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Abstract

Data analytics applications transform raw input data into analytics-specific data structures before performing analytics.
Unfortunately, such data ingestion steps are often more expensive than analytics. In addition, various types of NVRAM devices
are already used in many HPC systems today. Such devices will be useful for storing and reusing data structures beyond a single
process life cycle.

We developed Metall, a persistent memory allocator built on top of the memory-mapped file mechanism. Metall enables
applications to transparently allocate custom C++ data structures into various types of persistent memories. Metall incorporates a
concise and high-performance memory management algorithm inspired by Supermalloc and the rich C++ interface developed by
Boost.Interprocess library.

On a dynamic graph construction workload, Metall achieved up to 11.7x and 48.3x performance improvements over
Boost.Interprocess and memkind (PMEM kind), respectively. We also demonstrate Metall’s high adaptability by integrating Metall
into a graph processing framework, GraphBLAS Template Library. This study’s outcomes indicate that Metall will be a strong tool
for accelerating future large-scale data analytics by allowing applications to leverage persistent memory efficiently.

Keywords: Persistent Memory, Memory Allocator, Graph Processing

1. Introduction

Data science has become a rapidly evolving field. It plays
an increasingly important role in science and security domains.
High volume data analytics is one of the key domains in
exascale computing [1] [2]. Such data analytics applications5

usually perform data ingestion tasks, which index and partition
data with analytics-specific data structures before performing
the targeted analytics. However, the ingestion step is often
more expensive than the analytics itself due to unstructured
write-intensive operations on large volumes of data. In10

addition, the same or derived data is re-ingested frequently in
real situations – for example, running multiple analytics to the
same data with different parameters or developing/debugging
a data analytics program. An often overlooked but common
theme among the variety of data analytics platforms is the need15

to persist data beyond a single process lifecycle.
There have been significant performance improvements and

cost reductions in both software and hardware technologies of
non-volatile random-access memory (NVRAM). These devices
offer cost-effective ways of persistently storing large datasets20

with efficient means of accessing the data for processing.
We anticipate that persistent data-centric analytics will be

a powerful model for accelerating next-generation large-scale
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data analytics. In the model, applications use NVRAM
as persistent memory, i.e., applications can access data25

transparently using standard memory operations while the data
can live beyond a single process lifecycle.

To enable the persistent data-centric analytics, we
developed a persistent memory allocator, Metall1. Metall is
built on top of the memory-mapped file mechanism (mmap(2))30

to allow applications to allocate and access data in persistent
memory transparently. Metall employs the rich C++ interface
developed by Boost.Interprocess [3] so that applications can
allocate custom C++ data structures in persistent memories
with a small code migration cost. Metall provides persistent35

memory snapshotting (versioning) capabilities. As for
the internal architecture, Metall incorporates a concise and
high-performance memory management algorithm that is based
on a heap memory allocator, SuperMalloc [4]. We also
developed a user-level mmap technique, batch synchronized40

mmap (bs-mmap), to improve sparse data update performance
on network-attached file systems.

The rest of this paper is structured as follows. Section 2
introduces preliminary knowledge of this work. Section 3,
Section 4, and Section 5 introduce Metall, Metall internal45

architecture, and bs-mmap, respectively. Section 6 shows
the performance of Metall and bs-mmap on dynamic graph
construction workloads. Section 7 demonstrates Metall’s high
adaptability and impact by integrating Metall into a graph

1Metall is available at https://github.com/LLNL/metall
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Table 1: Performance comparison of memory devices

Device
Latency

(read/write)
Bandwidth
(read/write) Source

DDR4 DRAM 100/100 ns 100/37 GB/s [8]
NVDIMM

(Intel Optane) 370/400 ns 38/3 GB/s [8]

PCIe NVMe SSD 10 us 2.5/2.2 GB/s [9, 10]

processing framework, GBTL [5]. Section 8 contains related50

works. Finally, Section 9 offers our conclusions.
In summary, our main contributions are as follows:

• We demonstrate the benefit of the persistent data-centric
analytics model and developed a persistent memory
allocator, Metall;55

• Metall is designed to allow applications to transparently
allocate memory into various persistent memory devices
with a reasonable code migration cost;

• Metall exhibits up to 11.7x and 48.3x performance
improvements over two state-of-the-art memory60

allocators: Boost.Interprocess [3] and memkind (PMEM
kind) [6], respectively, on a dynamic graph construction
workload with node-local conventional NVMe SSD
and emerging byte-addressable persistent memory
(Section 6);65

• We present techniques to improve sparse data
update performance on network-attached file systems
(Section 5);

• We show Metall’s high adaptability and impact on a
real graph processing workload using a graph processing70

framework, GBTL [5] (Section 7).

2. Preliminary

2.1. Persistent Memory
There have been substantial performance improvements and

cost reductions in non-volatile memory (NVRAM) technology.75

For example, emerging non-volatile dual in-line memory
module (NVDIMM), which is installed in the same DIMM
slot as DRAM and can provide byte-addressable accesses,
is expected to play a role between DRAM and conventional
NVRAM (Table 1). Furthermore, high-performance computing80

(HPC) systems have various types of NVRAM devices in
production systems today, such as locally-attached devices and
network-attached distributed file systems [7].

To store data into NVRAM, utilizing file systems is highly
beneficial since we can support various NVRAM devices85

transparently and leverage existing powerful technologies
to manage and move large-scale data with high reliability.
Therefore, we design Metall to work on top of a file system.

For the purposes of this paper, we use the term persistent
memory to represent a storage device/system that works90

with a filesystem — including NVDIMM, NVMe SSD, and
distributed file systems.

2.2. Memory-mapped File

Data serialization is a common technique to store data
into files; however, dismantling and assembling large complex95

data structures is expensive in terms of performance and
programming cost [11].

To avoid the cost, we leverage the memory-mapped file
mechanism. mmap(2) is a system call that can map a file into a
process’s virtual memory (VM) space and provide applications100

with transparent access to the region — applications can access
the mapping area as if it were regular memory.

We show an example code block of mapping a file using
mmap() in Code 1. A file is created and extended to 4096 bytes
at lines 1–3. In line 5, the file is mapped into the process’s105

VM space with the read/write mode. If a non-NULL address
is passed to the first argument of mmap(), the kernel uses it as
a hint about where to map the file. After line 5, one can use
the memory space as if it were allocated by normal memory
allocation functions such as malloc(). In line 9, msync(2)110

flushes dirty pages back to the filesystem and waits for the I/O
to complete. The mapping is closed at line 10 by munmap(2).

Actual I/O is conducted with the demand paging
mechanism — operating systems perform I/O on-demand by
page granularity and keep page cache in DRAM. I/O could115

happen at any point in lines 5–10 in Code 1. Thanks to the
demand paging, an application can also map a file bigger than
the DRAM capacity.

mmap() plays an essential role in memory management and
is highly useful. However, calling it directly for each memory120

allocation will cause significant overhead and is not practical
because A) mmap() works with at least a page granularity
(e.g., 4 KB) and B) each allocation requires a new backing-file.
To provide fine-grained memories for applications, one can
mitigate the overheads by building another memory allocation125

management layer on top of a memory-mapping region.

Code 1: Example of using mmap(2)

1 i n t fd = open ( ” / mnt / s s d / f i l e ” , O RDWR | O CREAT) ;
2 i n t s i z e = 4096 ;
3 f t r u n c a t e ( fd , s i z e ) ;130

4
5 c h a r * a r r a y = ( c h a r * )mmap(NULL, s i z e , PROT READ |

PROT WRITE , MAP SHARED, fd , 0 ) ;
6 c l o s e ( fd ) ;
7 a r r a y [ 0 ] = ’ a ’ ;135

8
9 msync ( a r r a y , s i z e , MS SYNC) ;

10 munmap ( a r r a y , s i z e ) ;

3. Metall140

To take advantage of the memory-mapped file mechanism
while minimizing the overheads of mmap() system call, we
propose a persistent memory allocator, called Metall, built on
top of a memory-mapped region.

In this section, we describe the key features of Metall. We145

first briefly introduce Metall, followed by its API, persistence
policy, snapshot capability, design choice for pointers in
persistent memory, and backend data store.
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3.1. Overview of Metall

Metall works on various memory devices with file system150

support and enables applications to allocate heap-based objects
into persistent memory. As described in Figure 1, Metall
looks like a regular (heap) memory allocator from applications;
however, it allocates memory into persistent memory using
the memory-mapped file mechanism (mmap() system call).155

Metall stores its internal memory allocation management data
into persistent memory to resume memory allocation work in
the subsequent execution. Besides basic memory allocation
features, Metall employs snapshot capabilities. Metall supports
multi-threads; however, it is not designed to be shared by160

multiple processes, i.e., there is no interprocess synchronization
support.

3.2. Memory Allocation using Metall

Here we describe Metall’s principal APIs, followed by two
examples that allocate objects using Metall.165

3.2.1. Principal API
Metall has C++ interfaces designed by Boost.Interprocess

(BIP) [3]. Although BIP has been developed as an interprocess
communication library, it has a collection of APIs useful for
persistent memory allocators. The APIs allow applications to170

allocate not only contiguous memory regions like malloc(3) but
also complex custom data structures, including the C++ STL
containers, in persistent memory.

We implemented those APIs in manager class under
metall namespace (principal APIs are listed in Table 2).175

allocate() and deallocate() work like malloc(3) and free(3).
construct <T >(char* name) allocates sizeof(T) bytes and
stores the address into an internal key-value store with the key
“name”. This construct() function returns a proxy object whose
“() operator” takes arguments and constructs an object of T on180

the allocated memory (i.e., uses the placement new) with the
passed arguments. Thus, construct(char* name)(Args... args)
performs the multiple steps above in one line. find() and
destroy() are used to retrieve and destroy previously allocated
objects by construct(). get allocator() returns an object of the185

Standard Template Library (STL) style allocator to work with
STL containers.

The manager class contains approximately fifty functions
to accomplish high usability, including those with slightly
different signatures2.190

3.2.2. Example of Memory Allocation using Metall
An example of storing and reattaching an int object using

APIs listed in Table 2 is shown in Code 2.
In line 2, a Metall manager object is constructed; a backend

datastore (directories and files) is created under “/ssd/mydata”195

directory, and an initial backing file is mapped to the process’s
virtual memory space. In line 3, an int object is allocated and
initialized with 10 (10 is passed to the constructor of the int
object). Additionally, the object’s address and key (“data”)
are inserted inside the key-value store in the manager object.200

When the manager object is destructed (line 6), it synchronizes
the allocated data with the backing files and stores its internal
management data to the backing store.

In line 9, Metall opens the backing datastore created
in line 2. Metall also has a read-only open mode205

(metall::open read only), which protects against unintended
writes — trying to write data will cause a segmentation fault. In
line 10, Metall searches the address of the int object allocated
in line 3 from its key-value store using the key “data”.

Finally, in line 11, the object is deconstructed and210

deallocated; the corresponding entry is also removed from the
internal key-value store.

Code 2: Example of allocating an int object using Metall

1 {

2 m e t a l l : : manager mgr ( m e t a l l : : c r e a t e o n l y ,215

” / s s d / mydata ” ) ;
3 i n t * n = m e t a l l m g r . c o n s t r u c t < i n t >( ” d a t a ” ) ( 1 0 ) ;
4 s t d : : c o u t << *n ; / / show ’10 ’
5 *n = 2 0 ;
6 }220

7 / / −− E x i t t h e program and r e a t t a c h t h e d a t a −− / /

8 {

9 m e t a l l : : manager mgr ( m e t a l l : : open on ly , ” / s s d / mydata ” ) ;
10 i n t * n = mgr . f i n d < i n t >( ” d a t a ” ) . f i r s t ;
11 s t d : : c o u t << *n ; / / show ’20 ’225

12 mgr . d e s t r o y < i n t >( ” d a t a ” ) ;
13 }

3.2.3. Metall with STL Container
An STL container holds an allocator object to allocate230

memory storage for its elements. Metall provides an
STL-compatible allocator. Applications can store an STL
container into persistent memory by conducting the following
two steps: 1) Allocate a container using Metall; 2) Pass a Metall
STL allocator object to the constructor of the container object.235

We show an example of storing and reattaching an STL
container in Code 3. Overall, this example is almost the same
as the previous one (Code 2). In line 1, the STL-compatible
allocator in Metall is passed to the vector container as the
second template argument. In line 5, an object of the vector240

container is allocated and constructed, receiving a Metall STL
allocator object as a constructor argument.

2Metall API documentation: https://software.llnl.gov/metall/api/
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Table 2: Metall’s Principal APIs (all of them are provided by metall::manager class)

Signature Description
void* allocate(size t n) Allocates n bytes.

void deallocate(void *addr) Deallocates the allocated memory.
T* construct〈T, Args〉(char* name)(Args... args) Allocates and constructs an object of T with arguments args.

Also internally stores the allocated memory address with key name.
T* find〈T 〉(char* name) Finds the already constructed object associated with key name.

bool destroy(char *name) Destructs and deallocates the object associated with key name.
metall stl allocator〈T 〉 get allocator〈T 〉() Returns an STL allocator object for type T.

After lines 5 and 11, as written in there, the vector object
can be used transparently — even its capacity can be changed
since it holds a Metall STL allocator object internally.245

Code 3: Example of using a STL container with Metall

1 u s i n g v e c t o r t = v e c t o r < i n t , m e t a l l : : a l l o c a t o r < i n t >>;
2 {

3 m e t a l l : : manager mgr ( m e t a l l : : c r e a t e o n l y ,
” / s s d / mydata ” ) ;250

4 a u t o * pvec =

5 mgr . c o n s t r u c t <v e c t o r t >( ” vec ” ) ( mgr . g e t a l l o c a t o r < i n t > ( ) ) ;
6 pvec−>p u s h b a c k ( 5 ) ;
7 }

8 / / −− E x i t t h e program and r e a t t a c h t h e d a t a −− / /255

9 {

10 m e t a l l : : manager mgr ( m e t a l l : : open on ly , ” / s s d / mydata ” ) ;
11 a u t o * pvec = mgr . f i n d <v e c t o r t >( ” vec ” ) . f i r s t ;
12 pvec−>p u s h b a c k ( 1 ) ;
13 }260

3.3. Persistence Policy

Metall employs snapshot consistency, an explicit
coarse-grained persistence policy in which persistence is
guaranteed only when the heap is saved in a “snapshot” to the265

backing store. The snapshot is created when the destructor
or a snapshot method in Metall is invoked. Those methods
flush the application data and the internal management data in
Metall to the backing store (backing files). If an application
crashes before Metall’s destructor finishes successfully, there270

is a possibility of inconsistency between the memory mapping
and the backing files. To protect application data from this
hazard, the application must duplicate the backing files before
reattaching the data by using either the snapshot method or a
copy command in the system.275

In contrast, libpmemobj in the Persistent Memory
Development Kit (PMDK) [12] builds on Direct Access
(DAX) and is designed to provide fine-grained persistence.
Fine-grained persistence is highly useful (or almost necessary)
to implement transactional object stores, leveraging new280

byte-addressable persistent memory fully, e.g., Intel Optane DC
Persistent Memory. However, fine-grained persistence requires
fine-grained cache-line flushes to the persistent media, which
can incur an unnecessary overhead for applications that do
not require such fine-grained consistency [13]. It is also not285

possible to efficiently support such fine-grained consistency on
more traditional NVMe devices.

3.4. Snapshot
In addition to the allocation APIs, Metall provides a

snapshot feature that stores only the difference from the290

previous snapshot point instead of duplicating the entire
persistent heap by leveraging reflink [14].

With reflink, a copied file shares the same data blocks with
the existing file; data blocks are copied only when they are
modified (copy-on-write). Because reflink is relatively new,295

not all filesystems support it. The filesystems that implement
reflink include XFS, ZFS, Btrfs, and Apple File System (APFS)
— we expect that more filesystems will support this feature in
the future. In case reflink is not supported by the underlying
filesystem, Metall automatically falls back to a standard copy300

operation.

3.5. Pointers in Persistent Memory
Applications have to take care of some restrictions

regarding pointers to store objects in persistent memory.
Applications cannot use raw pointers for data members in305

data structures stored in persistent memory because there is
no guarantee that backing files are mapped to the same virtual
memory addresses every time. Therefore, the offset pointer has
to be used instead of the raw pointer. An offset pointer holds a
relative offset between the address pointing at and itself so that310

it can always point to the same location regardless of the VM
address to which it is mapped.

Metall inherits the offset pointer implemented in
Boost.Interprocess library. The pointer type in the STL
allocator in Metall uses the offset pointer. STL containers are315

designed to use the pointer types declared in the allocators.
Unfortunately, some implementations of containers do not
work with Metall because raw pointer types are hardcoded.
Containers in Boost.Container is compatible with Metall.

Additionally, references, virtual functions, and virtual base320

classes have to be removed since those mechanisms also use
raw pointers internally.

Other persistent memory allocators also ask applications to
replace raw pointers with similar designs of offset pointers (for
example, libpmemobj library in PMDK [12] and Ralloc [15]).325

Furthermore, the concept of the non-raw pointer is being
integrated into C++ (e.g., smart pointers). We believe that
offset pointer is one of the most realistic solutions for random
memory placement. To help application developers, developing
a program that assesses the compatibility of an existing data330

structure with Metall would be interesting future work.
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3.6. Metall Data Store

In addition to application heap data, Metall management
data also have to be stored in persistent memory to resume
memory allocation work. When a Metall manager object is335

constructed with the create mode, it creates a root directory
at the specified path; then, the manager creates files and
directories on-demand under the root directory to store its
management data and application data allocated through itself.
Hereafter, we call the directory as Metall datastore for340

convenience.
As all files related to a single manager are located in the

same directory, one can easily duplicate or delete a Metall
datastore, even using normal file copy or remove commands.

In addition, Metall is not designed for multi-process data345

sharing; however, multiple processes can still open the same
datastore with the read-only mode.

Metall uses multiple files to store application data. We
found that breaking application data into multiple backing
files increases parallel I/O performance in many situations.350

When we performed a preliminary evaluation by running
multi-threaded out-of-core sort, we achieved 4.8X performance
improvement by dividing the original array into 512 files (we
used 96 threads and PCIe NVMe SSD). To efficiently use
persistent memory resources, Metall creates and maps new files355

on demand. By default, Metall creates each file with 256 MB.
This value can be changed by defining the corresponding macro
at compile time.

4. Metall Internal Architecture

In this section, we explain the internal architecture of360

Metall. To efficiently manage memory allocations without
a complex architecture, Metall exploits Supermalloc’s main
design philosophy [4] – virtual memory (VM) space on a 64-bit
machine is relatively cheap, while physical memory remains
dear. More specifically, we take advantage of demand pag-365

ing mechanism, that is, physical memory space both in DRAM
and persistent memory is not consumed until the corresponding
pages are accessed.

4.1. Application Data Segment and Chunk

Metall reserves a large contiguous virtual memory (VM)370

space to map backing file(s) when its manager class is
constructed. Applications can set the VM reservation size
when creating a new Metall datastore (Metall manager’s
constructor takes the value, the default size is a few TB).
Metall automatically detects the necessary VM size when375

opening an existing datastore. Metall divides the reserved VM
space into chunks (2 MB by default, configurable via Metall
manager’s template parameter). A chunk can hold multiple
small objects of the same allocation size (from 8B to the half
chunk size). Objects larger than the half chunk size (large380

objects) use a single chunk or multiple contiguous chunks.
Metall frees DRAM and file space by chunk, that is, small
object deallocations do not free physical memory immediately,
whereas large object deallocations do.
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Figure 2: Metall Memory Allocation Management Data

4.2. Internal Allocation Size385

Same as other major heap memory allocators, Metall
rounds up a small object to the nearest internal allocation size.
Metall uses allocation sizes proposed by Supermalloc [4] and
jemalloc [16]. Thanks to this approach, Metall can keep internal
fragmentations equal to or less than 25 % and convert a small390

object size to the corresponding internal allocation size quickly.
Metall also assigns a bin number for each internal allocation
size. The allocation size techniques enable Metall to compute a
bin number from an internal allocation size efficiently.

On the other hand, a large object (larger than 1 MB by395

default) is rounded up to the nearest power of 2 — although this
strategy wastes VM space, it does not waste physical memory
thanks to the demand paging mechanism. In the worst case,
1.6% of physical memory is wasted when (1 M + 1) bytes of
allocation is requested on a 4 KB page size system. On a 64400

KB page size system, 6.3% is wasted for a (1 M + 1) bytes of
allocation.

4.3. Management Data
Metall uses three types of management data directories to

manage memory allocation. Because updating the management405

data causes fine-grained random memory accesses, Metall
constructs them in DRAM to increase data locality —
consequently, Metall rarely touches persistent memory
when allocating memory. Metall deserializes/serializes the
management data from/to files when its constructor/destructor410

is called. The cost of the process is often negligible since the
management data is much smaller than the application data.

The three data directories are allocated for each Metall
manager object so that multiple Metall manager objects can
coexist with one another in the same program. Here, we415

describe the details of the three management data directories.

4.3.1. Chunk Directory
The chunk directory is an array of blocks (the left figure

in Figure 2). The i-th block holds the status of the i-th420

chunk of the application data segment, such as bin number
(internal allocation size id), chunk type (represents small or
large allocation), and a pointer to a bit set for small allocation.
The size of a single block is 14 bytes.

Metall utilizes a compact multi-layer bitset table and425

built-in bit operation functions to manage available slots in a
chunk used for a small size. It can manage up to 643(= 218) slots
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using a three-layer structure, which is equal to the maximum
number of slots if the minimum allocation size is 8B and the
chunk size is 2 MB (221/23 = 218). Therefore, Metall calls a430

built-in bit operation function at most three times to find an
available slot in a chunk.

Metall sequentially probes the array when it needs to find
empty chunk(s). Although we have not seen a performance
bottleneck during the step, it will be straightforward to435

implement an additional index structure to increase the
performance.

4.3.2. Bin Directory
The bin directory is an array of bins (the right figure in

Figure 2). A bin holds IDs of non-full chunks of the same440

internal allocation size. A bin operates in a LIFO (last in, first
out) manner. Metall first checks this directory to find available
chunks for small allocations. If a bin is empty, Metall accesses
the chunk directory to find an empty chunk. Metall uses this
directory only for small allocations since large allocations do445

not share chunks.

4.3.3. Name Directory
The name directory is a simple key-value table. When an

object is constructed by construct() function in Metall manager
(Table2), some attributes (e.g., key string and address) of the450

object are stored here.

4.4. Management Data and STL Allocator

An STL container object holds an allocator object internally
so that it can change its capacity dynamically. To perform
memory allocation work, an object of the STL allocator455

in Metall needs to know the address of the corresponding
management data allocated in DRAM. However, Metall cannot
embed the address of the corresponding management data into
an STL allocator object since the management data will not be
allocated to the same VM addresses always. In order to address460

this issue, a Metall STL allocator object holds the offset to the
head of the application data segment using the offset pointer.
When a Metall manager object is constructed, it writes the
address of its management data at the head of the corresponding
application data segment. Consequently, Metall STL containers465

can access the management data always.

4.5. Multi-thread Support

Metall works with multiple threads. Here, we describe how
the multi-thread support is implemented in Metall.

4.5.1. Mutex in Global Management Data470

Metall allocates a single mutex object for the chunk
directory and the name directory each.

Metall also arranges a mutex object per bin in the bin
directory. As Metall does not mix different allocation
sizes within a chunk, it can handle different small size475

allocation/deallocation requests concurrently except the
following two situations:

• There is no entry (non-full chunk ID of the allocation
size) in the bin directory during an allocation operation;
thus, Metall needs to find an empty chunk in the chunk480

directory.

• The last slot of a chunk has been freed. Metall needs to
update the metadata of the chunk directory.

4.5.2. Local Object Cache
To increase multi-thread performance, memory allocators485

often employ local object caches. An object cache holds
recently deallocated objects. Object caches are allocated at, for
example, thread level, CPU core level, and/or CPU socket level.

Since Metall is designed to deal with larger data
than existing memory allocators, we decided to employ490

free-object caches at the CPU core level only to simplify its
implementation.

5. Batch Synchronized mmap (bs-mmap)

When an application maps a file using mmap(2), shared
mapping (MAP SHARED option) is usually used. The495

file-backed shared mapping writes back updates (dirty pages)
with page granularity into the underlying file system on
demand. This feature is necessary for mapping data larger than
the DRAM capacity of the system (out-of-core processing).
On the other hand, network file systems such as Lustre [17]500

are not designed to handle small and random I/Os with
low concurrency [18]. Therefore, if applications do not
need out-of-core processing with network file systems, such
on-demand I/O patterns will cause unnecessary performance
degradation.505

A naive solution for the problem would be data staging.
Specifically, 1) an application copies all files into a local
memory device; 2) maps the files and performs analytics; 3)
copies back to the original storage after the analytics. However,
this data staging approach could be wasteful if applications510

want to update data sparsely.
Another technique to mitigate the performance degradation

is tuning up the behavior of the page cache by writing values to
some files in /proc/sys/vm. However, it causes 1) system-wide
changes; 2) requires privilege access, which is unavailable in515

many large-scale clusters.
Considering these options, we designed bs-mmap, batch

synchronized mmap. bs-mmap is a user-space file-backed
memory mapping mechanism that efficiently writes back dirty
pages to the backing file only when it is invoked by the520

application explicitly.

5.1. bs-mmap Implementation
bs-mmap calls mmap() with the MAP PRIVATE option.

MAP PRIVATE creates a private copy-on-write mapping where
updates are not written back to the backing file by the operating525

system.
msync(2) is used with the shared mapping to flush dirty

pages into the backing file explicitly. However, msync() does
not work with private mapping. Therefore, we implemented
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a user-level msync() that works with the private mapping. To530

detect dirty pages, we used the information provided by the
/proc file system on Linux systems. The /proc file system
provides an interface called pagemap, which contains page
table information about every page in a process’s virtual
memory space. This information is stored in a file named535

/proc/self/pagemap, which contains a 64-bit value for each page
that belongs to the process [19]. In the case of a private
mapping, a page is no longer file-backed once it becomes dirty;
however, its status is either present or swapped. Hence, a dirty
page of a MAP PRIVATE region can be identified by checking540

if bit number 61 of its pagemap entry is zero and the logical
OR of bits 62 and 63 equals one. By querying these values,
our msync (write-back) method can identify dirty pages without
making any change in system calls or kernels.

5.2. Bandwidth and Parallelism Utilization545

We implemented two optimizations to efficiently utilize
the bandwidth and parallelism on parallel file systems. First,
bs-mmap writes back dirty pages in consecutive chunks when
possible rather than page-by-page. Second, bs-mmap writes
back dirty pages in parallel. As described in Section 3.6, Metall550

uses multiple backing files for the application data segment.
When bs-mmap flushes dirty pages using its msync() function,
it assigns a thread per file to perform parallel I/O.

6. Evaluation

To evaluate the memory allocation performance, we555

perform a multi-threaded dynamic graph construction
benchmark. We also demonstrate the impact of the batch
synchronized mmap technique (bs-mmap) described in
Section 5. The benchmark inserts edges into a graph data
structure allocated in persistent memory.560

6.1. Graph Data Structure

To construct graph data with multiple threads on a
shared-memory system, we used a multi-bank adjacency list
(Figure 3). The adjacency list is one of the de facto standard
graph data structures and consists of a vertex table and an edge565

list per vertex in the graph. Each element in the vertex table
contains the ID of a vertex and an edge list. An edge list
contains the IDs of all neighbor vertices of a vertex. To quickly
locate a specific vertex by its ID, we used the unordered map
(hash table) container for the vertex table. As for the edge list,570

we used the vector (dynamic array) container. We used 64 bits
to represent a vertex ID.

To support multi-thread graph construction, we used m
banks, where m is greater than the number of threads (m = 1024
in this experiment). A bank is a pair of an adjacency list and a575

mutex object. We constructed a graph by repeatedly inserting
edges. Each edge is a pair of source and neighbor vertex IDs,
and we acquired the mutex of the bank associated with the
source vertex when ingesting an edge.

To make a data structure that works with a custom580

STL allocator, we followed the C++ standard procedure of
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Figure 3: Banked Adjacency List Data Structure

developing an allocator-aware class. Precisely, we customized
the multi-bank adjacency list data structure to take an allocator
type in its template and an allocator object in its constructor.

6.2. Machine Configuration585

We used three single node machines at Lawrence Livermore
National Laboratory. We show the specification of the machines
in Table 3.

EPYC. EPYC has a PCIe NVMe SSD. We tuned the behavior
of the page cache by writing values to some files in590

/proc/sys/vm to reduce the number of forced write-backs
to the SSD device. Specifically, we set dirty ratio to 90,
dirty background ratio to 80, and dirty expire centisecs to a
large number so that dirty pages are not evicted due to
long stays in the cache. When we performed a preliminary595

evaluation, we achieved significant performance improvement
(up to 7X) on the graph construction benchmark.

Optane. A single Intel Optane DC Persistent Memory device
is installed in its DIMM slots (one side of a NUMA node) and
configured with App Direct Mode. In the App Direct Mode, the600

device shows up in the system as if it were a conventional block
device; we set up the device with ext4 filesystem DAX mode
to bypass the page cache layer and to enable fine-grained I/O
rather than page granularity.

Corona. We also use one of the nodes of the Corona cluster,605

which consists of over 200 compute nodes. Corona is connected
to two parallel file systems: Lustre [17] and VAST [20]. In
our environment, Lustre is suitable for large-chunk I/O and
possesses higher bandwidth over VAST. On the other hand,
VAST shows better performance for fine-grained I/O.610

6.3. Dynamic Graph Construction

We ran the dynamic graph construction benchmark on
EPYC and Optane machines, which have node-local persistent
memory, varying the sizes of input data.

6.3.1. Implementations For Performance Comparison615

For performance comparison, we used three allocators as
below:
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Table 3: Machine Configurations

(a) EPYC: NVMe SSD

CPU
AMD EPYC 7401

48 cores, 96 threads
DRAM 256 GB

Storage
PCIe NVMe SSD 3 TB

Ultrastar SN200 HH-HL add-in card
XFS filesystem

Kernel Linux Kernel v5.6

(b) Optane: NVDIMM

CPU
Intel Xeon Platinum 8260L

48 cores, 96 threads
DRAM 192 GB

Storage
Intel Optane DC Persistent Memory
1.5 TB, App Direct Mode, ext4 DAX

Kernel Linux Kernel v5.9

(c) Corona: NVMe SSD and parallel file system (PFS)

CPU
AMD EPYC 7401

48 cores, 96 threads
DRAM 251 GB

Local Storage
PCIe NVMe SSD 1.6 TB

XFS filesystem
PFS Lustre

PFS
VAST, connecting via Ethernet

4 × 20 Gbps links
Kernel Linux Kernel v3.10

Boost.Interprocess (BIP). Even though Boost.Interprocess [3]
has been developed as an interprocess communication library;
its managed mapped file version can work as a persistent620

memory allocator. This allocator does not free space in files.
We used Boost libraries v1.75.0.

PMEM kind. memkind library [6] provides a file-backed
memory allocator (called PMEM kind) built on top of a
state-of-the-art heap allocator, jemalloc [16]. Although PMEM625

kind allocates memory into a file, it uses persistent memory
as volatile memory — i.e., it cannot reattach data or resume
memory allocation beyond a single process lifecycle. We used
memkind v1.11.0.

On the Optane machine, we made a small change to this630

allocator because we noticed vital performance degradation
due to frequently calling madvise(2) system call with
MADV REMOVE flag to free space in both DRAM and file
system. Thus, we switched to use MADV DONTNEED flag to
free only pages in DRAM. Metall also uses the system call with635

MADV REMOVE for the same purpose; however, we did not
make any change to Metall because Metall is designed to call
the system call less frequently.

libvmem is a similar memory allocator library included in
Persistent Memory Development Kit (PMDK) [12]; however,640

we used PMEM kind as PMDK recommends it over libvmem.

Ralloc. Ralloc [15] is a persistent lock-free allocator designed
and optimized for byte-addressable NVRAM (e.g., Intel Optane
DC Persistent Memory). Ralloc showed notably better
performance over libpmemobj in PMDK [15]. As Ralloc is645

targeted for byte-addressable NVRAM, we used it only on the
Optane machine. We used the version that was available at the
time of writing. For the purpose of this evaluation, we wrote an
STL-compatible allocator class that uses Ralloc internally.

6.3.2. Dataset650

We used an R-MAT [21] generator with the settings
used in the Graph500 to generate synthetic scale-free graphs
of different sizes. We generated SCALE 24–30 graphs,
scrambling the vertex IDs in order to remove unexpected
localities. The number of vertices and undirected edges in a655

SCALE s graph are 2s and 2s × 16, respectively. We treat
generated edges as undirected ones; hence, the number of
actually inserted edges is (2s) × 16 × 2. At each iteration of
the benchmark, the benchmark program generates a chunk of
edges into DRAM first and inserts the edges into a graph data660

structure. We exclude the edge generation time from reports.

6.3.3. Results
We show results on the EPYC machine and the Optane

machine in Figure 4b and Figure 4a, respectively.

On EPYC machine. Metall showed up to 7.4–10.9x and665

2.2–2.8x improvements over Boost.Interprocess (BIP) and
PMEM kind, respectively, at SCALE 25–29. At SCALE 30,
we observed performance drops in all implementations because
the adjacently-list objects exceeded the DRAM capacity. At the
SCALE, Metall achieved 11.7x and 48.3x better performance670

over BIP and PMEM kind, respectively.

On Optane machine. Metall achieved 2.1–2.3x better
performance over BIP. Ralloc did not finish at SCALE 30
because it ran out of the persistent memory space. Metall
showed similar performance to Ralloc and the modified version675

of PMEM kind; specifically, PMEM kind and Ralloc were up
to 10% and 14% better than Metall, respectively.

Summary. We attribute the low performance of
Boost.Interprocess to its internal architecture — it employs a
single tree with a single lock for governing memory allocation,680

which will not scale well with multiple threads. Although
Metall employs a simpler internal design than PMEM kind
(which is based on jemalloc), it was able to achieve comparable
memory allocation performance on Optane machines thanks to
the design strategies proposed by Supermalloc (Section 4), such685

as leveraging the demand page mechanism. Metall showed 1)
the best performance on EPYC (conventional NVRAM) and 2)
the compatible performance against PMEM kind and Ralloc on
Optane (emerging byte-addressable NVRAM). This evaluation
demonstrated Metall’s high portability.690
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(b) Optane Machine (Intel Optane DC Persistent Memory)

Figure 4: The results of the multi-threaded shared-memory dynamic graph con-
struction benchmark on two persistent memory devices. We did not run Ralloc
on EPYC machine because it is designed for byte-addressable memory.

6.4. bs-mmap on Network File Systems
We evaluated the performance of Metall with our bs-mmap

(batch synchronized mmap) described in Section 5, using an
incremental graph construction benchmark.

6.4.1. Benchmark Workload: Incremental Graph Construction695

The incremental benchmark uses Metall to construct a
persistent graph data incrementally — the actual data structure
is the multi-bank adjacency list described in Section 6.1. We
ran our experiments on one compute node of the Corona cluster
(table 3c). We evaluated the performance of constructing700

graphs on two different network file systems, Lustre and VAST.
We used real temporal graph datasets extracted from

Wikipedia and Reddit (see details in Section 6.4.2). We
sorted the edges of the Wikipedia and the Reddit datasets
by timestamp to simulate a real-world incremental graph705

growing. We partitioned each of the sorted datasets by month
to iteratively and incrementally constructed a persistent banked
adjacency list using Metall. The incremental benchmark’s first
iteration creates a new Metall datastore, adds the first chunk of
edges, flushes data back to the backing store, then closes the710

Metall data store. Each subsequent iteration opens the existing
datastore, appends the next chunk of edges, flushes, then closes
the Metall datastore. We measured the total time per iteration,
i.e., adding a monthly chunk of edges. We broke down the
measured time into ingestion time and flush time.715

6.4.2. Datasets
We used two real-world datasets in our experiments:

Wikipedia page reference graph and Reddit author-author
graph:

Wikipedia page reference graph. We curated the Wikipedia720

dataset by extracting hyperlinks between all pages in the
English Wikipedia dump 3 as of July 1st, 2017. The dump
data contains the entire edit history of the pages in English
Wikipedia from January 15th, 2001, which is the date English
Wikipedia was founded. The graph contains hyperlinks not725

only between article pages but also other types of pages such
as author (user) pages and Category pages. Specifically, it
contains 1.8 billion hyperlink (edge) insertions.

Reddit author-author graph. Reddit 4 is one of the largest
social news websites in the world. On Reddit, users can730

comment on other comments. We extracted the user activities
to construct an author-author comment graph. For example, if
Alice posts a comment to Bob’s comment, we represent it as
an edge from Alice to Bob. This dataset contains 4.4 billion
comment activities (edges).735

6.4.3. Implementations
We compared the performance of our bs-mmap to that of

two models that use the standard file-backed mmap (shared
mapping with system msync) as follows:

direct-mmap. The first configuration consisted of mapping740

files directly from Lustre or VAST into Metall’s virtual memory
space. We considered this method as our baseline for
performance comparison.

staging-mmap. The second configuration brings a Metall
datastore into tmpfs and maps files from there into the virtual745

memory of the process in order to increase data locality
during the graph construction. tmpfs is temporary file storage
configured on top of DRAM. The staging step copies a
datastore from Lustre or VAST into tmpfs at the beginning of
each iteration, then copies it back at the end of each iteration.750

We implemented parallel file copy-in and copy-out operations
to maximize resources utilization.

bs-mmap. We configured bs-mmap to read the mapped file
ahead into virtual memory using mmap’s MAP POPULATE
flag since this showed to be significantly faster than on-demand755

paging on both Lustre and VAST. Finally, we disabled the
feature of freeing file space in Metall since our preliminary
experiments showed that it was an expensive operation on
Lustre. While it did not cause significant performance
degradation on VAST, we disabled it in order to compare the760

performance across both file systems under similar conditions.

6.4.4. Results
Figure 5 contains the cumulative execution time after each

iteration of constructing the Wikipedia and the Reddit graphs
on Lustre and VAST. Figure 6 shows the time breakdown into765

ingestion time and flush time for each configuration. We added

3https://dumps.wikimedia.org/enwiki/
4https://www.reddit.com/
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staging-mmap’s copy-in time to the ingestion time and copy-out
time to the flush time.

First, the direct-mmap did not complete within a reasonable
time except for the Wikipedia graph on VAST. As direct-mmap770

needed to issue a lot of fine-grained write-backs on the fly for
evacuating dirty pages to the file systems over the networks, it
showed the notable slow performance, especially on Lustre.

Second, on Lustre, staging-mmap showed the best
performance for both graphs. Compared with bs-mmap, it was775

1.3X and 1.5X faster for the Wikipedia graph and the Reddit
graph, respectively. As the Lustre system has high bandwidth,
staging-mmap was able to conduct the staging of the whole
datastore to/from the local memory (tmpfs) efficiently. We
also attribute the slower ingest times of bs-mmap to the cost of780

accessing the file metadata of the Lustre system. Consequently,
staging-mmap was the best on the Lustre.

Third, on the VAST, bs-mmap yielded the best performance
out of all three configurations. It showed 1.6X and 2.4X
better performance than direct-mmap and staging-mmap for785

the Wikipedia graph, respectively. bs-mmap was also 1.5X
better than staging-mmap for the Reddit graph. staging-mmap
suffered from the low bandwidth of the filesystem and took
considerably long times for staging out the datastores, which
are included in flush time in Figure 6. On the other hand,790

bs-mmap was able to finish the flush step quickly as it writes
back only dirty pages.

7. Application Case Study: GraphBLAS Template Library
(GBTL)

In this section, we demonstrate the high adaptability of795

Metall by integrating it into GraphBLAS Template Library
(GBTL) [5]. In this work, we present GraphBLAS as a real
application use case to demonstrate Metall persistent memory
allocator benefits. We show an example of how storing and
reattaching graph containers using Metall, eliminates the need800

for graph reconstruction at a one-time cost of reattaching to
Metall datastore.

7.1. Graph Analytics and GraphBLAS
Graph analytics enables us to develop new data processing

capabilities. One of the main problems in graph analytics805

is the need to persist the data beyond the scope of a single
execution. Graph construction, indexing, and regular updates
are often more expensive than the analytics itself. This has
been observed in, for instance, large genome assembly [22]
and kNN graphs [23]. With persistent memory, data structures,810

once constructed, can be re-analyzed and updated beyond the
lifetime of a single execution. GraphBLAS specifies a set of
building blocks for computing on graphs and graph-structured
data, expressed in the language of linear algebra [24]. This
approach represents graphs as sparse matrices and operations815

using an extended algebra of semirings. An almost unlimited
variety of operators and types are supported for creating a wide
range of graph algorithms. The GraphBLAS Template Library
(GBTL) is a C++ reference implementation of the GraphBLAS
specification [5].820

2001-01 2005-01 2009-01 2013-01 2017-01

Month

0

5000

10000

15000

C
u
m

u
la

ti
v
e
 E

x
e
c
u
ti

o
n
 T

im
e

(s
e
c
o
n
d
)

(a) Wikipedia on Lustre

2017-01 2018-01 2019-01 2020-01

Month

0

5000

10000

15000

C
u
m

u
la

ti
v
e
 E

x
e
c
u
ti

o
n
 T

im
e

(s
e
c
o
n
d
)

(b) Reddit on Lustre

2001-01 2005-01 2009-01 2013-01 2017-01

Month

0

5000

10000

15000

C
u
m

u
la

ti
v
e
 E

x
e
c
u
ti

o
n
 T

im
e

(s
e
c
o
n
d
)

(c) Wikipedia on VAST

2017-01 2018-01 2019-01 2020-01

Month

0

5000

10000

15000

C
u
m

u
la

ti
v
e
 E

x
e
c
u
ti

o
n
 T

im
e

(s
e
c
o
n
d
)

(d) Reddit on VAST

Figure 5: Cumulative execution time after each iteration (month) of construct-
ing the Wikipedia page reference graph and the Reddit author-author graph
on Lustre and VAST file systems. direct-mmap completed in only one case
(Wikipedia on VAST).
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Figure 6: Total time for incrementally constructing the Wikipedia page refer-
ence graph and the Reddit author-author graph on Lustre and VAST file sys-
tems. The time is broken down into total ingestion time and total flush time.
direct-mmap completed in only one case (Wikipedia on VAST).
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7.2. Graph Analytics using GBTL
We show a typical workflow of GBTL in Code 4.

• First, read edge list data stored in text files, counting the
numbers of vertices and edges in the edge list;

• Second, allocate a graph object using the information825

about the numbers of vertices and edges;

• Third, ingest the input edge list into the graph object;

• Finally, run graph algorithm(s).

As GBTL uses a normal/transient memory allocator, one
has to repeat the whole graph construction step every time when830

running a graph algorithm.

7.3. Integrating Metall into GBTL
Here, we describe the work we performed for integrating

Metall into GBTL.

7.3.1. Graph Data Structure835

GBTL employs an adjacency list data structure to store the
vertex and edge lists. Its adjacency list uses vector containers
internally. We adapted the data structures to take a custom STL
allocator instead of using the default one in the vector container.
We were able to complete the adaption just following the C++840

standard style of implementing an allocator-aware class. In
fact, the modified data structures do not contain any code that
depends on Metall.

7.3.2. Graph Algorithm Implementation
GBTL has a set of high-level graph algorithms built845

on top of GraphBLAS. We selected five algorithms
implementations to investigate the necessary change for
integrating Metall into GBTL: breadth-first search, page rank,
single-source-shortest-paths, triangle counting, and K-Truss.

It turned out that the only additional requirement in850

’metallizing’ GBTL was modifying the template parameters of
the graph algorithm functions so that the functions can take a
graph type with a custom allocator — no changes were made
inside the graph algorithm functions.

In addition, we found that GBTL implementations use855

temporary graph containers to store intermediate results in
computing graph algorithms. Specifically, we found lines
like “Graph t tmp g;” (Graph t is a graph type) in multiple
graph analytics functions. Such temporary graphs need not
be allocated in the persistent store and can be left as a860

non-persistent data structure in DRAM.
To make this convenient, we implemented another

STL-compatible allocator, called fallback allocator adap-
tor. The fallback allocator adaptor fallbacks to a normal
memory allocator (e.g., malloc()) if its default constructor is865

called. Metall’s STL-compatible allocator (not the fallback
adaptor) has to be constructed with a parameter so that
it can communicate with a Metall manager object. Thus,
fallback allocator adaptor knows that the application wants to
allocate the object into DRAM rather than persistent memory870

if no argument is passed to its constructor. The purpose
of this adaptor is to provide a way to quickly integrate
Metall into an application that occasionally wants to allocate
’metallized’ classes as non-persistent data structures in DRAM.
By introducing the adaptor, we were able to support Metall with875

only the changes in the graph data structures and a few helper
functions.

7.3.3. Graph Analytics with Metall and GBTL
Finally, we show how the original graph analytics code

(Code 4) should be changed to use Metall (Code 5).880

Specifically, we applied the following changes:

• Use Metall to allocate the graph at Step 2 (line 9–10).

• Add a graph reattach mode (line 16–17).

As shown in Code 5, Metall scopes provide a way to exit the
program and reattach to the previously created data, avoiding885

construction time. This would be helpful to many graph
analytics applications where the data structure reconstruction
can be completely avoided.

Code 4: Workflow of a graph analytics with GBTL

1 vo id main ( ) {890

2 / / Step 1 . Read e d g e l i s t
3 v e c t o r <p a i r < i n t , i n t >> edges ;
4 i n t nv ; / / # of v e r t i c e s
5 i n t ne ; / / # of edges
6 r e a d e d g e l i s t ( ‘ ‘ . / e d g e l i s t . t x t ’ ’ , &edges , &nv , &ne ) ;895

7
8 / / Step 2 . A l l o c a t e g raph o b j e c t
9 a u t o * g = new Graph ( nv , ne ) ;

10
11 / / Step 3 . I n g e s t e d g e l i s t t o b u i l d g raph900

12 g−>b u i l d ( edges ) ;
13
14 / / Step 4 . Run graph a n a l y t i c s
15 r u n a n a l y t i c s (* g ) ;
16905

17 d e l e t e g ;
18 }

Code 5: Workflow of a graph analytics with GBTL and Metall. This code is
based on Code 4.

1 u s i n g G r a p h t = Graph<m e t a l l : : a l l o c a t o r < s t d : : by te >>;910

2 vo id main ( ) {
3 G r a p h t *g ;
4 m e t a l l : : manager *mgr ;
5 i f ( c r e a t e n e w ) { / / C r e a t e a new graph
6 / / 1) Read e d g e l i s t , no change ( code i s o m i t t e d )915

7
8 / / 2) A l l o c a t e g raph o b j e c t
9 mgr = new m e t a l l : : manager ( m e t a l l : : c r e a t e o n l y ,

” / s s d / graph ” ) ;
10 g = mgr . c o n s t r u c t <Graph t >( ” g ” ) ( nv , ne ,920

mgr . g e t a l l o c a t o r ( ) ) ;
11
12 / / 3) I n g e s t e d g e l i s t t o b u i l d graph , no change
13 g−>b u i l d ( edges ) ;
14 } e l s e {925

15 / / Re− a t t a c h graph
16 mgr = new m e t a l l : : manager ( m e t a l l : : o p e n r e a d o n l y ,

” / s s d / graph ” ) ;
17 g = mgr . f i n d <Graph t >( ” g ” ) . f i r s t ;
18 }930

19 / / 4) Run graph a n a l y t i c s , no change
20 r u n a n a l y t i c s (* g ) ;
21
22 d e l e t e mgr ;
23 }935
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Figure 7: Graph construction time on the EPYC machine with four graph
datasets. Base GBTL ran on DRAM. GBTL+Metall ran on the NVMe SSD.
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(b) Page Rank (PR)

Figure 8: Graph analytic time on the EPYC machine using four graph
datasets. Base GBTL ran on DRAM and includes a graph construction time.
GBTL+Metall ran on the NVMe SSD and includes time of reattaching a pre-
vously constructed graph.

7.4. Demonstration

We use the breadth-first search (BFS) and page rank
(PR) implemented in GBTL as a real application use case to
demonstrate Metall persistent memory allocator benefits. BFS940

is a traversal algorithm that starts at a given source vertex and
produces a list of vertices that are reachable from the source
vertex by traversing the edges of the graph. In each iteration,
only the vertices adjacent to a newly discovered vertex are
processed. Page rank is a variant of the eigenvector centrality945

algorithm, which measures the influence of a node in a network.
It gives a rough estimate of measuring the importance of
website pages.

We used four datasets from SNAP [25]: as-733 (AS) [26],
email-Eu-core (EE) [27], ego-Facebook (FB) [28], and950

wiki-Vote (WV) [29]. Those graphs contain 1K–7K vertices
and 14K–104K edges.

We first show the graph construction time of the
original GBTL (Base GBTL) and our ’metallized’ GBTL
(GBTL+Metall) in Figure 7. Base GBTL constructs a graph on955

DRAM, whereas GBTL+Metall does that on the NVMe SSD
so that it can reuse the graph data later. GBTL+Metall was
roughly 2X slower than Base GBTL. This is mainly due to the
graph being constructed on the SSD device.

Next, we performed BFS and page rank using the two960

GBTL implementations (Figure 8). The Base GBTL cases
include graph construction time as Base GBTL needs to
construct a graph from scratch every time launching a graph

analytics program. On the other hand, GBTL+Metall avoids
the reconstruction time by simply reattaching a previously965

constructed graph. Thus, the GBTL+Metall cases include
only graph reattaching time (graphs were stored in the NVMe
SSD). GBTL+Metall achieved 3.5X better BFS execution time
over Base GBTL (Figure 8a). Metall’s real benefit comes
into the picture when multiple analytics run on the same970

previously constructed graph data, completely avoiding the
graph reconstruction time. Similar results were observed from
the page rank analytic time in Figure 8b.

By integrating Metall in GBTL, we were able to avoid the
heavy graph construction time. This capability will be helpful975

to many graph analytics applications where the data structure
reconstruction can be completely avoided.

Memory-mapped persistent pre-built data structures
are helpful in enabling interactive real-time data science
applications with large persistent data structures in980

unprecedented scales of data without going through traditional
serialization and data structure reconstruction. Application
developers can create custom complex persistent and consistent
data structures. This ability to attach and detach from
previously created datasets in a lightweight manner gives a985

powerful workflow software productivity benefit.

8. Related Work

8.1. Large-scale Graph Processing with Persistent Memory

Many studies have been conducted for large-scale graph
processing on persistent memory using mmap and showed990

notable performance [30, 31], including evaluating large-scale
graph processing on Intel Optane DC Persistent Memory
(e.g., [32, 33]). Metall is aiming at helping application
developers with respect to memory allocation and data
management.995

8.2. Memory Allocator

Boost.Interprocess (BIP) [3] offers higher-level allocator
mechanisms on top of a file-backed mmap mechanism.
However, as it is not designed intentionally as a persistent
allocator, there are some drawbacks. For example, 1) BIP uses1000

a single tree to manage memory allocations — such design
will suffer from many allocations and not scale well with
multiple threads due to lock contention; 2) it is not capable
of deallocating file (persistent memory) space. On the other
hand, as Metall is not designed for interprocess communication,1005

it does not support process synchronization. Except for the
restriction, applications that already work with the allocators in
Boost.Interprocess (especially managed mapped file allocates)
should work with Metall without modification.

NVMalloc [34] enables applications to allocate memory1010

on a distributed non-volatile memory (NVM) storage system.
NVMalloc creates a file per memory allocation request, but it
does not have a mechanism of aggregating multiple allocations
into a single file — creating a file and mapping it to the main
memory are expensive operations; therefore, NVMalloc will1015
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not be suitable when the application causes many relatively
small allocations.

Persistent Memory Development Kit (PMDK) [12] is a
collection of libraries focusing on byte-addressable persistent
memory. libpmemobj in PMDK provides a persistent1020

memory allocator like Metall with a fine-grained persistence
policy (see Section 3.3). nvm malloc [35] is another work
for byte-addressable persistent memory with a fine-grained
persistence policy. Ralloc [15] also targets byte-addressable
persistent memory. It supports failure-atomic memory1025

allocations by asking applications to write a function that
traverses all active pointers. Ralloc possesses better
performance over libpmemobj [15]. Compared with those
works, Metall is designed for both block devices and
byte-addressable persistent memory so that applications can1030

utilize a wide range of persistent memory technologies in
their environment. We also demonstrated that Metall showed
competitive performance with Ralloc (Section 6).

Several studies have been conducted and shown remarkable
performance as for heap memory allocator, e.g., jemalloc [16]1035

and Supermalloc [4]. However, unfortunately, it is not trivial
to extend those allocators for persistent memory because
allocators themselves also have to be stored in persistent
memory so that they can resume the previous status.

8.3. System Software1040

Several projects investigated mmap technology. For
example, DI-MMAP [36] improved mmap page cache
performance; UMap is a user-level mmap library that lets users
control the page cache policy more flexibly [37].

Failure-atomic msync() (FAMS) [38] is a mechanism that1045

guarantees that the backing file of a mmap() region always
reflects the most recent successful msync(), regardless of
crashes. FAMS could be useful to enhance Metall’s failure
atomic support. There are several FAMS implementations. For
example, it is implemented in NOVA filesystem [39]. famus is1050

a user-level FAMS library [40].

8.4. Persistent Data Store

In terms of storing data persistently, a key-value store is a
popular database model and is designed to scale to a very large
size easily. (for example, LevelDB [41], RocksDB [42], and1055

MongoDB [43] use mmap). Metall’s key benefit is that it allows
for custom data structures to be stored, not just key-value pairs.

Hierarchical Data Format (HDF) [44], particularly HDF5,
has been used in many large-scale data analytics applications.
It allows applications to store data in portable formats. On the1060

other hand, Metall is designed as a lightweight data store library
by limiting data portability.

9. Conclusion

Thanks to the recent notable performance improvements,
various types of NVRAM devices are already used in1065

many HPC systems today. We anticipate that persistent
data-centric analytics will be a powerful model for accelerating

next-generation large-scale data analytics. To leverage various
persistent memory devices in the current and future exascale
HPC systems, we developed a persistent memory allocator1070

Metall. Metall allows applications to allocate data structures
into persistent memory transparently with a reasonable code
migration cost.

Metall achieved up to 11.7x and 48.3x performance
improvements over Boost.Interprocess and memkind (PMEM1075

kind), respectively, on the dynamic graph construction
workload with the node-local conventional NVMe SSD and
the node-local emerging byte-addressable persistent memory.
We demonstrated Metall’s high adaptability and its benefit
on the real graph processing workload using GBTL. We also1080

investigated and developed the techniques for improving sparse
data update performance on network-attached file systems.

This study’s outcomes indicate that Metall will be a
strong tool for accelerating future large-scale data analytics by
enabling applications to efficiently and fully leverage persistent1085

memory.
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