7% and 26%, respectively, for the CME contribution to the977

measured signal at 95% confidence level in Pb+Pb collisions at the LHC [429, 430]. Studying charge separation978

as a function of pair invariant mass, the STAR collaboration found an upper limit of 15% CME contribution to979

the measured signal at the 95% confidence level in Au+Au collisions at RHIC [432]. Using the spectator and980

participant planes STAR measurements indicate a possible 10% CME signal at a significance on the order of 2981

standard deviations in Au+Au collisions at 200 GeV [433].982

By far the most controlled and precise CME search was performed by the STAR collaboration using the983

collisions of isobars Ru+Ru and Zr+Zr at RHIC [306]. Ru+Ru collisions are expected to produce an about 5–9%984

larger B field than Zr+Zr, hence a 10–18% larger CME signal because of its B2 dependence. The RHIC running985

conditions for Zr+Zr and Ru+Ru collisions provided stringent controls on the systematic uncertainties. The986

STAR collaboration performed a blinded analysis. The results are shown in Fig. 14. The ratio of CME-sensitive987

observables in Ru+Ru over Zr+Zr is found to be below unity with a precision down to 0.4% indicating no988

pre-defined signature of CME is observed. Estimates of background using data and HIJING, shown by bands on989

Fig. 14, indicate no significant CME signal difference between the two isobars; a quantiative determination of an990

upper limit is underway [414].991

Vorticity Despite early predictions [436, 437] of hadronic polarization resulting from a rotating QGP, the992

first observation [438] of the phenomenon was a nonvanishing Λ/Λ polarization at midrapidity along the993

direction of the global angular momentum Ĵ, in semi-peripheral collisions at RHIC BES energies. Many viscous994

hydrodynamic calculations were able to reproduce the observations without special “tuning,” using a generalized995

Cooper-Frye formula [439] to connect the fluid to particle degrees of freedom; in this freezeout scenario, fluid996

vorticity is essentially a spin chemical potential. This achievement alone is a nontrivial confirmation of the997

validity of the hydrodynamic, local-equilibrium paradigm underlying our understanding of the bulk system998

created in heavy ion collisions. This connection was strengthened by subsequent observation [440] of Ξ and Ω999

global polarization at RHIC.1000
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Figure 15: Adapted from [441]. World
dataset [438, 441–445] of global polarization
of Λ and Λ from midcentral heavy ion colli-
sions vs.

√
sNN . Statistical uncertainties are
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certainties are represented with boxes. All
results are scaled [446] using the decay pa-
rameter αΛ = 0.732 [447]. Curves are cal-
culations with a hybrid hydrodynamic model
[448], chiral-kinetic transport [449], a Monte
Carlo transport model AMPT [450], and a
three-fluid hydrodynamic calculation [451].

Despite the fact that higher
√

sNN implies larger system angular momentum overall, most models reproduce1001

the observed trend of increasing polarization with decreasing collision energy. Recent measurements (see Fig. 15)1002

by the STAR [441] and HADES [445] collaborations show maximum polarization near the threshold energy for1003

Λ production. It is surprising that a hydrodynamic description [451] seems to hold at such low energies.1004

A “splitting” between the global polarization of Λ and Λ may be used to estimate [439] the magnetic field at1005

freezeout, input highly relevant for studies of the CME (see Sec. 2.1.7). The slight but statistically insignificant1006

tendency for P
Λ
> PΛ in the early data prompted measurements at

√
sNN ≈ 20 GeV by STAR with much1007

higher statistics and an upgraded event-plane detector [452]. The resulting null splitting yields a much tighter1008
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conservative upper bound (95% confidence level) of B ≤ 3 × 1013 T, ruling out several theoretical estimates of1009

the B field. At
√

sNN = 200 GeV, the bound is even tighter, B ≤ 3 × 1012 T [453].1010

In non-central heavy ion collisions, anisotropic transverse flow necessarily generates vorticity in a fluid1011

picture, leading to predictions [454, 455] of polarization along the beam direction Pẑ, oscillating as a function of1012

azimuthal angle. This expectation has been borne out by the observation of longitudinal polarization relative to1013

the second- and third-order event planes at RHIC [456] and LHC [457]. Surprisingly, however, the observed1014

oscillation of Pẑ was 180◦ out of phase with predictions. This has led to a realization of overlooked shear terms1015

in the hydrodynamic equations that contribute to polarization; different treatments [458–461] of these terms have1016

been proposed and there is not yet consensus on the correct formulation.1017

2.2 Progress in Cold QCD1018

Hadrons, with protons and neutrons (the nucleons) the most ubiquitous, make up the majority of the visible1019

matter in the universe. Thus, understanding their structure is of fundamental importance. The nucleon forms1020

a frontier of subatomic physics and has been under intensive study for the last several decades. Tremendous1021

progress has been made in mapping out the one-dimension momentum distribution of the nucleon constituents, in1022

the form of the Feynman parton distribution functions (PDFs). These investigations not only unveil the partonic1023

structure of the nucleon, but also provide an important opportunity to study the strong interaction. Still, essential1024

questions remain to be answered. How do the spin and orbital degrees of freedom of quarks and gluons within1025

the nucleon combine to make up its total spin? What is the origin of the mass of the nucleon and other hadrons?1026

Do gravitational form factors inform us about the origin of mass and can they be extracted from measurements?1027

Where are the quarks and gluons located within the nucleon? How does the quark-gluon structure of the nucleon1028

change when it is bound in the nucleus? What is the spectrum and structure of conventional and exotic hadrons?1029

All these questions have stimulated further theoretical and experimental investigations in hadronic physics and1030

major facilities have been and will be built to explore them.1031

Since LRP15, there has been significant progress in cold QCD research in the US and abroad. First, the1032

CEBAF 12 GeV upgrade has been completed and the experimental program is in full swing. Second, fruitful new1033

and exciting results have been obtained from various hadron physics facilities, including CEBAF at JLab, RHIC1034

at BNL, and the LHC at CERN. These advances covered static properties and partonic structure of hadrons,1035

nuclear modifications of the structure functions and nucleon many body physics in nuclear structure, and dense1036

medium effects in cold nuclei. These new results test the fundamental properties of QCD such as its chiral1037

structure and predictions for new hadron states, preview the tomography imaging of the nucleon that will help to1038

unveil the origin of the mass and spin, and deepen our understanding of nucleon-nucleon interactions to form1039

atomic nuclei and the partonic structure of a dense cold medium. More importantly, these advances pave the1040

way for answering the aforementioned fundamental questions. Meanwhile, all this progress has strong overlap1041

with hot QCD, nuclear structure and fundamental symmetry physics. Along with the experiment achievements,1042

theoretical developments have played a significant role, not only in the interpretation of experimental data, but1043

also in stimulating the programs at these facilities. In the following, we will highlight these advances.1044

2.2.1 Properties of Hadrons1045

We start with long-range nucleon structure. This includes the proton (electric) charge radius, generalized1046

polarizabilities and electromagnetic form factors of the nucleon. An additional relevant topic is the neutral pion1047

lifetime measurement that tests the chiral anomaly of QCD.1048

Proton charge radius For nearly half a century the root-mean-square charge radius (rp) of the proton had been1049

obtained from measurements of transitions between atomic hydrogen energy levels and by scattering electrons1050

from hydrogen atoms. Until recently, the proton charge radius obtained from these two methods agreed with one1051

another within experimental uncertainties. In 2010, the proton charge radius was obtained for the first time by1052

precisely measuring the Lamb shift of muonic hydrogen [462]. The charge radius of the proton obtained from1053

muonic hydrogen was found to be significantly smaller than that obtained from ordinary hydrogen. This was1054
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Figure 16: The PRad rp result shown along with the projected result for PRad-II and other measurements.

called the proton charge radius puzzle and led to a rush of experimental and theoretical efforts to understand1055

the difference in the proton size between ordinary hydrogen and muonic hydrogen. The Proton Charge Radius1056

(PRad) experiment at JLab was one such new effort which utilized several innovations and studied electron1057

scattering from ordinary hydrogen atoms to high precision. It was the only lepton scattering experiment to use1058

an electromagnetic calorimeter and a windowless hydrogen gas flow target, allowing robust extraction of the1059

proton charge radius from form factors measured in a very low Q2 range of 2×10−4 to 6×10−2GeV2. The PRad1060

result, shown in Fig. 16, was found to be in agreement with the small radius measured in muonic hydrogen1061

spectroscopy experiments as well as some of the recent ordinary hydrogen spectroscopy measurements [463].1062

The PRad result provided critical input to the recent revision of the Committee on Data of the International1063

Science Council (CODATA) recommendation for the proton charge radius and the Rydberg constant as noted1064

in the most recent review [464]. A followup experiment, PRad-II, is being planned to reach an even smaller1065

uncertainty, see Section 3.3. In addition, other measurements, such as the US-led Muon Scattering Experiment1066

(MUSE), will address the puzzle by measuring elastic muon scattering on the proton, see Section 3.4.1067

Nucleon form factors at high-Q2 and two-photon exchange physics Apart from the charge radius determination1068

from the low Q2 measurement, nucleon form factors provide information on the fundamental constituent structure1069

of the nucleon, and at times reveal our lack of understanding in related topics. Specifically, the proton electric-1070

to-magnetic form factor ratio determined from the polarization transfer method had revolutionized the basic1071

understanding of the constituent structure of the proton [469, 470]. The discrepancy observed between these1072

measurements and those from the (traditional) Rosenbluth separation method, see left panel of Fig. 17, has1073

stimulated theoretical investigations into the two-photon exchange (TPE) contribution, currently considered1074

as the leading explanation. While a number of recent measurements have shown evidence for sizable TPE1075

in several different observables, the situation is far from resolved. For example, several recent experiments1076

were carried out to directly measure TPE by looking for a difference in the unpolarized positron-proton and1077

electron-proton elastic cross sections, including the OLYMPUS experiment at DESY [466], and those utilizing1078

CLAS at JLab [467, 471] and the VEPP-3 storage ring at Novosibirsk [468]. The results of these experiments1079

are shown in the right panel of Fig. 17. The data favor a non-zero slope as a function of the virtual photon1080

polarization parameter, ϵ, which is a sign of TPE. However, these data are limited to the low Q2 region, and are1081

closer to unity than needed to fully explain the proton form factor discrepancy. New measurements with greater1082

kinematic reach are needed to fully explain the proton form factor discrepancy and to guide theoretical efforts.1083

This is one of the major motivation for the proposed positron beam program at JLab, see Section 3.3.9, as well1084
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Figure 17: (Left) Direct Rosenbluth separation results for
√

RS ( = µpGE /GM in the one-photon exchange
approximation). The black solid (red dashed) curve shows the results of the fit to the cross section data with
(without) the new GMp12 data (“This work") [465]. The blue dot-dashed curve shows µpGE /GM from a fit to
the polarization data. (Right) The ratio of positron-proton to electron-proton elastic cross sections as a function
of ϵ, as measured by OLYMPUS [466], CLAS [467], and at VEPP-3 [468]. The data are generally closer to
unity than the expectation if the difference between the Rosenbluth separation and polarization method is fully
attributed to two-photon exchange effects.

as for the proposed TPE Experiment (TPEX) at DESY.1085

Nucleon polarizabilities and generalized polarizabilities Nucleon polarizabilities and generalized polarizabil-1086

ities describe how the charged internal constituents of the nucleon react to external electromagnetic fields and1087

precisely determine the mean-square electromagnetic polarizability radii of the proton. Extracting them from1088

the real Compton scattering (RCS), virtual Compton scattering (VCS) and double virtual Compton scattering1089

(VVCS) processes provides stringent tests of Chiral Effective Field Theory (χEFT) [472–474] and lattice QCD1090

computations [475]. They are also essential to extract the hyperfine splitting of muonic hydrogen [476]. Since1091

the 2015 LRP, substantial progress has been made in determining both scalar and spin-dependent static and1092

dynamical polarizabilities of the proton and neutron [477–480], with strong international efforts and synergistic1093

advancements in experiment and theory [475]. For the proton, key achievements are the first extraction of1094

proton spin polarizabilities from the measurements of double polarization observables by the A2 Collaboration1095

at the Mainz microtron (MAMI) [481, 482], and new high precision data for unpolarized cross sections and1096

photon beam asymmetry from both MAMI [483] and the High Intensity Gamma-ray Source (HIGS) [484]. At1097

HIGS, expertise and techniques have been developed that produce the requisite high-precision RCS cross section1098

measurements on light nuclei [485, 486], which can be used to determine the neutron polarizabilities.1099

Meanwhile, four high-precision experiments at JLab mapped the very low Q2 behavior of the VVCS1100

generalized forward spin polarizability γ0(Q2) [511–513], and of the generalized longitudinal-transverse spin1101

polarizability δLT(Q2) [513, 514], for both proton and neutron. A fifth experiment measured the VCS generalized1102

polarizabilities αE(Q2) and βM(Q2) for the proton [493] at intermediate Q2. While some of the results agree1103

with the latest χEFT calculations, no single calculation describes all of the data well. For example, the observed1104

behavior of αE(Q2) (left panel of Fig. 18) is in sharp contrast with the current theoretical understanding that1105

suggests a monotonic decrease with increasing Q2. Similarly, data on the neutron VVCS spin-dependent1106

generalized polarizability δn
LT(Q2) [504] (right panel of Fig. 18) indicate a small, or even negative, value at1107

very low Q2 and a positive slope, in contrast with predictions from χEFT [506–509] and the phenomenological1108

MAID model [510]. These new data pose a challenge to χEFT and serve as high-precision benchmark data for1109

future non-perturbative QCD calculations.1110

Precision measurement of the neutral pion lifetime Two fundamental symmetries in QCD are directly involved1111
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Figure 18: Left: world data [483, 487–497] for the proton electric αE(Q2) VCS generalized polarizability.
The filled symbols mark the recent experiments from MAMI [489–491] (green and black solid circles) and
from JLab [493] (blue solid circles). The dispersion-relations (DR) and low-energy-expansion analysis results
are shown with open circles and square symbols, respectively. The theoretical calculations of BChPT [498],
NRQCM [499], LSM [500], ELM [501] and DR [472, 502, 503], as well the experimental fit of the electric
generalized polarizability that includes all the world data are also shown. Right: The VVCS generalized
longitudinal-transverse spin polarizability δn

LT(Q2) for the neutron measured recently at JLab (blue circles [504])
and compared with a previous JLab measurement (red triangles [505]), early χEFT calculations (green [506] and
red lines [507]), state-of-the-art χEFT calculations (blue [508] and pink [509] bands), and the phenomenological
MAID [510] model.

in both the existence and the lifetime (τ) of the neutral pion (π0): the left-right chiral and axial symmetries. The1112

explicit axial symmetry breaking, due to quantum fluctuations, gives rise to one of the most interesting effects1113

in nature, the chiral (or axial) anomaly. This process is purely responsible for the neutral pion decay into two1114

photons (π0 → γγ), defining its unusually short lifetime. The PrimEx collaboration measured the neutral pion1115

decay width Γ(π0 → γγ) in JLab Hall B with an unprecedented precision [515]. With its 1.50% total uncertainty,1116

τ = 8.337 ± 0.056(stat.) ± 0.112(syst.) × 10−17s, this is the most precise measurement of this critically important1117

quantity, and firmly confirms the prediction of the chiral anomaly in QCD at the percent level. It also played a1118

critical role in the normalization of the neutral pion transition form factor to constrain the hadronic light-by-light1119

scattering contributions to the well-known muon (g-2) anomaly in search of new physics.1120

2.2.2 One-dimensional Momentum Distributions of the Nucleon1121

Parton distribution functions Understanding the proton’s composition from its underlying constituent quarks1122

is one of the primary goals of all electron-proton scattering experiments. Of particular value is the method of1123

deep inelastic lepton-nucleon scattering (DIS), for which data are typically interpreted in terms of the PDFs1124

that describe the momentum distributions of partons in the (one-dimensional) direction parallel to the nucleon1125

momentum. Tremendous progress in our understanding of the PDFs has been made, most notably in the global1126

effort to determine both quark and gluon PDFs from various high energy experiments, see e.g. [516–519].1127

Furthermore, the desire to understand PDFs at a more fundamental level is driving experimental programs at1128

both low and high energy facilities.1129

The asymptotic behavior of the ratio of PDFs in the deep valence quark region x→ 1 can test a variety of1130

theoretical predictions. One such ratio is the d over u quark distributions. As featured in LRP15, experiments in1131

Halls A and B at JLab are accessing this ratio with very different approaches. The first of these experiments,1132
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p
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Right: A plot of d̄(x)/ū(x) extracted from the measured SeaQuest σpd(x)/2σpp(x) cross section ratio [521],
compared with data from E866/NuSea [522] and CT18NLO parton distributions.

MARATHON, measured the 3H/3He DIS cross sections with the expectation that the effects of nuclear corrections1133

largely cancel between the two “mirror" nuclei. The experiment has been successfully completed and first1134

results on Fn
2/F

p
2 have been published [520]. These data allow for more precise extractions of the underlying1135

d/u ratio [523, 524], while also placing constraints on the isospin-dependence of the nuclear effects [519]. The1136

model dependence of the PDF extraction can be cross checked with the BONuS12 experiment [525], while an1137

extraction of d/u, free from the use of any nuclear model, will be made by the Parity-Violating DIS (PVDIS)1138

program of SoLID in JLab Hall A, see Section 3.3.1.1139

Meanwhile, the SeaQuest experiment carried out at the Fermilab fixed-target facility has unveiled interesting1140

features of the sea quark distributions [521]. Naively, one expects that the anti-up ū and anti-down d̄ quarks1141

should be the same if they both come from the gluon splitting contribution. However, an asymmetry between the1142

two was observed at low x using the Drell-Yan process in the NuSea experiment [522]. The recent SeaQuest1143

experiment extended the measurement beyond x = 0.3 and found that the asymmetry persisted, see the right1144

panel of Fig. 19. Complementary information on d̄(x)/ū(x) has also been studied at RHIC from the ross section1145

ratios of W- and Z-bosons at mid-rapidity [526].1146

Quark and gluon polarizations inside the nucleon DIS measurements with polarized beams and targets1147

and polarized proton-proton collisions probe the polarized (helicity) quark/gluon distribution and the origin of1148

the proton spin. Significant progress has been made in assessing the fraction of the proton spin from parton1149

polarizations, see, recent global analyses [527–529].1150

The impact from the RHIC spin program with polarized proton-proton collisions has been highlighted in1151

LRP15 [2]. Recent STAR results on double-spin asymmetries of inclusive jet and dijet production at center-of-1152

mass energies of 200 GeV and 510 GeV complement and improve the precision of previous measurements [530,1153

533–536], imposing further constraints on the gluon polarization, see the left panel of Fig. 20. Meanwhile,1154

the production of W-bosons in longitudinally polarized proton-proton collisions serves as a powerful and1155

elegant tool to access valence and sea quark helicity distributions at a high scale, Q2 ∼ M2
W , where MW the1156

W-boson mass. The STAR and PHENIX Collaborations have concluded the measurements of the parity-violating1157

longitudinal single-spin asymmetry in the production of weak bosons and improved the constraints on ū and d̄1158

polarization [532, 537, 538]. The sea quark ū helicity, ∆ū, is now known to be positive and ∆d̄ is negative. The1159

opposite sign of the polarized sea-quark distribution with respect to the d̄/ū flavor asymmetry in the unpolarized1160

sea (right panel of Fig. 19) is of special interest due to the differnet predictions in various models of nucleon1161

structure. The overall impacts of recent jet and dijet, pion, and W data on the quark/gluon helicity distribution1162

based on the global fits are shown in Fig. 20 for ∆g (left) and ∆ū − ∆d̄ (right), respectively.1163
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Besides determining the origin of the proton spin, these data crucially test theories of the strong interaction.1164

Notably, high Q2 studies of the Bjorken sum rule [539], defined using the integral of the polarized structure1165

functions of the proton and the neutron gp,n
1 :
∫ 1

0 dx gp
1(x) − gn

1(x) = gA
6 +(pQCD corrections) where gA is the1166

nucleon axial coupling, were the first to show that QCD can describe the strong interaction even when spin1167

degrees of freedom are explicit [540]. Similarly, low Q2 Bjorken sum data precisely test effective theories that1168

describe the strong interaction at long distances [540, 541]. The Bjorken sum rule is also used to extract the QCD1169

coupling αs(Q2) [542], where the high-Q2 extractions [543] are presently only just competitive with high-energy1170

collider extractions of αs [544]. However, they should become more impactful with the EIC, which should1171

provide an accuracy of ∼1.5–2% on αs (just from the Bjorken sum rule).1172

Additionally, quark and gluon polarizations in the nucleon, when measured in specific kinematic regions1173

such as the x→ 1 limit, also provide valuable tests of predictions from various quark models, perturbative QCD,1174

and non-perturbative methods. The JLab 6 GeV results [545, 546] showed that the ratio of the polarized to1175

unpolarized PDF for the down quark, ∆d/d is negative up to x = 0.61. That is, the valence down quark spins in1176

the opposite direction of the proton spin. In 2020, the 12 GeV extension of the measurement of the neutron spin1177

was successfully completed in Hall C at JLab, and complementary measurements of the proton and the deuteron1178

are presently underway in Hall B at JLab using CLAS12. A combined analysis of the data from all three targets1179

can assess whether ∆d/d remains negative up to x = 0.8, or turns sharply positive at even higher x as predicted1180

by pQCD models [547].1181

2.2.3 Three-dimensional Tomography of the Nucleon1182

To completely understand the proton spin decomposition in terms of quark/gluon spins and their orbital1183

angular momentum contributions, observables and methods that go beyond the one-dimensional PDF discussed1184

above becomes necessary. A new direction that emerged at the time of LRP15 is to pursue three-dimensional1185

(3D) tomography of the nucleon. The first set of tools are focused on the transverse motion of partons: if the1186
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nucleon is assumed to move in the ẑ-direction, its structure in the transverse direction can be either analysed1187

in coordinate space using generalized parton distributions (GPDs) or in momentum space using transverse1188

momentum dependent parton distributions (TMDs).1189

0.0 0.5 1.0 1.5 2.0
-0.5

0.0

0.5

1.0

0.0 0.5 1.0 1.5 2.0

total
total BEG
gluon cont.
quark cont.

total LQCD

Figure 21: Pressure distribution in the proton. Left: estimates of the quark contribution from the DVCS mea-
surements [548]; Right: Lattice QCD calculations of the same quantity, including the gluon contribution [549].
These results show that the pressure is positive at small distances and negative at large distances.

GPDs and gravitational form factors Deeply Virtual Compton scattering (DVCS) has been identified as a1190

clean process to experimentally access GPDs [550] and Compton form factors (CFF) to probe the 3D structure1191

of nucleons and nuclei. Data previously collected at various experiments have been used to generate some of1192

the first 3D images of the proton [551]. GPDs can also be used to determine mechanical properties of particles1193

through the gravitational form factors (GFFs) [552, 553]. Using two sets of measurements by CLAS with1194

a 6 GeV polarized electron beam, the beam-spin asymmetry [554] and the differential cross sections [555],1195

the first data-based estimate has been made on one of the GFFs, the so-called D(t) term [548]. A spherical1196

Bessel function is then employed to Fourier-transform D(t) to the Breit frame and the results are displayed in1197

Fig. 21. Meanwhile, the gluon contributions to the distributions of pressure and shear forces inside the proton1198

were computed using lattice QCD, allowing the first model-independent determination of these fundamental1199

aspects of proton structure [556]. Combined with the experimental measurements of the quark contribution, this1200

enabled the first complete determination of the pressure and shear distributions of the proton [549]. More precise1201

determinations of these quantities are a focus of future experiments at JLab and at the EIC.1202

Time-like Compton scattering The time-reversal reaction to DVCS, time-like Compton scattering (TCS), offers1203

unique ways to probe nucleon structure and GPDs. In this case, a quasi-real photon is absorbed by the nucleon1204

which produces a high invariant-mass lepton pair in the final state. While theoretically as clean as DVCS,1205

the experimental measurement of TCS is more challenging due to potential background channels, making the1206

reaction harder to identify. The first measurement of the TCS process was recently performed by the JLab1207

CLAS Collaboration [557]. Phenomenological models that reproduce worldwide data on DVCS satisfactorily1208

describe the photon polarization asymmetry and the forward-backward (FB) asymmetry of TCS, see Fig. 22.1209

This finding supports the universality of GPDs in describing hard exclusive processes. In addition, TCS is1210
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Figure 22: Forward-backward asymmetry as a func-
tion of the momentum transfer t to the proton. The
solid line shows the prediction of a GPD model that de-
scribes worldwide DVCS data, including the D-term
contribution. The red triangles show the asymmetry
computed for simulated Bethe-Heitler (BH) events.
The dashed and dash-dotted lines are predictions of
models without the contribution of the D-term. Note
that the D-term contributes more than 50% to the
asymmetry.

particularly sensitive to the real part of the Compton amplitude and thus to the D(t) term, which can be related to1211

the energy-momentum tensor and pressure distribution inside the nucleon as described above.1212

3D momentum tomography of hadrons The TMDs provide not only an intuitive illustration of nucleon1213

tomography, but also the important opportunities to investigate the specific nontrivial QCD dynamics associated1214

with their physics: QCD factorization, universality of the parton distributions and fragmentation functions,1215

and their scale evolutions. In particular, the quark Sivers functions for semi-inclusive hadron production in1216

DIS (SIDIS) and Drell-Yan lepton pair production differ in sign because of the difference between initial- and1217

final-state interactions. This leads to a sign change between the transverse single spin asymmetries (SSAs) in1218

SIDIS and Drell-Yan: Sivers SSA|DY = −Sivers SSA|DIS. It is important to test this nontrivial QCD prediction1219

by comparing the SSAs in these two processes. The Sivers SSA in SIDIS have been observed by the HERMES,1220

COMPASS, and JLab experiments. There have been significant efforts to measure the Drell-Yan Sivers asymmetry1221

at COMPASS [558] and that of W± production at RHIC [559]. The analyses of these data provided an indication1222

of a sign change [560–565]. More precise measurements are needed to confirm this crucial property.1223

Precision SIDIS studies in multidimensional space can systematically investigate the production mechanisms1224

and validate the theory assumptions in phenomenological TMD studies. Recent JLab experiments have studied1225

the contributions from the longitudinally polarized quarks in unpolarized nucleons which are critical for a1226

rigorous TMD interpretation in SIDIS [566–571]. The invariant mass dependence of the asymmetries have been1227

observed in two hadron system, indicating an important role of vector meson decay contributions [569, 570].1228

Finally, the Q2 evolution of the SIDIS structure functions measured at JLab and COMPASS are greatly needed1229

for validation of the current formalism in phenomenology.1230
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RHIC experiments have demonstrated the unique ways in which TMDs can be studied at hadron colliders.1231

Azimuthal distributions of identified hadrons in high-energy jets measured at STAR directly probe the collinear1232

quark transversity in the proton coupled to the transverse momentum dependent Collins fragmentation func-1233

tion [573–577]. Figure 23 shows the STAR measurements of Collins asymmetries as functions of z, the fraction1234

of jet momentum carried by the hadron, and jT , the momentum of the pion transverse to the jet axis, in p + p1235

collisions at 200 GeV [572]. The jT dependence appears to vary with z, contrary to the assumptions of most1236

current phenomenological models [573, 576, 577]. STAR has also measured quark transversity through dihadron1237

interference fragmentation functions in 200 and 500 GeV p+p collisions [578, 579].1238

Moreover, STAR measurements have shown the persistence of sizeable transverse single-spin asymmetries1239

AN for forward π0 production at RHIC energies up to 510 GeV with a weak energy dependence. STAR has1240

explored the SSA in forward electromagnetic jet production as well [580]. In addition, by utilizing pA collisions1241

at RHIC, both STAR and PHENIX collaborations studied the nuclear modifications of the forward hadron1242

SSAs [581, 582]. Neither the origin of the nuclear dependence nor the difference between the PHENIX and1243

STAR results is well understood at this time.1244

2.2.4 Origin of the Nucleon Mass1245

The origin of the proton mass is one of the central questions in contemporary hadronic physics. The topic,1246

highlighted in LRP15 and the 2018 National Academy of Sciences (NAS) assessment of the EIC, has seen1247

many prominent experimental and theoretical developments in recent years. A promising channel to study the1248

emergence of proton mass is quarkonium production near threshold, which is uniquely sensitive to the non-1249

perturbative gluonic structure of the proton. In 2019, the GlueX collaboration published the first measurement1250

of J/ψ photoproduction in the near-threshold region [583], see Fig. 24. Their one-dimensional cross section1251

results trend significantly higher than those previously extrapolated based on older measurements. These results1252

spurred many new theoretical investigations of the gluonic structure of the proton and the origin of its mass1253

[556, 584–602]. In 2022, the JLab Hall C J/ψ-007 experiment (E12-16-007) released the first two-dimensional1254

photoproduction measurement near threshold [603], shown in Fig. 25. These two-dimensional results provide a1255

new window into the gluonic gravitational form factors of the proton. The new data indicate that the proton has a1256

dense, energetic core that contains most of its mass. In order to further our understanding of the origin of the1257

proton mass, precision multidimensional measurements of near-threshold quarkonium production are needed,1258

in particular at high momentum transfer. The timely completion of the planned experimental program at JLab,1259

including J/ψ production studies with SoLID, will be crucial. More data that may hold the key to a universal1260

understanding of the origin of the proton mass are expected from the EIC, see discussions in Sec. 4.1.1261
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2.2.5 Hadron Spectroscopy1262

Lightest exotic hybrid meson The suggestion that that hybrid mesons, arising from excitations of gluon fields,1263

could exist is as old as QCD. A smoking gun signature for such a state would be JPC quantum numbers outside1264

the set allowed for a quark-antiquark pair, with 1−+ suspected to be the lightest. Experimental data from several1265

facilities suggested two low-lying isovector 1−+ states, a π1(1400) observed in ηπ, and a π1(1600) observed in1266

η′π and other channels [605]. These were in stark contrast to the results of lattice QCD computations [606]1267

which indicated there should be just a single low-lying state with these quantum numbers. Analyzing recent data1268

from COMPASS on the ηπ and η′π final states [607], the JPAC collaboration utilized a unitary description of1269

coupled-channel amplitudes to show that the enhancements observed could be explained by just one resonance,1270

rigorously described by a single pole singularity. This pole was found deep in the complex energy plane,1271

indicating a broad resonance [608]. A subsequent lattice QCD calculation [609] using heavier-than-physical1272

quark masses considered the relevant scattering process in which this state appears, finding a single resonance1273

pole in the coupled-channel amplitudes. Upon extrapolation to physical kinematics, relatively small partial1274

widths were found for decay into the observed channels ηπ and η′π, but a large coupling to b1π generated a large1275

total width, in agreement with the JPAC data analysis. GlueX is currently examining the ηπ and η′π final states1276

in photoproduction, and this lattice calculation adds further motivation to the already underway examination of1277

higher multiplicity final states.1278

Heavy quark exotics While the vast majority of observed hadron states are understood to be composed of three1279

quarks (baryons) or quark-antiquark pairs (mesons), QCD allows for other configurations, including four and1280

five quark states known as tetraquarks and pentaquarks. Recent observations at several experimental facilities1281

have revealed many candidates for these unconventional states in the charm and bottom sectors [610–614].1282

Theoretical models accommodate individual measurements as tightly-bound multiquark states or as hadronic1283

molecules, but no picture can describe all the new observations. Complicating matters further is the fact that1284

many of the states are observed in non-trivial production or decay processes where three-body rescattering effects1285

of essentially kinematic origin could mimic a resonance signature. Directly producing such states in simple1286

two-particle scattering can eliminate non-resonant interpretations. Utilizing the kinematic reach provided by1287

the 12 GeV CEBAF, near-threshold J/ψ photoproduction was studied for the first time at GlueX [583] and in1288

Hall C [603] to search for direct production of the hidden-charm P+c pentaquarks observed by LHCb [615, 616].1289

While no resonance signals were observed, as shown in Fig. 24, model-dependent upper limits on the branching1290

ratios provide new constraints on the interpretation of these exotic candidates. Higher energy photo- and1291

electro-production experiments, such as the EIC and an energy-upgraded CEBAF, can provide new opportunities1292

to directly produce other exotic charmonium-like states and shed light on their nature.1293

Exotic hadrons in heavy ion collisions As described in Sec. 2.1, the QGP created in heavy ion collisions is1294

an abundant source of deconfined quarks, which can form hadrons by coalescence as the plasma expands and1295
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freezes out. Thus measurements of exotic states in heavy ion collisions provide new tests of production and1296

transport models [617, 618] and are potentially sensitive to the structure of the exotic states themselves [619].1297

The first measured heavy quark exotic state, X(3872), has recently been measured in p + p (as a function of1298

multiplicity), p+Pb and Pb+Pb collisions [620, 621]. While the X(3872) to ψ(2S) cross section ratio drops with1299

multiplicity in p + p collisions, there is indication of a rise with multiplicity in the larger p+Pb and Pb+Pb1300

collision systems. This varying behavior may indicate that a range of suppression and enhancement effects are1301

coming into play. Currently these measurements are statistics limited and additional studies with higher statistics1302

data are required to clarify the situation.1303

In response to these recent measurements, several new theoretical developments have emerged. Comover1304

models have described the multiplicity dependence in p + p in terms of X(3872) breakup via interactions with1305

other particles produced in the event. The results have been interpreted as providing evidence for the X(3872) as1306

both a compact tetraquark [622] and a hadronic molecule [623]. Calculations based on quark coalescence at1307

freeze-out using the AMPT model show that, if the X(3872) is a molecular state, it should be greatly enhanced1308

in central A + A collisions relative to a compact tetraquark [619]. A recent transport calculation comes to1309

the opposite conclusion [617]. While all these models have successfully explained conventional charmonium1310

behavior in both small systems and the QGP, their application to exotic states has provided new challenges.1311

2.2.6 QCD in Nuclei1312

Short range correlated nucleon pairs (SRCs) SRC pairs are temporal fluctuations of two strongly-interacting1313

nucleons in close proximity. They are characterized by large relative momentum (prel > kF ≈ 250 MeV)1314

and smaller total momentum (ptot ≲ kF) [624–629]. At the time of LRP15, it was known that the very high1315

momentum nucleons were almost entirely associated with SRCs, and were strongly dominated by np-SRCs for1316

a wide range of nuclei. Since then, there have been significant advances in various aspects of SRCs and their1317

relation to the EMC effect, made possible through extensive investigations of hard exclusive scattering reactions1318

at JLab [630].1319

Figure 26: Left: The ratio of (e,e’pp) to (e,e’p) cross sections for different nuclei as a function of the missing
momentum of the first proton [631]. The gray band shows a factorized calculation for carbon (C) using the
Generalized Contact Formalism (GCF) and the AV18 potential. Right: Extracted np-SRC/pp-SRC ratio from
recent comparisons of 3H and 3He scattering along with previous world’s extractions [632].

First, several new measurements have provided additional confirmation of the universality of the isospin and1320

momentum structure of SRCs. Almost all high momentum nucleons in nuclei belong to an SRC pair [633]. At1321

intermediate relative momenta (300 ≤ prel ≤ 600 MeV), these SRC pairs are predominantly np pairs, due to the1322

tensor part of the nucleon-nucleon (NN) interaction [632, 634–636]. This np dominance can cause momentum1323

inversion, where the minority nucleons (e.g., protons in neutron-rich nuclei) have higher average momentum1324

than the majority nucleons [635].1325
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Second, recent measurements demonstrated that the near total np-dominance established above the nuclei1326

Fermi-momentum, where the tensor force dominates, can be modified in special circumstances. As the momenta1327

probed increases to 700 ≤ prel ≤ 1000 MeV, central correlations become more important and the relative numbers1328

of pp and np pairs follow simple spin-state pair counting [631, 633], thus observing a new scalar-interaction1329

dominated regime at very short distance scales, see Fig. 26 (left panel). In addition, recent 3H/3He inclusive cross1330

section ratio measurements in the SRC region give a ratio of 0.854±0.010 [632], well below the expected ratio of1331

unity expected from complete np-SRC dominance. This ratio, as well as the ratio for (e, e′p) measurements [637],1332

can be used to extract the underlying np-SRC/pp-SRC ratio based on a plane-wave impulse approximation1333

picture [632], see right panel of Fig. 26. Meanwhile, both data are well described [631, 633, 638] by Generalized1334

Contact Formalism (GCF) [639–641] calculations using realistic NN interaction models with np-dominated1335

SRC contact terms [642], and for the inclusive data also by interactions with no tensor-force [638]. This shows1336

remarkable progress in our understanding of np-dominance dynamics and short-distance two-nucleon interactions1337

in all measured nuclei, building connection between scattering data and nuclear theory [631, 633, 638, 643–645].1338

The momentum distribution of SRC pairs has also been probed in light nuclei using hard proton knockout1339

from the deuteron [646] and 3He and 3H [637, 647]. The measured and ab-initio calculated cross-sections1340

show good agreement up to very high momenta. These measurements therefore provide new insight to the1341

very high-momentum tails of nucleon distributions in light nuclei, short-distance interactions, and few-nucleon1342

dynamics. Investigations are currently underway as part of the JLab 12 GeV program to probe beyond the1343

2N-SRC region and look for 3N-SRCs in nuclei, and test predictions for the universal contribution of 3-body1344

structures at high-momenta.1345

Nuclear EMC Effects and SRCs As highlighted in LRP15, the strength of the EMC effect in nuclei, i.e.,1346

the nuclear modification of the valance structure functions measured in DIS, is linearly correlated with the1347

abundance of SRC pairs [628, 648]. This indicates that the short-distance NN interaction could modify nucleon1348

structure. The measured data could be explained by a universal modification of the structure of nucleons in SRC1349

pairs [649–651], providing empirical corrections of nuclear effects in the extraction of the free-neutron structure1350

function [652] (see Fig. 27).1351

Figure 27: Left: Measured structure function ratio for different nuclei relative to deuterium [649]. Right: The
extracted universal modification function of nucleons in SRC pairs from a global data analysis [652].

At the meantime, results from recent measurements continue to proide insights on the EMC effect in both1352

light and heavy nuclei [649, 653, 654]. In paricular, preliminary results from JLab have shown that the size of1353

the EMC effect is nearly constant for A = 4 and A = 9 to 12, and there is a clear correlation of the EMC effect1354

with the local nuclear density [654]. More measurements are being carried out to study both the EMC effect and1355

SRCs for all available light nuclei, to study the connection to the detailed nuclear environment, and for heavier1356

nuclei over a range on N/Z to separate A-dependence from isospin effects.1357
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In addition, recent and planned measurements of novel observables such as tagged-DIS (TDIS) will probe1358

the structure function of bound nucleons in specific nuclear states and will provide guidance for constraining1359

off-shell nucleon-modification models that are currently largely unconstrained [655]. Measurements of the1360

spin structure function EMC effect will also test a complementary set of EMC models [656–658] where the1361

bound nucleon modification is driven by the mean-field nuclear potential [659]. The combination of all these1362

measurements, including those discussed above and in Sec. 3.3.6, will provide an unprecedented understanding1363

of the impact of the strong nuclear interaction on the internal structure of bound nucleons and thereby the parton1364

structure of nuclei.1365

Nuclear modification of the parton distributions In addition to the EMC effects discussed above, the nPDFs1366

in the full kinematics, from the shadowing effects at small x to the Fermi motion effects at large x, see, Fig. 50,1367

provide a framework to study the cold nuclear matter effects. Previously, the nPDFs were extracted through1368

global analysis of the experimental data from fixed-target DIS and Drell-Yan production in pA collisions. In the1369

last few years, proton-lead collisions at the LHC offer a wealth of opportunities to study cold nuclear matter1370

effects, especially by using electroweak bosons [660–666]. Combining the LHC data with previous fixed target1371

DIS and Drell-Yan data, the precision of the extracted nPDFs has improved significantly, see, e.g., recent global1372

analyses from several groups [667–670]. Furthermore, recent JLab CLAS data have provided a 3D extension of1373

these studies with the measurement of incoherent and coherent DVCS giving access to both bound proton and1374

nuclear GPDs, respectively [671–673].1375

2.2.7 Cold Nuclear Matter Effects in Hadron Production1376

Apart from the nuclear modification of structure function in DIS (EMC effects) discussed above, cold nuclear1377

matter effects can be studied with semi-inclusive hadron productions in e + A and p + A collisions. The QCD1378

dynamics are much more involved in these processes and the underlying mechanism could come from the parton1379

distribution modifications, hadron formation in a nuclear environment, and small-x gluon saturation in extreme1380

kinematics. Therefore, a comprehensive study of these phenomena requires both theoretical and experimental1381

investigations. Since LRP15, several notable developments have been achieved. Here, we highlight some new1382

results from the LHC, RHIC, and JLab. Future developments are expected, in particular from the planned EIC,1383

see Section 4.1384
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Figure 28: LHCb Collaboration measurement of the nuclear modification factor of charge particles as a function
of pT in different rapidity intervals for the forward region in p+Pb collisions at

√
S NN = 5 TeV at the LHC [674],

compared to state of the art CGC calculations [675].

Nuclear modification of forward hadron yields in p + A collisions at LHC and RHIC Forward hadron1385

production in p + A collisions (or d + A deuteron-nucleus collisions at RHIC) have attracted a great deal of1386

attention. Experimentally, the evolution of the nuclear modification factor RdAu from mid-rapidity to forward-1387

rapidity regions measured at RHIC is considered important evidence of the onset of gluon saturation [676, 677].1388

Recently, the LHCb collaboration published the measurement of the charged particle spectra in p+Pb and1389

p + p collisions at
√

sNN = 5 TeV at the LHC, covering a wide range of kinematics, especially the forward1390

pseudorapidity range of 1.6 < η < 4.3 [674]. The latest gluon saturation interpretation of all these measurements1391
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can be found in [675], where the CGC calculations are performed at next-to-leading order and supplemented1392

with threshold resummation effect.1393
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Di-hadron (dijet) correlations in p + A collisions Understanding the nonlinear behavior of the gluon at small1394

x is one of the most important physics goals for the RHIC/LHC cold QCD program and the future EIC. The1395

back-to-back di-hadron azimuthal angle correlation is one of the most sensitive direct probes the underlying1396

gluon dynamics involved in hard scatterings [678, 679]. Earlier measurements of di-hadron correlations in d+Au1397

collisions have indicated gluon saturation at small-x in large nuclei [680–683]. The STAR Collaboration per-1398

formed the measurements of back-to-back azimuthal correlations of di-π0s produced at forward pseudorapidities1399

(2.6 < η < 4.0) in p + p, p+Al, and p+Au collisions at √sNN = 200 GeV. The results have been published [684]1400

recently, showing a clear suppression of the correlated yields of back-to-back π0 pairs in p+Al and p+Au1401

collisions compared to the p + p data. The observed suppression is larger at smaller transverse momentum,1402

which indicates lower x and Q2. The larger suppression found in p+Au relative to p+Al collisions exhibits a1403

dependence of the suppression on the mass number A. Higher-precision measurements will be performed with1404

the STAR forward upgrade to further explore the nonlinear gluon dynamics. Those measurements will provide a1405

baseline for searching for gluon saturation at the future EIC. Similarly, dijet correlations in p + A collisions from1406

the LHC have also studied small x physics within a complementary kinematic coverage [685], where theoretical1407

interpretation combines the gluon saturation and high order soft gluon radiation contributions [686].1408

Semi-inclusive hadron production in DIS with nuclear targets Data from previous fixed target HERMES1409

measurement have been applied to constrain the cold nuclear matter effects in hadron production in DIS processes.1410

Several JLab SIDIS experiments on deuterium, carbon, iron, and lead targets have been carried out by the CLAS1411

Collaboration. In the first experiment [687], the production of single charged pions in SIDIS was measured with1412

first-ever full kinematic coverage. In the second, the azimuthal angle dependence of two pion suppression in1413

nuclear targets was compared to that of nucleon targets [688], considerably extending the scope of previous1414

studies with HERMES. The third studied Λ(uds) attenuation and transverse momentum broadening [689]. New1415

data on multi-dimensional attenuation of neutral pions should be released soon. All these new studies will1416

explore hadron formation in cold nuclear matter with DIS, helping benchmark future studies at JLab and the EIC.1417

Color transparency The search for the onset of color transparency (CT) is driven by the need to better understand1418
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the connection between the partonic and hadronic degrees of freedom in nuclei. Experimental measurements on1419

this topic are not yet conclusive. A recent experiment from Hall C at JLab found no evidence of the onset of CT1420

from proton knockout on a carbon nucleus up to Q2 = 14.2 (GeV/c)2 [690], whereas previous measurements with1421

exclusive meson electroproduction have observed the onset of CT at an order of magnitude lower Q2 [691–693].1422

This is a puzzling situation and future searches for CT at JLab will extend the Q2 range of measurements for1423

pion and rho mesons [694, 695], providing a direct comparison between protons and mesons.1424

3 Future Opportunities1425

3.1 QCD Theory1426

It is widely accepted that QCD is the right theory to describe the strong interaction, which governs all nuclear1427

physics from quarks and gluons to nucleons and nuclei. Solving QCD in the non-perturbative region has been a1428

great challenge of modern quantum field theory in the last half century and it will remain so in the foreseeable1429

future. In this section, we will lay out the achievements in recent years and then focus on future perspectives1430

related to the QCD theory. In particular, the challenges to confront the experimental data have motivated the1431

theory community to form collaborative efforts for all research areas of QCD and examples will be discussed in1432

Sec. 3.1.5. These topical collaborations will play crucial roles for future theory developments. Note that this1433

section is not comprehensive, as many aspects related to theory are discussed in the previous and following1434

sections, along with experimental considerations. This section discusses more formal and purely theoretical1435

aspects of QCD in detail.1436

3.1.1 Lattice QCD1437

Soon after the formulation of QCD, the Euclidean space-time lattice regularization was introduced, paving1438

the way for numerical studies of non-perturbative QCD [696]. Several decades of efforts have demonstrated1439

that lattice QCD is an unmatched tool for understanding strong interaction physics ranging from the partonic1440

structure of nucleons to the QCD phase diagram.1441

The structure of the nucleon has been a central component to the development of QCD. Due to their1442

non-perturbative nature, the theoretical determination of many nucleon properties relies crucially on lattice1443

calculations. Since LRP15, there has been tremendous progress in lattice computations of hadron structure,1444

including the axial, scalar and tensor charges and form factors of nucleons, spin and mass decomposition, and1445

various parton distributions.1446

Nucleon axial, scalar and tensor charges and form factors The simplest nucleon matrix elements give the1447

nucleon charges and form factors. This includes the axial, scalar, and tensor charges. The axial and tensor1448

charges are related to the longitudinal and transverse spin dependent quark distributions which can be explored1449

in high energy hadronic experiments, such as inclusive DIS and SIDIS. There has been significant progress1450

in lattice calculations of these charges in recent years [697]. In particular, the nucleon axial charge gA served1451

as an important benchmark calculation for lattice QCD applications to nuclear physics. The first lattice QCD1452

result that fully addressed all sources of systematic uncertainty appeared in 2016 [698] and results that were1453

also in agreement with the Particle Data Group (PDG) value within one standard deviation appeared in 20171454

and thereafter [699–708]. The precision achieved in the lattice QCD calculations of gA opens the door for this1455

quantity to be elevated from an important benchmark result to another key quantity needed for precision low-1456

energy tests of the Standard Model. Meanwhile, at this level of precision, the radiative quantum electrodynamics1457

(QED) corrections must be fully understood, see a recent example of O(2%) pion-induced radiative correction to1458

gA [709].1459

The lattice calculations of the axial and tensor charges have provided benchmarks for phenomenological1460

extraction of various parton distributions from experimental measurements of spin asymmetries, see, e.g., a1461

combined analysis of nucleon tensor charge from lattice QCD and the quark transversity distributions from1462

experiments [563, 710]. Similarly, progress made in the lattice calculations of nucleon form factors [549, 556,1463
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703, 711, 712] provides important constraints on the modeling of the quark/gluon GPDs, see e.g. [713]. The1464

combination of lattice results with experimental measurements will continue to provide crucial information on1465

nucleon tomography with upcoming programs at JLab and the EIC.1466

Pion and kaon form factors Pions and kaons are among the most prominent strongly interacting particles next1467

to the nucleon, since they are the Goldstone bosons of QCD. Thus, it is important to study their internal structure1468

and how it reflects their Goldstone boson nature; a question particularly relevant for understanding the origin1469

of mass generation in QCD [714, 715]. While measuring pion and kaon form factors is one of the goals of the1470

experimental program at Jlab12 and the EIC [716, 717], current experimental information on the pion and kaon1471

form factors is limited [718], especially at large momentum transfer, making lattice QCD calculations more1472

relevant. Recent lattice calculations of the pion form factor have been performed with two flavors (N f = 2) of1473

dynamical quarks [719–723], with physical strange quark and two light quark flavors (N f = 2 + 1) [724–731],1474

as well as with dynamical charm quark, strange quark and two flavors of the light quarks with nearly physical1475

masses (N f = 2 + 1 + 1) [732]. Most of the lattice studies so far focused on the small Q2 behavior of the pion1476

form factor, with the largest momentum transfer studied so far corresponding to Q2 ≃ 1.4 GeV2 [731]. With1477

advanced techniques, such as boosted sources [733] and increased computational resources it should be possible1478

to extend the lattice form factor calculations to Q2 ≃ 30 GeV2, i.e., the region of interest for the EIC.1479

Spin and mass decomposition of the nucleon Lattice QCD has been extensively applied to understand the1480

origin of proton spin and mass. Since LRP15, there have been two complete lattice calculations of the nucleon1481

spin decomposition with renormalization, mixing and normalization properly taken into account. In this1482

decomposition, the proton spin is constructed from individual quark and gluon angular momentum contributions,1483

and the quark orbital angular momentum (OAM) contribution can be further derived by subtracting the associated1484

helicity contributions [734]. One calculation uses the twisted mass fermion on a N f = 2+1+1-flavor lattice with1485

lattice spacing of a = 0.08 fm and pion mass of 139 MeV [735]. The results on the angular momentum fractions1486

J for the u, d, s, c quarks and gluons are shown in the left panel of Fig. 30. The summed quark Jq is 57.1(9.0)%1487

and Jg is 37.5(9.3)% of the total angular momentum. The quark helicity contribution is also calculated to be1488

1
2∆Σ = 0.191(15). This leaves the quark OAM with 18.8(10.2)(2)% of the total spin. Another calculation is1489

based on the valence overlap fermion on a 2 + 1-flavor domain wall fermion sea on a 323 × 64 lattice with1490

a = 1.43 fm and pion mass of 171 MeV with a box size of 4.6 fm [736]. The results [736] for the percentage1491

contributions are ∆Σ, Jg and Lq at 40(4)%, 46(5)% and 13(5)%, respectively. All these results are matched to1492

the MS scheme using the renormalization scale µ = 2 GeV. In addition, a complementary approach with direct1493

access to quark OAM, based on Wigner functions, has also been pursued [737, 738], yielding compatible results1494

as above and providing further insight on different formalisms for the quark OAM.1495

The hadron mass and its decomposition can be obtained from the energy-momentum tensor (EMT). Ac-1496

cording to Ref. [740], the rest energy has the following expression: E0 = ⟨Hm⟩ + ⟨HE⟩(µ) + ⟨Hg⟩(µ) + 1
4 ⟨Ha⟩,1497

where ⟨Hm⟩ is the quark condensate, ⟨HE⟩(µ) is the quark kinetic and potential energy, and ⟨Hg⟩(µ) is the glue1498

field energy. Both of them depend on the scale. Finally, ⟨Ha⟩ is the trace anomaly and is renormalization group1499

invariant. A lattice calculation of this decomposition was carried out by the χQCD Collaboration [739]. This1500

calculation was done with the overlap fermion on four 2+1-flavor domain-wall fermion configuration ensembles1501

for 3 lattice spacings. The largest lattice is at the physical pion point and full non-perturbative renormalization1502

and mixing are performed. The right panel of Fig. 30 shows the fractional decomposition of the rest energy in1503

terms of ⟨Hm⟩, ⟨HE⟩(µ), ⟨Hg⟩(µ), and 1
4 ⟨Ha⟩ in the MS scheme at µ = 2 GeV, as functions of m2

π. Clearly, except1504

for ⟨Hm⟩, the components are fairly independent of the quark mass up to mπ = 400 MeV.1505

Parton distributions Calculating the partonic structure of bound states from first principles lattice QCD with1506

controlled accuracy remains an important unsolved problem. Previous efforts have been focused on the moments1507

of collinear PDFs, which provide momentum-space “global” information about partons. In recent years, new1508

opportunities emerged for lattice QCD calculations to investigate the partonic structure of hadrons. Novel1509

methods enabled the calculations of the x dependence of PDFs, GPDs, and TMDs, which was previously1510
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Figure 30: State of art lattice QCD calculations of emerging properties of the nucleon: (left) spin decomposition
in terms of the angular momentum Jq for the u, d and s quarks and the gluon angular momentum Jg in the
n f = 2 + 1 + 1 calculation from the ETMC collaboration [735]; (right) mass decomposition in terms of ⟨Hm⟩,
⟨HE⟩(µ), ⟨Hg⟩(µ), and 1

4 ⟨Ha⟩ at µ = 2 GeV as functions of m2
π from χ-QCD collaboration [739].

considered unattainable. The major complication is the inability to obtain light-cone quantities from the1511

Euclidean formulation of lattice QCD. The realization that lattice matrix elements of non-local operators can be1512

related to light-cone distributions has transformed the field of hadron structure [741–744], with the U.S. leading1513

several aspects.1514

Various methods have been developed [745–757] and significant progress has been made using two major1515

approaches: large momentum effective theory (LaMET) in which the parton x-dependence is calculated directly1516

via a large momentum expansion [751, 752], and short-distance factorization or operator product expansion,1517

which comes under various names such as pseudo distributions [753] or “good lattice cross sections” [754–756],1518

in which the x-dependencies are parametrized and fitted with the global analysis method. Precision calculations1519

of isovector unpolarized, helicity, and transversity quark PDFs are ongoing, with simulations at the physical1520

quark masses, and with controlled systematic uncertainties, including renormalization of linear divergences and1521

continuum limit, two-loop matching and renormalization group resummation [758–766]. While the lattice QCD1522

results for the sea quarks and gluon PDFs still have a long way to go before they reach good accuracy, the field is1523

up-and-coming and more developments are expected to appear shortly [767–771].1524

These developments have also been applied to hadron tomography of GPDs and TMDs. They are computa-1525

tionally more expensive than the integrated PDFs due to being differential in additional kinematic variables, e.g.,1526

the momentum transfer between the initial and final hadronic states for the GPDs, and transverse-momentum1527

degrees of freedom in TMD PDFs and wave functions. First exploratory results on the proton unpolarized and1528

helicity GPDs were reported in Refs. [772–775] and more detailed investigations are ongoing. On the TMD1529

side, substantial insight into TMD spin physics has been obtained through lattice calculations of TMD ratio1530

observables [776–779]. Meanwhile, the theoretical developments in the last few years have paved a way to1531

compute the TMDs from lattice based on the LaMET formalism [780–795]. The associated evolution kernel and1532

soft factors have been computed [789–791, 796–799] and a preliminary result for the isovector quark TMDs has1533

recently appeared [800].1534

Hadron spectroscopy Hadron spectroscopy as a field is undergoing a rapid development, where the emergent1535

phenomenon of the hadron resonance spectrum as measured in experiments can be directly connected to1536

non-perturbative QCD by means of rigorous amplitude analysis and lattice QCD computation. In the area of1537

lattice computations of meson resonances, researchers in the US are world-leading, in particular the hadspec1538

collaboration [www.hadspec.org] has made pioneering contributions to the calculations.1539

The formalism that relates the discrete spectrum of states in a finite volume to elastic two-body scalar particle1540
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scattering amplitudes has been in place for over thirty years [801], but it was only recently that lattice QCD1541

technology developed to the level where the calculations were practical. At the time of the last LRP, only a few1542

elastic scattering systems, and a single coupled-channel system (πK, ηK) had been studied in explicit lattice QCD1543

calculations, yielding QCD descriptions of the ρ and K∗ resonances. In the years since, many more meson-meson1544

and meson-bayon scattering sectors have been explored in lattice calculations with heavier-than-physical light1545

quarks, exposing the variety of ways resonances can manifest themselves in scattering amplitudes [802–805]1546

and providing a first-principles QCD approach to studying longstanding mysteries such as the nature of the1547

light scalar mesons and the decays of the lightest exotic hybrid meson [609]. By coupling currents to scattering1548

systems [806–809], the internal structure of unstable resonances can be explored in unprecedented ways.1549

Going beyond two-particle scattering, finite-volume formalisms to describe three-particle scattering have1550

been derived [810, 811] and these are currently being applied to explicit lattice QCD calculations in cases of1551

maximal isospin, like π+π+π+, where there are neither three-body resonances, nor any resonances in two-body1552

sub-channels [812–815]. The demonstrated success in these trial channels motivates further ongoing studies of1553

channels in which resonances appear, allowing a much larger fraction of the QCD spectrum to be investigated1554

rigorously, including many exotic hadrons of contemporary interest.1555

QCD phase diagram The study of the QCD phase diagram with lattice simulations has experienced tremendous1556

progress in the last few years. The phase transition line is typically determined by extrapolating chiral observables1557

to finite chemical potential µB, and finding the temperature at which the chiral condensate has an inflection1558

point, or the chiral susceptibility has a peak. The transition temperature as a function of µB can be written as1559

Tc(µB)/Tc(µB = 0) = 1 − κ2 (µB/Tc(µB))2 − κ4 (µB/Tc(µB))4 + · · · . A high-precision result for the crossover1560

temperature Tc(µB = 0) has become available, Tc(µB = 0)=158 ± 0.6 MeV [816], which is in agreement with1561

the previously quoted value Tc(µB = 0)=156.5 ± 1.5 MeV [817]. Current extrapolations to finite chemical1562

potential reach out to µB ≈ 300 MeV, through the precise knowledge of the coefficients κ2 = 0.0153 ± 0.00181563

and κ4 = 0.00032 ± 0.00067 [816]. Similar coefficients for the extrapolation of the transition temperature to1564

finite strangeness, electric charge and isospin chemical potentials were obtained in Ref. [817]. No sign of1565

criticality is observed from lattice QCD simulations up to µB ≃ 300 MeV [816, 818]. Future challenges include1566

the extrapolation of the phase transition line to larger values of chemical potential and more stringent constraints1567

on the location of the critical point.1568

QCD equation of state The QCD EOS has been known at µB = 0 with high precision for several years1569

[819–821]. The sign problem prevents direct simulations at finite chemical potentials. However, different1570

extrapolation methods have been used to obtain the EOS at moderate values of µB. Significant progress has been1571

achieved through a Taylor expansion of the thermodynamic quantities [822–824], currently limited to µB/T < 3.1572

A new expansion scheme has extended the range of the EOS to µB/T < 3.5 [825]. An alternative approach1573

with a similar range in µB/T has been developed in [826], where the equation of state has been constructed as1574

a relativistic virial expansion in baryon number fugacity. All of these equations of state are two-dimensional:1575

thermodynamic variables are calculated as functions of the temperature and the baryon chemical potential.1576

However, in QCD there are other two conserved charges: elecric charge Q and strangeness S . A choice needs to1577

be made for the respective chemical potentials µQ and µS . Typical choices are µQ = µS = 0 or µQ = µQ(T, µB)1578

and µS = µS (T, µB) such that the phenomenological conditions nQ = 0.4nB and nS = 0 are satisfied, with ni1579

number density for charge i. These conditions reflect the overall strangeness and electric charge fraction in the1580

colliding nuclei of a heavy-ion collision. An extension of the new expansion scheme to strangeness neutrality1581

and beyond was presented in Ref. [827]. A full four-dimensional equation of state, expanded as Taylor series in1582

µB/T, µS /T and µQ/T , is available in Refs. [57, 58].1583

The BEST collaboration has built an equation of state which reproduces lattice QCD results up to O((µB/T )4)1584

and contains a critical point in the 3D-Ising model universality class [56, 60, 828]. This EOS can be used in1585

hydrodynamic simulations of heavy-ion collisions to check the effect of changing the location and strength of1586

the critical point. Future challenges, both for lattice QCD and the BEST collaboration equations of state, are to1587

extend them to larger coverage of the QCD phase diagram.1588
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Heavy flavor probes of hot matter on the lattice The heavy flavor diffusion coefficient characterizes the1589

movement of a heavy quark with a momentum of at most the order of the temperature with respect to the1590

medium rest frame. For this reason, it can contribute to our understanding of thermalization of heavy quarks1591

in the QGP. Estimates of this quantity in the deconfined phase of QCD were presented in Refs. [829, 830],1592

albeit in the quenched approximation. This quantity was studied on the lattice by means of the gradient flow1593

method [231, 232, 831]. A wide temperature range has been explored in Ref. [832], where the multilevel1594

algorithm was used. The results from the gradient flow and multilevel algorithm methods are consistent with1595

each other. Future challenges include the continuum extrapolation of this observable in full QCD with realistic1596

simulation parameters. Calculations with physical quark masses will require exascale computing resources,1597

allocated through the ALCC [833] and INCITE [834] programs. To take advantage of exascale resources, lattice1598

QCD codes must be adapted to the computational hardware, requiring funding from programs like SciDAC1599

[835]. Larger Nτ lattice will not only address bottomonium properties at T , 0, the complex QQ potential, and1600

the heavy quark diffusion coefficient but also, with minimal additional investment, improve studies of charm1601

fluctuations and charm baryon number correlations. The lattice can also study a novel chromoelectric field1602

correlator that describes in-medium dynamics of heavy quark-antiquark pairs [836, 837], which has been shown1603

to be different from the heavy quark diffusion coefficient [838, 839].1604

3.1.2 Theory and Phenomenology of Cold QCD1605

Applying QCD theory to both hot and cold QCD physics is a great challenge, due to the nonperturbative1606

nature of strong interaction phenomena. Therefore, approximations have to be made to confront the experimental1607

measurements, either by using QCD factorization with proper power counting, or building a rigorous numerical1608

framework.1609

In the QCD factorization formalism, the hadronic cross sections are factorized into the partonic hard scattering1610

cross sections and the associated non-perturbative hadron structure. The central task for QCD theory is to provide1611

precision computations of the various relevant partonic hard-scattering cross sections and splitting functions at1612

high orders of perturbation theory. The past few years have seen tremendous progress in this area. For example,1613

for the longitudinal momentum distribution functions (spin-dependent and spin-independent), the associated1614

DGLAP evolution kernels are now fully known to next-to-next-to-leading order (NNLO) [840–842]. Salient1615

examples of computations of partonic cross sections for, e.g., e + p scattering at the EIC, at NNLO and even1616

beyond, include work on inclusive DIS [843–845] and jet production in DIS [846–849]. Other developments1617

include heavy quark and quarkonium production in various hard scattering processes [850–859] and the principle1618

of maximum conformality arguments in perturbative calculations [860].1619

The theoretical framework for establishing the tomographic structure of hadrons, as encoded in GPDs, has1620

been well established and higher order perturbative QCD corrections have been calculated. The first computation1621

of NNLO corrections for DVCS has also been reported recently [861–863]. Progress has been made toward1622

a global analysis of GPDs, including a wide range of experiments [713, 864–873]. Meanwhile, recent global1623

analyses have achieved high precision for the unpolarized TMD quark distribution and fragmentation functions1624

from fits to data on semi-inclusive hard processes [561, 562, 874–877]. All these computations will impact the1625

extraction of parton distributions and tomographic structure from future experiments, including JLab and EIC.1626

More generally, global analysis is a powerful tool that has recently been applied to extracting the unpolarized1627

parton distribution functions [516, 519, 878–881], quark/gluon helicity distributions [527–529], TMDs and1628

GPDs, as mentioned above. The key feature of these developments is to utilize the computational advances and1629

apply theoretical constraints, including the lattice results. With future data from JLab and EIC on the horizon,1630

the role of global analysis will become even more important.1631

An important thread of theory developments is the application of the effective degrees of freedom of QCD1632

to derive an effective field theory (EFT). These developments have not only revealed emerging dynamics of1633

strong interaction physics but also provided advanced techniques to apply perturbative methods to deal with1634

complicated hadronic processes. Recent progress along this direction has made it possible to compute various1635

observables in both hot and cold QCD. In the following, we will describe two examples that have significant1636
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impact.1637

Soft-collinear effective theory Soft-collinear effective theory (SCET) is an effective field theory which1638

systematically describes the infrared QCD dynamics in hard collisions, including those associated with soft1639

and collinear degrees of freedom [882–884]. It has been widely applied to a large variety of collider processes.1640

This is partly because SCET provides a systematic and convenient method to perform high order perturbative1641

calculations through the universal steps in deriving factorization in terms of independent functions governing the1642

hard, collinear and soft dynamics of a process. SCET is also transparent in carrying out higher order resummation1643

of large logarithms. Moreover, it has the ability to generalize the factorization to more complicated processes and1644

multiscale observables, and the capability to systematically study power corrections. SCET continues to have a1645

significant impact on the field of high precision calculations for hard scattering processes at various colliders,1646

including Higgs/Z/W boson production, and inclusive jet and multi-jet production at the LHC.1647

In connection to hadron physics, SCET played an important role to clarify the QCD factorization for various1648

hard processes where one can extract nucleon structure, such as the TMDs, see, e.g. [793]. A key development in1649

recent years is the analysis of power corrections to the factorization formalism [885], which will have potential1650

impact on future phenomenological applications at JLab and the EIC.1651

Color-glass condensate There are compelling theoretical arguments and strong experimental hints that suggest1652

that gluon distributions saturate at small Bjorken-x [886–891]. Gluon saturation occurs when the nonlinear terms1653

in the field strength tensor are of the same magnitude as the kinetic terms or, equivalently, when the occupancy1654

of field modes is O(1/αs). The CGC is a QCD EFT that describes the physics of small-x modes in protons1655

and large nuclei and the underlying dynamics of gluon saturation at collider energies. The evolution of the1656

complex many-body dynamics of partons in this regime of QCD with energy is described in the CGC EFT by1657

powerful renormalization group (RG) equations [892–897] that underlie the predictive power of this theoretical1658

framework. The state-of-the art of these RG equations is at NLO accuracy with significant ongoing theoretical1659

and computational work.1660

An attractive feature of the CGC EFT is that it can be employed to explore the dynamics of small-x modes1661

and gluon saturation across a wide range of high energy experiments, from electron-hadron DIS from HERA1662

to the EIC, to hadron-hadron, hadron-nucleus and nucleus-nucleus collisions at RHIC and the LHC. In DIS,1663

NLO calculations are emerging for an increasing number of processes in electron-nucleus collisions, while a1664

parallel program of precision comparisons of theoretical predictions to data is underway for proton-nucleus and1665

ultra-peripheral collisions at the LHC (see [898] for a review).1666

The CGC EFT also provides a compelling model of the initial conditions in heavy-ion collisions, as shown in1667

Sec. 2.1.4. A significant body of research in this direction enables one to quantitatively assess the impact of this1668

framework on the space-time evolution of matter in such collisions, and has played a key role in the quantitative1669

extraction of transport coefficients of the quark-gluon plasma.1670

Similar data-theory comparisons at the EIC will help solidify and quantify these insights into the 3-D1671

tomography of gluons [679, 899]. These will require a global analysis of data from hadron-nucleus and electron-1672

nucleus collisions in analogy to successful global analysis studies in perturbative QCD discussed above. An1673

important theoretical development is the emerging quantitative connections of the CGC EFT to the TMD and1674

GPD frameworks in perturbative QCD. These studies can help refine and expand the predictive power of both1675

frameworks. Another set of interesting questions is whether studies of overoccupied states in other systems1676

in nature across wide energy scales can provide deeper insight into universal features of gluon saturation; a1677

particularly promising approach is the perspective provided by quantum information science [900–905]. An1678

intriguing possibility is that of designing cold atom analog quantum computers (discussed further later) to capture1679

dynamical features of such systems [906, 907].1680

QCD-inspired models of hadron structure Due to its non-perturbative nature, strong interaction physics has1681

inspired a great deal of models, see textbooks [908, 909] for a summary. In recent years, a number of models1682

have helped to unveil the nontrivial feature of hadron structure and stimulated further theoretical developments.1683
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This includes the Schwinger-Dyson (Bethe-Salpeter) equations [910, 911] and instanton liquid models [912]1684

where a certain truncation is needed to apply these models; and the light-front holographic model [913]; the1685

light-front Hamiltonian model [914–918]. All these models have captured certain features of non-perturbarive1686

QCD physics and have gained success to describe the hadron structure to some extent. However, because the1687

connections between the model degrees of freedom and the fundamental ones are unknown, the uncertainties1688

from these calculations may not be under control.1689

Amplitude analysis to unveil the QCD hadron spectroscopy In anticipation of CEBAF 12 GeV operations, in1690

2013 the Joint Physics Analysis Center (JPAC) was formed to develop the necessary theoretical, phenomenologi-1691

cal and computational frameworks for analysis and interpretation of data. The quality and complexity of modern1692

spectroscopy-relevant datasets is such that it is only by collaboration between experimentalists and theorists1693

like those in JPAC that robust results on the hadron spectrum can be obtained. While the search for light exotic1694

hadrons in experiments at Jefferson Lab continues to be one of the main efforts of JPAC, over time the reach of1695

the center has expanded worldwide with its members now affiliated with experiments outside JLab, including1696

BESIII, COMPASS, and LHCb.1697

The need for sophisticated amplitude analyses is pressing in view of the copiously produced XYZ states,1698

where what is required is a systematic study of reaction mechanisms to isolate genuine resonances from1699

other effects, e.g. kinematical singularities which may generate peaking structures without a resonance being1700

present [919, 920]. In this context direct production using photon beams would provide an independent validation1701

of the resonance nature of the XYZ’s by virtue of the absence of the kinematic singularities present in the three-1702

body production through b-hadron decays or e+e− annihilation. JPAC has studied both exclusive [921] and1703

semi-inclusive [922] photo-production of the XYZ states, and made predictions for future measurements at EIC1704

and an energy-upgraded CEBAF.1705

By providing a forum for close collaboration between theory and experiments, JPAC has been successful in1706

effecting integration of theoretical developments into experimental analyses, and in educating a new generation1707

of practitioners in the tools of amplitude analysis.1708

3.1.3 Theory and Phenomenology of Hot QCD1709

Theory of jets in hot QCD matter The discovery of jet quenching at RHIC in the early 2000s [168, 923]1710

and confirmation from the study of fully reconstructed jets at the LHC [211] has spurred much theoretical and1711

experimental research activity in the past decade with the objective of using jets as a multi-dimensional tool to1712

probe the properties of the quark gluon plasma at various length scales (see Sec. 2.1.3).1713

The current picture of parton energy loss is based on a medium induced gluon cascade that efficiently1714

transports energy from fast color charges down to the plasma temperature scale where energy is dissipated1715

[924–928]. A future prospect is to improve on the accuracy of such gluon cascades by systematically computing1716

higher order corrections to medium-induced gluon splitting including full kinematics [929–933]. Another1717

important direction of research is the study of the medium response to the passage of a jet which describes how1718

the distributions of low momentum partons are affected [934–941].1719

Because jets are complex quantum systems, their energy loss in the QGP is sensitive to color decoherence,1720

an emergent QCD phenomenon caused by rapid color precession of entangled color charges [942–945]. It was1721

recently investigated in the leading logarithm approximation of the inclusive jet spectrum [946, 947] and was1722

shown to yield an excess of soft particles inside the jet in a study of the jet fragmentation function [200, 948].1723

Extensive theoretical studies of jet substructure were carried out to diagnose energy loss mechanisms and color1724

decoherence [180, 949–954], and will play a crucial role in the future to fully exploit jet quenching observables1725

to probe the resolution power of the hot QCD media.1726

Higher order corrections to jet observables in heavy ion collisions are paramount for precision tests of1727

jet quenching and will certainly constitute a major focus of future theoretical approaches to jet quenching.1728

As an example, it was recently shown that some corrections are enhanced by a large double logarithm in the1729

medium size [925, 955–959] which, when resummed to all orders, results in an anomalous scaling of transverse1730
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momentum broadening that reflects super diffusive behavior [960, 961]. Higher order corrections to radiative1731

energy loss were also investigated [931, 956, 962–964]. More progress is required, and will rely on help from1732

high performance computational tools, such as Monte Carlo event generators and lattice techniques, in order to1733

achieve precision tests of non-equilibrium QCD dynamics using jet observables.1734

Effective theory approaches in hot and dense QCD There are two main thrusts in using effective theories to1735

compute properties of QCD at nonzero temperature and density. By asymptotic freedom, perturbation theory only1736

allows calculations at very high temperature. Computations at temperatures ∼ 300 MeV requires resummation of1737

hard thermal loops [965–968], very technically challenging. At low temperatures hadronic models can be used.1738

In between these two, in the region of greatest experimental interest, numerical simulations are the only method1739

of first principles computation. However, as discussed in more detail above, these methods are limited by the1740

existence of the sign problem at finite quark chemical potential, especially for µq > T . Thus it is well worth1741

developing effective models which can complement results from the lattice. Effective models can advance further1742

into the T and µq plane, particularly for µq > T , to determine the transport coefficients as a function of T and µq1743

and explore phenomena such as the location of the critical endpoint, moat spectra and color superconductivity.1744

The Functional Renormalization Group [969] has been applied to QCD, including estimates of the critical1745

endpoint, how trajectories flow in the plane of T and µq, etc. Results for the shear viscosity have been obtained1746

at both zero [970–973] and nonzero density [974, 975]. Another approach is to use approximate solutions to1747

the Schwinger-Dyson equations [976]. Dynamical transport [977, 978] and quasiparticle models have been1748

developed to compute transport properties at high [234, 979–987] and intermediate [988] energies. These1749

models, while approximate, have the real virtue of being able to compute at nonzero density with similar1750

efficiency as at zero density. These models have also been used to compute jet transport coefficients [989].1751

While holography obtains results for the most supersymmetric S U(N) theory at large N, it is a useful approach1752

[990–996]. Transport properties have also been obtained in holographic models [975, 997–999]. Lastly, matrix1753

models for the semi-QGP have been developed to describe the equilibrium properties of QCD at both zero1754

[1000–1004] and nonzero chemical potential [1003]. A preliminary attempt to compute the shear viscosity was1755

made years ago [1005, 1006], but needs to be improved by including a complete effective Lagrangian [1004].1756

Further development of these effective theory approaches, along with lattice QCD, will be important for1757

understanding QCD and will be crucial for improving heavy ion phenomenology and the extraction of QGP1758

properties in the coming years.1759

Hydrodynamics and kinetic theory Since LRP15, new developments concerning the emergence of hydrody-1760

namics under extreme conditions have shed light on the regime of applicability of hydrodynamics in heavy-ion1761

collisions. Hydrodynamization, the process of approaching hydrodynamic behavior, was systematically inves-1762

tigated in a variety of systems at strong and weak coupling [50, 1007–1026]. Results demonstrated that the1763

hydrodynamic gradient expansion in rapidly expanding plasmas can become divergent [1027–1030], which natu-1764

rally led to question how one may systematically define hydrodynamics. The prevailing picture is that the onset of1765

hydrodynamics in high-energy heavy-ion collisions may be identified by the presence of a hydrodynamic attractor1766

[1031], which provides a key new element in the extension of hydrodynamics towards the far-from-equilibrium1767

regime [1032–1036]. Furthermore, it was systematically investigated how one may resum not only gradients but1768

also the viscous stresses themselves, through anisotropic hydrodynamics [51, 52, 1037–1039]. New causal and1769

stable first-order theories of (general-)relativistic viscous hydrodynamics have been formulated [1040–1045],1770

which opened up new opportunities to systematically investigate hydrodynamic phenomena without the need to1771

evolve extra variables in addition to the standard hydrodynamic fields, as it occurs in 2nd order formulations1772

[1046].1773

Many more theoretical developments are needed in order to fully determine the applicability of hydrodynam-1774

ics in heavy-ion collisions. A systematic investigation of the nonlinear properties of 2nd order hydrodynamics,1775

going beyond the first results of [1047] by including all the possible 2nd order terms as well as the effects of QCD1776

conserved currents [1048, 1049] and their initial state fluctuations [47, 1050], is urgently needed, especially as1777

one moves towards low beam energies. The question of causality violation in current simulations [1051, 1052]1778
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needs to be addressed to avoid instabilities and to better constrain the properties of the pre-hydrodynamic1779

phase. Much progress on the latter has been achieved in recent years using QCD effective kinetic theory1780

[50, 1020, 1053]. A better description of the hydrodynamization process in this context requires the inclu-1781

sion of fermions [1054, 1055] (allowing for the investigation of chemical equilibration), and the inclusion of1782

non-conformal effects when matching to hydrodynamics [106, 1056, 1057].1783

The possibility of using different definitions of hydrodynamic variables (different hydrodynamic frames)1784

opens up a number of questions in the formulation of hydrodynamics [1045]. Work is needed to systematically1785

formulate 1st and 2nd order stochastic hydrodynamics in general hydrodynamic frames, going beyond existing1786

results [66, 1058–1060], considering also the effects from fluctuations due to a critical point [65, 68] or a first1787

order phase transition.1788

The question of how quantum mechanical effects related to spin degrees of freedom or Quantum Field Theory1789

(QFT) anomalies become manifest in relativistic fluids has generated a lot of activity in the field throughout the1790

last decade [1061, 1062]. Chiral (or anomalous) relativistic hydrodynamics includes quantum effects driven1791

by anomalies that manifest in the hydrodynamic regime [1063] and influence the dynamics of various systems1792

from the QGP to Weyl semimetals [1061, 1064, 1065]. However, very little is known about the properties of1793

the chiral hydrodynamic equations of motion and their solutions, especially in the nonlinear regime probed in1794

hydrodynamic simulations of the QGP. Initial steps were taken in [1066] for ideal hydrodynamics. However,1795

nothing is known about such properties when viscous effects are included in the nonlinear regime. Following1796

the measurement of global Λ polarization by the STAR collaboration [438] (see Sec. 2.1.7), the development1797

of consistent theories of spin hydrodynamics is underway [1067–1075]. There is currently no formulation of1798

viscous spin hydrodynamics that is causal, stable, and well-posed, leaving this as an important task for the next1799

decade.1800

Hadronic transport codes are necessary in their role as afterburners at high energies, and are currently1801

the only means of describing the largely out-of-equilibrium evolution of heavy-ion collisions at low energies,1802

such as those explored in the BES FXT program. By comparing simulations with experimental data, hadronic1803

transport can be used to extract the EOS and in-medium properties of nuclear matter at finite T and large1804

nB [75, 76, 1076–1079], as well as constrain the isospin-dependence of the EOS [79–83, 85–90], important1805

for understanding the structure of neutron stars. Precision extractions require further improvements [1080],1806

including using maximally flexible parametrizations of the density-, momentum-, and isospin-dependence of1807

nucleon interactions [77, 95], incorporation of the in-medium properties of nuclear matter as constrained by1808

chiral effective field theory, description of light cluster production, and threshold effects [1080]. Progress can1809

be made through systematic comparisons between various hadronic transport codes, and the Transport Model1810

Evaluation Project (TMEP) Collaboration has provided several benchmark results and recommendations for1811

improvements [988].1812

3.1.4 Quantum Information Science and QCD1813

A rapidly growing area of research within the U.S. Nuclear Physics (NP) research portfolio is the application1814

of Quantum Information Science (QIS) in NP. In fact, while the topic was not discussed in LRP15, its rapid1815

emergence in various disciplines within NP over the past five years promoted NSAC to form a sub-committee in1816

2019 to report on the opportunities and prospects of QIS in NP. The resulting report [1081] identified simulation1817

and sensing as the two major research directions: first since many grand-challenge problems in NP require1818

advanced, and potentially quantum-based, simulation and sensing techniques and technologies, and second since1819

the expertise of nuclear physicists in these sub-areas could lead to transferring some of the current and future1820

developments in NP to the QIS community. In cold and hot QCD research, in particular, simulation has proven the1821

prime first-principles approach. In fact, lattice QCD methods, combined with state-of-the-art high-performance1822

computing, are expected to continue to push the frontiers of accurate studies of nucleon structure, properties of1823

light nuclei, and low-density QCD matter at finite temperatures [1082–1086]. However, it is conceivable that1824

the range of studies facing a sign problem (or equivalently a signal-to-noise problem) remain infeasible with1825

current techniques. Such studies include finite-density systems aimed at full exploration of the phase diagram of1826
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circuit in Eq. (19), and the third can be implemented with the following circuit relation

ei(↵Ẑ⌦X̂+�X̂⌦Ẑ) =
H • H ei↵Ẑ H • H

ei�Ẑ

. (43)

The results of performing first order Trotter time steps with g = 1 beginning in the electric vacuum are shown in

Fig. 12. Two middle qubits were used to store the state of the system and, when the measurement error mitigation

is implemented through voting, the remaining three qubits were used to inform the post-selection described in Sec-

tion III B 1. As the results show, three Trotter steps are capable of reproducing the first maximum and minimum

in the evolution of the electric energy and calculations on the Athens quantum processor are in agreement with the

exact calculation.
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FIG. 12. The (trivial-) vacuum-to-vacuum persistence probability |h00| Û(t) |00i|2 (left panel) and the energy in the electric
field (right panel) of the two plaquette system in the color parity basis truncated locally at 3 and 3. Evolution is a 1st-order
Trotterization of the Hamiltonian in Eq. (39). Points correspond to quadratic extrapolations of results obtained from IBM’s
Athens quantum processor, with systematic and statistical uncertainties combined in quadrature.

B. Two-Plaquette: {1,3,3,8} Local Truncation

To further explore global wavefunctions and also to demonstrate a further complexity in such calculations, the dis-

cussion in Subsection IV A is here extended to include the 8 in the local link basis. The construction involves

an expanded basis that requires considering non-trivial multiplicities in the products of irreps, in particular in

8 ⌦ 8 = 27 � 10 � 10 � 8 � 8 � 1. Of the 46 states in this local basis, 109 of them satisfy Gauss’s law. Pro-

jecting further to the global color singlet states—the global color charge being a quantum number conserved by the

Hamiltonian—there are 41 distinct physical configurations potentially connected to the strong coupling vacuum.

These physical and global color singlet states combine into states with definite transformation properties under the

discrete symmetries of color parity, translation, and reflection, which is no longer redundant in this larger basis as

3 ⌦ 3 = 8 � 1 leads to configurations that can be odd under reflection. Focusing only on the + + + sector, the 15

independent states are,

| (1338;+++)
1 i = |�(1,1,1,1,1,1)i ,

| (1338;+++)
2a i =

1

2

⇥
|�(3,3,3,1,3,1)i + |�(3,3,3,1,3,1)i + |�(1,3,1,3,3,3)i + |�(1,3,1,3,3,3)i

⇤
,

| (1338;+++)
2b i =

1p
2

⇥
|�(3,1,3,3,1,3)i + |�(3,1,3,3,1,3)i

⇤
,

| (1338;+++)
3 i =

1p
2

[ |�(8,1,1,8,1,1)i + |�(1,1,8,1,1,8)i ] ,

Real-time dynamic of pure SU(3) gauge 
theory with global irrupts on IBM

4

FIG. 1. Structure of the plaquette operator upon integration
of local quantum numbers in (top) a one-dimensional string of
plaquettes [17] and (bottom) two spatial dimensions. The blue
squares indicate the active quantum registers, the green circles
indicate the neighboring controls, and the dashed green circles
indicate the quantum registers upon which the controls depend.

V. IMPLEMENTATION

Delocalizing operators in a quantum simulation protocol
often leads to exponential di�culty in their compilation into
a basic hardware gate set; the extreme example of this be-
ing global bases [18] in which gauge invariant Hilbert spaces
are completely removed and hardware quantum states are
mapped to physical configurations of the lattice volume.
With the proposed local integration strategy, the retained lo-
cal operator structure and qudit framework allows clear orga-
nization of time evolution operators. The electric operators
are diagonal 1- or 2-qudit operators while the magnetic time
evolution circuit may be decomposed according to the non-
zero physical matrix elements of the plaquette operator. As
shown at the bottom right of Fig. 1, the plaquette operator

can be first expanded in a product of control sectors, ~C. The
operators in each control sector trivially commute, leading
this product to be gauge invariant through Trotterized time
evolution. Operators in each control sector may be decom-
posed into Givens rotations such that each unitary operator
is associated with a physical plaquette transition and the co-
e�cients determined from gauge invariant matrix elements.
This compilation in terms of Givens rotations, while gauge
invariant, introduces a source of systematic error upon Trot-
terization. Ref. [18] discusses in detail the scaling of the num-
ber of physical matrix elements in the plaquette operator to
quantify the Givens circuit depth required with this compi-
lation approach. While technically e�cient—with a number
of Givens rotations per plaquette operator scaling polynomi-
ally with the field truncation as O

�
⇤16

�
—the high degree

of the polynomial scaling presents continued challenge, even
for low energy wavefunctions that are expected to converge
exponentially in field space. However, experience with the
impact of hardware and algorithmic co-design on anticipated
quantum resources for quantum chemistry applications [25]
suggests ample opportunity for analogous refinements in the
quantum simulation of field theories.

The gauge invariance of the designed qudit time evolu-
tion operator, which survives Trotterization, and the pres-

ence of residual unphysical Hilbert space provides a built-in
mechanism for detecting local errors. In particular, whether
applying a non-destructive measurement of the Gauss’s law
operators [26] or projectively measuring the final quantum
state (e.g., as performed in Ref. [17]), post-selection into the
gauge-invariant subspace provides reliable criteria for sup-
pressing incoherent, vertex-density bit flip errors to O(p2).
Though the presence of physical states at distance-2 upon
local bit flips leads to incomplete availability of correction
with current methods, the structure of the retained gauge
symmetry allows passive detection of this category of error.
In light of the natural ability of gauge theories to protect
distributed quantum degrees of freedom from local sources
of quantum noise [27–29], further work incorporating natural
error robustness is at the frontier of gauge theory quantum
simulation.

In terms of plaquette operator localization, this hybrid
multiplet basis may be contextualized in the literature as
intermediate between the structure of Ref. [20] and that of
the Schwinger bosons underlying prepotentials and the loop-
string-hadron (LSH) formulation [30, 31]. While the for-
mer places all gauge field information at the link, the latter
captures the field through gauge-invariant operators local to
each vertex. With the integrated multiplet basis, the pro-
jection quantum numbers are localized to each vertex while
the irrep quantum number remains at the link. The subse-
quent local integration of the projection quantum numbers
produces a nearest-neighbor delocalization of the same spa-
tial extent as the plaquette operator in the LSH formulation.

VI. CLOSING REMARKS

With the quantum simulation of non-Abelian gauge the-
ories relevant to Standard Model physics in its infancy,
understanding and building upon an array of small, low-
dimensional LGTs is an essential part of present-day devel-
opment, with implications beyond quantum field theories. In
the context of generating the entanglement necessary to sat-
isfy local gauge constraints, we have discussed aspects of hy-
brid operator design for a digital quantum simulation of the
Kogut-Susskind formulation that trades-o↵ a reduced Hilbert
space for neighbor-controlled evolution operators and asso-
ciated classical computation.
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Figure 31: The left side depicts the structure of the plaquette operator in the pure SU(3) lattice gauge theory upon
integration of local quantum numbers for a one-dimensional string of plaquettes (top) and for a two-dimensional
sheet of plaquettes (bottom). The blue squares indicate the active quantum registers while the green circles
denote the neighboring controls. The right side shows a real-time simulation of the dynamics of the vacuum in
terms of fluctuations in the electric energy of a two-plaquette system in the (truncated) global color parity basis,
implemented on the IBM Athens quantum processor. The figure is adopted from Refs. [1087, 1088].

QCD, and of real-time dynamics of QCD processes such as those prevalent in heavy-ion collisions and in early1827

universe, which are essential to understand equilibration, thermalization, hydrodynamization, fragmentation,1828

and hadronization in QCD. Additionally, non-equal-time QCD correlation functions generally are not directly1829

accessible, making it challenging to compute hadron and nuclear structure functions, dynamical response1830

functions, transport coefficients, and more.1831

Quantum simulation is fundamentally different from classical simulation in that a vast Hilbert space of a1832

quantum many-body system can be encoded exponentially more compactly into quantum units. These quantum1833

units could be two-dimensional spins, or qubit, or higher-dimensional spins called qudits, or even bosons and1834

fermions as in nature. Furthermore, the computations can be parallelized exponentially more efficiently using1835

the principles of superposition and entanglement in quantum mechanics. The time evolution can be efficiently1836

implemented but states need to be initiated and finally measured to access observables, for which many strategies1837

are being developed [1089–1094]. In the QCD community, the progress has been significant, and while the earlier1838

ground-breaking simulations focused on demonstrating access to non-perturbative real-time phenomena, such1839

as pair production and vacuum fluctuations, in simple models such as the 1+1 dimensional QED [1095–1101],1840

a plethora of works in recent years have provided algorithms and strategies for simulating both Abelian and1841

non-Abelian lattice gauge theories in higher dimensions, including three-dimensional SU(3) lattice gauge theory,1842

see e.g., Refs. [1087, 1102, 1103]. This research has shaped into interconnected theoretical, algorithmic, and1843

hardware implementation and co-design directions: it aims to find the most efficient Hamiltonian formulations1844

of gauge theories of interest in the Standard Model on and off the lattice [1104], match them to the near- and1845

far-term algorithms that scale increasingly more efficiently with system size [1087, 1102, 1103, 1105, 1106], and1846

perform small instances of those on current quantum-simulation hardware, in digital or analog modes, to show the1847

potential. See Refs. [1107–1122] for select examples on recent progress on a range of QCD-inspired problems.1848

This had led to the formation of successful co-design efforts among QCD physicists and hardware developers,1849

which may be a critical component of a quantum-simulation program for QCD over the next decade [1104, 1123].1850

The current resource estimates for solving QCD in regimes of interest to phenomenology are far beyond the1851

capabilities of the current quantum hardware. Nonetheless, with the rapid progress in quantum technologies, and1852

the ongoing race toward fault-tolerant quantum computing in academia, industry, and government sectors, it is1853

important for QCD researchers to be ready to take advantage of the new technology, as it is being developed and1854

into the future.1855
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3.1.5 Topical Collaborations1856

As emphasized in the last LRP, many aspects of theoretical nuclear physics can benefit from additional1857

long-term, sustained efforts beyond the base program that bring together the resources of several institutions in a1858

coordinated way to address a well-defined problem or topical area with a clear set of deliverables. When DOE1859

established the first topical collaboration in 2010, the “Jet" Collaboration was selected in the QCD area. In the1860

second round, two topical collaborations from QCD area were selected: “TMD" and “BEST". In a recent round1861

announced in December 2022, the QCD community received 4 out of 5 awards. Meanwhile, NSF has funded1862

two collaborations: JETSCAPE and MUSES. All these collaborations have been very successful.1863

Previous: TMD Collaboration This collaboration consisted of 3 national laboratories and 11 universities. It1864

addresses the challenge of extracting novel quantitative information about the internal landscape of the nucleon,1865

in particular the three-dimensional (3D) confined partonic motion inside the nucleon, which are encoded in the1866

TMDs. The goal is to develop new theoretical and phenomenological tools that are urgently needed for precision1867

extraction of the 3D tomography of the confined motion of partons inside the nucleon from current and future1868

data.1869

Bridge position highlight Prof. Martha Constantinou was hired by Temple University as a bridge position1870

with the TMD Collaboration in 2016. Since then, she has received the DOE early career award and the Sloan1871

foundation research award. The bridge position has enabled her to come to the US from Cyprus. She now leads1872

the Quark-Gluon Tomography (QGT) collaboration, funded by DOE in 2023. Hers is a true success story from1873

the DOE topical collaboration program.1874

Previous: BEST Collaboration The BEST Collaboration, involving collaborators from two national laboratories1875

and 11 universities, developed a theoretical framework for interpreting the results from the BES program at1876

RHIC. The main goals of this program were to discover, or put constraints on the existence, of a critical point in1877

the QCD phase diagram, and to locate the onset of chiral symmetry restoration by observing correlations related1878

to anomalous hydrodynamic effects in the quark gluon plasma.1879

Bridge position highlight Prof. Chun Shen was hired by Wayne State University in 2018. He received IUPAP1880

Young Scientist Prize in Nuclear Physics in 2019 and a DOE Early Career Award in 2021. Prof. Vladimir Skokov1881

was hired by North Carolina State University in 2018.1882

JETSCAPE Collaboration Interpretation of jet measurements requires sophisticated numerical modeling and1883

simulation, and advanced statistical tools for comparison of theory calculations with experimental data. The1884

JETSCAPE/XScape Collaboration was formed to develop a comprehensive software framework that will provide1885

a systematic, rigorous approach to meet this challenge. It will develop a scalable and portable open source1886

software package to replace a variety of existing codes. The collaboration consists of a multi-disciplinary team1887

of physicists, computer scientists and statisticians from 13 institutions, and will create open-source statistical1888

and computational software to help scientists better understand high energy nuclear collisions.1889

MUSES Collaboration This collaboration addresses questions that bridge nuclear physics, heavy-ion physics,1890

and gravitational phenomena such as: What type of matter exists within the core of a neutron star? What1891

temperatures and densities are reached when two neutron stars collide? What can nuclear experiments with1892

heavy-ion collisions teach us about the strongest force in nature and how can we relate heavy-ion collisions to1893

neutron stars? The collaboration spans 16+ institutions, hosts annual workshops and biweekly seminars, and1894

supports a number of undergraduates, graduate students, and postdocs.1895

QGT Collaboration The QGT Collaboration brings together a team with broad expertise and leadership across1896

hadron physics theory to drive understanding and discovery in the quark and gluon tomography of hadrons1897

and the origin of their mass and spin. This proposal will provide partial support for 11 postdocs, 6 graduate1898

students, and bridge positions in theoretical hadron physics at three institutions: Stony Brook University, Temple1899

University, and University of Washington.1900
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SURGE Collaboration The Saturated Glue (SURGE) Topical Theory Collaboration aims at the discovery and1901

exploration of the gluon saturation regime in QCD by advancing high precision calculations and developing a1902

comprehensive framework to compare to a wide range of experimental data from hadron/ion colliders and make1903

predictions for the EIC. It will provide partial funding for 5 postdocs, 7 graduate students, and 1 undergraduate1904

student at 13 institutions, and will establish a bridge position at the University of Illinois at Urbana Champaign.1905

HEFTY Collaboration . This collaboration combines the capabilities of leading US researchers to develop1906

a rigorous, comprehensive theoretical framework of heavy flavor particles in QCD matter, from their initial1907

production, their subsequent diffusion through the QGP and hadronization that can be embedded into realistic1908

numerical simulations and compared to data. It will provide partial funding for 3 postdocs and 6 graduate1909

students at 7 institutions and establish a bridge position at Kent State University.1910

ExoHad Collaboration. The Coordinated Theoretical Approach for Exotic Hadron Spectroscopy (ExoHad)1911

Collaboration aims to develop a pathway to study some of the more elusive states formed of quarks and gluons1912

using the the foundational principles of scattering theory and quantum chromodynamics. The funds will support1913

3 graduate students, 3 postdocs, and two bridge faculty positions at William & Mary and Indiana University.1914

3.2 Future opportunities in Hot QCD1915

Hot QCD research is addressing questions of fundamental importance that can be summarized in the1916

following main goals:1917

• Determine the phase structure of nuclear matter The phase diagram needs to be pinned down as a1918

function of temperature and net-conserved charges, including the determination of a possible QCD critical1919

point, which requires the experimental measurement and theoretical study of collisions with varying1920

collision energy. We need to understand the deconfinement transition and chiral symmetry restoration,1921

and determine the nuclear equation of state for which heavy ion collisions and neutron stars can provide1922

complementary input.1923

• Understand the mechanisms that lead to the emergence of the fluid behavior of hot and dense nuclear1924

matter This requires studying the QGP at short distance scales using hard probes, including jets, heavy1925

flavor hadrons, and quarkonia. Further insight can be gained by pushing the boundaries to e.g. small1926

collision systems and better constraining the initial state from theory and complementary experiments.1927

Electromagnetic probes carry further information on the time evolution of the system.1928

• Quantify the dynamic properties of the quark gluon plasma Transport properties of the QGP, including1929

its shear and bulk viscosity, as well as its interaction with heavy and high momentum probes, need to be1930

determined as functions of temperature and densities of conserved charges, and understood within QCD or1931

effective theories thereof. Further, probing the vortical structure of the fluid flow fields can access spin1932

related transport properties.1933

• Utilize the broad physics reach of heavy ion collisions Heavy ion collisions provide an incredible amount1934

of information, which, when carefully isolated, allows for physics studies far beyond the QGP and even1935

QCD. Ultra-peripheral collisions can be employed to study photo-nuclear events probing very low x, as1936

well as quantum electrodynamic phenomena with some processes sensitive to beyond the standard model1937

physics. Heavy ion collisions also offer a unique opportunity to study quantum anomalies via the chiral1938

magnetic effect. Furthermore, certain observables are highly sensitive to the detailed nuclear structure of1939

the colliding nuclei, and far forward data from heavy ion collisions can provide important information for1940

cosmic ray physics.1941
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3.2.1 Properties of the Quark Gluon Plasma1942

In the coming years, phenomenological studies of hot many-body QCD systems will focus on obtaining1943

robust constraints on thermodynamic and transport properties of the QGP, exploring the QCD phase structure at1944

large baryon densities, and emerging collectivity in small systems.1945

Transport properties from Bayesian inference and multi-observable studies One major goal of studies of1946

the QGP at RHIC and LHC is the determination of transport properties, such as the shear and bulk viscosity1947

to entropy density ratios, η/s and ζ/s, as well as relaxation times, electric and heat conductivities, the partonic1948

momentum diffusion coefficient q̂, and transport coefficients for single heavy quarks and heavy quark-antiquark1949

pairs. The hot QCD community has moved toward determining the temperature dependence of these quantities,1950

as well as their behavior at varying chemical potentials. Observables in heavy ion collisions exhibit varying and1951

complex responses to these QGP properties. Consequently, systematic and robust phenomenological constraints1952

are best derived from combining multiple measurements via the Bayesian Inference method. Bayesian Inference1953

analyses for the RHIC BES program and including high-statistics observables pose serious numerical challenges1954

to the field. Although using model emulators can effectively reduce the required computational resources,1955

novel techniques are essential to further reduce the required volume of training datasets while keeping good1956

accuracy of the model emulators. To achieve more effective model training, techniques like transfer learning and1957

multi-fidelity training [1124–1126] should be employed in full (3+1)D hybrid frameworks. In order to efficiently1958

compute high-statistics observables, additional speed boosts from employing other machine learning tools such1959

as deep neural networks, are needed. The Bayesian model averaging method is crucial for combining different1960

models with their relative statistical weights to systematically fold in theoretical uncertainties. Sophisticated1961

Bayesian Model Mixing techniques are presently being developed by the BAND Collaboration [1127].1962

A concerted effort will be needed to develop documented and accessible Bayesian inference software1963

frameworks [1127]. Of equal importance will be accessibility to supercomputing infrastructure to perform1964

the large-scale calculations required for Bayesian studies. Incorporating more hadronic observables into1965

the Bayesian analyses should provide stronger constraints than are currently available. Some work in this1966

direction has been done by including normalized symmetric cumulants into a Bayesian analysis and it was1967

shown that these quantitites are more sensitive to the temperature dependence of the transport coefficients than1968

vn [1128]. Additionally, the transport properties are particularly poorly constrained in the higher temperature1969

range accessible only at the LHC (see Fig. 4). This could be improved upon for example by measuring the vn of1970

dileptons [138]. Generally, better constraints on the viscosities could be obtained by using as many observables1971

as possible - combining the low-momentum hadronic observables used in current analyses with electromagnetic1972

probes, as well as jets and heavy flavor probes.1973

To maximize information gain on initial state and QGP properties, one should explore new multi-particle1974

correlation observables and their precise experimental measurement. This includes correlations of flow harmonics1975

with mean transverse momentum fluctuations, and higher order versions of those, normalized symmetric1976

cumulants, mixed harmonic cumulants from 4, 6, 8 or more particle correlations, higher order transverse1977

momentum fluctuations, and non-linear flow mode coefficients. Studying these observables, and analyses of1978

varying collision systems will aid in separating initial state properties from QGP properties and with the extraction1979

of information using Bayesian analyses [107, 108]. Including Hanbury-Brown-Twiss (HBT) observables [36–40]1980

could provide additional constraints as they are more directly sensitive to the spatial size of the emission source.1981

Measurements of identified particles, in particular the study of strangeness, can elucidate the mechanism of1982

particle production and further constrain the properties of matter created and provide information on the effect of1983

the hadronic phase in collisions of various size and at varying collision energies.1984

Detector upgrades New opportunities to constrain QGP properties in future experimental programs are enabled1985

by not only significantly higher integrated luminosities, but also by detector upgrades. Figure 32 (left) shows1986

the projected performance of PID v2 measurements by ALICE for 10–20% centrality Pb+Pb collisions at the1987

high-luminosity LHC (HL-LHC) with an integrated luminosity of 13 nb−1 [1129, 1130]. A large variety of1988

baryon and meson v2 (and also higher order vn) including hadrons containing multiple strange quarks will be1989
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measured over a wide kinematic range with unprecedented precision, which will impose strong constraints on1990

QGP properties starting from the initial condition, hydrodynamic evolution, to the final hadronization stage.1991

With the Phase-2 upgrades of the CMS and ATLAS experiments, long-range particle correlations and collective1992

behavior of the QGP will be explored over 8 units of pseudorapidity η, as shown Fig. 32 (right) for CMS [1131].1993

Moreover, the wide acceptance time-of-flight detector upgrade planned at CMS will bring unique opportunities1994

to study the QGP medium with identified hadron production and correlations over unprecedented phase space1995

coverage [1131–1133]. LHCb upgrades will increase the centrality range accessible at far forward rapidity and1996

allow new measurements of identified particle and heavy quark collectivity in a unique region of phase space.1997

Equation of state It has been proposed that key thermodynamic properties of the QGP can be extracted by the1998

multiplicity dependence of mean pT in ultra-central heavy ion collisions to directly constrain the speed of sound1999

in QGP, and thus the QCD equation of state at high temperatures [107, 1135]. The beam-energy dependence of2000

the slope of the directed flow and the elliptic flow have likewise been shown to be highly sensitive to the EOS2001

[75, 76, 1076–1079, 1136–1142]. Extraction of speed of sound via baryon number cumulants has also been2002

proposed in collisions at low energies which probe high baryon densities [1143]. These measurements can be2003

explored at both RHIC and the LHC over a wide energy range to obtain key information on the QCD phase2004

diagram. Connections between the grand-canonical susceptibilities of (multiple) QCD conserved charges with2005

the corresponding measurements of (cross-)cumulants in heavy-ion collisions derived in Refs. [1144, 1145] can2006

be utilized to obtain further information about the EOS.2007

Heavy-ion collisions with
√

sNN ∼ 10 GeV from the current RHIC BES program and future experiments2008

including CBM at the Facility for Antiproton and Ion Research (FAIR) offer a unique opportunity to quantify the2009

QCD phase structure at large baryon densities [1146]. Our phenomenological tools need substantial developments2010

to explore this region of the phase diagram, which is currently inaccessible to first-principles lattice calculations.2011

As the two incoming nuclei pass through each other, it is crucial to model their interactions dynamically to obtain2012

non-trivial event-by-event distributions of energy density, baryon and electric charge densities for the following2013

macroscopic hydrodynamic evolution. Colliding heavy ions with different electric charge to baryon ratios,2014

like isobar pairs, is important to explore the full 4D nature of the QCD phase diagram in (T, µB, µS , µq) [59].2015

Developments of the parametrized 4D equation of state and the propagation of multiple conserved charge currents2016

and their diffusion in relativistic hydrodynamic frameworks are essential to model the macroscopic evolution2017

of these collision systems and determine how this flavor information leaves its imprint on identified particle2018
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production. Constraining the 4D QCD phase diagram in (T, µB, µS , µq) will also make connections with nuclear2019

astrophysics, which focuses on studying the nuclear matter properties in a dense and neutron-rich environment2020

(see sec. 5.2) [1147]. In heavy-ion collisions, the out-of-equilibrium propagation of multi-point correlations is2021

crucial to trace the signatures of the QCD critical point and first-order phase transitions. Implementation of2022

dynamical descriptions of the relevant multi-particle correlations in frameworks like hydrodynamics will be an2023

important step in the search for the QCD critical point [60]. Another crucial requirement is that descriptions of2024

particlization that retain information on fluctuations and correlations [73], are advanced to a level where they can2025

be employed in large scale phenomenological simulations.2026

Studies utilizing hadronic transport simulations have also been remarkably successful in understanding the2027

dynamics of heavy-ion collisions at low energies from
√

sNN ≈ 1.9 to
√

sNN ≈ 8.0 GeV [1080]. In particular,2028

hadronic transport with mean-field potentials naturally describes the initial state of the collision as well as the2029

interaction between the expanding collision region and the spectators, necessary for understanding the origin of2030

the flow observables including, e.g., the rapidity dependence of the directed flow or the origin of “squeeze-out”2031

in the elliptic flow at low energies. Currently there are still significant differences between symmetric nuclear2032

matter EOSs extracted from different theoretical fits to heavy-ion collision data [75–78, 1148]. Some of these2033

differences can be assigned to differences in modeling framework. Systematic comparisons between different2034

hadronic transport codes, such as those done within the Transport Model Evaluation Project Collaboration [988],2035

can provide a common baseline for code development and lead to code and modeling improvements. Making2036

precise quantitative statements about the properties of dense nuclear matter, including the density-, isospin-, and2037

momentum-dependence of the single-nucleon mean-field potential, will require developing maximally flexible2038

parametrizations of nucleon interactions over large ranges of density and temperature probed in heavy-ion2039

collisions. With advances in modeling, the extracted information will achieve unprecedented precision given the2040

forthcoming data, see Sec. 3.2.6.2041

Further directions for constraining QGP properties Electromagnetic probes provide complementary infor-2042

mation about the medium properties relative to the hadronic observables, as they provide increased sensitivity2043

to the early stages of the collision. More discussion on the prospects for electromagnetic probes can be found2044

in Sec. 3.2.2. Polarized Λ hyperons can probe the vortical structure of the fluid flow fields in heavy-ion colli-2045

sions. The extension and phenomenological applications of recently developed spin-hydrodynamic theories are2046

important to probe the spin related transport properties of the QGP, see Sec. 3.2.7.2047

3.2.2 Hot QCD Studies with Electromagnetic Probes2048

The production of soft photons and dileptons in the little understood early stages of heavy-ion collisions,2049

namely their “pre-equilibrium emission” [123, 142, 156, 1149–1160], represents one of the most important areas2050

of study for electromagnetic probes. Photons and dileptons can provide critical information on the dynamical2051

properties of the early stages, including chemical equilibration. Photons and dileptons will also play a vital role2052

in studying the formation of quark-gluon plasma in collisions of smaller systems, such as proton-gold collisions.2053

Calculations predict a measurable thermal photon signal in collisions of small systems [123, 357, 1161], and2054

pre-equilibrium photons would likely add to this signal.2055

Dilepton measurements have already proven valuable in studying lower energy collisions of nuclei [1162–2056

1164], providing estimates of the medium temperature [1165, 1166]. The analysis of high statistics measure-2057

ments by the STAR BES II program [224] will provide important new low- and intermediate-mass dilepton2058

measurements that can be used to study the phase diagram of QCD at lower temperatures and higher baryon densi-2059

ties [1167], as well as chiral symmetry restoration. The future experiments NA60+ [1168] and CBM [1146, 1169]2060

will provide high-precision measurements with new detector capabilities. ALICE will measure thermal dilep-2061

tons in Runs 3 and 4, which can give access to the system’s average temperature. The future experiment2062

ALICE3 [1170] will measure low- and intermediate-mass dileptons at higher energies with unprecedented2063

precision to address chiral symmetry restoration through ρ − a1 mixing and to improve the measurement of2064

the plasma temperature (and its time evolution). The novel detector capabilities will also enable differential vn2065

measurements in various mass ranges, which will provide stringent constraints on medium properties such as2066
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shear and bulk viscosity and pre-equilibrium dynamics. The ALICE 3 experiment also aims to study ultrasoft2067

photon emission and the corresponding predictions from Low’s theorem [1171].2068

Ultimately, the simultaneous systematic study of soft photons and dileptons, along with soft hadrons and2069

other observables, will provide unparalleled constraints on the properties of deconfined nuclear matter.2070

3.2.3 QGP Tomography with Hard Probes2071

The 2015 LRP cited the importance of measurements of jets at both RHIC and the LHC in order to understand2072

the temperature dependence of QGP properties. In the following, new opportunities with jet and heavy flavor2073

probes are discussed.2074

Jets Some major open questions in jet physics are listed below. These questions are not independent of2075

each other. Due to the connection between the jet observables and the QGP itself, theoretical models which2076

incorporate information about the soft physics of the QGP, the jet-QGP interactions and the hadronization process2077

are necessary to compare experimental measurements to theory. Much recent work in this direction has been2078

done but more is needed to increase the variety of measurements and theory compared. Further advances in jet2079

substructure measurements will provide further constraints. Additionally, the upcoming high-luminosity data2080

from sPHENIX and STAR is necessary to constrain how the jet-QGP interactions depend on the temperature of2081

the QGP.2082

• How does the QGP resolve the color configuration of the parton shower? The parton shower develops2083

from the original hard-scattered parton to the final observed hadrons in the jet. The structure of the shower2084

varies jet-by-jet with the average properties dependent on the energy, color-charge and mass of the parton.2085

This developing shower interacts with the QGP. The question of how the QGP resolves the parton shower2086

is key to understanding how jets are quenched. Measurements which vary the average jet properties2087

(e.g. photon-tagged jets to enhance the fraction of quark-jets relative to an inclusive jet sample) and2088

measurements which select jet-by-jet on the jet substructure are key to answering this question.2089

– How does the QGP resolve the structure of the parton shower?2090

As discussed previously 2.1.3, jet quenching has been shown to depend on the structure of the jet itself.2091

It is key to understand this quantitatively in terms of whether there is a coherence length in the QGP,2092

below which two separate color charges can not be resolved within the QGP [944]. In order to answer this2093

question measurements of jet quenching as a function of jet substructure and theoretical models that depend2094

on the coherence length are needed at both RHIC and the LHC over a wide kinematic range. Applying2095

ML to design new jet observables directly from the data will be helpful in this study as well [1172].2096

• What is the temperature dependence to the QGP opacity? Measurements at sPHENIX, along with2097

improved theoretical models, will provide key constraints on the opacity.2098

• Is there emergent intermediate scale structure in the QGP? Measurements of modifications to the2099

back-to-back jet (hadron) distributions and/or modification of the distance between subjets inside a jet will2100

provide crucial information on this.2101

• How does jet quenching depend on the spacetime evolution of the QGP it travels through? Is2102

there a minimum time/length of QGP that the jet must interact with to experience jet quenching?2103

Current measurements of the v2 and v3 of jet/high-pT hadrons show that jet quenching is sensitive to the2104

average path length of a class of jets through the QGP. However, a non-zero value of v2 is also observed2105

for high-pT hadrons in p+Pb collisions [378]. Is this v2 due to some other source? The most direct2106

way to test this is through measurements of jet quenching in small symmetric collision systems such2107

as O+O [1173] where the system size is near that of central p+A collisions, but the geometry is more2108

similar to Pb+Pb collisions. Measurements here might suggest that there is a minimum time/length scale2109

needed for appreciable quenching to occur. Additionally, since quenching depends on the structure of the2110
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Jet and Photon Physics Physics Projections 2023–2025
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Figure 4.1: Projected total yields (left) and RAA (right) for jets, photons, and charged hadrons in 0–10%
Au+Au events and p+p events, for the first three years of sPHENIX data-taking.

Signal Au+Au 0–10% Counts p+p Counts

Jets pT > 20 GeV 22 000 000 11 000 000

Jets pT > 40 GeV 65 000 31 000

Direct Photons pT > 20 GeV 47 000 5 800

Direct Photons pT > 30 GeV 2 400 290

Charged Hadrons pT > 25 GeV 4 300 4 100

Table 4.1: Projected counts for jet, direct photon, and charged hadron events above the indicated
threshold pT from the sPHENIX proposed 2023–2025 data taking. These estimates correspond to the
28 cryo-week scenarios.

photons.

As another way of indicating the kinematic reach of these probes, the nuclear modification factor
RAA for each is shown in Figure 4.1 (right). There are varying theoretical predictions concerning
the behavior of the RAA at higher pT which will be definitively resolved with sPHENIX data.

The projection plots above indicate the total kinematic reach for certain measurements, such as
those which explore the kinematic dependence of energy loss. For other measurements, it is useful
to have a large sample of physics objects to study the properties of their intra-event correlations,
for example for jets (their internal structure), photons (for photon+jet correlations), and hadrons
(for hadron-triggered semi-inclusive jet measurements). We illustrate the total yields in sPHENIX
above some example pT thresholds in Table 4.1. We highlight that, in many cases, it is the p+p
baseline rather than the Au+Au data will be the dominant contributor to the statistical uncertainties
in many of the unique, flagship sPHENIX measurements.

Several specific examples of sPHENIX projections for jet correlations and jet properties follow

22

Figure 33: Left: Counts of jets, hadrons and direct photons projected from sPHENIX operation in p+p and
0–10% central Au+Au collisions. Right: The nuclear modification factor RAA as a function of pT for 0–10%
central Au+Au collisions expected from sPHENIX operation. The error bars show the statistical uncertainties
only. Both plots are from Ref. [1176].

developing parton shower, the path-lenth dependence of jet quenching could depend on the structure of the2111

parton shower. Identifying such a dependence requires a huge sample of jets to isolate both the geometry2112

of the jet trajectory and the structure of the jet. Jets at RHIC and the LHC also evolve starting at very2113

different virtuality scales that influence how they interact with the QGP. This is a key question for both2114

RHIC and the LHC over the next several years.2115

• What are the non-equilibrium processes governing the energy flow from the jet to the QGP over2116

three orders of magnitude? How does the energy lost by the jet become part of the QGP itself? Are2117

there turbulent processes? How does the medium respond to the the energy deposition from the jet?2118

How does this process affect the formation of the observed final state hadrons? Is there an observable2119

vorticity around the jet [1174]. Experimentally isolating the response of the medium from the quenched2120

jet itself is experimentally challenging. Recently, it has been proposed that the particle species mix, the2121

hadrochemistry, might be a key signature of the medium response [1175]. Jet fragmentation dominantly2122

produces mesons over baryons. However, the enhanced baryon-meson ratio that is characteristic of2123

coalescence in the soft-sector of the QGP, could be also seen in medium response.2124

Due to the need to measure both the jet structure and geometry dependence of jet quenching, huge samples2125

of jets are needed at both RHIC and the LHC to answer the science questions outlined above. sPHENIX is2126

specifically optimized to measure jets and will provide unbiased samples of jets over nearly the entire allowed2127

kinematic range at RHIC, as shown in Fig. 33. Crucially, this will allow measurement of jets at the same pT2128

at both RHIC and the LHC. STAR and ALICE can also contribute to such comparisons, for example with2129

semi-inclusive gamma+jet and h+jet measurements. Additionally, along with direct photon data from STAR,2130

sPHENIX will provide a sample of direct photon data sufficient to tag photon-jet pairs for photons with more2131

than pT > 30 GeV. At the LHC, the large luminosity Pb+Pb sample planned for Runs 3 and 4 will provide much2132

more differential jet measurements than are currently available [1132, 1134].2133

There is also interest in running smaller collision systems at both the LHC and RHIC. The LHC is currently2134

planning on a short O+O run in 2024. Those data will be important for understanding the lack of evidence for2135

jet quenching in p+A collisions. RHIC has run O+O collisions for STAR (though the results are not yet publicly2136

available). The sPHENIX Collaboration would like to take data with both O+O and Ar+Ar collisions if the2137

opportunity to run beyond the nominal sPHENIX run plan arises [1176].2138

Heavy flavor Progress in understanding heavy flavor hadronization requires: an improved space-time picture of2139
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Fig. 20: ALICE measurement performance for the ⇤c/D0 (left) and ⇤b/B+ ratios in central Pb–Pb
collisions (Lint = 10 nb�1), based on studies from [263]. Figures from Ref. [1].

ments cannot be extended to the very-low-momentum region, where the separation of the heavy-flavour
secondary vertex from the primary vertex is small. This limitation motivates studies for a further im-
provement of the ALICE inner tracker during LS3 [302]. A more precise measurement would open the
possibility to test in the charm sector some features at present only observed for the v2 of light-flavour
hadrons: the mass scaling at low pT and the baryon–meson grouping at high pT.

5.4.3 Impact of hadronisation models on QGP characterisation
The hadronisation mechanism of heavy quarks is important for the description of the measured heavy-
flavour RAA and v2 at RHIC and LHC energies. In particular, it has been recognized that recombination
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Figure 34: Projection for LHC Run 3 and 4 for Λb/B+ (right) as a function of transverse momentum from
ALICE. Fig. is from Ref. [1134].

coalescence and better constraints on the Wigner functions [1177]; a more precise determination of the heavy2140

quark and gluon fragmentation functions [1178, 1179]; and understanding of meson production, absorption and/or2141

dissociation in matter. Here we discuss how the interplay of theoretical developments and new experimental2142

measurements at RHIC and LHC can advance our understanding of heavy flavor. Higher statistics RAA, v2, and2143

v3 data will significantly reduce the uncertainties on the heavy quark transport coefficients and provide better2144

insights into the initial production, hadronization and evolution of heavy flavor hadrons. New data expected in2145

LHC Runs 3 and 4 should provide much more precise constraints than currently available [1134, 1180, 1181].2146

Figure 34 shows the projections from ALICE forΛb/B+, which has not yet been measured in heavy-ion collisions.2147

sPHENIX also expects to make very precise measurements of the Λc/D0 in Au+Au collisions [1176]. In the2148

further future, ALICE3 [1170], the LHCb Upgrade II [1182] and the CMS timing detector upgrade [1183] would2149

provide even further improved precision for these observables.2150

Detector upgrades, together with improved luminosities at both RHIC and LHC, will enable measurements2151

of unprecedented precision of various heavy flavor observables. One targeted measurement is precision RAA and2152

v2 for open bottom hadrons (or their decay daughters) and jets over a broad pT region. At high pT , combining2153

charm, bottom and light flavor data would allow a systematic investigation of the relative contributions of2154

collisional and radiative energy loss and the transition between them. At low pT , the open bottom v2 (together2155

with charm v2) will address the temperature dependence of the heavy-flavor diffusion coefficient in QCD matter2156

at higher precision. Concurrently, the hadro-chemistry of heavy-flavor hadrons, including charm and bottom2157

baryons, will provide a deeper understanding of the coalescence mechanism and may provide insight into color2158

confinement.2159

Resummation of in-medium branching processes is necessary to improve predictions of heavy quark tagged2160

jets and their substructure for sPHENIX. Machine learning techniques [952] can be implemented to analyze2161

high-pT heavy flavor data from A + A collisions. The transition from the diffusive elastic to radiative energy loss2162

regimes can be studied theoretically by combining lattice QCD-constrained interactions with effective theories of2163

gluon emission. Comparison of heavy flavor observables can identify the relevant momentum scales. Finally, the2164

commonalities between heavy flavor production in A + A and e + A collisions [1184, 1185] should be explored.2165

Quarkonia The sPHENIX experiment is optimized to measure the nuclear modification of separated Upsilon2166
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states to high precision in Au+Au collisions. The design mass resolution of sPHENIX at 10 GeV/c2 is 1002167

MeV/c2, sufficient to resolve the three states, and Fig. 35 shows the estimated sPHENIX performance for the Υ2168

measurement over the full three year program [1176]. The Υ(3S) was recently observed in Pb+Pb collisions for2169

the first time by CMS [1186] at the LHC. In these sPHENIX projections, the modification of the Υ(3S) state was2170

assumed to be the same as that observed by CMS; it will be interesting to see what the behavior of the Υ(3S) is at2171

RHIC. Also shown is the STAR Υ(2S) measurement [290]. The sPHENIX Υ measurements, combined with the2172

LHC data, are expected to provide much stronger constraints on bottomonium suppression models in heavy ion2173

collisions. Furthermore, the sPHENIX measurements will provide a unique opportunity to probe the frequency2174

dependence of the chromoelectric field correlator describing quarkonium in-medium dynamics [837, 1187].2175
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Exotic hadrons Several key detector upgrades are also currently underway that will directly improve mea-2176

surements of exotic hadrons in heavy ion collisions. The entire LHCb tracking system has been replaced with2177

detectors of higher granularity, which will enable measurements in Pb+Pb collisions up to ∼ 30% centrality2178

[1180]. An upgrade to the fixed target system at LHCb will enable high-statistics p+A data sets to be collected at2179

lower center of mass energies where coalescence effects are expected to be small [1188]. The CMS experiment is2180

pursuing the addition of particle ID detectors which will greatly aid in rejecting combinatorial background when2181

reconstructing hadronic decays of exotic hadrons, allowing access to states at lower pT than currently possible at2182

CMS [1189]. In the farther future, for Run-5, LHCb will be further upgraded to remove all centrality limitations2183

[1182], and the ALICE3 detector, with full particle ID and a fast DAQ, will be well suited to measurements of2184

exotics in heavy ion collisions [1170].2185

Intrinsic charm The existence of intrinsic (non-perturbative) charm in the proton has long been postulated2186

[1190–1192] to arise from configurations of the proton such as |uudcc⟩ and manifest at large x when a proton in2187

this state interacts [1190, 1191, 1193]. Experimental measurements [1194–1196] have provided tantalizing hints2188

of intrinsic charm but no firm evidence. LHCb recently measured Z + charm jets at large Z rapidity and showed2189

it to be consistent with a 1% intrinsic charm component [1197]. In addition, J/ψ distributions from intrinsic2190

charm have been calculated and compared favorably to p + A data [1198–1200]. The NNPDF Collaboration2191

found evidence for the existence of intrinsic charm to a 3σ level [1201], while other global fits [1202–1205] find2192

no such evidence. Several experiments, either currently taking data or planned, could help resolve the question2193

of intrinsic charm in the next few years [1200] including the current System for Measuring Overlap with Gas2194
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(SMOG) fixed-target mode at LHCb [1206], at energies of
√

sNN ≤ 110 GeV, and future fixed target programs2195

such as NA60+, proposed for the CERN Super Proton Synchrotron (SPS) [1207]. Intrinsic charm could also be2196

observed at the EIC, particularly in measurements in the proton-going direction. These empirical measurements2197

may also shed light on the necessary theoretical developments to map formulations of nonperturbative charm at2198

the level of the nucleon wave function to QCD factorization-based approaches.2199

3.2.4 Initial State and Small-x2200

As details of the initial state become more and more relevant with the increasing experimental precision,2201

all features of the incoming nuclei will have to be considered carefully. This includes nuclear deformation,2202

short-range correlations, alpha-clustering, etc. Close collaboration with nuclear structure experts and research2203

into connecting low and high energy collisions will be important. Furthermore, subnucleonic structure, as2204

measured in electron-ion collisions and quantified with GPDs or even Wigner distributions or generalized2205

transverse momentum dependent parton distribution functions (GTMDs) will play an increasingly important role2206

in the description of p + p and heavy ion collisions. Important measurements will be for example diffractive2207

dijet and vector meson production in UPCs and at the future EIC, which will also require further theory progress,2208

including on fundamental questions concerning the definition of coherent processes [1208].2209

All this information can provide input for a variety of initial state models, of which two major types can2210

be distinguished. On the one hand there will be those models appropriate for low energy collisions, which2211

ideally include some dynamics and are interweaved with the early time evolution. On the other hand, there are2212

more ab-initio models valid in the high energy limit, which should be systematically improved, for example by2213

including quark degrees of freedom and non-conformality, as well as a fully three dimensional spatial distribution.2214

Connecting either model to hydrodynamic simulations might demand an intermediate stage of pre-equilibrium2215

evolution, as further discussed in Sec. 3.1.3. Besides the fluctuating spatial distribution of the energy momentum2216

tensor and the conserved charges, computing some observables, such as those sensitive to the chiral magnetic2217

effect, also requires models for the initial electromagnetic fields, which require refinement.2218

The case for varying collision systems A way to disentangle initial state from final state properties is to study a2219

wide range of collision systems. The nuclear structure and produced initial condition vary in a non-monotonic2220

fashion with N and Z, whereas the hydrodynamic response varies smoothly and slowly with the mass number,2221

N + Z. Hence, isobar or isobar-like systems with nearly identical hydrodynamic response but large structure2222

differences can be used to separate initial from final state properties and constrain initial state models [303].2223

Models can be constrained using collisions of nuclei with well known properties, such as the doubly-magic2224

208Pb or 132Sn. Then, predictions can be made for other species and consistency with low-energy nuclear2225

structure knowledge checked. Medium to small systems can expose the role of sub-nucleon fluctuations, initial2226

momentum anisotropy, and the hydrodynamization process. In particular the exploration of isobar or isobar-like2227

collisions in the region from 12C to 48Ca with different structures, which are nowadays accessible to cutting-edge2228

ab initio calculations, will improve our understanding of the emergence of collectivity. Exploiting isobar ratios2229

for bulk observables as a function of rapidity and
√

sNN may further provide access to the x-dependence of2230

nPDFs and gluon saturation, complementing the science goals of the EIC.2231

The initial conditions for hard probes are typically modeled by convoluting information from the Glauber2232

model with the nPDF, which contributes to a large uncertainty in the relevant transport properties [110, 1209,2233

1210]. By constructing ratios (between collision systems) of selected high-pT observables at a fixed centrality,2234

jet quenching effects are expected to cancel and deviation of ratios from unity provide access to flavor-dependent2235

nPDFs [1211–1213]. Such measurements would require high-luminosity runs in both collision systems. Projec-2236

tions of the feasibility of these measurements have not yet been carried out.2237

The role of ultraperipheral collisions UPCs connect heavy-ion collisions to both cold QCD physics and the2238

EIC. In terms of vector meson (VM) and jet photoproduction, other observables, e.g., single jet or high-pT2239

particle production, association of forward neutron production from QED, and light (e.g., ϕ) and heavy (e.g.,2240

Υ) VM threshold production, are of great interest. Species dependence, approximately the same as the dipole2241

size dependence and scale dependence, can provide unique insights into the nuclear modification mechanism2242
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of parton densities. Energy dependence, enabled by experiments at both RHIC and the LHC, e.g., the STAR2243

forward detector and the ALICE’s FoCal [1214], will provide widest kinematic phase space coverage, which will2244

be complementary to that at the EIC. New observables, e.g., combining VMs and jets together in both protons2245

and heavy nuclei, could provide one of the most rigorous experimental tests to nuclear shadowing and gluon2246

saturation models. This is similar to one of the “day-one” measurements at the EIC. Looking further ahead, by2247

the mid/late 2030s, the proposed ALICE 3 detector [1170] will have acceptance for both charged and neutral2248

particles, over a very wide solid angle, with coverage expected for pseudorapidity. ATLAS and CMS will also2249

cover |η| < 4 by Run 4. This will offer a very large increase in acceptance for more complex UPC final states.2250

Furthermore, significant progress has been made in the physics of photon interactions. Experimental2251

measurements and theoretical descriptions have been progressing from the initial observations toward quantitative2252

and precise comparisons. For example, polarized photons have been used and proposed as a tool to test and define2253

the photon Wigner function [1215–1219], to probe the properties of the QGP [60, 128, 1220–1223], to measure2254

nuclear charge and mass radii [332, 1224, 1225], to study gluon structure inside nuclei [342, 1226, 1227] and to2255

investigate new quantum effects [332, 1226, 1228–1231].2256

In addition, not only exclusive observables will be measured in the future, recent studies have also indicated2257

important physics implication of inclusive particle photoproduction. The ATLAS measurement of second-order2258

Fourier harmonics of charged particles in γ+Pb has provided an important experimental input to the origin of2259

collectivity in heavy-ion collisions, a long-standing question to be solved in the next decade. Also, searching2260

for the baryon junction, a fundamental nonperturbative structure connected to color confinement in QCD, has2261

been extensively studied in hadronic collision. Recently, a new idea of searching for baryon junctions has been2262

proposed in γ+Au UPC events [1232]. The physics of baryon stopping is also intimately related to backward2263

photoproduction of mesons [1233], accessible at the EIC [1234].2264

3.2.5 Small Size Limit of the QGP2265

There is much work to be done in understanding the small size limit of the QGP. Past measurements have2266

focused on p+p and p+A collisions, particularly at the LHC. The large acceptance and high rate of sPHENIX2267

will allow for more detailed measurements in p+Au collisions at RHIC including multi-particle cumulants, open2268

heavy flavor mesons and measurements of charged particle and jet vn at high transverse momentum. Additionally,2269

there is great interest in collecting data with systems which are of similar size to p+A collisions but which are2270

symmetric, such as O+O [1173, 1235] (see Sect 3.2.1 and Sec. 3.2.3) in order to smoothly map the evolution2271

of small systems to larger ones. The d+Au and O+O data taken by STAR and future p+Au data during the2272

sPHENIX running will enable such mapping, and in particular pin down the role of longitudinal decorrelations2273

and subnucleonic fluctuations. For all small systems, theoretical modeling has to be improved, in particular the2274

initial states and earliest stages of the collision, which are far from equilibrium.2275

The observation of evidence for collective flow in γ+A collisions (see Sec. 2.1.5) has challenged theoretical2276

modeling of these systems. Recent work [1236] suggests that full (3+1)D hydrodynamical modeling is necessary2277

to characterize γ+A collisions. More theoretical modeling and measurements are needed to see to what extent2278

this conclusion applies to other asymmetric collision systems. These can even be applied to high multiplicity2279

events in future electron-ion collisions at the EIC. Additionally, there is much work to be done to determine2280

if there are other observables, besides the vn of charged particles, to further characterize the nature of these2281

collisions. The next generation of theoretical models needs to include nucleon configurations from ab initio2282

nuclear structure physics. Furthermore, integrating with high energy small-x evolution would enable theoretical2283

models to systematically include sub-nucleonic fluctuations and how they evolve with collision energy.2284

A major outstanding question in small collision systems is the absence of a conclusive observation of jet2285

quenching in any p+A or p+p measurement. Experimentally, more precise measurements in p+A collisions are2286

necessary to see a potentially small signal. In order to estimate the size of any jet quenching expectations, light2287

ion collisions are essential. This would provide a clean way to bridge between p+A and A+A collisions because2288

measurements of jet quenching in peripheral Pb+Pb and Au+Au collisions suffer from large uncertainties.2289

Finally, realistic theoretical modeling of jet quenching expectations in p+A collisions is important to further2290
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constrain the size of any potential effect. All of these pieces are necessary to develop a coherent understanding2291

of the how the QGP works in the small size limit. Additionally, the modification of heavy flavor production2292

is important for jet quenching in small systems [1237–1239] because the system size changes the relative2293

significance of radiative and collisional energy loss.2294

3.2.6 Mapping the QCD Phase Diagram2295

The goals of the RHIC BES program are to (i) study the QCD phase structure with high-energy nuclear2296

collisions (The BES program covers the widest range in terms of baryon chemical potential, 20 - 780 MeV),2297

and (ii) search for the phase boundary and possible QCD critical point. The nuclear matter EOS in the high µB2298

region requires detailed investigations. Baryonic interactions including nucleon-nucleon, hyperon-nucleon and2299

hyperon-hyperon interactions are fundamental ingredients to understand QCD and the EOS that governs the2300

properties of nuclear matter and astrophysical objects such as neutron stars [1240]. Precise measurements for a2301

range of observables and collision energies are necessary to understand this physics [1241].2302

The NA61/SHINE experiment is an ongoing experiment at the CERN SPS, studying the properties of the2303

production of hadrons in collisions of beam particles (pions, and protons, beryllium, argon and xenon) with a2304

variety of fixed nuclear targets. The current program will continue until the end of 2024 and a program beyond2305

that is under discussion. The NA60+ experiment [1242] is planned as an upgrade to NA60 at the CERN SPS to2306

study dilepton and heavy-quark production in nucleus-nucleus and proton-nucleus collisions with center of mass2307

energies of 6–17.3 GeV. NA60+ is currently expected to start taking data around 2029.2308

The CBM experiment at FAIR [1169], will have a uniquely large interaction rate, see Fig. 36. It will2309

determine the EOS (check to be sure that EOS or EoS is used consistently throughout) of QCD matter in the2310

range
√

sNN = 2.9–4.9 GeV. FAIR is one of the top-priority facilities for nuclear physics in Europe, according to2311

NuPECC [1243, 1244]. The CBM physics program includes net-proton fluctuations, dileptons, multi-strange2312

hyperons and hypernuclei, polarization and spin alignment. These measurements will probe the first-order phase2313

boundary, the QCD critical point, and hypernuclear interactions pertinent also to the inner structure of compact2314

stars. The physics program is currently planned to start later this decade.2315

To maintain US leadership in the exploration of the QCD phase diagram at high baryon density after the2316

completion of the RHIC BES-II program, opportunities for targeted US participation in international facilities are2317

important to explore. A top priority is to complete the RHIC BES-II data analysis, which will help assess which2318

international experiments present the highest physics potential. One area of interest is the CBM Experiment at2319

FAIR [1146].2320
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Figure 36: Collision rates as a function
of
√

sNN for collider experiments in red,
and fixed-target (FXT) experiments in
blue. Comparing to the collider exper-
iments, more than four orders of mag-
nitude improvement in collision rates
can be achieved with the future CBM
experiment at FAIR [1245, 1246].

3.2.7 Chirality and Vorticity in QCD2321

Chiral magnetic effect The precision measurements from the RHIC isobar collisions largely constrain the2322

observability of the CME in heavy ion collisions and narrow down future CME searches [1247]. A number2323

of possible directions have been identified for the CME in the post-isobar era [1248]. One possible direction2324

is to study lower energy collisions in which the prerequisites of the CME phenomenon are expected to be2325
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different due to the enhancement of topological fluctuations [1249] (also see [1250] for other effects). The recent2326

measurement from the STAR collaboration using the event plane detectors capable of measuring the spectator2327

proton-rich plane has put constraints on the observability of CME in
√

sNN = 27 GeV Au+Au collisions [1251].2328

This work paves the way to future CME searches with the high statistics data from the RHIC BES-II using novel2329

techniques such as event-shape engineering [1252]. Another avenue is to revisit the analysis of Au+Au collisions2330
√sNN = 200 GeV in which signal/background ratio is expected to be larger than that of isobar collisions [1253].2331

Estimates from the STAR collaboration indicate that a 5σ significance on the possible CME signal fraction2332

can be achieved if 20 billion Au+Au events are collected during the remaining RHIC running [1248]. Besides2333

the CME search, a number of other measurements related to chiral effects will be investigated by the STAR2334

collaboration in the coming years [1254, 1255].2335

Vorticity There remain several additional open questions on vorticity in heavy-ion collisions. One is the2336

distribution of vorticity in rapidity. Most models that reproduce the falling energy dependence of global2337

polarization at midrapidity predict a rising polarization at forward rapidity, as the fluid vorticity migrates towards2338

the spectator region [1256–1261]; others [1262–1264] predict smaller polarization at forward rapidity. So far,2339

the data show a rapidity-independent polarization, though the rapidity coverage is quite limited. Measurements2340

of global polarization at forward rapidity may discriminate between different physics scenarios that produce2341

similar results at midrapidity.2342

There are new vorticity signatures yet to be explored experimentally. At forward rapidity, hydrodynamic2343

and transport simulations at all energies predict [1258, 1265–1267] a circular vorticity pattern superimposed on2344

the global vorticity, due to the interplay between transverse and longitudinal gradients in temperature and flow.2345

The transfer of energy and momentum from a jet to the surrounding medium should produce a toroidal vorticity2346

structure centered about the jet direction [1174, 1268, 1269], which may generate percent-level polarizations2347

observable through Λ-jet correlations sensitive to the quenching and fluid viscosity [1174]. Spin alignment2348

of vector mesons is another promising observable sensitive to the large angular momentum of the system2349

and indicative of quark polarization, and can provide new insight into the nature of the vector meson fields2350

[1270, 1271]. Additionally, it has been suggested [455, 1272] that in p+A collisions, a toroidal "vortex tube"2351

may be created at midrapidity, generating something akin to smoke rings centered on the beam direction. This2352

measurement has been proposed by the STAR Collaboration [1273].2353

3.2.8 Future Facilities for Hot QCD2354

Hot QCD at RHIC The RHIC facility began operation in 2000 and over the past two decades has collided2355

nuclei from protons to uranium at a wide range of collision energies spanning two orders of magnitude. The2356

remaining data to be taken at RHIC to complete its science mission is the sPHENIX program [1176]. This2357

program has three essential components: successfully commissioning the sPHENIX detector (the first new2358

collider detector to be commissioned in over a decade); collecting high luminosity p + p and p+Au data for2359

nucleon structure studies and as a heavy ion reference system; and taking high luminosity Au+Au data. The2360

total recorded Au+Au data is expected to be at least 21 nb−1. The p+p luminosity requirement is 62 pb−1 and2361

is driven by the need to have adequate statistics to use as an Au+Au reference measurement. These numbers2362

are used in all the projections in this document. This data is anticipated to be collected in three years of RHIC2363

running.2364

Given the versatility of RHIC and the variety of science questions it can address, the RHIC science potential2365

is in no way exhausted. While the sPHENIX science program is the “highest priority for the current RHIC2366

program" [1274], it is clear there are additional high priority scientific opportunities available at RHIC. While2367

the currently scheduled RHIC program consistes of p+p, p+Au, and Au+Au collisions, there are other unique2368

opportunities that may become available including: running O+O collisions to understand the system size2369

dependence of QGP properties, additional p+A running for vorticity measurements, nuclei scans to measure the2370

initial state, and many others. Following the completion of the RHIC science program, the RHIC infrastructure2371

is scheduled to become the basis of the EIC.2372
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LHC Participation in the heavy-ion program at the LHC is a key component of the US heavy-ion program. All2373

four LHC detectors have significant heavy-ion programs and the LHC heavy-ion program is already planned2374

to go through the end of Run 4 (currently expected in 2032). LHC Runs 3 and 4 over the next decade are2375

expected to provide more than approximately 10 nb−1 of Pb+Pb data [1134]. This is approximately five times2376

the maximum luminosity delivered to the experiments to date. Additionally, p+p running at the Pb+Pb center of2377

mass energy is an essential reference, and p+Pb runs are also planned2378

In addition, a short run of O+O and p+O collisions is planned for 2024. O+O collisions would provide2379

key new data on both soft and hard probes in a system with approximately the same number of participants as2380

p+Pb collisions but which is, in contrast, symmetric, bridging the gap between peripheral Pb+Pb collisions and2381

p+Pb collisions. There is significant interest in this from the community [1173]. It is possible that a successful2382

O+O run would motivate further LHC running with light ions. In addition to the desire to study system size2383

dependence, the total nucleon-nucleon luminosity can be increased in heavy-ion runs by switching from large2384

nuclei (such as lead) to small nuclei (such as oxygen or argon) [1134].2385

All experiments have significantly upgraded their detectors since the LHC turn on. With the start of LHC Run2386

3 in 2022, ALICE began taking data with the "ALICE2" upgrades [1275] which upgraded the data-taking rate,2387

allowing readout at 50 kHz, and a new Inner Tracking System (ITS) which will improve the resolution on the2388

distance of closest approach to the primary vertex by a factor of three. Together, these upgrades will dramatically2389

improve the physics reach of the ALICE detector, especially for rare probes involving heavy-flavor and other2390

identified particles. Also prior to Run 3, the LHCb collaboration has completed the first of a series of detector2391

upgrades, Upgrade 1 [1276]. The entire LHCb tracking system was replaced with higher-granularity detectors,2392

which can reconstruct PbPb collisions up to 30% centrality (previously the limit was 60%). All hardware triggers2393

were removed in favor of an advanced streaming readout system that will sample the full luminosity delivered2394

by the LHC [1277]. In addition, a dedicated storage cell was installed for the gaseous fixed-target which will2395

greatly increase the rate of beam+gas collisions [1188]. This upgraded SMOG2 system is expected to operate2396

concurrently with the collider for all beam species, providing large fixed-target data samples with multiple beam2397

and target species at center of mass energies near 100 GeV.2398

For Run 4, both ATLAS and CMS are planning major upgrades with direct benefit to the heavy-ion physics2399

program. Both ATLAS and CMS will have upgraded trackers which can measure charged particles in |η| < 4,2400

compared to |η| < 2.5 with the current detectors. This increased acceptance will, among other things, allow for2401

jet structure and substructure measurements over a wider rapidity range. At fixed pT , there is a higher probability2402

for quark jets than gluon jets at forward rapidity, providing a new means of understanding how parton showers2403

develop in the QGP. Additionally, CMS is planning a new timing detector [1183] which can make additional2404

measurements with identified hadrons. Prior to Run 4 LHCb will implement Upgrade 1b, which will include2405

new tracking detectors placed inside the LHCb dipole magnet and a new silicon detector near the beampipe.2406

The magnet station trackers will allow tracks from soft particles which terminate in the magnet walls to be2407

reconstructed, giving new access to very low pT open heavy flavor and exotic states. The new silicon detector2408

will provide additional tracking points that will further increase the centrality range accessible by LHCb. On the2409

same timescale, ALICE is planning to install a forward calorimeter upgrade, the FOCAL [1170, 1278].2410

LHC upgrades for Run 5 and beyond For LHC Run 5 (currently planned for 2035-38), ALICE is planning2411

an entirely new detector, "ALICE3" to further improve the most difficult measurements in heavy-ion colli-2412

sions [1170]. In the current LHC projections, over Runs 5 and 6, ALICE3 would take 20 times more data than2413

ALICE in Runs 3 and 4 [1279]. This extremely large data sample would include very detailed identified particle2414

measurements, making qualitative improvements on answers to the questions outlined in the previous section.2415

Additionally, the very low mass silicon tracking is expected to make precise dilepton measurements, impossible2416

with any of the current LHC detectors. On the same timescale LHCb is planning Upgrade II [1182, 1280]. This2417

upgrade would allow LHCb to make measurements over the full centrality range of heavy-ion collisions for the2418

first time, providing very precise forward measurements, including access to quarkonia and open heavy flavors at2419

very low pT and forward rapidity in p+A and A+A collisions.2420
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The physics case for all of these upgrades will continue to develop with the new measurements coming out of2421

the LHC and RHIC. In order to meet the Run 5 timeline, funding for R&D for these projects should begin soon.2422

It is possible to increase the nucleon-nucleon luminosity by running with smaller collision systems. This2423

is offset by the expectation that QGP effects will be largest in the largest collision systems. Experience with2424

smaller collision systems in the near future will inform whether there is a more optimal collision system to run at2425

the LHC than Pb+Pb [1170].2426

3.3 Cold QCD in the Next Decade2427

As outlined and described in Sec. 2.2, the hadron physics community has made tremendous progress in2428

answering the fundamental questions concerning the building blocks of our universe, such as the mass and2429

spin origins of the nucleon, the tomographic imaging of partons inside the hadrons, and nucleon many body2430

interactions encoded in partonic structures in the nucleus. The progress made in these directions since the last2431

LRP has demonstrated the powerful reach of hadron physics facilities to unveil the underlying QCD dynamics and2432

the associated non-perturbative structure of nucleons and nuclei. We will continue to deepen our understanding2433

of these questions, focusing on the following aspects:2434

• Nucleon properties including the proton charge radius and (generalized) polarizabilities of the nucleon;2435

• Precision measurements of the polarized and unpolarized quark distributions in the large-x region, in2436

particular when x→ 1;2437

• Unprecedented mapping of the 3D tomography of quark distributions inside nucleons;2438

• Unveiling the spin and mass origins of the nucleon, especially for the quark orbital angular momentum2439

contribution to the proton spin and the trace anomaly contribution to the proton mass;2440

• Nucleon-nucleon short range correlations in nuclei and the nuclear modification of the parton distributions2441

in the valence region;2442

• Precision meson and baryon spectroscopy to unravel the spectrum and structure of conventional and exotic2443

hadrons;2444

• Parity-violation measurements and connections to other fields.2445

As this document is written, RHIC will be transitioning to EIC construction within the next 5 years, while2446

CEBAF will continue to operate with fully scheduled programs for at least another decade. We describe below2447

cold QCD research expected from both facilities.2448

3.3.1 Cold QCD with CEBAF and the SoLID Physics Program2449

CEBAF was originally designed to conduct coincidence experiments, but its physics program as well as2450

experimental halls have evolved to meet the ever-changing development and needs of hadronic physics studies2451

over the years. Most notably, CEBAF was successfully upgraded to double its energy to 12 GeV during the2452

previous LRP period. The higher beam energy, along with the addition of experimental Hall D and upgrades of2453

detectors in other halls, allowed our studies of hadronic physics to expand into new kinematic regions and to2454

search for and study exotic hybrid mesons. Moving forward, CEBAF will remain in high demand as a QCD2455

facility because of its high luminosity and the mid-scale, high intensity SoLID program, see Fig. 37.2456

Meanwhile, smaller-scale spectrometers and specialized detectors continue to be built, such as the Super2457

BigBite Spectrometer (SBS), Neutral Particle Spectrometer (NPS), Low Energy Recoil Tracker (ALERT), to2458

name a few. The remainder of this section presents an overview of upcoming programs at CEBAF. Some of the2459

topics presented could persist into the EIC era.2460

The SoLID physics program With the study of nucleon structure evolving from single- to multi-dimensional2461

measurements that utilize exclusive processes, the quest for understanding the origin of the proton mass based2462

on studies of near-threshold meson production, frontier cold QCD research requires, first and foremost, higher2463

statistics. Similarly, Parity Violating Electron Scattering (PVES) that requires increasing statistical precision to2464
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Figure 37: Landscape of the cold
QCD program at the DIS facili-
ties. SoLID expands the luminos-
ity frontier in the large x region
whereas the EIC does the same
for low x. Together, JLab+SoLID
and the EIC will, over the next
several decades, cover a broad
and largely complementary kine-
matic range, with SoLID probing
key physics and providing preci-
sion data primarily in the high-x
region. Figure from [1281, 1282].

test the Standard Model at low- to medium-energies. Such emerging needs from both QCD and fundamental2465

symmetries call for a truly large acceptance, high-intensity device, to fully capitalize on the high-luminosity2466

beam of CEBAF. The Solenoidal Large Intensity Device (SoLID), planned for JLab as an integral part of the2467

CEBAF 12 GeV program, was designed to meet such needs. SoLID will utilize the CLEO-II 1.4-T solenoid2468

magnet and a large-acceptance detector system covering 2π in azimuth and will be able to operate at luminosities2469

up to 1039 cm−2s−1. The realization of SoLID in JLab Hall A is shown in Fig. 38.2470
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beamline
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Figure 38: Schematic lay-
out of SoLID in Hall A
of JLab, with the endcap
pulled downstream to al-
low detector installation and
reconfiguration. The two
high resolution spectrome-
ters (HRS-L and HRS-R,
not in use) are parked at
backward angles.

As a multi-purpose device, SoLID currently has seven experimental proposals and several run-group2471

proposals approved by the JLab Program Advisory Committee. Three SIDIS experiments, with transversely2472

and longitudinally polarized 3He and transversely polarized protons, will precisely extract TMDs in the valance2473

quark region and determine the u and d-quark tensor charge, see Fig. 39 left. An experiment studying electro-2474

and photo-production of J/ψ near threshold probes the gluonic field and its contribution to the proton mass, see2475

Section 3.3.3. A parity-violating DIS experiment will determine the effective electron-quark couplings of the2476

Standard Model, pushing the limits in phase space to search for new physics (Section 5.4.2), and will provide the2477

PDF ratio d/u at high x, see Fig. 39 right. The two most recently approved experiments include a measurement2478

of TPE with beam SSA in DIS, and a PVES measurement to study isospin dependence of the EMC effect. The2479

68



run-group experiments include SIDIS with kaon and di-hadron production, transverse inclusive spin structure2480

functions, and exploration of GPDs with deep-exclusive reactions to study the 3D structure of the nucleon in2481

coordinate space.2482
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Figure 39: Projected impact of the SoLID program on: (left) the d vs. u tensor charge from SIDIS measurements;
and (right) the PDF ratio d/u from PVDIS proton measurement. See [1282] for details.

3.3.2 Properties of the Nucleon2483

PRad-II The PRad experiment (see Section 2.2.1), using innovative methods, provided data on the proton2484

charge radius with high precision, but is in direct conflict with all modern electron scattering experiments. The2485

newly approved PRad-II experiment will address this discrepancy with a projected total uncertainty of 0.43%, a2486

factor of 3.8 smaller than that of the PRad result, and better than the most precise result from ordinary hydrogen2487

spectroscopy measurements [1283]. This level of precision has the potential to inform whether there is any2488

difference between e + p scattering and muonic hydrogen results, as well as to evaluate the consistency of2489

systematic uncertainties of muonic hydrogen measurements.2490

Future polarizability and generalized polarizability measurements In the next seven years, the complemen-2491

tarity of the MAMI and HIGS facilities will be leveraged to access a wide variety of energies and observables for2492

the nucleon polarizability measurements [475], with strong collaboration between experimental and theoretical2493

efforts, see, e.g, [1284]. Exploring a variety of few-nucleon targets is essential for high-accuracy extractions2494

of the neutron polarizabilities and validation of the subtraction of nuclear binding effects. The first values2495

of the neutron spin polarizabilities and improved determinations for the proton will provide insights into the2496

low-energy spin structure of the nucleon, enhancing our understanding of the mechanisms that generate them2497

and complementing the nucleon-structure experiments at JLab, RHIC, and the EIC.2498

Plans for future measurements of the proton generalized polarizabilities at JLab are currently underway. One2499

major goal is to determine the shape of αE(Q2) to high precision. This will serve as valuable theoretical input for2500

determining the mechanism responsible for the effect. Another goal is to accurately describe βM(Q2) at low Q2
2501

which is currently not well understood due to large uncertainties on the existing data, in particularly at Q2 = 02502

where recent results are in conflict [483, 484]. A positron beam, proposed to be developed at JLab, can provide2503

an independent cross-check in a different reaction channel [1285], particularly in light of the recently reported2504

puzzling results for the proton αE(Q2) [493].2505

Two photon exchange measurements As mentioned in Section 2.2.1, a full understanding of TPE in e + p2506

elastic scattering is critical for correctly interpreting proton form factor measurements The luminosity and quality2507

of a positron beam would provide dramatically improved direct measurements of TPE in elastic scattering, in2508

particular in the large-angle region where TPE is most important. In addition, several new TPE observables can2509
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be measured for the first time. As an example, the asymmetry of electron scattering when only the beam or only2510

the hadron (target) spin is polarized normal to the scattering plane is related to the imaginary part of the TPE2511

amplitude. Such SSAs have been measured in PVES experiments [1286–1291] with a polarized beam for elastic2512

scattering. While SSAs on lighter nuclei have confirmed theoretical predictions, the SSA on lead is unexplainably2513

small. Similar SSAs were measured at HERMES and JLab Hall A with polarized targets [1292–1294]. Each of2514

these observables provide independent constraints on the TPE amplitude, and are valuable for making theoretical2515

progress on the problem of so-called box diagrams which include TPE as well as the γZ-box correction relevant2516

to PVES, and the γW-box contributing to β-decay. An experiment was recently approved to access TPE by2517

measuring transversely-polarized beam SSA in DIS using SoLID, adding a new observable to the TPE study.2518

Quark distributions and polarizations at x → 1 As part of a complete three-dimensional mapping of the2519

parton (quark and gluon) distributions in the nucleon, the longitudinal momentum and spin carried by valence2520

quarks at very high Bjorken-x is still of great theoretical and experimental interest. At the same time, quark2521

distributions at large x are also needed as input for cross section calculations at colliders such as the LHC or2522

the Tevatron (see for example the recent results on the W mass [1295]). The current and future JLab program2523

studies the large x quark distributions and polarizations in three different experiments. The first experiment,2524

MARATHON, was highlighted in Section 2.2.2 and provided precision data on Fn
2/F

p
2 . Data have been collected2525

by the second such experiment, BONuS12 [525], and results are expected soon. The PVDIS proton program2526

of SoLID will provide d/u at high x without the use of nuclear models, as shown in the right panel of Fig. 39.2527

Additionally, data have been collected on double-polarization asymmetries of both the proton and 3He and results2528

on the down quark polarization ∆d/d are expected to be available concurrent with the release of the 2023 LRP.2529

3.3.3 Nucleon Femtography2530

As described in previous sections, the study of the nucleon structure is evolving from 1D structure functions2531

connected to collinear PDFs to also include multi-dimensional tomography in terms of parton GPDs and TMDs.2532

The ultimate goal is to experimentally determine the quantum mechanical Wigner distribution [1296] in phase2533

space. Semi-inclusive measurements, including spin polarization observables, were provided by the pioneering2534

measurements at HERMES, COMPASS, and the JLab 6 GeV program, among others. Results on GPDs and2535

TMDs are now published over limited ranges of the relevant kinematic variables. The upgraded detectors and2536

CEBAF beam energy and intensity, as well as the potential for polarized positron beams, promise to provide a2537

more detailed three-dimensional spatial mapping of the nucleon. Indeed, this is a major thrust of the JLab 122538

GeV facility. Mapping the (2+1)D mixed spatial-momentum images of the nucleon in terms of GPDs has been2539

one of the important goals. On the other hand, 3D images in pure momentum space can be made with other2540

generalized distributions: the TMDs. These femto-scale images (or femtography) will provide, among other2541

insights, an intuitive understanding of how the fundamental properties of the nucleon, such as its mass and spin,2542

arise from the underlying quark and gluon degrees of freedom.2543

3D tomography from GPD measurements From the analysis of the DVCS data from HERA and HERMES at2544

DESY, as well as the results of new dedicated experiments at JLab, and at COMPASS at CERN, the experimental2545

constraints on the CFFs and the associated GPDs have been obtained from global extraction fits [866, 1297].2546

These data have also been used to generate some of the first 3D images of the proton [551], shown in Fig. 40.2547

However, data covering a sufficiently large kinematic range, and the many different polarization observables,2548

have not been systematically available. Moreover, meson production at JLab 6 GeV has not yet shown parton2549

dominance in scattering. The 12 GeV program at JLab will provide comprehensive information on these hard2550

diffractive processes, entering the precision era for GPD studies. Extracting a complete set of CFFs independently2551

in fixed kinematics requires a complete set of experiments. In addition, one needs to explore processes that will2552

give both x and skewness parameter ξ information, such as Double DVCS (DDVCS) or similar processes.2553

The extensive GPD program from the JLab experiments will provide unprecedented kinematic coverage and2554

precision. Among the approved experiments, Hall A proposed a precision measurement of the helicity dependent2555

and helity independent cross sections for the ep→ epγ reaction in DVCS kinematics. This is a follow up to the2556

successful Hall A DVCS run at 5.75 GeV [1298]. There are two important DVCS experiments in Hall B using2557
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Figure 40: Left: 3-dimensional representation of the x-dependence of the proton transverse charge radius. Right:
artistic illustration of the corresponding rising quark density and transverse extent as a function of x.

CLAS12 at 11 GeV and at lower energies of 6.6 and 8.8 GeV. These measurements cover a large kinematic2558

range, allowing a more comprehensive study of GPDs. In addition, to perform the flavor separation of GPDs,2559

the proposed experiment in Hall B will measure the beam spin asymmetry for incoherent DVCS scattering on2560

the deuteron, detecting the recoil neutron. Similar measurements will be made with spectator proton detection2561

in the BONUS and ALERT experiments. An experiment has been proposed to measure the target single spin2562

asymmetry on transversely polarized protons. The asymmetry has particular sensitivity to the GPD E(x, ξ) which2563

is related to the spin flip nucleon matrix element and hence carries important information on the up and down2564

quark OAM. For nuclear targets, the ALERT detector in tandem with CLAS12 will measure DVCS and deeply2565

virtual meson production (DVMP) off deuterium and 4He targets to explore nuclear effects on bound nucleon2566

GPDs.2567

Two other Compton-like processes, TCS and DDVCS, as well as hard exclusive meson production, are2568

accessible with JLab 12 GeV and have much to offer. As decsribed in Sec. 2.2, the preliminary result on the TCS2569

has demonstrated a unique perspective to constrain the quark GPDs. Future experiments of TCS and DDVCS in2570

JLab Halls B and C and SoLID in Hall A will continue to play important roles in comprehensive GPD studies.2571

In addition, experimental data from the 11 GeV beam will provide an important test of the DVMP mechanism.2572

Experiments have been proposed for π0 and η production with CLAS12 running contemporaneously with the2573

DVCS experiment, together with 8 GeV beam experiments to separate σL and σT . Measurement of the ϕ meson2574

will provide information on the gluon GPDs as well as study intrinsic strangeness.2575
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Threshold J/ψ production and proton mass Near threshold J/ψ production can provide unique access to the2576

gluon GPD and the form factors of the gluon EMT, providing important information on the mass structure of the2577

nucleon. At JLab 12 GeV, the J/ψ can be produced by photon and electron beams on the proton and nuclear2578

targets near threshold. Recent experimental results from JLab Halls C and D have been summarized in Sec. 2.2.2579

There are ongoing experiments in Hall B to measure TCS and J/ψ in photo-production on a hydrogen target,2580

with ∼ 10K events expected after the luminosity upgrade. Similar statistics are expected for a deuterium target.2581

Hall A has an approved experiment using SoLID and can obtain at least another order of magnitude more events2582

(∼800K in photoproduction and ∼20K in electroproduction), see Fig. 41. With this large number of threshold2583

events, one can fit the cross section as a function of W and t to obtain all three gluon EMT form factors, and2584

hence could shed light on the origin of the nucleon mass.2585

Figure 42: The impact of the SoLID SIDIS program on the u and d quark transversity (left) and Sivers distribution
(right). The wide uncertainty bands show the current results based on a global analysis of world data while the
narrower, darker bands show the SoLID projections. Figure from [1282].

Momentum tomography of the nucleon One of the most important questions about the 3D structure of the2586

nucleon is the transverse momentum dependence of parton distributions and fragmentation functions. The TMDs,2587

especially those depending on the correlations between the transverse momentum and the polarizations of the2588

partons and hadrons, provide a unique perspective on 3D nucleon tomography. At JLab, Halls A, B, and C are all2589

involved in 3D structure studies through measurements of azimuthal modulations in SIDIS for different hadron2590

types, targets, and polarizations over a broad kinematic range. The most celebrated SIDIS measurements on2591

TMDs are the surprising non-zero results of the Sivers asymmetries and the Collins asymmetries [1299–1301].2592

These initial explorations established the significance of the SIDIS-TMD experiments and attracted increased2593

efforts in both experimental and theoretical studies of TMDs. The planned SoLID experiments with transversely2594

polarized proton and 3He (neutron) targets will provide the most precise measurements of Sivers and Collins2595

asymmetries of charged pion and kaon production in the valance quark (large-x) region in 4-dimensions (x, Q2, z2596

and pT ). Figure 42 shows the projected precision of the extracted transversity h1(x) and Sivers function f⊥(1)
1T (x)2597

from the SoLID enhanced configuration for both u and d quarks compared to current results obtained from a2598

global analysis of world data [1302]. The impact on the nucleon tensor charge from these measurements was2599

highlighted in Sec. 3.3.1.2600

3.3.4 Meson Structure2601

Several experiments at JLab and planned for the EIC will validate the framework of meson femtography,2602

deepening the understanding of pions and kaons through studies of their form factors, structure functions and2603

masses [1303, 1304]. Extracting precise meson form factor data requires L/T separated cross sections and2604

control over systematic uncertainties. Over the last decade, JLab measurements have established confidence in2605

the reliability of deep exclusive meson production for probing internal meson structure [1305–1311].2606
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Figure 43: The left (right) panels show calculations, measurements, and projected uncertainties of recent
measurements of the pion (kaon) form factors.

The Super High Momentum Spectrometer (SHMS) in JLab Hall C is a unique facility for making precision2607

12 GeV measurements [1312], able to access meson form factors at high momentum transfer and small spatial2608

resolution. Two experiments, studying exclusive pion and kaon electroproduction respectively, made precision2609

separations of the L and T cross sections over the last three years. The projected uncertainties for these2610

experiments are shown in Fig. 43. In addition, the quark and gluon distributions are expected to differ substantially2611

in pions, kaons and nucleons. Planned measurements at JLab using the TDIS technique will provide data that2612

have the potential to settle the issues of quark distributions in the pions at high-x and provide the first data on2613

kaons.2614

3.3.5 Hadron Spectroscopy2615

The energies and quantum numbers of the excited state of any physical system provide important clues to the2616

underlying dynamics and relevant degrees of freedom. This is especially true in the case of hadrons, where the2617

spectrum of meson and baryon excitations established the quark model and QCD [1313, 1314] and continues2618

to provide unique information on strong interaction dynamics [1315, 1316]. The experimental results from the2619

JLab 6 GeV program on the nucleon resonance electroexcitation amplitudes provided unique information on the2620

structure of the excited states of the nucleon and their evolution with photon virtuality Q [1315, 1317, 1318].2621

Extension of these efforts towards high Q2 at JLab 12 GeV will explore the transition from the strongly coupled2622

to perturbative QCD regimes is anticipated.2623

However, the full picture has not been experimentally verified. It is generally argued that the best discovery2624

path is through searching for so-called “exotic” meson states, which have quantum numbers that cannot be2625

obtained with only quark–antiquark degrees of freedom. QCD and the quark model also predict a number of2626

baryon excitations that have yet to be observed experimentally. A new program at JLab will focus on mapping2627

the spectrum of baryons with strangeness. Excited states in this sector should be less numerous and more narrow2628

than for the nonstrange baryons, which will ameliorate the difficulties associated with overlapping resonances.2629

There have been a number of narrow charmonium states discovered in recent years [611], which defy description2630

in terms of the quark model. Their existence points to dynamics of multiquark states that should in principle be2631

predicted by QCD.2632

The experimental program at JLab is aggressively pursuing the current spectroscopic understanding of QCD2633

dynamics. This includes photoproduction of meson and baryon states in GlueX and CLAS12. It also includes2634

new advances in lattice QCD to clarify hadron spectroscopy, in concert with experimental measurements, and to2635

quantify the photoproduction cross sections of hadronic excited states, see Sec. 3.1.1.2636

3.3.6 QCD Studies of Nuclei2637

It has been nearly four decades since the European Muon Collaboration (EMC) published an astonishing2638

finding on how the nucleon PDFs are strongly modified in iron nuclei [1319]. Although some recent studies2639

suggest a connection to SRCs in nuclei, a full understanding of this phenomenon is still desired. Indeed, there2640
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are several ways in which QCD manifests itself in complex nuclei. CEBAF has contributed to this area of study,2641

see Sec. 2.2.6, and will continue to provide new experimental data.2642

Electron scattering gives access to a range of unique aspects of nuclear structure, providing important data2643

relevant to nuclear interactions at short distances, modifications of nucleon substructure in the nuclear medium,2644

and quark/hadron interactions in cold QCD matter. Precision measurements of nuclear elastic, quasielastic,2645

and inelastic scattering, especially those associated with the high-momentum part of the nucleon distributions,2646

provide critical nuclear structure information needed in a range of other areas of nuclear and high-energy physics.2647

Such data are needed as inputs to analyses of neutrino-nucleus scattering, nuclear astrophysics, lepton-nucleus2648

scattering, and heavy-ion collisions, as well as providing important constraints on models of neutron stars.2649

Studies of the partonic structure of nuclei provide insights into the impact of the dense nuclear medium on the2650

structure of protons and neutrons and will image the nuclear gluon distribution for the first time. In addition,2651

measurements at higher energy will study hadron formation over a wide range of kinematics, as well as quark2652

and hadron interactions with cold, dense nuclear matter, including color transparency, attempting to isolate2653

interactions of small-sized “pre-hadronic" quark configurations.2654

Key future programs include measurements which probe nuclear structure at extremes of nucleon momentum,2655

studies of the impact of the dense nuclear environment on the structure of the nucleon, and finally the use of2656

the nucleus to study the interaction of quarks and how they form hadrons in cold nuclear matter. Among these,2657

flavor dependence in the EMC effect should manifest in a number of experiments, e.g., by contrasting structure2658

function measurements in 40Ca and 48Ca. A novel method to measure the isovector EMC effect is via PVDIS2659

to obtain the γ-Z interference structure function FγZ
2 (x) and contrast this with the usual DIS structure function2660

to separate the u and d quark PDFs in the same nuclear target. A proposal to perform this experiment on 48Ca2661

using SoLID was approved for the JLab 12 GeV program. Interesting opportunities also exist in the comparison2662

of SIDIS on 3H and 3He with either π+ or π− detected in the final state. In addition, as discussed in Sec. 2.2.6,2663

the spin structure function EMC effect will provide complementary information on the EMC physcis and a first2664

measurement of the polarized EMC ratio in 7Li is planned to run at JLab using the CLAS12 spectrometer.2665

Last, a growing program of spectator tagging measurements has been recently developed, accessing both free2666

and bound nucleon structure, the latter by mapping out the impacts of the nuclear medium and strong nuclear2667

interactions. First measurements were recently made by the BONUS and BAND experiments, probing the free2668

neutron and deeply-bound proton respectively. The Hall B ALERT and Hall C Large Angle Detector (LAD)2669

experiments are approved to extend these studies as part of the JLab 12 GeV program and anticipated to continue2670

at the EIC using its far-forward fragment spectrometer.2671

3.3.7 Cold QCD Program at RHIC2672

As the realization of the EIC draws nearer, there is a growing scientific imperative to complete a set of2673

“must-do” measurements in p + p and p + A collisions in the remaining RHIC runs. The ongoing RHIC cold2674

QCD program of both STAR and the new sPHENIX will build on RHIC’s unique ability to collide a variety2675

of ion beams in addition to polarized protons [530]. The STAR forward upgrades, including forward tracking2676

capabilities, will make charged hadron identification and full jet reconstruction possible for the first time in the2677

forward direction. The sPHENIX detector is optimized for full jet reconstruction at mid-rapidity and heavy-flavor2678

measurements [1320].2679

The new detectors will allow RHIC to extend the full complement of the existing transverse spin program2680

into new kinematic regimes of both lower and higher x domains. This includes measurements of forward single2681

spin asymmetries AN for charged hadrons h+/−, isolated π0 and full jet. The high statistical precision of recently2682

collected data at 510 GeV (Run 17 and Run 22) and at 200 GeV at the upcoming Run 24 will enable detailed2683

multi-dimensional binning for the Collins asymmetry measurements for h+/− and π0. STAR will extend the2684

Collins effect measurements to nuclei and investigate the universality of the Collins effect in hadron production2685

and the spin dependence of the hadronization process in cold nuclear matter. Moreover, the recently collected2686

and future STAR data will further reduce the uncertainties on the single-spin asymmetry of dijet opening angle2687

sensitive to the Sivers TMD parton distribution. This will provide a detailed mapping vs x for comparison to2688
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results for Sivers functions extracted from SIDIS, Drell-Yan, and vector boson production.2689

In addition, RHIC will further explore exciting new signatures of gluon saturation and non-linear gluon2690

dynamics. The ratios of forward Drell-Yan and photon-jet yields in p + p and p + A/A + A collisions are clean2691

probes of nuclear modifications to initial state parton distributions as well as gluon saturation effects. All of2692

these measurements rely critically on the successful completion of scheduled RHIC operations. Overall, all2693

data will provide valuable information about evolution effects and, with the projected statistical precision, will2694

establish the most precise benchmark for future comparisons with the ep data from the EIC.2695

3.3.8 Cold QCD Program at LHC2696

The LHC experiments have significantly impacted our understanding of the PDFs in the nucleon and nucleus2697

from various hard scattering processes, including high energy jet and electroweak boson production in p + p2698

and p + A collisions, see recent global analyses of the proton and nuclear PDFs [516, 519, 667–670, 878, 879].2699

These impacts will likely continue with ongoing experimental programs at the LHC with luminosity upgrades.2700

In addition, future measurements at the LHC will impact cold QCD physics in several different ways. Here we2701

highlight two examples.2702

The unique fixed-target SMOG program at LHCb [1321] took p+He, p+Ne, p+Ar, and Pb+Ar data at2703
√

sNN = 69–110 GeV. These measurements [1322–1325] can constrain nPDFs over a range of nuclei, and in a2704

different kinematic region than that accessible to other experiments, and provide insights into the charmonium2705

production mechanism. The recently installed SMOG II upgrade will allow orders of magnitude higher2706

luminosities and a wider range of possible targets [1326]. The LHCSpin project [1327, 1328] would replace2707

SMOG II with a transversely polarized target during the LHC Long Shutdown 3 and start taking data in 2029.2708

The project has the support of the LHCb Collaboration and the LHC machine, and R&D is ongoing at LHC2709

Interaction Region 3. A polarized gas target cell similar to the HERMES polarized target at HERA as well as an2710

alternative jet target are under consideration. The project would provide singly polarized proton-proton collisions2711

at
√

s ≈ 115 GeV, and p↑ + A collisions with a nuclear beam would also be possible.2712

The ALICE Collaboration at the LHC is proposing an upgrade for LHC Run 4 (2029-32) of a very forward2713

calorimeter, called FoCal, to study the small-x gluon dynamics of hadrons and nuclei [1214]. The FoCal2714

consists of a highly-granular Si+W electromagnetic calorimeter followed by a conventional sampling hadronic2715

calorimeter, covering the pseudo-rapidity interval 3.4 < η < 5.5 over the full azimuth. The FoCal design is2716

optimized for the measurement of isolated photons at forward rapidity for pT > 2 GeV/c. The FoCal will2717

measure a suite of theoretically well-motivated observables in p + p and p+Pb collisions that probe the gluon2718

distribution at small-x (down to approximately 10−6) and low to moderate Q2. These observables include isolated2719

photon, neutral meson, and jet inclusive production and correlations in hadronic collisions, and the measurement2720

of vector meson photoproduction in ultra-peripheral collisions. The FoCal scientific program will explore gluon2721

dynamics and non-linear QCD evolution at the lowest values of Bjorken-x that are accessible at any current or2722

planned facility world-wide. FoCal measurements, combined with the comprehensive experimental program at2723

the EIC and other forward measurements at RHIC and the LHC, will enable incisive tests of the universality of2724

linear and non-linear QCD evolution in hadronic matter over an unprecedented kinematic range.2725

3.3.9 CEBAF Upgrade Initiatives for Cold QCD2726

With the physics program at CEBAF for the next decade outlined as above, one could envision the possibility2727

of CEBAF continuing to operate with a fixed target program at the “luminosity frontier”, up to 1039 cm−2s−1 and2728

with large acceptance detection systems, presenting complementary capabilities in the era of EIC operations.2729

One such example is the 3D imaging of the nucleon structure through DDVCS. With a cross section a factor 1002730

lower than DVCS, DDVCS is not viable at EIC and must be studied at JLab. Possible additions and upgrades to2731

the CEBAF facility will further enhance such complementarity. In the following, we present two initiatives that2732

were discussed in the QCD Town Meeting.2733

Future opportunities with positron beams Development in many hadronic physics topics calls for additional2734

tools to probe the nucleon structure. In this aspect, the addition of an anti-lepton beam will greatly expand2735

our arsenal of experimental probes and provide data and information that are otherwise unattainable with a2736
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lepton beam alone. Most prominently, experimental results on the proton form factors and a full mapping of2737

the generalized parton distributions of the nucleon pointed towards the importance of positron beams for the2738

experimental determination of these fundamental quantities of the nucleon structure. Further ideas emerged2739

about testing the electroweak Standard Model and exploring the dark matter sector. A comprehensive research2740

effort was then started both in the physics and the technical areas to assess the potential of an experimental2741

program and to address the possible technological issues of high duty cycle positron beams [1281], as described2742

below.2743

Two-Photon Exchange Physics with Positrons Our interpretation of data on the proton electromagnetic form2744

factor ratio Gp
E/G

p
M is still clouded by the lack of understanding of TPE effects. Investigations of TPE with2745

other observables have produced new questions: First, the GEp-2γ experiment at JLab looked for evidence of2746

TPE in the ϵ-dependence of polarization transfer. While no dependence was found in the form factor ratio, an2747

unexplainably large and ϵ-dependent enhancement was found in the longitudinal polarization component [1329].2748

Second, while observables such as SSA (see Section 3.3) provide information on the imaginary part of TPE, they2749

do not directly address the proton form factor discrepancy. A highly desired and probably the most efficient way2750

to study TPE towards a better understanding of the nucleon structure is yet to be provided by high-precision2751

measurement of the lepton-charge difference in e + p elastic scattering. Such experiments have been carried out2752

at other facilities than CEBAF, but the beam and detectors (VEPP-2, OLYMPUS) suffered from uncorrelated2753

systematic uncertainties in the relative e+/e− intensity calibration, either due to lower beam energies or smaller2754

acceptances. To this end, the addition of a positron beam to CEBAF, along with its unique large-acceptance2755

detectors already available or under development, will measure the lepton charge difference for all ϵ points at2756

once and at high Q2 where TPE is expected to be large, and will likely provide an unambiguous explanation of2757

the proton form factor discrepancy.2758

Nucleon Femtography with Positrons An exciting scientific frontier is the 3D exploration of nucleon (and2759

nuclear) structure, i.e, nucleon femtography. The cleanest reaction to access GPDs is DVCS: γ∗p → γp.2760

However, DVCS interferes with the Bethe-Heitler (BH) process, where the lepton scatters elastically off the2761

nucleon and emits a high energy photon before or after the interaction. The cleanest way to separate the2762

DVCS and BH amplitudes is to compare electron and positron scattering, as the BH amplitude is lepton-charge2763

even while the DVCS amplitude is lepton-charge odd. This method will isolate not only the DVCS amplitude2764

contribution to the cross section, but also the interference term between DVCS and BH amplitudes, with the latter2765

providing direct linear access to DVCS at the amplitude level. In short, the use of both positron and electron2766

beams provides direct access to the nucleon structure carried in the DVCS amplitude and indisputable access to2767

the square of the DVCS amplitude, representing a true qualitative shift in the 3D imaging of nucleons and nuclei.2768

Positron beams at JLab The challenging creation of positrons with a high degree of polarization at JLab relies2769

on its unique source of polarized γ rays produced by Bremsstrahlung radiation from CEBAF’s polarized electron2770

beams [1330]. Within this framework, a polarized-electron driven positron injector is currently being designed2771

and evaluated [1331]. The polarizied electron source needed for such approach is in the range of > 1 mA. While2772

not routine, such capacity has been demonstrated [1332] and is assumed. Additionally, the approach now focuses2773

on utilizing the Low Energy Research Facility (LERF, formerly known as the Free-Electron Laser or FEL) as2774

the site for the new positron beam source. The LERF includes significant existing facilities (cryogenics, low2775

conductivity water, shielding, electronics bays, radio-frequency penetrations, control room) and can provide2776

up to 3 superconducting radio-frequency (SRF) cryomodules to support the e− drive beam and e+ acceleration.2777

The selected positron bunch train passes a momentum selection chicane prior to entering a SRF cryomodule for2778

acceleration up to 123 MeV and a bunch compression chicane to match CEBAF acceptance. Once the 123 MeV2779

e+ beam is produced, it is then a matter of transporting it to CEBAF for acceleration. This can be achieved by a2780

new connector tunnel from the LERF exit to the lower elevation of the CEBAF enclosure, which will allow the2781

123 MeV e+ beam to be injected at the usual point in front of the north linac for multi-pass acceleration and2782

beam extraction to any of the four Halls at any of the passes, see Fig. 44. Additionally, the intention is for all2783

of the CEBAF electro-magnets to have a capability for polarity reversal on the scale of a day, for experiments2784
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which required both e+ and e− pair-created beams from the LERF source. Given the promise of this approach,2785

JLab is continuing expanded follow-on studies of a future positron beam source and its acceleration for CEBAF.2786

Figure 44: A new tunnel and beam line (shown raised) connects the LERF to CEBAF and transports the 123 MeV
e+ beam for injection and acceleration into CEBAF 12 GeV.

Future opportunties with energy doubling of CEBAF Recently, the Cornell Brookhaven Electron Test2787

Accelerator (CBETA) facility has demonstrated eight-pass recirculation of an electron beam with energy2788

recovery [1333]. All eight beams – four accelerating passes and four decelerating passes – are recirculated2789

by single arcs of fixed field alternating gradient (FFA) magnets. This exciting new technology carries the2790

potential to enable a cost-effective method to double the energy of CEBAF, allowing wider kinematic reach for2791

nucleon femtography studies. Furthermore, it will enable new scientific opportunities that include: (1) first-time2792

production of various X and Z states in photon(lepton)-hadron collisions; (2) precision studies of near-threshold2793

production of higher mass charmonium states χc and ψ′; (3) precision measurements of the radiative decay2794

width and transition form factor of π0 off an electron for the first time, offering a stringent test of low-energy2795

QCD. Ongoing, further investigations and simulations will strengthen the science opportunities introduced2796

here. Meanwhile, technical studies of the implementation of FFA technology at CEBAF are in progress and are2797

described in more detail below.2798

CEBAF Energy “Doubling” – Accelerator Concept The recent success of the CBETA project demonstrated the2799

possibility to extend the energy reach of CEBAF up to 22 GeV within the existing tunnel footprint. Such an2800

increase can be achieved by increasing the number of recirculations through the accelerating cavities, and by2801

replacing the highest-energy arcs with FFA arcs, see Fig. 45. The new pair of arcs configured with an FFA lattice2802

would support simultaneous transport of 6 beam passes with energies spanning a factor of two, each beam pass2803

with very small transverse orbit offsets due to the small dispersion function.2804

Transporting high energy beams (10-22 GeV) while staying within the CEBAF footprint calls for special2805

mitigation of synchrotron radiation effects. One of them is to increase the bend radius at the arc dipoles to2806

suppress adverse effects of the synchrotron radiation on beam quality, including dilution of the transverse and2807

longitudinal emittance due to quantum excitations. Further recirculation beyond 22 GeV is limited by large2808

energy loss due to synchrotron radiation, which depends on energy to the fourth power. Therefore, using FFA to2809

double CEBAF energy will finally be pushing its energy to a limit set by its footprint.2810

Connection to accelerator physics Both positron beams and energy doubling will contribute to accelerator2811

physics development, and connect to possible future needs of the EIC and other high energy physics (HEP) and2812

NP facilities which will rely on beam recirculation (e.g. LHeC) or FFA technology. Developments of these two2813

CEBAF upgrades will help to maintain and enhance US leadership in accelerator science and technology.2814
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Figure 45: Sketch of the CEBAF accelerator with the two highest energy arcs, Arc 9 and Arc A, replaced with a
pair of FFA arcs (green). Figure from [1281].

3.4 Future QCD Studies at Other Facilities2815

Drell-Yan at Fermilab fixed target The SpinQuest experiment will investigate whether the sea quarks are2816

orbiting around the center of the nucleon by measuring the Sivers asymmetry with the use of a solid-state target of2817

polarized protons and deuterons. This measurement provides information on the correlation between the angular2818

distribution of the dimuons in the Drell-Yan process and the nucleon spin at high xB with a virtuality of Q2 ∼ 102819

GeV2. The observation of a nonzero Sivers Asymmetry would be a strong indication of non-zero sea quark2820

orbital angular momentum. The SpinQuest experiment can also probe the sea quark transversity distribution.2821

Additionally, a proposal has been submitted to upgrade SpinQuest with a specialized RF-modulated target that2822

can be used to separate tensor from vector polarized observables of the deuteron, providing access to additional2823

sea quark and gluon transversity TMDs. The gluon transversity TMD only exists for targets of spin greater or2824

equal to 1 and does not mix with quark distributions at leading twist, thereby providing a particularly clean probe2825

of gluonic degrees of freedom.2826

HIGS The High Intensity Gamma-Ray Source (HIGS), operated by the Triangle Universities Nuclear Laboratory,2827

is capable of providing nearly mono-energetic, polarized gamma-ray beams with energies ranging from 1 to2828

120 MeV. HIGS is the highest flux Compton gamma-ray source ever built and operated. The gamma-ray beam2829

flux delivered to experiments at 100 MeV is approximately 1 × 107γ/s. The Compton-scattering program at2830

HIGS, which is carried out by research groups from 13 institutions, is mapping out the energy dependence2831

of the dynamical scalar electromagnetic polarizabilities of the neutron over photon beam energies from 60 to2832

120 MeV and extending proton measurements from about 100 to 120 MeV. Free-Electron Laser cavity mirror2833

R&D is underway to increase the maximum gamma-ray beam energy at HIGS from 120 to 150 MeV to enable2834

measurements up to the pion production threshold where the electric dipole polarizability of the nucleon is2835

largest. The work by the HIGS Compton Scattering Collaboration will illuminate differences in the neutron and2836

proton scalar polarizabilities, providing stringent tests of chiral effective theories and a new prediction of the2837

electromagnetic contribution of the proton-neutron mass difference [1334]. A program to develop cryogenic2838

polarized target capability at HIGS will enable measurements of spin-dependent nucleon polarizabilities at2839

photon beam energies below the photo-pion production threshold. The Compton-scattering data from HIGS are2840

complementary in both energy and technique to the data measured by the A2 Collaboration at MAMI.2841

MUSE2842

The Muon Scattering Experiment (MUSE) at the PiM1 beam line of the Paul Scherrer Institute (PSI) measures2843
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scattering of a mixed beam of electrons, muons, and pions from a liquid hydrogen cryotarget [1335, 1336]. The2844

experiment was initially motivated by the proton radius puzzle, and PSI was chosen for its unique capability to2845

provide simultaneous low energy electron and muon beams. MUSE features a large-solid-angle, non-magnetic2846

detector and cryogenic target system, and will test lepton universality through the comparison of cross sections,2847

form factors, and proton radii extracted from electron and muon scattering. Beams of both positive and2848

negative polarity leptons will determine two-photon exchange corrections, testing predictions. A forward-angle2849

calorimeter tests initial-state radiative corrections. The background pions in the beam allow determination of π-N2850

cross sections of interest to low-energy effective field theories used in the strong QCD regime. The simultaneous2851

measurement of electron and muon scattering, and the measurement of both charge states in the same experiment2852

suppresses many systematic uncertainties. MUSE will be the first experiment to provide elastic muon scattering2853

of sufficient precision to address the puzzle.2854

MESA The University of Mainz is currently constructing a new electron accelerator (MESA). In 2024, an2855

electron beam is expected to be generated with MESA for the first time. It will offer ideal conditions in2856

which scientists will be able to explore the limits of Standard Model physics. Several key experiments are2857

currently under development. Among them, MAGIX is a multi-purpose spectrometer which allows the precise2858

measurement of proton form factors at the lowest impulse transfer rates. This will contribute decisively to the2859

clarification of the existing contradictions in the experimental determination of the proton radius (the so-called2860

proton radius puzzle) and to dark matter searches.2861

ULQ2 is a new high-resolution spectrometer facility for low-energy electron scattering at the Research Center2862

for Electron Photon Science (ELPH) at Tohoku University in Sendai, Japan. The facility has been constructed2863

and commissioned from 2017-2022 and will provide precision measurements of the proton elastic form factors2864

at very low momentum transfer, the proton charge, magnetic, and Zemach radii, and of low-energy nuclear2865

structure.2866

J-PARC The Japan Proton Accelerator Research Complex, J-PARC, is Japan’s leading accelerator facility, which2867

has cascaded proton accelerators including the 400-MeV linear accelerator, the 3-GeV rapid cycling synchrotron2868

(RCS) and the main ring operated at 30 GeV. There are experimental facilities such as the Materials and Life2869

Science Facility at RCS, and the Neutrino Facility and the Hadron Experimental Facility both at the main ring. In2870

addition to applied physics research, there are two major basic research activities: (1) Neutrino Facility Neutrino2871

as well as anti-neutrino beams produced at J-PARC are sent to the Super-Kamiokande located about 295 km west2872

of J-PARC. The research topics at the Neutrino Facility include QCD-related physics such as neutrino-nucleus2873

interactions. (2) The Hadron Experimental Facility is a unique experimental complex which utilizes the2874

secondary beams to perform precision measurements on hyper-nuclear spectroscopy, hyperon-nucleon scattering,2875

and kaonic nuclei, to name a few. Major physics interests of these programs are hadron interactions, including2876

hyperon-nucleon interactions, hyperon-hyperon interactions, and kaon-nucleon interactions. Upgrades to this2877

experiment, which could measure proton generalized parton distributions and pion distribution amplitudes, are2878

also being discussed.2879

FAIR FAIR is a European flagship facility [1243, 1244]. This worldwide unique accelerator and experimental2880

facility will conduct unprecedented forefront research in physics and applied sciences on both a microscopic2881

and a cosmic scale. While the center of mass energies of heavy-ion beams (
√

sNN = 2.9 − 4.9 GeV) are2882

designed for the CBM experiment, the 1.5 − 15 GeV/c momentum beam of anti-protons will be generated and2883

collected in the high energy storage ring before being sent to the experiment PANDA. There are three major2884

experiments in FAIR designed for fundamental research: (1) The NUSTAR experiment is designed together2885

with the Super-FRS and storage cooler rings, and will allow discovery measurements in nuclear structure and2886

nuclear astrophysics; (2) The CBM experiment is a high-energy nuclear collision experiment with high rate2887

capabilities for determining the location of the QCD critical point, the first-order phase boundary, the equation2888

of state of nuclear matter at high baryon density and the hypernuclear interactions pertinent to the inner structure2889

of compact stars; (3) The PANDA experiment, designed at the antiproton storage cooler ring HESR, will provide2890
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a unique research environment for an extensive program in hadron spectroscopy, hadron structure and hadronic2891

interactions. In particular, the studies of hadron structure in the relatively large−x region complement the2892

structure measurement at small-x at the EIC in the coming decades.2893

BELLE II High luminosity e+e− experiments always played an important and complementary role in the study2894

of QCD, alongside nucleon scattering experiments. While in the latter a spacelike gauge boson is exchanged2895

and the nucleon is used as a QCD laboratory, at e+e− machines, the complementary timelike process can be2896

used to study quarks traversing the vacuum and their subsequent hadronization with a precision that cannot be2897

reached in hadronic scattering experiments. Belle II [1337] is taking data at SuperKEKB, a second generation2898

B-factory delivering world record luminosities. Over the next decade, Belle II plans to collect 50 ab−1 integrated2899

luminosity, about a factor 50 more than Belle. The large Belle II dataset will enable the precise determination2900

of complex correlations in the hadronization process, which are necessary for a detailed mapping of the QCD2901

dynamics at play. Therefore, support for a robust QCD program at Belle II is essential to make progress in our2902

description of hadronization and precision tests of QCD in hadronization at the pace necessary to analyze data2903

from current and future SIDIS and hadronic scattering programs at JLab, the EIC, and the LHC. Recently, the2904

community formulated a broad and widely supported program which is documented in a recent whitepaper [1338].2905

Relevant topics include the spin-orbit correlation in hadronization, measurement of polarized and unpolarized2906

fragmentation functions, hadronization effects in jets, precision tests of perturbative QCD calculations in jet2907

and event shape measurements, and constraining the value of αs. A focus of the program is on the modeling2908

of hadronization in (polarized) Monte Carlo event generators. Belle II data in conjunction with LEP data will2909

provide the necessary information to test the energy dependence of these models needed for the EIC or the LHC.2910

AMBER In the context of the physics-beyond-colliders (PBC) initiative at CERN, the COMPASS++/AMBER2911

(proto-) collaboration proposes to establish a “New QCD facility at the M2 beam line of the CERN SPS" [1339].2912

The proposed measurements cover a wide range of Q2: from lowest values of Q2, where it is planned to measure2913

the proton charge radius by elastic muon-proton scattering, to intermediate Q2 to study the spectroscopy of2914

mesons and baryons by using dedicated meson beams, to high Q2 to study the structure of mesons and baryons2915

via the Drell-Yan process. The whole project is intended to run over the next 10 to 15 years. AMBER will play a2916

crucial role as it can uniquely provide pion (kaon) Drell-Yan measurements in the center-of-mass energy region2917

10− 20 GeV. These measurements are essential for a global effort aimed at pion structure function measurements2918

(also providing a handle on determination of the so-called “pion flux" for EIC Sullivan process measurements)2919

and kaon structure function data map.2920

4 Electron-Ion Collider2921

The scientific foundation for the EIC has been built for over two decades. Throughout, the EIC initiative2922

was driven by maintaining U.S. leadership in both nuclear science and accelerator physics. These dual goals2923

were clear from the outset, starting with the 2002 NSAC LRP [1340] where “R&D over the next three years to2924

address EIC design issues" was placed at high priority. Support from the community continued with the 20072925

LRP [1341], which recommended “the allocation of resources to develop accelerator and detector technology2926

necessary to lay the foundation for a polarized Electron-Ion Collider" and culminated in the 2015 plan, where the2927

EIC was identified as the “highest priority for new facility construction following the completion of FRIB" [2].2928

During this period the science case underpinning these recommendations was continually developed and2929

documented by the growing EIC community, as illustrated in Fig. 46. A series of workshops hosted by the2930

Institute for Nuclear Theory laid the foundation for a White Paper titled "Understanding the glue that binds2931

us all" [1344]. The studies developed for the EIC White Paper [1344], combined with continued progress in2932

accelerator R&D, served as input to a critical review in 2018 by the NAS. Their final report, An Assessment of2933

the U.S. Based Electron-Ion Collider Science, concluded that “the EIC science is compelling, fundamental, and2934

timely." [1345].2935

Below we will summarize the flagship components of the EIC science case, consisting of understanding2936
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Figure 46: A chronological display of the publications that document the development of the EIC science case.
From left to right: The 2002 [1340] and 2007 [1341] LRPs, a 2009 report of the EIC Working Group [1342], a
report on the joint 2010 BNL/INT/JLab program on EIC [1343], the 2012 EIC White Paper [1344], the 2013
NSAC Subcommitte Report on Scientific Facilities, the 2015 LRP [2], and the NAS report [1345]. Figure
from [1346].

the origin of the proton spin and mass, proton tomography, gluon saturation, cold nuclear phenomena, and2937

fundamental symmetries. We will also briefly discuss the EIC project detector that will be built at the 6 o’clock2938

interaction region by the ePICcollaboration, along with the plans for a second, complementary detector to be2939

constructed at the 8 o’clock region.2940

4.1 The EIC Science2941

Decades of scattering experiments and their theoretical interpretation have produced an intriguing picture of2942

the proton and neutron. These particles are held inside the atomic nucleus by the strong force, the same force that2943

generates the dynamic landscape of quarks and gluons that form the substructure of the nucleon. Some quantum2944

numbers of the nucleon, like its electric charge, are easily reproduced by simply summing the properties of the2945

three valence quarks. Yet, the quarks contribute only a third of the total nucleon spin and an even smaller fraction2946

of the total mass. Clearly, many of the fundamental properties of the nucleon must emerge from the gluons, the2947

carriers of the strong force that confine the quarks inside the nucleon, and from the copious qq̄ pairs that form2948

the quark sea. Our interest goes beyond reconstructing the fundamental properties of the parent nucleon: our2949

ultimate goal is understanding the dynamics of the dense partonic environment found in nucleons and nuclei. The2950

EIC will be an amazingly versatile machine that will allow experiments to map out the spatial and momentum2951

distributions for quarks and gluons, study how the gluon density evolves with the resolution of the electron probe2952

and with the momentum fraction x carried by the interacting gluon, and observe how transitions from partonic to2953

hadronic degrees of freedom are modified in increasingly dense nuclear matter. These key science questions2954

(and more!) can be summarized by the following lines of inquiry:2955

• How do the nucleonic properties such as mass and spin emerge from partons and their underlying2956

interactions?2957

• How are partons inside the nucleon distributed in both momentum and position space?2958
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• What happens to the gluon density in nucleons and nuclei at small x? Does it saturate at high energy,2959

giving rise to gluonic matter with universal properties in all nuclei (and perhaps even in nucleons)?2960

• How do color-charged quarks and gluons, and jets, interact with a nuclear medium? How do confined2961

hadronic states emerge from these quarks and gluons? How do the quark-gluon interactions generate2962

nuclear binding?2963

• Do signals from beyond-the-standard-model physics manifest in electron-proton/ion collisions? If so,2964

what can we learn about the nature of these new particles and forces?2965
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Figure 47: Left: Impact of the projected EIC pseudodata on the spin decomposition of the proton based on the
most recent version of the DSSV14 parametrization [531, 1347, 1348]; Right: EIC impact on the g1 structure
function based on parameterizations with or without the theory-inspired small-x extrapolation [1349] (see text).

In the following, we will highlight the impacts that the EIC will bring to the above fundamental questions of2966

hadron structure and strong interaction physics.2967

Proton spin Nucleon spin has played a central role in driving hadron physics for over three decades. The EIC2968

will have unprecedented impact on our understanding of this physics. With the unique coverage in both x and Q2
2969

(for polarized DIS), along with very high luminosity, the EIC will provide the most powerful constraints on the2970

quark and gluon helicity contributions to the proton spin yet. The left panel of Fig. 47 depicts the contributions of2971

the large-x (x ∈ [10−3, 1]) quark and gluon helicities (subtracted out of the proton spin of 1/2) on the horizontal2972

axis and of the small-x (x ∈ [10−6, 10−3]) quark and gluon helicities on the vertical axis, along with the possible2973

lines corresponding to different values of the OAM (L) carried by the partons. The EIC data will significantly2974

shrink the error bars of the quark and gluon helicities. The precision of the polarized structure functions (and2975

parton helicity distributions) may be further improved by implementing the theoretical predictions for their2976

behavior at small-x [1350–1355], as shown in the right panel of Fig. 47 which compares the (more conventional)2977

DGLAP-based predictions for the proton g1 structure function [1347] (in blue) to those based on the small-x2978

evolution [1349] (in red). Apart from the total quark helicity contribution to the proton spin, the sea quark2979

polarization will be determined to higher precision through semi-inclusive hadron production in DIS. In addition,2980

a systematic investigation of various hard exclusive processes will provide information on the partonic orbital2981

angular momentum contributions to the proton spin [1356, 1357].2982

Nucleon tomography and the origin of mass The EIC will significantly extend our knowledge of the distribution2983

of quarks and gluons in nucleons and nuclei, both in position and momentum space. Examples of processes2984

that can provide information beyond the original 1D Feynman parton picture are illustrated in Fig. 48. On one2985
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Figure 48: Upper panel: Illustration of the two types of processes that occur in lepton-nucleus collisions: a
semi-inclusive process where a hadron, hadron pair, jet or dijet is measured and the remnant nucleus is destroyed
(left) and an exclusive process where the nucleus remains intact (right). Lower panel: Tomographic images
in slices of x for the quarks and gluons in a nucleus: (transverse) spatial tomography in bT-space provided by
exclusive processes (left); (transverse) momentum tomography in kT-space provided by semi-inclusive processes
(right). Figure from [1346].

hand, in elastic processes (see the right side of the upper panel in Fig. 48), detecting the full final state of the2986

proton beam provides information about the transverse position of the partons – quarks and gluons – that reside2987

inside nucleons and nuclei. On the other hand, using a related class of inelastic observables gathered from data2988

where the scattered electron is measured in tandem with an electro-produced hadron, or a jet, or a pair of hadrons2989

(see the left side of the upper panel in Fig. 48), the EIC will also measure the transverse motion of partons.2990

These measurements will enable parton tomography, a series of 2D images of the nucleon, both in transverse2991

position and momentum space. This is illustrated in the lower panel of Fig. 48, with such snapshots stacked2992

along the Bjorken-x direction. Starting at large x, in the domain of valence quarks, and proceeding toward lower2993

x, the regime of sea quarks and gluons, these images will reveal where quarks and gluons are located and how2994

their momenta are distributed in the transverse plane. The full richness of transverse momentum information is2995

explored when transverse polarization (with the proton spin direction orthogonal to the direction of motion) is2996

added. In this case, orbital motion leads to correlations between spin and transverse momentum, generating an2997

asymmetric transverse momentum distribution, such that the parton tomography provides a series of images of2998

transverse momentum distributions that are fully 2+1-dimensional.2999

The tomographic techniques will provide insight into the origin of the proton mass. Studying the processes3000

of elastic J/ψ and Υ production near threshold at the EIC, we will be able to extract the gravitational form factors3001

which shed light on the amount of the proton mass carried by the QCD trace anomaly contribution. The EIC will3002

provide a unique opportunity to better measure the gravitational form factors by providing a lever arm in Q2 for3003
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J/ψ or (heavier) Υ elastic production processes. Understanding the origin of the proton mass is an important and3004

fundamental question, related to our understanding of the origin of mass in the visible universe.3005
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Figure 49: Left: Schematic illustration of the probe resolution, Q2, versus x, indicating regions of non-
perturbative (band at the bottom) and perturbative QCD (everything above the non-perturbative region), including
in the latter, low to high saturated parton density, and the transition region between them [1344]. The saturation
region is shown in yellow. Right: A saturation model prediction of the hadron-hadron correlation function C(∆ϕ)
to be measured in e+p and e+A collisions at EIC plotted as a function of the azimuthal angle ∆ϕ: the away
side peak at ∆ϕ = π decreases as one goes from e+p to e+A due to the increase in the saturation scale with A.
The ranges of transverse momenta (pT ) and longitudinal momentum fractions (zh) of the trigger and associated
hadrons are specified on the plot. Figure from [1346].

Gluon dynamics in a dense medium The gluon and sea quark PDFs in the proton grow rapidly with decreasing3006

Bjorken-x. The dynamical mechanism responsible for this growth is the splitting of gluons into pairs of gluons3007

or quark antiquark pairs and the splitting of quarks into quarks and gluons [1358–1362]. The large number of3008

gluons and sea quarks at low x confined to the transverse area of the proton results in a high parton density. But3009

will high density keep increasing as we probe lower and lower values of x? Would the physics change in the3010

high density regime? As was originally conjectured in [886], the growth of the gluon density should saturate3011

at some small value of x, leading to the novel regime of gluon saturation (see [890, 891, 898, 1363–1366] for3012

reviews). The new dynamics in the saturation regime are due to gluon mergers: the mergers compensate for the3013

splittings, leading to saturation of the gluon density. The transition from the splittings-dominated regime to the3014

saturation regime is described by the nonlinear small-x evolution equations [892, 896, 897, 1367–1373], which3015

are a manifestation of the nonlinear nature of QCD.3016

A key feature of gluon saturation is the emergence of a momentum scale Qs, known as the saturation3017

scale. The scale is predicted by the nonlinear evolution equations [892, 896, 897, 1367–1373] and designates a3018

transition from the low-density regime (Q > Qs) to the high-density saturated regime (Q < Qs) as indicated in3019

the left panel of Fig. 49. The saturation scale grows with decreasing x, Q2
s ∼ 1/x0.3. When this scale significantly3020

exceeds the QCD confinement scale ΛQCD, the dynamics of strongly correlated gluons can be described by3021

weak coupling QCD methods. The framework that enables such computations is the CGC effective field theory3022

[890, 891, 898, 1363–1366], see, Sec. 3.1.2. It is expected that the saturation phenomenon grows with the3023

nuclear mass number A, Q2
s ∝ A1/3 [888, 889, 1374, 1375]; thus, the novel domain of saturated gluon fields3024

can be accessed especially well in large nuclei. Unambiguously establishing this novel domain of QCD and its3025

detailed study is one of the most critical goals of the EIC.3026

Multiple experimental signatures of saturation have been discussed in the literature [1344]. The EIC3027

program follows a multi-pronged approach taking advantage of the versatility of the EIC facility. Day-one3028
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measurements include the proton and nuclear structure functions F2 and FL, which are sensitive to saturation3029

physics. One of the other key signatures concerns the suppression of di-hadron angular correlations in the3030

process e + Au→ e′ + h1 + h2 + X. The angle between the two hadrons h1 and h2 in the azimuthal plane, ∆ϕ, is3031

sensitive to the transverse momentum of gluons and their self-interaction: the mechanism that leads to saturation.3032

The experimental signature of saturation is a progressive suppression of the away-side (∆ϕ = π) correlations of3033

hadrons with increasing atomic number A at a fixed value of x, as demonstrated in the right panel of Fig. 49.3034

Diffraction and diffractive particle production in e+A scattering is another promising avenue to establish the3035

existence of saturation and to study the underlying dynamics. Diffraction entails the exchange of a color-neutral3036

object between the virtual photon and the proton remnant. As a consequence, there is a rapidity gap between the3037

scattered target and the diffractively produced system. At HERA, these types of diffractive events made up a3038

large fraction of the total e+p cross section (10–15%). Saturation models predict that at the EIC, more than 20%3039

of the cross section will be diffractive. In simplified terms (and at leading order), since diffractive cross sections3040

are proportional to the square of the nuclear gluon distribution, σ ∝ [g(x,Q2)]2, they are very sensitive to the3041

onset of non-linear dynamics in QCD. An early measurement of coherent diffraction in e+A collisions at the EIC3042

would provide the first unambiguous evidence of gluon saturation. Further studies at small x that can provide3043

insight into the spatial and momentum distribution of gluons include coherent and incoherent diffractive vector3044

meson production, deeply virtual Compton scattering (and their dependence on azimuthal angle between the3045

produced particle and the electron plane), as well as inclusive and exclusive dijet production [898]. In particular,3046

access to the gluon Wigner distribution is possible using diffractive dijets [337, 899].3047

Nuclear modifications of parton distributions High energy electron-nucleus collisions at the EIC will enable3048

measurements of nuclear modification of the parton distribution functions over a broad and continuous range3049

in x and Q2. This will lead to the study of the PDF differences between the bound and unbound nucleons3050

with unprecedented precision. These differences are often quantified via the ratios of the nuclear PDF to the3051

proton PDF divided by the nuclear mass number A. Nuclear modifications described by such ratio range3052

from suppression (below unity) in the so-called “shadowing" domain of small-x to enhancement in the “anti-3053

shadowing" (moderate-x) region and again to suppression in the “EMC" (large-x) regime, as illustrated in the3054

left panel of Fig. 50. For the most part, these modifications are only phenomenologically modeled.3055
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Figure 50: Left: The cross section ratioσγ
∗A/(Aσγ

∗p) measures the nuclear modification to the parton distribution
functions (figure from [316]). Right: Relative uncertainty bands for the gluon distributions in gold nuclei at
Q2 = 1.69 GeV2. The blue band is the original EPPS16* fit, the green band incorporates inclusive cross section
pseudodata and the orange band also adds the charm cross section σcharm (figure from [1346]).

Measurements of nuclear structure functions elucidate to what extent a nucleus could be described by a3056

collection of independent nucleons – a fundamental question about nuclear properties in QCD. The effect of3057

the EIC data on our knowledge of the nuclear gluon distribution function is shown in the right panel of Fig. 50,3058

where the relative uncertainties clearly shrink as one includes EIC pseudo-data. As can be seen, the EIC provides3059
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broad kinematic coverage, mapping the shadowing and anti-shadowing regimes, as well as part of the EMC3060

regime.3061

The EIC will also provide novel insights into the physics of SRC in nuclei [1376] and how they relate to the3062

mechanism by which QCD generates the nuclear force [1377], as well as into their possible connections to the3063

nPDF EMC effect. Using far-forward tagging techniques, the EIC will probe the structure of nucleons in varying3064

nuclear states, thereby disentangling the impact of the strong nuclear interaction on the bound nucleon structure.3065

Such ’spectator tagging’ techniques can be applied in conjunction with all reactions that are sensitive to nucleon3066

structure, from inclusive DIS, to SIDIS to DVCS/DVMP, and can thus provide unprecedented insight into the3067

impact of strong nuclear interactions and the dense nucleon medium on the structure of bound nucleons. This3068

has been demonstrated in numeric simulations for the deuteron [1377, 1378] and 3He [1379]. This extension of3069

the free-nucleon structure program to bound nucleons via spectator tagging techniques is a novel frontier. It3070

requires performing high-precision measurements over a wide kinematic phase space [1380–1384].3071
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Figure 51: Ratio of relative particle production (Nh/Nincl) in e+A over that in e+p as a function of z, the
momentum fraction of the parton carried by the respective hadron. Light pions (left) show the largest nuclear
suppression at the EIC. However, heavy flavor meson ratios (right) have to be measured to differentiate models
of hadronization since they show a substantially different modification in e+A. (Figure is from [1385].)

Hard probes in cold nuclei The EIC will make substantial progress in our understanding of hadron formation,3072

including inside nuclear matter. Especially, studying hadronization for light and heavy quarks in cold nuclear3073

matter can unravel some of the mysteries surrounding energy loss in a quark-gluon plasma [1185]. At the EIC,3074

the large Q2 range will permit measurements in the perturbative regime with enough leverage to determine3075

nuclear modifications of the fragmentation functions. The high luminosity will permit the multidimensional3076

binning necessary for separating the many competing mechanisms. The large photon energy (in the nucleon3077

rest frame), ν ≈ 10 − 1000 GeV, will isolate in-medium parton propagation effects (large ν), and to cleanly3078

extract color neutralization and hadron formation times (small ν). Studies of particle production for identified3079

hadron species are required to accomplish these goals (see Fig. 51). The present phenomenological description3080

of in-medium fragmentation describes the observed attenuation of light hadron production through modification3081

of splitting functions in the presence of nuclear matter. Jet substructure studies at the EIC will provide direct3082

experimental input for constraining the evolution of splitting functions in nuclear matter.3083

Fundamental symmetry physics The high luminosity, polarized lepton and polarized hadron beams, and3084

kinematic coverage provided by the ePIC detector afford unique opportunities for a variety of electroweak (EW)3085

and beyond-the-standard model (BSM) physics topics. Among them, precision measurements of parity violating3086

asymmetries over a wide range of x and Q2, when combined with knowledge of the PDF, can determine the value3087

of the weak mixing angle sin2 θW at an energy scale between fixed-target and high-energy collider facilities, and3088
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help narrow down the mass range of possible dark Z bosons (Zd). Additionally, such PVES asymmetries provide3089

nearly orthogonal constraints to Drell-Yan processes measured at the LHC, on new contact interactions when3090

analyzed in the framework of the Standard Model Effective Field Theory (SMEFT). The availability of polarized3091

hadron beams at the EIC will measure new electroweak structure functions, the gγZ
1,5, for the first time. Second,3092

lepton flavor violation observed in neutrino oscillations implies a similar violation in the charged lepton sector,3093

charged lepton flavor violation (CLFV). While CLFV due to Standard Model processes are too suppressed to3094

be observed by current or planned experiments, many BSM scenarios predict much higher rates that could be3095

detected by the EIC. In particular, electron-to-tau conversion (e + p→ τ + X), mediated by leptoquarks, is one3096

of the most promising CLFV channels to be studied at the EIC because of its higher luminosity and the exquisite3097

vertex resolution provided by the ePIC detector. Such limits would potentially surpass limits set by the HERA3098

experiments and would be sensitive to the difference between scalar and vector leptoquarks. Another opportunity3099

in e − τ CLFV is via a possible e + A → τ + A + a process, where A is a high-Z ion and a is an Axion-Like3100

Particle (ALP) [1386]. The polarized beams at the EIC will provide a unique sensitivity to parity violating ALPs.3101

Lastly, by measuring the charge-current DIS cross section at different electron beam polarizations, it is possible3102

to set constraints on right-handed W bosons and thus test the chiral structure of the Standard Model.3103

4.2 The EIC Facility3104

The EIC will be a new, innovative, large-scale particle accelerator facility capable of colliding high energy3105

beams of polarized electrons with heavy ions and polarized protons and light ions. It is a joint endeavor between3106

BNL and JLab that will be built on the current site of RHIC. In December 2019, the EIC was launched as an3107

official project of the US government when it was granted Critical Decision Zero (CD-0). Soon after, in June3108

of 2021, the project was awarded CD1 status. Beam operation is currently expected to commence in the early3109

2030s.3110

Shown schematically in Fig. 52, the EIC will collide bright, intense counter-circulating beams of electrons3111

and ions at two possible interactions regions, the Interaction Point (IP) 6 and IP8, at 6 and 8 o’clock position3112

in Fig. 52, respectively. The DOE has committed to building a general-purpose, large acceptance detector that3113

is capable of addressing the science case outlined in the NAS report [1345]. In 2020 the EIC Users Group3114

launched a year-long effort to explore possible detector technologies and codify the detector requirements needed3115

to address the NAS science case. The results of this study have been collected and published as the EIC Yellow3116

Report [717]. With the detector requirements defined, BNL and JLab extended a call to the community in March3117

of 2021 for Collaboration Proposals for the reference detector. A Detector Proposal Advisory Panel (DPAP),3118

an international committee of detector experts and theorists, was assembled to review the proposals submitted3119

by the ATHENA, CORE and ECCE proto-collaborations. The outcome of that competitive review process is3120

the ePIC collaboration, which is in the process of finalizing the technology choices and detector designs for3121

the detector at IP6, starting from and extending the ECCE proposal as its reference design. Details about the3122

current ePIC detector design and plans for the second detector at IP8 will be discussed in Sections 4.3 and 4.4,3123

respectively.3124

The EIC is being designed to cover a center-of-mass energy range for e+p collisions of 28 GeV ≤3125
√

s ≤ 140 GeV, which in turn allows for a broad kinematic reach in x and Q2 as shown in Fig. 53. The3126

diagonal lines in each plot represent lines of constant inelasticity y, which is the ratio of the virtual photon energy3127

to the electron energy in the target rest frame. The quantities x, y, and Q2 are obtained from measurements of3128

energies and angles of final state objects, i.e., the scattered electron, the hadronic final state or a combination3129

of both. The left panel in Fig. 53 shows the kinematic coverage for e+p collisions while the right panel shows3130

the coverage for e+A collisions. The EIC will open doors for precision measurement with polarized beams to3131

entirely new regions in both x and Q2 while providing critical overlap with present and past experiments. Access3132

to the low-x region is particularly important as this is the gluon-dominated regime where saturation effects are3133

expected to emerge.3134
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Figure 52: Planned EIC accelerator. Figure from [1346].

In order to address the crucial scientific questions
discussed in the previous sections, the EIC must
provide:

• Highly polarized electron (∼70%) and proton
(∼70%) beams;
• Ion beams from deuterons to heavy nuclei

such as gold, lead, or uranium;
• Variable e+p center-of-mass energies from

28−100 GeV, upgradable to 28−140 GeV;
• High collision electron-nucleon luminosity

1033−1034 cm−2 s−1;
• The possibility of more than one interaction

region.
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Figure 53: Left: The x-Q2 range covered by the EIC (yellow) in comparison with past and existing polarized
e/µ+p experiments at CERN, DESY, JLab and SLAC, and p+p experiments at RHIC. Right: The x-Q2 range for
e+A collisions for ions heavier than iron (yellow) compared to existing world data. Figure from [1346].

The accelerator The EIC must collide electrons with protons and other atomic nuclei (ions) over a range of3135

energies. There must be enough collisions for the experiment to gather adequate data to elucidate or settle the3136

known physics questions, and other questions that may emerge, in a reasonable time. A collider’s ability to3137

88



squeeze many particles of two beams into a tiny volume where they collide defines its luminosity. The luminosity3138

ultimately required of the EIC is comparable to those of the highest performing colliders built to date, such as3139

the LHC at CERN and the B-meson factories at SLAC and KEK. Furthermore, given the crucial role of spin,3140

there must be the capability to polarize both the electron and the proton, neutron or light beams. That is to say,3141

the spins of the individual particles in each beam must be made to line up with each other, overcoming their3142

natural tendency toward randomization.3143

To achieve these goals, a host of techniques in accelerator physics and technology must be brought to bear.3144

Only a few are mentioned here. State-of-the-art SRF cavities will accelerate high-intensity beams efficiently.3145

Further specialized RF "crab" cavities will rotate the beams as they collide to optimize their overlap. Elaborate3146

interaction region designs must squeeze two very different beams simultaneously into tiny spot sizes using3147

advanced superconducting magnet designs. The hadron beams must be compressed in volume by sophisticated3148

new “beam cooling” techniques that involve subtle interactions with ancillary electron beams. Polarized beams3149

require polarized particle sources, special magnets, and a further level of mastery of beam physics to preserve3150

the polarization through the acceleration process to the collisions. Polarized colliding stored beams have been3151

achieved before only at HERA (polarized positrons or electrons on unpolarized protons) and at RHIC (both3152

colliding proton beams polarized).3153

EIC accelerator requirements push the current technology and their realization requires significant research3154

and development. Indeed, an important element of the scientific justification for a U.S. electron-ion facility3155

is that it drives advances in accelerator science and technology, which in turn will benefit other fields of3156

accelerator-based science and society. The accelerator physics and technology advances required for an EIC will,3157

importantly, have the potential to extend the capabilities of many particle accelerators built for other purposes,3158

from medicine through materials science to elementary particle physics. Construction and future operations of an3159

EIC including an appropriate program of dedicated accelerator test experiments would sustain and develop this3160

precious national asset and help the United States to maintain a leading role in international accelerator-based3161

science.3162

4.3 The ePIC Detector3163

The ePIC detector is a state-of-the-art experimental instrument currently being designed and constructed by3164

a multi-institutional international collaboration including over 600 scientists. To enable the full EIC physics3165

program the ePIC detector needs to offer complete kinematic coverage for the detection of particles emitted in3166

central (|η| ≲ 3.7), far-forward (η ≳ 3.7) and far-backward (η ≲ −3.7) directions, where backward and forward3167

refers to the electron and hadron beam directions respectively and the forward acceptance is required to extend3168

down to 10σ of the beam width away from its central line. The detected particles should be identified and3169

their momentum measured with high precision, over an extensive energy range, ∼ 0.1 – 50 GeV [717]. These3170

requirements will ensure all major physics processes: neutral-current and charged-current DIS, SIDIS, and3171

exclusive processes, can be detected, including associated spectator nuclear fragments where relevant. Special3172

attention was also given to evaluating detector requirements for measurements of processes involving jets, jet3173

substructure, and heavy-flavor hadrons, such as precise vertex resolution, combined precision timing and position3174

measurement, and precision calorimetry.3175

Meeting these stringent requirements is a formidable task that is further challenged by the asymmetric3176

nature of EIC collisions and the need to have a non-zero crossing angle between the electron and hadron beams.3177

Therefore, the ePIC detector requires complete and detailed integration with the EIC interaction point and3178

accelerator beams, a major technical challenge that has been successfully addressed by the EIC community over3179

the last several years.3180

The current layout of the ePIC central detector is shown in Fig. 54. The central detector is based around3181

a 1.7 T superconducting solenoid with the same dimensions as the BaBar solenoid used by the sPHENIX3182

experiment. It is divided into a barrel region (|η| ≲ 1.5) and forward and backward endcaps (1.5 ≲ |η| ≲ 3.7).3183

All central detector regions follow an overall similar particle detection concept, starting from high-precision3184
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vertexing and tracking measurements, continuing with Cherenkov and TOF based PID measurements, followed3185

by electromagnetic and, finally, hadronic calorimetry. The tracking system will be based on a set of silicon

Figure 54: Schematic drawing of the ePIC central detector showcasing its high-precision vertexing and tracking
detectors, Cerenkov and TOF based PID detectors and electromagnetic and hadronic calorimeters. Figure
from [1346].

3186

detectors, using the ITS-2, ITS-3, and AC-LGAD technologies, supplemented by large radii MPGD detectors3187

using µRWELL and µMegas technologies. The Cerenkov-based PID uses a high-performance detector of3188

internally reflected Cherenkov light (DIRC) in the barrel, and a dual gas-aerogel RICH and an aerogel-based3189

RICH in the forward and backward endcaps respectively. TOF information for low-momentum PID will be3190

provided by AC-LGAD detectors in the barrel and forward endcap, providing both high-precision tracking3191

and timing information, and in the backward endcap by the LAPPD sensors that will be used to read out the3192

RICH detector. EM calorimetry will be based on PbWO4 crystals in the backward endcap, tungsten SciFi in3193

the forward endcap, and either scintillating-glass crystals or an imaging calorimeter in the barrel. hadronic3194

calorimetry in the barrel will be done by reusing the iron scintillator calorimeter recently built for the sPHENIX3195

experiment, and using a longitudinally segmented iron scintillator and tungsten scintillator sandwich in the3196

forward endcap. The need for a hadronic calorimeter in the backward region is still being investigated and at3197

present an un-instrumented iron scintillator sandwich calorimeter is planed to placed to return the field and allow3198

for a future addition of backward hadron calorimetry.3199

In addition to the detector suite for the primary interaction region, the ePIC detector design also includes the3200

far-forward and the far-backward spectrometers that provide beam monitoring, among other functions, that ensure3201

the EIC scientific program can be realized. The far-backward region includes a precision luminosity monitor3202

and two stations of low-Q2 taggers, while the far-forward region includes a ZDC, Roman pots, off-momentum3203

trackers, and a B0 tracker.These detectors use the beam steering magnets themselves as the spectrometer magnet,3204

making their design extremely complex and requiring close integration with the accelerator design.3205

In addition to the various detector components, a central and novel feature of ePIC is its ’triggerless’3206

readout, enabling continuously recording (streaming) and storing all interaction data for off-line analysis. The3207

development of such cutting edge readout system poses a significant challenge that requires the development of3208

advanced zero-suppression and fast hardware-enabled AI algorithms for effective background filtering.3209
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4.4 Detector II3210

A key deliverable of the EIC Project is an accelerator design that can accommodate a second interaction3211

region and detector. The scope of the EIC project includes one detector (the ePICdetector). At the same time, it3212

is recognized by all stakeholders that a second, complementary, detector is essential to fully exploit the science3213

potential of the EIC. Historically, projects of similar scientific impact and scope were designed to include two or3214

more complementary detectors and the importance of this model has been demonstrated time and again. Multiple3215

detectors will expand scientific opportunities, draw a more vivid and complete picture of the science, provide3216

independent confirmation for discovery measurements and mitigate potential risks when entering uncharted3217

territory, especially for systematics-limited measurements as the EIC expects to perform. Two detectors will3218

expand the opportunities for a new generation of scientists and encourage technological development and3219

innovation by fostering a natural and healthy competition between the two collaborations.3220

The timeline for establishing a second experiment at the EIC is crucial. The two experiments should be3221

separated by no more than a few years for scientific validation to be productive. In turn, this delayed time frame3222

can be used to explore new and complementary detector technologies that may not have been utilized by the3223

ePIC detector. The EIC community has emphasized the need for at least two detectors for many years and the3224

Detector Proposal Advisory Panel (DPAP) echoed this support stating in their report that “A strong case for two3225

complementary general-purpose detectors has been made during the panel review" and that “There is significant3226

support in the community and from the panel for a second general-purpose detector system to be installed in3227

IR8 when resources are available." The DPAP also concluded that that “it is essential to have two detectors3228

with a sufficient degree of complementarity in layout and detector technologies." In particular, the panel made a3229

convincing case for the significant gain in physics reach achievable with a secondary focus:3230

• increased acceptance in the invariant momentum transfer t of the scattered proton in e+p collisions, which3231

directly translates into an increased resolution power for imaging partons in the transverse plane;3232

• significantly improved abilities to detect nuclear breakup in exclusive and diffractive scattering on light3233

and heavy nuclei. The distinction between coherent and incoherent scattering is essential for the physics3234

interpretation of these processes;3235

• prospects for a program of low-background γ gamma spectroscopy with rare isotopes in the beam3236

fragments.3237

The panel further pointed out that “the additional R&D required for a second detector will bring additional3238

benefits in developing technologies and in training the associated workforce." The DOE Office of Nuclear3239

Physics has followed up on this and restarted a generic EIC-related detector R&D program. The EIC Users3240

Group is in the process of refining the science case for a second detector and is actively working to engage3241

additional national and international resources for this effort.3242

4.5 EIC-Theory Alliance3243

As described above, the EIC will be a unique and versatile facility that will enable us to understand some of3244

the most compelling questions in the physics of the strong nuclear force. To fully exploit the potential of the3245

EIC, a focused theory effort will be required. The need for such an effort was already pointed out in the NAS3246

report [1345]. The best way to achieve this goal is the creation of a national EIC Theory Alliance.3247

The goal of the EIC Theory Alliance is to provide support and stewardship of the theory effort in EIC3248

physics broadly defined for the life span of the facility. It will promote EIC theory and contribute to workforce3249

development through: i) support of graduate students, ii) EIC Theory Fellow positions, iii) bridge positions at3250

universities, and iv) short and long term visitor programs to enhance collaboration between various groups. In3251

addition, the alliance will organize topical schools and workshops.3252

The EIC Theory Alliance will be a decentralized organization open to participation by anyone in the3253

community who is interested in EIC physics, i.e., it will be a membership organization, where members elect3254
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an executive board which effectively runs the alliance. The executive board will determine the major scientific3255

thrusts of the theory alliance, make decisions regarding at which universities bridge faculty positions will be3256

created, and serve as a search committee for EIC related positions. Furthermore, the executive board will3257

coordinate the organization of workshops and schools related to the research activities of the alliance. In3258

addition, the EIC Theory Alliance will seek and nurture international cooperation to maximally leverage the3259

available funding. The structure of the EIC Theory Alliance to some extent will resemble the structure of topical3260

collaborations in nuclear theory. However, unlike topical collaborations, it will have a significantly longer life3261

span and involve a large international component.3262

5 Connections to Other Sub-fields of Nuclear3263

All QCD facilities, including CEBAF, RHIC, and the LHC, cover physics programs beyond the subjects of3264

cold and hot QCD. The strong overlap between QCD physics and other nuclear science disciplines has always3265

been a unique feature at these facilities. In previous sections, we have discussed, for example, the nuclear EMC3266

effects and its close relation to nucleon-nucleon short range correlations which play an important role in the3267

nuclear structure studies and are a crucial part of the physics program at FRIB. In the following, we highlight3268

additional connections between QCD studies and other nuclear science fields and beyond.3269

5.1 Probing Novel Regimes of QED in Ultra-Peripheral Heavy-Ion Collisions3270

The lowest order QED calculation [313, 1221, 1387–1389] of lepton pair production via photon-photon3271

fusion in the equivalent photon approximation [313, 1221, 1388, 1389] as input for the photon flux can be used to3272

describe the unpolarized cross section in UPCs measured by RHIC and LHC [1217, 1390–1400]. This is true also3273

when making selections on various topologies of forward neutron production using ZDCs, which are wellknown3274

to select on the internuclear impact parameter [317, 1401–1403]. Coherent photons are highly linearly polarized3275

with the polarization vector aligned along its transverse momentum direction. A sizable cos 4ϕ azimuthal3276

asymmetry induced by linearly polarized coherent photons was observed in a STAR measurement [1393] in3277

agreement with theoretical predictions [1404, 1405]. With future high statistics data with larger acceptance in3278

UPCs at RHIC and LHC, the phase space of photon collisions in transverse momentum, rapidity and momentum-3279

space-spin correlations can be explored in extreme regions of QED fields [1216, 1404, 1406]. More importantly,3280

these measurements provide a precision calibration necessary for photons as sources of the photonuclear3281

processes [332, 1407] (see Sec. 2.1.4) and the initial electromagnetic field, necessary for studies of emerging3282

QCD phenomena (see Sec. 2.1.7).3283

5.2 Connection to Nuclear Astrophysics3284

Astrophysical observations have entered a new era with measurements of neutron star radii and tidal3285

deformabilities that can be used to infer the neutron star equation of state at large baryon densities and vanishing3286

temperature. In 2017 the first gravitational waves from merging binary neutron stars were measured as well as3287

the electromagnetic component of the merger [1408]. Since then other potential mergers of neutron stars (either3288

with other neutron stars or black holes) have been detected. The first radius measurement of a two-solar-mass3289

neutron star [1409–1411] was done in NASA’s NICER mission. Both hot and cold QCD programs cover physics3290

research that are closely related to the EOS of dense QCD matter. The upcoming years are expected to produce3291

many other observations, providing unprecedented constraints on the dense matter equation of state.3292

5.2.1 Heavy Ion Collisions to Explore the QCD EOS3293

Low-energy heavy-ion collisions probe densities similar to neutron stars, albeit at much higher temperatures.3294

However, significant theoretical development is needed to reliably make direct connections between neutron3295

stars and heavy-ion collisions (see e.g. [60, 1080, 1147]), including further development of heavy-ion collisions3296

simulations. One must also keep in mind that heavy-ion collision and neutron stars probe different regions of3297
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the phase diagram: while heavy-ion collisions are governed by the EOS of nearly symmetric nuclear matter,3298

neutron stars are extremely neutron rich environments with very few charged hadrons. Thus, one must have a3299

strong understanding of how properties of QCD are affected when comparing symmetric to asymmetric matter.3300

Fortunately, measurements of mirror nuclei from the future CBM experiment at FAIR or FRIB [1412] could3301

provide crucial insight into subtle differences between heavy-ion collisions and neutron stars.3302

The description of neutron star mergers can also benefit greatly from theoretical advances in relativistic3303

viscous hydrodynamics, which were driven mostly by applications in heavy ion collisions. In such mergers,3304

rapid changes in T and µB [1413, 1414] can drive fluid elements out of chemical equilibrium, and weakly3305

interacting processes will relax them back to equilibrium. If the corresponding timescale is of the order of3306

milliseconds [1413, 1415], this may influence the hydrodynamic evolution and leave imprints in the post-merger3307

gravitational wave emission [1416–1418]. In this case, the detection of post-merger gravitational waves (using3308

upcoming 3G detectors) could provide information not only about the dense matter EOS but also about its novel3309

transport properties. Furthermore, under certain conditions [1419, 1420], the chemical imbalance associated3310

with neutrino processes admits a viscous hydrodynamic description in terms of equations of motion similar to3311

those investigated in heavy-ion collisions [1046, 1421] (though now the transport coefficients are determined by3312

weak-interaction processes). This synergy can foster new collaborations between heavy-ion physicists, nuclear3313

astrophysicists, gravitation wave scientists, and numerical relativity experts (see, e.g, [1416, 1418]).3314
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Figure 55: Left: 208Pb weak and baryon densities from the combined PREX datasets, with uncertainties shaded.
The charge density is also shown [1422]. Right: Difference between the charge and weak form factors of
48Ca (CREX) versus that of 208Pb (PREX-2) at their respective momentum transfers. The blue (red) data point
shows the PREX-2 (CREX) measurements. The ellipses are joint PREX-2 and CREX 67% and 90% probability
contours. The gray circles (magenta diamonds) are a range of relativistic (non-relativistic) density functional
models [1423].

5.2.2 Neutron Skin Thickness in Heavy Nuclei and Connection to Neutron Stars3315

Nuclei are known to be very dense with nucleons packed against each other. They could in fact be considered3316

a terrestrial laboratory to study the behavior of extremely dense nuclear matter contained within celestial objects3317

of the same nature, e.g., neutron stars. In neutron-rich nuclei, neutrons are expected to be distributed over a larger3318

volume than protons, forming a neutron “skin" around the nucleus. The thickness of this skin is sensitive to the3319

equation of state for nuclear matter, and specifically to the density dependence of the symmetry energy near3320

saturation density. A direct measure of the neutron skin thickness has long been an elusive goal. The situation3321

drastically changed with the use of observables involving more than electromagnetic interactions. Because3322

the weak charge of the neutron is much larger than that of the proton, PVES provides a highly interpretable,3323
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model-independent probe of neutron densities.3324

Results from two such high-precision measurements at JLab have become available very recently: the3325

PREX-2 experiment on 208Pb found its neutron skin thickness to be 0.28 ± 0.07 fm [1422], while the CREX3326

experiment found the neutron skin of 48Ca to be 0.121± 0.036 fm [1423]. Here, the large 208Pb nucleus provides3327

a close approximation to uniform nuclear matter and the data imply an interior nuclear baryon density of3328

0.148 ± 0.038 fm−3, while the 48Ca system is more sensitive to details of nuclear structure and therefore presents3329

additional tests of models. Both PREX-2 and CREX provide a direct, model independent measurement of the3330

difference between the weak and electromagnetic form factors. The difference found by PREX-2 is relatively3331

large, in contrast with the CREX result that shows smaller-than-expected differences. Nuclear model predictions3332

tend to correlate between the two systems, thus the differing results present an important empirical challenge3333

to precise modeling of nuclear structure. An experiment called MREX is being planned to measure the 208Pb3334

neutron radius to 0.03 fm precision at the new MESA facility in Mainz, Germany, which will help clarify the3335

intriguing observation from PREX-2 of a thick neutron skin.3336

5.2.3 Cosmic-rays and Nuclear Physics3337

QCD studies have played an important role in one of the most compelling mysteries in astrophysics:3338

the nature (nuclear composition) and origin of ultra-high energy cosmic rays (UHECR). Incident UHECR3339

produce energetic air showers that develop as they propagate through the atmosphere. The relationship between3340

observables, such as the size of the electromagnetic shower reaching the ground and the number of muons and3341

the energy and species of the incident particle depends critically on the hadronic physics that is used to model3342

the air shower; different simulation codes predict rather different results [1424]. An improved understanding3343

of air shower development is critical in view of several outstanding mysteries in the field: the long-standing3344

unresolved tension between Southern hemisphere observations by the Auger observatory [1425] and Northern3345

hemisphere measurements by the Telescope Array (TA) [1426], and the apparent excess of muons in high-energy3346

air showers seen by multiple experiments [1427–1429].3347

Although fixed target RHIC and LHC data have been helpful in tuning Monte Carlo models, there are3348

still significant uncertainties [1430], and predictions are sensitive to parton behavior at low-x [1431]. Better3349

LHC data is needed in the far-forward region [1214, 1432, 1433], which is most important for determining the3350

particle fluxes reaching the ground. This data will also be helpful in better estimating the atmospheric neutrino3351

flux, including the prompt flux, where there are still significant uncertainties [1434]. Meanwhile, cosmic-rays3352

offer us the opportunity to make nuclear-physics measurements that are not possible with current or planned3353

accelerators [1435, 1436]. Future radio-detection experiments should extend the cross-section measurements to3354

energies above 1019 eV, and thereby probe parton distributions at x values that are lower than are accessible at3355

the LHC [1437], extending searches for saturation into a new regime.3356

5.3 Electron-nucleus Experiments and Connections to Neutrino Oscillation Measurements3357

The precision of neutrino oscillation experiments depends on the ability to reconstruct the incident neutrino3358

flux as a function of their energy at the detector position. As neutrinos are detected following their interaction3359

with atomic nuclei in the detector, this extraction strongly relies on the precise understanding of neutrino-3360

nucleus interaction cross sections. Current oscillation experiments report significant systematic uncertainties3361

due to these interaction models [1438–1441] and simulations show that energy reconstruction errors can lead3362

to significant biases in extracting the CP violating phase in neutrino oscillations at DUNE [1442]. The e4ν3363

Collaboration exploits the similarity between electron- and neutrino-nucleus interactions to test and constrain3364

these models. Utilizing the well known energy of the JLab beam and the large acceptance of the CLAS detector,3365

e4ν performed wide phase-space scattering measurements on relevant nuclear targets and used their data to3366

test energy reconstruction methods and constrain the interaction models for neutrino experiments. In a recent3367

publication [1443] they showed a quantitative disagreement (see Fig. 56) between electron scattering data and3368

interaction models utilizing quasi-elastic-like topology, which is considered to be the simplest interaction one3369

can measure and is used in many oscillations analyses. This disagreement grows with energy and nuclear mass3370
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number, as well as at large transverse momentum. Complementary measurements were also done by the JLab3371

E12-14-012 experiment [1444–1449] to improve our understanding of the spectral function of Argon, the target3372

nucleus used by most neutrino detectors in DUNE Refs. [1450–1453].3373

The e4ν collaboration recently collected data with the CLAS12 detector at various energies and on different3374

targets including argon. The collaboration expects to analyze various interaction channels and use its results to3375

obtain an electron-tuned set of energy-reconstruction models for use by the neutrino oscillations community.3376

In parallel, work is underway to unify the neutrino and electron modes in the widely applied GENIE event3377

generators [1454] to consistently analyze electron and neutrino data for reliable tests of the standard model in3378

long baseline neutrino oscillation measurements.3379

Figure 56: Quasi-elastic reconstructed energy.
The 1.159 GeV C(e, e′)0π cross section plotted as a
function of the reconstructed energy EQE for data
(black points), and widely used interaction mod-
els such as GENIE SuSAv2 (solid black curve)
and GENIE G2018 (dotted black curve). The col-
ored lines show the contributions of different pro-
cesses to the GENIE SuSAv2 cross section: quasi-
elastic (QE), Meson Exchange Current (MEC), res-
onances (RES) and DIS. It can be seen that the
reconstructed energy distributions based on these
models agree only qualitatively with data and the
difference can be up to 25%. Figure from [1443].

5.4 Connections to Physics Beyond the Standard Model Searches3380

5.4.1 Searches for BSM Physics in Ultra-Peripheral Heavy-Ion Collisions3381

Ultra-peripheral heavy ion collisions provide a unique environment to look for BSM physics in regions3382

of phase space not easily accessible to p+p collisions [1231, 1455, 1456]. As discussed in Sec. 5.1, in these3383

collisions the nuclei do not get closer than twice the nuclear radius to each other and interact only via QED.3384

This interaction is very strong (for QED) because the nuclei have both been stripped of their electrons. The two3385

photons can interact via light-by-light scattering [1457], a process which was first measured in these collisions3386

at the LHC [1458, 1459]. The two-photon final-state in these collisions could be increased by BSM physics.3387

Measurements of the cross section for these collisions [1459, 1460] are consistent with expectations from the3388

Standard Model. The limits on new physics from this process, such as the existence of ALPs, are expected to3389

become stronger with the increased LHC luminosity in Runs 3 and 4 [1134, 1455]. The anomalous magnetic3390

moment of the τ lepton (gτ-2) is also sensitive to new physics beyond the Standard Model [1461] (as for3391

gµ − 2 [1462]) and can be extracted from the γγ → τ+τ− process in UPCs. Early measurements from ATLAS3392

and CMS [1397, 1463], along with feasibility studies from ALICE and LHCb [1464], have already demonstrated3393

a sensitivity competitive with that from previous LEP measurements [1465].3394

5.4.2 Parity-Violating Electron Scattering and EW/BSM Physics3395

While CEBAF is considered primarily a QCD facility, the development of high-precision PVES has enabled3396

it to make significant impact on low- and medium-energy tests of the neutral-current (NC) EW sector of the3397

Standard Model and BSM physics. We describe a variety of such PVES measurements below.3398

The proton weak charge While electric charges of the proton and the neutron are well known static properties3399

of the nucleon, their counterpart the weak charge, predicted by the theory of electroweak unification, is not as3400

well constrained. The recent QWeak experiment [1466, 1467] at JLab measured the proton weak charge Qp
W3401
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for the first time using the parity-violating asymmetry between right- and left-handed electron elastic scattering3402

off the proton. It was determined to be Qp
w = 0.0719 ± 0.0045, which leads to a determination of the weak3403

mixing angle sin2 θW = 0.2383 ± 0.0011, both in good agreement with the Standard Model. When combined3404

with atomic parity violation experiments [1468–1470], the Qweak experiment provides the best constraint on the3405

NC electron-quark coupling geq
AV to date. The P2 experiment planned at Mainz will improve the uncertainty over3406

Qweak and will determine Qp
W to ±1.83% and sin2 θW to ±0.00033 [1471]. The chiral counterpart of geq

AV , the3407

electron-quark vector-axial coupling geq
VA, was measured by the JLab 6 GeV PVDIS experiment [1472, 1473]3408

and is one central focus of the planned SoLID program at JLab, see next paragraph.3409

Parity violation DIS and effective electron-quark couplings The aforementioned Qweak experiment provided
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Figure 57: Left: experimental determination of the weak mixing angle sin2 θW including expected results from
MOLLER and SoLID PVDIS. Data points for the Tevatron and the LHC are shifted horizontally for clarity.
Right: Current experimental knowledge of the couplings geq

VA (vertical axis), with the projected SoLID result
shown by the cyan ellipse. Also shown are expected results from P2 at Mainz (purple and pink vertical bands)
and the combined projection using SoLID, P2, and all existing world data (magenta ellipse), centered at the
current best fit values. See [1282] for details.

3410

the first result on the proton weak charge [1467], and the 6 GeV PVDIS experiment provided the first evidence3411

that the electron-quark vector-axial effective coupling geq
VA is non-zero at the 2σ level [1472, 1473]. The future of3412

JLab Hall A will be comprised of two experiments that push the EW/BSM physics further, see Fig. 57. The first3413

is the MOLLER experiment, that will measure the electron weak charge and determine the weak mixing angle3414

with a precision comparable to high energy collider experiments. The second is the SoLID PVDIS experiment3415

with a deuterium target, which is the only planned experiment that will improve the precision on geq
VA by an order3416

of magnitude over the 6 GeV JLab result. A new Beam Dump Experiment (BDX) is planned that would run3417

parasitically with MOLLER (or other high luminosity experiments), which will search for dark sector particles3418

produced in the JLab Hall A beam dump.3419

6 Workforce Development and DEI3420

The success of the long-term future of our science relies on the ability to attract and retain a diverse and3421

talented workforce, as well as a durable pipeline for sustaining it. As articulated in LRP15, “A highly qualified3422

workforce trained in nuclear science is the most important element in realizing the scientific goals of the field.”.3423

Despite the previous recommendations for the field to grow, it has stagnated in size at best. This is partially3424

96



reflected in Fig. 58 (a), which shows the numbers of NP graduate students and staff (permanent and temporary)3425

present in American institutions. As can be seen, these numbers have approximately flattened since the 2010s. A3426

similar number is the number of NP PhDs awarded in American institutions, Fig. 58 (b), which shows a similar3427

plateau.3428

Permanent Staff 

The case for education [update]
University & Labs

Temporary Staff 

Graduate students

Number of PhDs granted in Nuclear Physics

Pandemic

( )a

( )b

Figure 58: DOE - FY2020 Nuclear Physics Workforce Survey of USA stats [link]

The reason why the field has stagnated is unclear. Before discussing possible recommendations, it is useful3429

to categorize and enumerate the factors that may be working against the growth of the field. These can generally3430

be categorized as internal and external to the field. As one may expect, the community may have a better3431

handle addressing the internal ones, but we must also be aware of external ones such that we can work towards3432

countering these factors.3433

Among the key internal factors that may be making the field stagnant is its environment. Ultimately, a3434

community is comprised of a set of individuals, each behaving as they see fit. As a result, the only tool at our3435

disposal is defining guidelines that the community as a whole deems to represent acceptable behavior, in other3436

words, Codes of Conduct. Within external factors, there are those that we can effectively address and those that3437

are practically out of our control. These include talent recruitment and retention, an education and outreach. In3438

the following, we will discuss these factors that led to the recommendations listed in Sec. 1. We emphasize that3439

all these factors are intertwined.3440

6.1 Code of Conduct, Diversity, Equity, and Inclusion3441

A Code of Conduct generally includes scientists’ duty to behave ethically, respectfully, and inclusively3442

toward one another and to reveal potential conflicts of interest. Together with Diversity, Equity, and Inclusion3443

(DEI) committees, Codes of Conduct have become ubiquitous in the past few years. This is due to the regrettable3444

fact that equity in science is still a mirage, as shown by results obtained from survey after survey. A considerable3445

effort has been devoted by various groups to developing community guidelines, see, for example, Ref. [1474].3446

To make this work, these guidelines have to be accompanied by accountability and enforcement processes.3447

Their beneficial impact for the current community and the positive investment for future generations of physics3448

make these a critical part of our culture going forward.3449

To this end, one of the key recommendations reached within the QCD Town Meeting pertains to Codes of3450

Conducts. In particular, it has been well recognized that part of recruiting and maintaining a diverse workforce3451

requires treating all community members with respect and dignity. The QCD community supports the recent3452
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initiatives by the APS and DNP, such as the DNP Allies Program and Code of Conduct for APS Meetings, to3453

develop community-wide standards of conduct and recommends that host laboratories and user facilities require3454

the establishment and/or adoption of enforceable conduct standards by all of the experimental and theoretical3455

collaborations they support. The enforcement of such standards is the combined responsibility of all laboratories,3456

theoretical and experimental collaborations, conference organizers, and individual investigators supported by the3457

NP research program.3458

Meanwhile, DEI is a crucial component in workforce development:3459

• Establishing a diverse workforce: This includes actively recruiting and hiring individuals from different3460

backgrounds, experiences, and perspectives.3461

• Promoting an inclusive culture: This includes creating an environment where all individuals feel respected,3462

valued, and heard. This can be done through training, open communication, and active engagement with3463

diverse groups.3464

• Providing opportunities for professional development and advancement: This includes providing equal3465

opportunities for all members in the QCD community at all career stages to learn, grow, and advance in3466

their careers, regardless of their background.3467

• Holding leadership accountable and providing support and resources for underrepresented groups, such3468

as employee resource groups, mentoring programs, and counseling services.3469

• Continuously evaluating and improving: This includes regularly evaluating all institutional and organi-3470

zational DEI efforts, providing feedback, and urging them to make adjustments and improvements as3471

necessary.3472

It is important to note that promoting DEI is not a one-time event or a short-term project, it is a continuous3473

process that requires commitment and effort from all members of the QCD community.3474

6.2 Talent Retention for a Diverse Workforce3475

The QCD community has experienced and benefitted from the bridge/joint faculty positions in the past,3476

including those associated with BNL/RIKEN center (joint faculty with universities) and JLab bridge positions3477

(with nearby universities). In addition, recent establishment of the DOE topical theoretical collaborations have3478

opened up quite a few bridge faculty positions, see, Sec. 3.1.5, for the successful stories. At the QCD Town3479

Meeting, it was strongly suggested by the community to expand such programs of bridge positions, fellowships,3480

traineeships, and other incentives, to continue recruiting and retaining a more diverse group of junior faculty3481

and staff at universities and national laboratories. In particular, that recruitment and retention of certain under-3482

represented groups in NP need to be emphasized. The DEI principle discussed above should play a central role3483

in these programs.3484

The imbalance of representation in NP almost certainly points to a pipeline issue. The QCD community has a3485

consensus to support the development and expansion of programs that enable participation in research by students3486

from under-represented communities at national labs and/or research universities, including extended support3487

for researchers from minority-serving and non-PhD granting institutions (MSI). Supporting under-represented3488

communities is essential in realizing DEI. This is in line with two newly established funding opportunities by the3489

U.S. DOE Office of Science: Reaching a New Energy Sciences Workforce (RENEW) initiative and Funding3490

for the Accelerated, Inclusive Research (FAIR) initiative to support research at MSIs and emerging research3491

institutions.3492

Great opportunity is also on the horizon, with the planned construction of the EIC. We envision a nationwide3493

(distributed) “EIC Center of Excellence for Science and Diverse Workforce Development” that combines the3494

discovery science, building and supporting research at MSIs, and developing a diverse and talented workforce3495

for the field and beyond. Specifically, the Center will establish joint faculty positions between US national3496
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laboratories and MSIs, support undergraduate and graduate student fellowships, and postdoctoral fellowships3497

focusing on students from MSIs and early-career researchers from all underrepresented groups. This Center will3498

offer a concrete platform and mechanism to support and develop research at MSIs and develop a diverse STEM3499

workforce in partnership with MSIs in a sustainable way. Additional collaborations with other minority serving3500

professional societies will be crucial for success as well.3501

6.3 Education and Outreach3502

Among the other external factors that are affecting the field, the first is the “enrollment cliff”, the shrinking3503

of college population as a result of the Great Recession. The enrollment drop was further accelerated in year3504

2020 by the Covid-19 pandemic. As the number of college students shrinks, the number of faculty tracks will3505

inevitably decrease. Such decrease in faculty tracks could be countered by enhancing the number of available3506

career opportunities in the field, as described in the previous section. Specifically, prestigious fellowships as well3507

as joint and bridge positions will encourage universities to invest more in physics.3508

Another external factor that we can have an impact on is the perception that society has of physics in general.3509

A main issue that the field of physics encounters in the US is the fact that most high school recommend students3510

to take Biology, Chemistry, and then Physics, in this order, which results in students not taking Physics until3511

the 11th grade. At that point, the more ambitious students have likely zeroed in their career path. This ordering3512

of courses is partly due to the rigorous mathematical requirements for physics, and partly due to physics being3513

interpreted as the hardest science because of the problem solving skills that it requires. The reasoning that one3514

should take the hardest science the latest could be inverted, as the earlier and the longer students learn, the3515

easier it becomes to master the critical thinking skill so important to physics education. Short of restructuring3516

the American educational system, as a community we can remedy this obstacle by pushing early-education3517

outreach to local middle and high schools, by encouraging high schoolers to take physics as soon as they finish3518

Algebra II and to take more advanced courses in subsequent years, and by providing enrollment opportunities for3519

introductory physics courses at nearby universities.3520

One more issue that the pre-college education system faces is the lack of high quality training in physics3521

education. Among high schoolers who actually took physics courses, some did not have a positive experience3522

because of the teaching quality, making physics an even less desired career path. Some high school physics3523

courses stayed with the “plug and chuck" approach, which does not expose students to the essence of physics3524

that differentiates it from other subjects. As a scientific community, we can partly remedy this issue by offering3525

summer training programs for high school teachers such that they can master modern pedagogy and a deep3526

understanding of the beauty of physics, who will in turn instill an interest and passion for physics in their students.3527

Similar argument can be made for the teaching quality of college introductory (“gateway") physics courses, as3528

student experience in such courses directly determines whether they would consider physics to be a helpful3529

subject or a viable career.3530

Finally, there is the public interpretation of what “nuclear physics" refers to. For the general public, the3531

term “nuclear" is tied to nuclear reactors, nuclear engineering, and weapsons development. It is important that3532

we provide the public an opportunity to understand that modern nuclear physics is the study of matter at the3533

most fundamental level, and that the technology developed in such research would benefit society, e.g. medical3534

imaging and radiotherapy. In this aspect, holding open houses and public lecture series would be essential, and3535

quite practical to do at national facilities, research labs, and university departments.3536

7 Computing3537

7.1 Software and Algorithm Development, Including AI/ML3538

Modern NP includes a broad research program at a varied range of collaborative scales, from a few collabo-3539

rators up to large experiments at scales comparable to those typical of HEP research [1475]. Consequently, there3540

is a wide range of scales in the accompanying software efforts, from small pragmatic approaches to substantial3541
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organized software and computing activities. The trend for increased software and computational needs is well3542

established [2] and will continue [1476, 1477]. The NP community is conscientiously moving towards the next3543

generation of data processing and analysis workflows that will maximize the science output [1478]. Programs3544

at NP facilities that include JLab, BNL, and the EIC in particular [717, 1344, 1345], will continue to drive3545

computational advances.3546

AI and ML have become important tools in NP theory, simulation, and data analysis [1479]. It is anticipated3547

that their role will continue to grow over the coming years. Organizational efforts are being made to develop3548

best practices and common toolkits for AI/ML technology, including for the EIC [1480]. Large focused efforts3549

such as SciDAC [835] and CSSI [1481], as well as the establishment of AI Institutes [1482], should receive3550

continued support. Integrating the technologies and techniques developed within these efforts into larger software3551

ecosystems will require some effort. Particularly integration into mixed heterogeneous computing environments3552

will be a particular challenge, requiring support for career paths with multi-domain expertise over the coming3553

decades. In the following, we provide two detailed examples where AI/ML has already made an impact on NP3554

research as well as a glimpse into its possible future development.3555

7.1.1 AI/ML in Data Analysis and Experimental Design3556

AI/ML has shown great promise, relative to traditional approaches, in the analysis of the large complex3557

data sets provided by NP experiments. For example: analysis of charged particle tracks [1483], reconstruction3558

and identification of electromagnetic showers in calorimeters [1484], jet tagging [1485, 1486], particle iden-3559

tification [1487], and event-level reconstruction of kinematic observables [1475]. ML has been used recently3560

in the unfolding of H1 data [1488, 1489] as well as for fast reconstruction algorithms [1490]. Simulation has3561

also benefited through the use of generative models [1491]. Finally, uncertainty quantification [1492, 1493],3562

robustness and explainability [1494] are of particular importance to experimental NP, with unique requirements3563

not being addressed by industry.3564

AI/ML is also being used to assist in experimental design [1495, 1496]. This can help to improve the3565

efficiency of experiments, and has the potential to reduce the cost and time required to carry out the experiment.3566

Modern electronics in streaming readout DAQ systems [1497, 1498] makes it possible to incorporate high-level3567

AI algorithms directly in the DAQ-analysis pipeline. This will lead to better data quality control and shorter3568

analysis cycles. Autonomous control in detectors [1499] will lead to faster calibration and alignment of detectors3569

which will eventually realize self-driven experiments.3570

7.1.2 AI/ML Application in Accelerator Science3571

In addition to NP and QCD research, AI/ML has wide application in other closely related areas. In only3572

the last five years, the application of AI/ML to accelerator facilities has grown exponentially. A representative3573

sampling of the research is given in Refs. [1500–1514]. Applications include improved optimization for3574

beam tuning, surrogate models to reduce simulation run times, novel anomaly detection schemes, prognostics,3575

and automation. However, we are still far from realizing the full potential of AI/ML. Present conventional3576

instrumentation, computing architectures and control systems were not designed to support collection of "ML-3577

ready" data from thousands of instruments in km-scale accelerators. For instance, the increasing need to move3578

large amounts of data around quickly may stress current networks. A recent solicitation for SBIR proposals3579

describes the current situation [1515]. Next-generation facilities will require the entire data flow cycle – including3580

infrastructure, data taking, handling, storage and access – to be revisited.3581

7.2 High-Performance and High-Throughput Computing and High-Capacity Data Systems3582

The NP experimental program will see increasing detector complexity as well as experiments with higher3583

interaction rates than are common today. During the next two decades, two activities will be drivers for computing3584

requirements: simulation and data processing. Simulation is necessary for hardware systems, such as accelerators3585

and detectors, as well as science data. Data processing includes data acquisition, calibration, reconstruction, and3586

analysis activities.3587
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Simulation is well suited to be distributed as workflows across computational facilities, particularly High-3588

Throughput Computing (HTC) facilities. Integration of heterogeneous hardware and AI/ML into simulation3589

frameworks such as GEANT4 is already underway. For example, AI/ML has been successfully used to guide3590

EIC detector design [1496]. These are activities where investment should continue.3591

The large data sets expected for NP research will require high-capacity data systems and data management3592

tools. Despite large projected data rates and detector complexity, it is anticipated that providing the compute3593

cycles to process data from the experimental program will not be significantly more challenging than it is today.3594

Processor performance per dollar is expected to increase, as is the use of technologies such as heterogeneous3595

hardware and AI/ML. Continued investment in R&D and deployment of advanced scientific computing technolo-3596

gies will help contain computing cost even as data set sizes grow. Instead, the main challenges for distribution of3597

large data sets across facilities are data transport, workflow management, and data management. The FAIR Data3598

Principles – Findable, Accessible, Interoperable, and Reusable – must be followed to ensure that the data are in3599

place when the computing resources are available. Increased investment in accessibility is needed. Additional3600

challenges exist in cyber-security policies, which at present are not aligned, and federated access for login3601

or service access is a patchwork. DOE is currently considering the development of an Integrated Research3602

Infrastructure with the goal of eliminating many of these challenges. Participation by the NP community will3603

ensure that its needs are considered.3604

7.3 Workforce Development and Retention in Computing and AI/ML3605

An increased AI/ML workforce is needed to apply these techniques to NP over the coming decades. Such3606

an expanded workforce is needed enterprise-wide, across the DOE, not just in NP. However, development and3607

retention of a diverse, multi-disciplinary workforce in computing and AI/ML face their own unique challenges. A3608

recent Secretary of Energy Advisory Board (SEAB) report accurately describes the current environment [1516],3609

pointing out the extraordinary difficulty for national labs to compete with the private sector in attracting AI/ML3610

talent. A more sustainable strategy would be to provide training for domain experts who have a desire to3611

add AI/ML proficiency to their repertoire of skills. Conferences, workshops (such as AI for NP [1517] or3612

AI4EIC [1518]), schools [1519], hackathons [1520, 1521] and other educational/training activities demonstrate3613

the interest from the community. At the same time, effort must be made to incorporate domain experts from3614

Data Science where possible. The careful, systematic analysis of NP data with a strong emphasis on accurate3615

uncertainty quantification also has the potential for NP to feedback to the AI/ML best practices in the field of3616

data Science.3617

8 Nuclear Data3618

Nuclear data are required for detector development and simulations of detector performance. One of the3619

most crucial aspects of the design of physics experiments as well as in accelerator development and medical3620

applications is the transport and interactions of particles in a material, be it a detector for physics applications3621

or the human body for medical applications. The design of any experiment relies on factors such as material3622

budget, how much material is required for each detector component; energy loss (stopping power), how far3623

a particle will travel before it is stopped in a given material; energy and position resolution; and radiation3624

tolerances. Once a detector is built and being placed in operation, further simulations are necessary to understand3625

the systematic uncertainties on the data including effects on particle tracking such as multiple scattering in the3626

material, affecting the momentum resolution, energy loss, and particle conversion. These transport models are3627

also needed to determine the detector efficiency.3628

In high energy experiments, the code packages most commonly used are Geant4 [1522] and FLUKA [1523].3629

For example, the data used in Geant4 for photon evaporation, radioactive decay, and nuclide properties are taken3630

directly from the Evaluated Nuclear Structure Data File (ENSDF) [1524], maintained at the National Nuclear3631

Data Center at BNL [1525]. Neutron cross sections and final states are based on nuclear data libraries such as3632
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JEFF-3.3 [1526] and ENDF/B-VII.1 [1527] while the TENDL library [1528] is used for interactions of incident3633

protons with matter. The SAID database is used for proton, neutron and pion inelastic, elastic and and charge3634

exchange reaction cross sections for interactions with nucleons below 3 GeV [1529]. Nuclear shell effects are3635

based on the liquid drop model of the nucleus, including ground state deformations. Nuclear data are also3636

required for the nuclear density profiles, photoelectric interactions, impact ionization, and optical reflectance,3637

see Ref. [1522] for more references and details.3638

Nuclear data have played a direct role in data analysis by the ALICE Collaboration [1530]. The collaboration3639

was able to make the first determination of the 3He (anti 3He) absorption cross section in matter by its interactions3640

in different components of the detector made up of different materials with different average nuclear mass values.3641

This result has cosmological implications for 3He production in the galaxy by cosmic ray interactions and dark3642

matter annihilation [1530].3643

Recently, it has been suggested that a scan of collision species at colliders could complement low energy3644

nuclear structure studies [303]. In particular, the ground state deformations of nuclei plays an important role3645

in the initial conditions of the quark-gluon plasma, leading to very different predictions of the transverse flow3646

patterns for collisions of nuclei with the same mass number but different nuclear shapes, as was shown for3647

collisions of cylindrically-shaped 96Ru +96 Ru compared to those of more irregularly-shaped 96Zr +96 Zr [303].3648

This is similar to the motivation for the earlier U + U run at RHIC: collisions of strongly deformed 238U nuclei3649

could lead to very different initial densities and temperatures depending on whether the collisions were tip-to-tip3650

or side-on-side [1531].3651

Nuclear data also play an important role in applications. Space exploration is one such application where3652

high energy nuclear data in particular are critical, primarily due to the harmful effects of the space radiation3653

environment. The wide range of energies, up to the TeV scale, and species, 1 < Z < 28, of galactic cosmic3654

rays (GCRs) [1532] make it challenging to determine all their potential effects on spacecraft and astronauts.3655

While the Earth’s atmosphere has a protective effect, cosmic ray showers reach the ground all over the Earth3656

and, in fact, have been studied using collider detectors. In particular, muons from cosmic rays pass all the way3657

through these detectors, producing tracks perpendicular to those from beam-beam collisions and are present3658

even when the beam is not on, see Refs. [1533–1536]. The ALICE detector at the LHC includes the dedicated3659

cosmic ray detector ACORDE [1537], used in analysis of Ref. [1536]. Collisions of GCRs with nuclei in the3660

Earth’s atmosphere or a spacecraft in orbit can generate showers of particles, including pions, muons, neutrinos,3661

electrons, and photons as well as protons and neutrons.3662

The penetrating power of the initial GCRs and the secondaries generated by their interaction with matter, can3663

have a serious impact on the safety and viability of space exploration. The 1% of GCR primaries heavier than He3664

nuclei can be especially serious because the damage they inflict scales as Z2. The secondary particles generated3665

from GCR interactions with spacecraft material [1538] such as aluminum, polyethylene, and composites can3666

harm astronauts and disrupt or disable electronic systems. The spacecraft shielding designed to reduce the GCR3667

flux is also a target that can increase the secondary flux. Because of the wide variety of possible shielding3668

materials and thicknesses, modeling is essential to determine the sensitivity of the secondaries (both in flux and3669

composition) to different shielding configurations, as well as to determine the subsequent harmful impact of3670

those secondaries on electronic systems [1539] and humans [1540].3671

Understanding the effects of the highest energy cosmic rays requires high energy (GeV range) nuclear data3672

and modeling. However, there are no measurements for incident projectile energies greater than 3 GeV/nucleon.3673

There is a possibility to fill part of these critical gaps in nuclear data employing fixed-target collisions at RHIC.3674

A proposal [1541] was recently made to bombard C, Al, and Fe targets with C, Al, and Fe ions at energies from 53675

to 50 GeV, and measure the produced secondaries using the STAR detector. This measurement, however, would3676

have to be completed before RHIC is shut down and EIC construction has begun.3677

Due to the lack of data at the appropriate energies, simulations of space radiation effects have large3678

uncertainties. The space research community has generally relied on phenomenological nuclear reaction models3679

such as the Double Differential Fragmentation model (DDFRG) [1542]. Many of the models rely on abrasion-3680

ablation models [1543, 1544] or semi-empirical parameterizations, see Ref. [1545]. Researchers modeling these3681
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interactions could benefit from codes developed to study data from RHIC. The use of hadronic cascade models3682

such as the UrQMD code [394], which was shown to be able to predict proton and deuteron yields from the3683

BNL Alternating Gradient Synchrotron studies of 15 GeV protons on Be and Au targets [1546, 1547], could3684

significantly advance simulations of collisions relevant for space exploration. For further information about3685

nuclear data needs for space applications, see Refs. [1548, 1549].3686
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 16:00 Lattice QCD for RHIC and LHC PETRECZKY, Peter

Cold QCD Parallel I - Stata Center, 32-123 (14:20 - 16:20)
-Conveners: Ian Cloet

time title presenter

 14:20 Open questions in cold QCD JI, Xiangdong

 14:40 Nucleon Spin Structure from global analysis VOGELSANG, Werner

 15:00 Nucleon Spin Structure at Low-x KOVCHEGOV, Yuri

 15:20 3D Structure of Hadrons probed with Electrons and Positrons MUNOZ CAMACHO, Carlos

 15:40 TMD: Theory and Measurements KANG, Zhongbo

 16:00 The High Intensity Gamma Source HOWELL, Calvin

Coffee Break - Stata Center, 32-123 (16:20 - 16:50)

Hot QCD Parallel II - Stata Center, 32-155 (16:50 - 18:30)
-Conveners: Wei Li

time title presenter

 16:50 CMS and ATLAS HI Physics at LHC Run 3+4 and Beyond LEE, Yen-Jie

 17:20 ALICE + ALICE 3 / other experiments beyond Run 4 TIMMINS, Anthony

 17:50 Heavy flavor in small systems/forward @ LHC DURHAM, Matt

 18:05 Jets & Heavy flavors: From HICs to EIC VITEV, Ivan

Cold QCD Parallel II - Stata Center, 32-123 (16:50 - 18:30)
-Conveners: Or Hen

time title presenter

 16:50 Parton Distributions from Global Analysis SATO, Nobuo

 17:10 Precision Physics with SOLID and Moller SOUDER, Paul

 17:30 Probes for the Origin of Hadron Mass JOOSTEN, Sylvester

 17:50 The Drell–Yan Program at FNAL KELLER, Dustin

 18:10 Saturation from RHIC and Future EIC CHU, Xiaoxuan

Coffee Break - Stata Center, 32-123 (18:30 - 19:00)

Open Mic - Stata Center, 32-123 (19:00 - 20:36)
-Conveners: Or Hen

time title presenter

 19:00 How Important is QCD for the Nuclear Chart? GRIESSHAMMER, Harald

 19:04 Polarized Ion Beams beyond Helium-3 for EIC PENG, Chao

 19:08 Double Deeply Virtual Compton Scattering with SoLID spectrometer at
Jefferson Laboratory

CAMSONNE, Alexandre

 19:12 Vector meson-proton scattering lengths from omega to upsilon STRAKOVSKY, Igor

 19:16 K-long beam experiment at JLab STRAKOVSKY, Igor

 2022 Town Hall Meeting on Hot & Cold QCD / Programme Friday, 23 September 2022
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 19:20 Opportunities for precision QCD physics in hadronization at Belle II VOSSEN, Anselm

 19:24 Community agreements NATTRASS, Christine

 19:28 Engaging minorities in Nuclear Physics DA SILVA, Cesar

 19:32 Results from the BNL-MSI Nuclear Physics Traineeship Program CHIU, Mickey

 19:36 Visualization of the Subatomic World MILNER, Richard
ENT, Rolf

 19:40 Input from the JLab Users Organization to the LRP process MUNOZ CAMACHO, Carlos

 19:54 A Better Angle on Hadron Transverse Momentum Distributions at the EIC MICHEL, Johannes

 19:58 On the Importance of hadronic interaction physics program at EIC Era LIU, Ming

 20:02 Physics Opportunities with a Second EIC Detector HYDE, Charles

 20:06 Studying QCD with UPCs at the LHC TAPIA TAKAKI, Daniel

 20:10 MUSE: The MUon Scattering Experiment CLINE, Ethan

 20:14 A US-based MicroPattern Gaseous Detection Center CYNTHIA KEPPEL (FOR
KONDO GNANVO)

 20:18 ALICE FoCal upgrade NOVITZKY, Norbert

 20:22 Inter-American Network of Networks of QCD challenges TAPIA TAKAKI, Daniel

 20:24 Gluon saturation search at Bjorken-x<1e-4 in LHC LUIZ DA SILVA, Cesar

 2022 Town Hall Meeting on Hot & Cold QCD / Programme Friday, 23 September 2022
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Saturday, 24 September 2022

Cold QCD Parallel III - Stata Center, 32-123 (08:30 - 10:10)
-Conveners: David Lawrence

time title presenter

 08:30 Hadron Spectroscopy Theory DUDEK, Jozef

 08:50 Hadron Spectroscopy Measurements STEVENS , Justin

 09:10 A High Luminosity Upgrade for CLAS12 STEPANYAN, Stepan

 09:30 Advances in Lattice QCD ZHAO, Yong

 09:50 Quantum Information Science for QCD Research DAVOUDI, Zohreh

Hot QCD Parallel III - Stata Center, 32-155 (08:30 - 10:10)
-Conveners: Bjoern Schenke

time title presenter

 08:30 Future facility for high mu_B physics XU, Nu

 08:50 Theory overview of dense QCD matter RATTI, Claudia

 09:10 Initial State of HICs from UPCs and the role of EIC TU, Zhoudunming (Kong)

 09:30 Opportunities in small systems and connection to nuclear structure JIA, Jiangyong

 09:50 Bayesian Analysis in Heavy ion Physics CHEN, Yi

Coffee Break - Stata Center, 32-123 (10:10 - 10:40)

Cold QCD Parallel IV - Stata Center, 32-123 (10:40 - 11:40)
-Conveners: Or Hen

time title presenter

 10:40 The JLab Hall C Program KINNEY, Ed

 11:00 Two-Photon Exchange Measurements with Positron beams SCHMIDT, Axel

 11:20 QCD in Nuclei and Cold Nuclear Matter WEINSTEIN, Larry

Hot QCD Parallel IV - Stata Center, 32-155 (10:40 - 11:20)
-Conveners: Ramona Vogt

time title presenter

 10:40 fixed target @ STAR for space radiation CEBRA, Daniel

 11:00 Nuclear Data and Its Relation to QCD BROWN, David

Hot QCD Open Mic - Stata Center, 32-155 (11:20 - 12:20)
-Conveners: Ramona Vogt

time title presenter

 11:20 Deciphering Exotic Hadron Structures with Heavy Ion Collisions LIAO, Jinfeng

 11:24 Relativistic Fluid Dynamics: From Heavy-Ions to Neutron Star Mergers NORONHA, Jorge

 11:28 New phenomena for cool, dense QCD PISARSKI, Rob

 11:32 Modular Event Generators FRIES, Rainer
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 11:36 Jets as mult-scale probes of QCD matter REED, Rosi

 11:40 Hadronic transport is needed for studying the dense nuclear matter equation of
state

SORENSEN, Agnieszka

 11:44 Equity and inclusion at major conferences NATTRASS, Christine

 11:48 We should all use Rivet NATTRASS, Christine

 11:52 Simulation of heavy ion collisions with Trajectum NIJS, Govert

 11:56 Novel Spin Transport in Hot Dense QCD Fluid LIAO, Jinfeng

 12:00 The need for more p+A running at RHIC - Discovery of subatomic smoke rings LISA, Mike

 12:04 Flavor dependent hadronization studies at the LHC BELLWIED, Rene

 12:08 In-medium jet acoplanarity and intra-jet broadening in the QGP NIHAR, Sahoo

 12:12 Discovery of the Breit-Wheeler Process and its Application to Nuclear Charge
and Mass Radii Measurements

BRANDENBURG, Daniel

 12:16 A TeV Muon-Ion Collider at BNL - the ultimate QCD frontier and novel
accelerator technology initiatives

ACOSTA, Darin

Cold QCD Open Mic - Stata Center, 32-123 (11:40 - 12:20)
-Conveners: Or Hen

time title presenter

 11:40 Exploring GPDs using Timelike Compton Scattering with SoLID at Jefferson
Lab

ZHAO, Zhiwen

 11:44 Generalized Polarizabilities of the Proton PAOLONE, Michael

 11:48 Can quark and gluon angular momentum and mass distributions be observed? LIUTI, Simonetta

 11:52 Light Meson Structure TANJA, Horn

 11:56 The Neutral Particle Spectrometer Science Program in Hall C as JLab TANJA, Horn

 12:00 Low-Energy Compton Scattering: A Poster Child for Theory-Experiment
Synergy and Relevance

GRIESSHAMMER, Harald

 12:04 Amplitude analyses and light hadron spectroscopy RODAS, Arkaitz

 12:08 The calorimetric electron scattering method : towards high precision
measurement of the proton structure, hidden sector search and more

DUTTA, Dipangkar

 12:12 Insight into Emergence of Hadron Mass from the Studies of Nucleon
Resonance Electroexcitation

MOKEEV, Victor

 12:16 Polarized EMC Effect in the Neutron with New Superconducting Detectors ARMSTRONG, Whitney

Lunch (supplied by MIT) - Stata Center, 32-123 (12:20 - 13:50)

Plenary III - Stata Center, 32-123 (13:50 - 15:40)
-Conveners: Xiaochao Zheng

time title presenter

 13:50 Cold QCD at JLab and RHIC: Theory Advances QIU, Jianwei

 14:20 Ultra-peripheral Collisions Measurements KLEIN, Spencer

 14:45 Probing Cold QCD at RHIC ASCHENAUER, Elke-Caroline

 15:10 The Jefferson Lab 12 GeV Program NAPOLITANO, Jim
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simulation of non-equilibrium dynamics and thermalization in the schwinger model. arXiv preprint6684

arXiv:2106.08394, 2021.6685

[1100] Alexander Mil, Torsten V Zache, Apoorva Hegde, Andy Xia, Rohit P Bhatt, Markus K Oberthaler,6686

Philipp Hauke, Jürgen Berges, and Fred Jendrzejewski. A scalable realization of local U(1) gauge6687

invariance in cold atomic mixtures. Science, 367(6482):1128–1130, 2020.6688

[1101] Zhao-Yu Zhou, Guo-Xian Su, Jad C Halimeh, Robert Ott, Hui Sun, Philipp Hauke, Bing Yang, Zhen-6689

Sheng Yuan, Jürgen Berges, and Jian-Wei Pan. Thermalization dynamics of a gauge theory on a quantum6690

simulator. arXiv preprint arXiv:2107.13563, 2021.6691

[1102] Tim Byrnes and Yoshihisa Yamamoto. Simulating lattice gauge theories on a quantum computer. Phys.6692

Rev. A, 73:022328, 2006. arXiv:quant-ph/0510027, doi:10.1103/PhysRevA.73.022328.6693

[1103] Angus Kan and Yunseong Nam. Lattice quantum chromodynamics and electrodynamics on a universal6694

quantum computer. arXiv:2107.12769, 2021. URL: https://arxiv.org/abs/2107.12769.6695

[1104] Christian W. Bauer et al. Quantum Simulation for High Energy Physics. 4 2022. arXiv:2204.03381.6696

[1105] Alexander F Shaw, Pavel Lougovski, Jesse R Stryker, and Nathan Wiebe. Quantum algorithms for6697

simulating the lattice schwinger model. Quantum, 4:306, 2020.6698

[1106] Henry Lamm, Scott Lawrence, and Yukari Yamauchi. General Methods for Digital Quantum6699

Simulation of Gauge Theories. Phys. Rev. D, 100(3):034518, 2019. arXiv:1903.08807, doi:6700

10.1103/PhysRevD.100.034518.6701

[1107] Natalie Klco, Jesse R. Stryker, and Martin J. Savage. SU(2) non-Abelian gauge field theory in one6702

dimension on digital quantum computers. Phys. Rev. D, 101(7):074512, 2020. arXiv:1908.06935,6703

doi:10.1103/PhysRevD.101.074512.6704

[1108] Niklas Mueller, Andrey Tarasov, and Raju Venugopalan. Deeply inelastic scattering structure functions6705

on a hybrid quantum computer. Phys. Rev. D, 102(1):016007, 2020. arXiv:1908.07051, doi:6706

10.1103/PhysRevD.102.016007.6707

[1109] João Barata, Niklas Mueller, Andrey Tarasov, and Raju Venugopalan. Single-particle digitization6708

strategy for quantum computation of a ϕ4 scalar field theory. Phys. Rev. A, 103(4):042410, 2021.6709

arXiv:2012.00020, doi:10.1103/PhysRevA.103.042410.6710

[1110] Yasar Y. Atas, Jinglei Zhang, Randy Lewis, Amin Jahanpour, Jan F. Haase, and Christine A. Muschik.6711

SU(2) hadrons on a quantum computer via a variational approach. Nature Commun., 12(1):6499, 2021.6712

arXiv:2102.08920, doi:10.1038/s41467-021-26825-4.6713

185



[1111] Sarmed A Rahman, Randy Lewis, Emanuele Mendicelli, and Sarah Powell. Su (2) lattice gauge theory6714

on a quantum annealer. Physical Review D, 104(3):034501, 2021.6715

[1112] Yasar Y. Atas, Jan F. Haase, Jinglei Zhang, Victor Wei, Sieglinde M. L. Pfaendler, Randy Lewis,6716

and Christine A. Muschik. Real-time evolution of SU(3) hadrons on a quantum computer. 7 2022.6717

arXiv:2207.03473.6718

[1113] Marc Illa and Martin J. Savage. Basic elements for simulations of standard-model physics with quantum6719

annealers: Multigrid and clock states. Phys. Rev. A, 106(5):052605, 2022. arXiv:2202.12340,6720

doi:10.1103/PhysRevA.106.052605.6721

[1114] Roland C. Farrell, Ivan A. Chernyshev, Sarah J. M. Powell, Nikita A. Zemlevskiy, Marc Illa, and Martin J.6722

Savage. Preparations for Quantum Simulations of Quantum Chromodynamics in 1+1 Dimensions: (II)6723

Single-Baryon β-Decay in Real Time. 9 2022. arXiv:2209.10781.6724

[1115] Paulo F. Bedaque, Ratna Khadka, Gautam Rupak, and Muhammad Yusf. Radiative processes on a6725

quantum computer. 9 2022. arXiv:2209.09962.6726

[1116] Wibe A. De Jong, Mekena Metcalf, James Mulligan, Mateusz Płoskoń, Felix Ringer, and Xiaojun Yao.6727
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