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Abstract— In this work, a compact and novel ferroelectric
(FE) programmable majority gate is proposed and its novel
application in Binary Neural Network (BNNs) is
investigated. We demonstrate: i) by integrating /N metal-
ferroelectric-metal (MFM) capacitors on the gate of a
transistor (1T-N-MFM structure), a nonvolatile and
programmable majority (MAJ) gate that performs MAJ of
AND between the gate input and polarization is realized; ii)
validation the functionality of our 3-input MAJ of AND
gate through comprehensive theoretical and experimental
investigations; iii) a compact implementation of 3-input
MAJ of XNOR gate that leverages only five of our 3-input
MAJ of AND gates connected in parallel; iv) application of
MAJ of XNOR gates to replace the XNOR gates and the
first layer of the adder tree in the BNNs for up to 21x area
saving on top of eliminating the energy-hungry memory
accesses due to the compute-in-memory nature.

I. INTRODUCTION

To accommodate the ever-growing deep learning models on
chip and accelerate model execution through compute-in-
memory architectures, there is a growing interest to exploit
dense memory as the technology platform. Multi-gate transistor
structures come naturally as promising candidates due to their
high density and vertical 3D integration capability. One
distinguished example is the workhorse of solid-state drive,
NAND flash memory (Fig.1(a)), where multiple gates control
different sections of the shared channel. The storage medium,
such as floating gate, charge storage layer or FE, is local to each
gate. Aside from being mass storage, it also finds applications
in matrix-vector multiplication [1] and pattern matching [2]
(Fig.1(a)) exploiting its NAND logic.

Another variant of multi-gate transistor has a shared floating
gate (Fig.1(b)), which is no longer local to each gate, but instead
shared among all the gates. This enables a fundamentally
different functionality compared to the NAND structure. The
channel conductivity is determined by the floating gate
potential, which is a majority function of all the gates when
more than two gates are present. Leveraging this structure, a 3-
input majority gate that performs majority of FE polarization
has been proposed [3]. When only two gates are used, this
structure also enables non-destructive read of FE capacitor
memory [4] and artificial FE neuron implementation for
neuromorphic computing [5].

Various forms of majority logic function have been
proposed previously using the multi-gate transistor with shared
floating gate (Fig.2). For example, the 1T-N-MIM (metal-
insulator-metal) structure (Fig.2(a)) can perform majority of the

N gate inputs as they jointly determine the floating gate
potential, and hence the channel current [6]. Since the insulator
layer is a normal dielectric, the 1T-N-MIM structure is volatile
and not programmable. The 1T-N-MFM (metal-ferroelectric-
metal)-IMIM structure (Fig.2(b)) replaces the N MIM
capacitors in the previous structure with FE capacitors and adds
1 MIM for read out [3]. It performs majority operation over N
MFM polarizations, which is therefore nonvolatile. However,
since the majority function is performed on the polarization, the
function form is fixed, and not programmable and gate latency
is limited by the polarization programming speed.

In this work, we propose a novel programmable and
nonvolatile majority function using an 1T-N-MFM structure
(Fig.2(c)). This transistor realizes MAJ of AND logic since it
takes the majority over the N AND logic outputs between the
gate inputs and the polarizations. By configuring the N MFM
polarizations, the majority function over N gate inputs can be
programmed. This structure is therefore highly versatile and
find wide applications. As an example, we show that using MAJ
of AND gates, a MAJ of XNOR logic gate can be constructed,
which enables compute-in-memory acceleration of BNNs
(Fig.2(d)) by replacing the XNORs and complex adder tree in
BNN CMOS implementation with remarkable area saving and
latency and energy reductions by eliminating memory access.

II. THEORETICAL AND EXPERIMENTAL VERIFICATION OF
MAJORITY OF AND OPERATION

Fig.3(a) shows that AND operation between the gate input
G and polarization P is naturally implemented in an 1T-1MFM
structure. It is realized by encoding the low threshold voltage
(V) (polarization down) as P="1" and high-Vtu (polarization
up) as P="0", and the read voltage Vg below low-Vry as G="0"
and Vg between low-Vri and high-Vry as G="1". In this case, a
high drain current (/p) is only possible when a high read bias is
applied to the low-Vry state. Following the same principle, in
an 1T-N-MFM structure, the AND function is performed on
each local MFM gate. The output of the AND operation in each
local gate determines its contribution to the floating gate
potential, majority of which determines the channel current.
Fig.3(b) illustrates an example of 3-input programmable
majority gate in which: only when the majority of the AND
(MAJ of AND) outputs are bit “1”, the channel is inverted and
has a high current, hence achieving the proposed function.

To verify the functionality of MAJ of AND in 1T-N-MFM
structure, we performed both theoretical investigation through
TCAD simulations and experimental validation. First a baseline
TCAD model of 14 nm FDSOI logic transistor is built
(Fig.4(a)) and is used to calibrate the model transport and



electrostatic parameters using the reported /p-V characteristics
[7]1 (Fig.4(b)). Building on this, a 3-input programmable
majority gate is built by inserting the MFM with a 10nm thick
HfosZrosO, into the gate stack (Fig.4(c)). Using the
ferroelectric Preisach model, calibrated with experimentally-
measured Qrg-Vie curves [8], the transistor shows a counter-
clockwise Ip-V curve, indicating ferroelectric switching.

Theoretical validation: The MAJ of AND operation is
validated in TCAD. Different configurations of polarization are
first written into the gates and then /p-V curves are obtained
by sweeping all the three gates (Fig.5(a)), two gates with the
third gate fixed at logic “0” (Fig.5(b)), and one gate with the
rest two gates fixed at logic “0” (Fig.5(c)). From those curves,
read gate voltages to encode gate input logic “0” and “1” can be
defined such that a high /p is obtained when the majority of
AND results between gate input and the polarization are bit “1”".
The electron density map for fixed input “111” (Fig.5(d)) and
fixed polarization configuration “DDD”, i.e., “111”, (Fig.5(e))
confirms the majority operation. Fig.6 shows Ip corresponding
to all combinations of gate input and polarization configuration,
which is high only when the MAJ of AND gate outputs bit “1”".

Experimental validation: To verify the TCAD simulation
results, we fabricated 3-gate MFM capacitors on a heavily-
doped p-type silicon wafer (Fig.7(a)). Bottom tungsten
electrode is sputtered on the thermally grown SiO, and then
covered by 10nm Hfy5ZrosO, deposited through atomic layer
deposition. Then top tungsten electrode is sputtered, followed
by dry etching to open via on the bottom electrode. The final
structure goes through a rapid thermal annealing at 600°C for
60s in N, atmosphere. A top-view SEM of 3-gate MFM is
shown in Fig.7(b). To verify the functionality of 3-input
majority of AND gate, we connect the bottom electrode of the
3-gate MFM capacitor with the gate of a discrete transistor, as
shown in Fig.7(c). The Qre-Vre hysteresis loops of the 3 MFM
capacitors (Fig.7(d)) are almost the same. DC sweep of the 1T-
3-MFM structure is shown in Fig.7(e) for the cases of sweeping
1,2, and 3 gates simultaneously. Interestingly, it shows that the
larger number of gates swept at the same time, the smaller the
hysteresis window. The phenomenon that the memory window
reduces with the number of simultaneous gate sweep is also
observed in pulse measurement (Fig.8(a) and (b)). This is
because the number of MFM gates effectively increases its area,
Awmrm, and increases its capacitance. As the MFM is forming a
capacitor divider with the transistor gate, the MFM voltage
drop, Ve, decreases (Fig.8(c)), and therefore the memory
window reduces (Fig.8(d)).

To achieve a larger memory window for MAJ of AND gates
demonstration, we propose to use the sequential write (Fig.8(¢))
, Where the programming of MFM gates is performed serially.
Fig.8(f) shows that after sequential write of each gate, similar
memory window is obtained by simultaneous sweeping of all
gates during memory read. Fig.9(a), (b), and (c) show the Ip-Vg
curves for different configurations of polarization by sweeping
all the three gates, two gates with the third gate fixed at logic
“0”, and one gate with the rest two gates fixed at logic “0”,
respectively. By choosing a read bias of 0.5V/1.3V to encode
the gate input “0”/“1”, respectively, the Ip will be high only
when the majority of AND outputs between the gate inputs and

polarizations are bit “17, the
functionality experimentally.

ITI. IMPLEMENTATION OF MAJ OF XNOR GATE AND

APPLICATION FOR BINARY NEURAL NETWORK

With the single transistor capable of implementing MAJ of
AND logics, it is possible to construct a compact 3-input MAJ
of XNOR gate. Fig.10(a) shows that to implement a 3-input
MAJ of XNOR gate, it is necessary to connect five 3-input MAJ
of AND gates in parallel, by following the logic relationship
between the two logic gates (Fig.10(b)). The OR relationship in
Fig.10(b) can be conveniently implemented by parallel
connection of the MAJ of AND transistors. Fig.10(c) shows the
simulated /p using TCAD under different combinations of gate
input and the polarization configurations, which is consistent
with the logic truth table shown in Fig.10(d). This confirms the
correct logic function of the 3-input MAJ of XNOR gate.

With a compact implementation of 3-input MAJ of XNOR
gate, it can be used for the acceleration of BNN. Though BNN
greatly simplifies the multiplication into simple XNOR gate
when restricting the input and weight to be binary. However,
for BNN with a large model size (Fig.2(d)), the adder tree
exponentially grows and becomes a bottleneck. To address the
issue, we approximate the 1-bit full adder (used in the entire
first layer of the adder tree) with a MAJ gate (Fig.11(a)), as in
[11], which together with the XNOR gate can be replaced with
a compact MAJ of XNOR gate using our FE multi-gate
structure. In this way, significant area saving (up to 21x
reduction) is achieved as shown in the number of transistors
needed to implement a 3-input XNOR and accumulation
computation (Fig.11(b)). This area saving comes with only 2%
accuracy loss when evaluating the Fashion MNIST dataset
using the VGG-based BNN (Fig.11(c)). In addition, the energy-
latency plot for the execution of compact gate shows that even
excluding the memory access, our FE MAJ of XNOR approach
shows a comparable energy-delay product as the CMOS
implementation. All these results demonstrate great promise of
our approach. Note that, the proposed device structure can also
benefit from the vertical 3D structure and maximize its density.

IV. CONCLUSIONS

In this work, we propose a compact and novel ferroelectric
programmable majority gate that can accelerate BNN inference.
Through comprehensive theoretical and experimental
investigations, the logic functionality of majority of AND
operation between the gate input and polarization configuration
is validated. Building on this, we implemented and validated
the functionality of the majority of XNOR gate and shown
significant area saving and memory access elimination when
replacing the XNOR and adder tree in CMOS implementations
of binary neural network. There the programmable majority

gate is highly promising for compute-in-memory applications.
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