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Foreword

This is a timely, comprehensive monograph on the “production, acceleration and
preservation of polarized electron and ion beams” authored by the world’s leading
accelerator scientists, edited and compiled by François Méot. Not only can it serve
as lecture notes for graduate students, it can also be seen as a research reference
book on “spin dynamics and instrumentation.”

Spin is a mysterious intrinsic property of elementary particles. In 1925, G.E.
Uhlenbeck and S. Goudsmit proposed a “spin-angular-momentum degree of free-
dom” for the electron. With it, one could magically fit the experimentally observed
hydrogen spectrum via spin-orbit interaction. This proposal also magically solved
many other experimentally observed puzzles: the Stern-Gerlach effect in 1922,
the fine structure in atomic spectra, the allowed number of electrons in atomic
structure via the Pauli exclusion principle, etc. In 1931, the spin degree of freedom
of electron was found to be intrinsically embedded in Dirac equation. Nevertheless,
the “intrinsic” spin-angular momentum remains a mystery.

Experiments with polarized beams provide added urgency in high-energy physics
to discover new fundamental physics laws. The polarization of beam is defined
as the fractional ensemble average of the quantized spin-angular-momenta of the
particles along a quantization direction. If all particles in a beam are aligned with
the quantization axis, the beam is fully polarized at polarization 1. If all particles are
anti-aligned to the the quantization axis, it is also fully polarized but at polarization
−1. However, if 50% of the particles in the beam are aligned with the quantization
axis and 50% are anti-aligned with the quantization axis, it is fully depolarized at
polarization 0.

The book begins with a brief review on the “past, present and future of polarized
hadron beams” by Thomas Roser. This comprehensive paper provides the flow
of this book by examining various polarization preservation methods of polarized
beams in synchrotrons. Then, the book proceeds with two chapters on “spin
dynamics in accelerators” by F. Méot. These two chapters clearly explain almost
all possible depolarization mechanisms during the polarized beam acceleration in
synchrotrons. The sources of beam depolarization are spin-resonances.

v



vi Foreword

One method of avoiding beam depolarization is to implement local spin-rotators,
or “Siberian snakes,” proposed by Ya. S. Derbenev and A. M. Kondratenko in
1978. Passing through a Siberian snake produces a 180-degree precession of the
polarization vector about an axis in the horizontal plane without affecting beam
orbit. Vadim Ptitsyn presents the spin-rotators design concept in Chap. 4. He
has designed several spin-rotators, successfully used in the Alternating Gradient
Synchrotron (AGS) and Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Laboratory (BNL). This chapter is a must read for people who are
interested in spin manipulation system design. Then, in Chap. 5, Haixin Huang
masterfully and systematically discusses the wisdom of the past 60 years regarding
polarized hadron-beam acceleration in synchrotrons and storage rings.

Polarized electron beams can be achieved from the electron-beam source. Also,
the beams in storage rings can reach a polarized state due to the Sokolov and
Ternov effect in synchrotron radiation. Fanglei Lin provides an illuminating review
of electron beam polarization in storage rings in Chap. 6. Electron beam polarization
in storage rings also suffers depolarizing spin resonances, and this chapter provides
a detailed exploration of the effects of various spin resonances in electron storage
rings. In particular, she discusses the effect of spin resonances in the recently
approved project of Electron Ion Collider (EIC) at BNL. In Chap. 7, Vadim Ptitsyn
discusses the design of the “spin-matching” system in electron storage rings. Then,
in Chap. 8, Yves Roblin summarizes electron-beam polarization in re-circulating
linear accelerators, particularly at the Continuous-Electron-Beam-Acceleration-
Facility (CEBAF). Wien filters and solenoids are used to orient beam polarization
for passing through the recirculating arcs. He also mentions the polarized beam
production and performance at the Stanford Linear Collider.

Numerical simulations of spin-motion in accelerators are indispensable for
testing the theoretical designs mentioned in previous chapters. In Chap. 9, Vahid
Ranjbar provides a comprehensive understanding of the physics, as well as various
spin tracking methods in spin tracking codes. He specifically focuses on three
popular codes: Zgoubi, SPINK, and gpuSpinTrack.

Beyond the spin-dynamics in accelerators, polarized beam source and polarime-
ters are also indispensable in physics research. In Chap. 10, Anatoli Zelenski
reviews the progresses and the feasibility studies in the polarized ion sources,
e.g. H+ ion, D+ (D−) and 3He2+ ion beams of various accelerator laboratories.
He also discusses various beam polarization mechanisms. The success of the
RHIC polarized beam program partially owes its success to high-brilliance, high-
polarization proton beam sources. In Chap. 11, Joe Grames and Matt Poelker
examine the fantastic successful state-of-the-art technology of polarized-electron-
beam source from GaAs photocathodes. Requirements on the drive laser system, the
spin manipulation methods, and polarimetry for polarization measurements are also
discussed. In Chap. 12, William Schmidke addresses the physics of ion-polarimetry
and the essentials of ion-beam polarization measurements. Furthermore, he dis-
cusses the ion-polarimeters implemented at RHIC. In Chap. 13, Dave Gaskell
discusses physics processes that are used in the design of electron polarimetry,
i.e., Mott, Møller, and Compton polarimetry. He explores the advantages and
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disadvantages of each technique, along with their challenges and requirements for
achieving high precision. He focuses on the development of a conceptual design of
a Compton polarimeter on the forthcoming EIC.

Finally in Chap. 14, Kiel Hock, François Méot, and Vasiliy Morozov provide
the spin dynamics tutorial with numerical simulations for people who are interested
in entering this field. In summary, this is a balanced and thoughtfully organized
textbook, with many homework problems. It can also be seen as a learning tool
and encyclopedia of “polarized beam dynamics and instrumentation in particle
accelerators.” This book is timely not only for the EIC project at BNL, but beyond:
there are experiments such as ever-higher-precision measurement of muon g-2; the
search of permanent electric dipole moment; neutron storage ring with magnetic
field confinement, where an oscillating time-varying dipole field can serve as an rf-
bucket for neutron bunching, acceleration, etc. The interests in the spin dynamics,
instead of being an esoteric subject of physics, may grow in the future.

Bloomington, IN, USA S. Y. Lee
May 2022



Preface

The Summer USPAS 2021 Spin Class was held from June 7 till June 18, 2021,
on-line as a consequence of the covid pandemic. The class was comprised of nine
lectures, four seminars, and a tutorial miniworkshop which covered the 2 weeks.

These lectures and seminars were intended as a general introduction to spin
dynamics, to the transport and acceleration of polarized beams in beam lines
and accelerators, and to the associated instrumentation. They provide with the
necessary knowledge for further learning and for an effective involvement in
existing facilities, as well as in advanced projects such as the Electron-Ion Collider
(EIC), proton-EDM experiments, etc. Specialized courses regarding electric dipole
moment experiments, e+ − e− colliders, linacs, and other advanced topics as the
“invariant spin field” are left for specialized USPAS classes, cf. for instance the
recent muon g-2 class.1

Spin dynamics is the backbone of the lectures, which introduce to the theory of
depolarizing resonances and the various techniques for spin manipulation and the
preservation of ion and electron beam polarization during transport, acceleration,
and storage. The class introduces, in addition to computation methods and tools,
a tutorial based on numerical simulations. The course material provides the basic
tools for the practical design of polarized beam accelerator components and optical
sequences and conveys an understanding of the essential underlying theory of
polarized beam dynamics and depolarizing resonances in periodic structures.

In addition to academic lectures, this USPAS Spin Class included a 2-week
mini-workshop aimed at introducing the students to simulation codes and methods.
Over the 2 weeks, extensive simulations of ion and electron spin dynamics, beam
depolarizing effects, and polarization preservation techniques were undertaken. The
exercises treated are taken from real-life polarized beam problems at the RHIC
collider, Brookhaven National Laboratory; at the CEBAF polarized electron beam
RLA, Thomas Jefferson Laboratory; and from the ion and electron polarized beam

1 “Storage Rings for Precision Physics Applications - Muon g-2”. U.S. Particle Accelerator School,
Jan 2019. https://uspas.fnal.gov/programs/2019/knoxville/courses/storage-rings.shtml.

ix
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x Preface

transfer lines, accelerators, and storage rings of the EIC project. This aspect of
the USPAS Spin Class has been maintained in this publication, in the form of a
dedicated chapter, which reflects the importance of numerical simulations in the
design and the operation of polarized beam facilities.

In order to complete the scope of this general introduction to polarized beam in
accelerators, the USPAS Spin Class included four seminars, resulting in as many
chapters in this publication. These four chapters provide comprehensive overviews
of the theory and technology of polarized ion and electron sources, and of ion and
electron beam polarimetry.

The reader will find here elements of the history of the acceleration of polarized
hadron and electron beams in particle accelerators; theoretical elements of spin
dynamics in beam lines and depolarizing effects in circular accelerators, including
spinor algebra methods; an overview of spin computer codes; an introduction to
spin rotators and snakes; a review of accelerator methods to preserve polarization;
theoretical elements of electron beam polarization, the effects of synchrotron
radiation, polarization lifetime, and spin matching; and methods for polarization
transport and preservation in a multi-GeV recirculating electron linac.

Upton, NY, USA François Méot
January 2022
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Nomenclature

a anomalous gyromagnetic ratio (leptons) a = (g − 2)/2
B, B, b̂ magnetic field vector, |B|, unitary vector along B

B‖, B⊥ B component parallel to v, normal to v B‖ = 1

v2
(v · B) v,

B⊥= B− B‖
C ring circumference; orbit length
c speed of light c = 2.99792458× 108 m/s
d spin-orbit coupling function
E, E electric field vector, |E|
E, E0 particle energy, rest energy E = γm0c

2, E0 = m0c
2

e elementary charge e = 1.602176× 10−19 C
G anomalous gyromagnetic ratio (hadrons) G = (g − 2)/2
g Landé gyromagnetic factor
h, h̄ Plank constant, h/2π h = 6.62607× 10−34 m2 kg/s
m particle mass
N± number of particles with spin ±½
n0 or n̂0, nδ stable spin precession direction, off-momentum
n̂ invariant spin field
P, P polarization vector, |P|
p, p momentum vector, |p| p = γmv
q particle charge
R average radius of a ring accelerator R = orbit length/2π

S spin vector
s orbital distance
t time
uc critical photon energy uc = h̄ωc

v, v, v̂ velocity vector, |v|, unit vector along v
(x, y, s) Frénet-Serret coordinate system
x̂, ŷ, ŝ unitary vector along x, y, s axes
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Greek Symbols

α resonance crossing speed α = G
dγ

dθ
± dν

dθ

α orbit deviation α = βct

ρ
β, β normalized velocity vector, |β| β = v/c

β̇ normalized acceleration vector β̇ = dβ/dt

γ Lorentz relativistic factor
δ relative momentum offset δ = δp/p

ε, εK strength of a depolarizing resonance ε, εK ∈ C

εx, εy, εs betatron and longitudinal invariants, or beam emittances

θ orbital angle θ = ∫ s

0
ds

R

μ magnetic moment μ = gq

2m
S

νx, νy , νs betatron tunes, synchrotron tune
νsp spin tune

ξ ratio of critical photon energy to electron energy ξ = h̄ωc

mec2γ
ρ, ρ0 curvature radius: local, reference
[ σ1, σ2, σ3, or

σx, σs, σy
Pauli matrices σ1

x
=
(

0 1
1 0

)

, σ2
s
=
(

0 −i

i 0

)

, σ3
y
=
(

1 0
0 −1

)

τ−1
st , τ−1

bks polarization build-up rate: Sokolov-Ternov, Baier-Katkov-
Strakhovenko

τ−1
dk , τ−1

dep effective polarizatoin rate, depolarization rate
φ, ϕ, ϕsp spin rotation angle

ψ, ψ† spinor, Hermitian conjugate ψ =
(

ψ1

ψ2

)

, ψ† = (ψ∗1 , ψ∗2 )

�,� spin precession vector, angular frequency Ṡ = �× S
�co,�co on-closed orbit spin precession vector, angular frequency
�c,�c cyclotron angular precession vector, angular frequency

�c = v× v̇
v2

ω particle angular veocity ω = dθ

dt
= βc

R

ωc synchrotron radiation critical frequency ωc = 3γ 3c

2ρ
�sp, ωsp spin precession frequency



Chapter 1
Past, Present, and Future of Polarized
Hadron Beams

Thomas Roser

Abstract The acceleration and storage of high energy polarized proton beams has
made tremendous progress over the last 40 years challenging along the way the
technologies, precision and the understanding of the beam dynamics of accelerators.
This progress is most evident in that one can now contemplate high energy colliders
with polarized beams and high luminosity at the same time. After a brief summary
of the development and history of polarized proton beam acceleration this chapter
will focus on the acceleration of polarized proton beams from MeV to the 100s of
GeVs and the possibility of accelerating polarized beams to even higher energies in
the future. Elements of the history of polarized electron beams, subject to the effects
of synchrotron radiation, will be found in the electron beam polarization dedicated
chapters in these lectures.

1.1 Spin Dynamics, Resonances and Siberian Snakes

Accelerating polarized beams requires an understanding of both the orbital motion
and spin motion. Whereas the effect of the spin on the orbit is negligible the effect
of the orbit on the spin is usually very strong. The evolution of the spin direction of
a beam of polarized protons in external magnetic fields such as exist in a circular

This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No.
DE-SC0012704 with the U.S. Department of Energy. The United States Government and the
publisher, by accepting the article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for United States Government purposes.

T. Roser (�)
Collider Accelerator, Brookhaven National Laboratory, Upton, NY, USA
e-mail: roser@bnl.gov

This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2023
F. Méot et al. (eds.), Polarized Beam Dynamics and Instrumentation
in Particle Accelerators, Particle Acceleration and Detection,
https://doi.org/10.1007/978-3-031-16715-7_1
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2 T. Roser

accelerator is governed by the Thomas-BMT equation [1],

dP
dt
= −

(
e

γm

)
[
Gγ B⊥ + (1+G) B‖

]× P

where the polarization vector P is expressed in the frame that moves with the particle
and the magnetic field is expressed in the laboratory frame. This simple precession
equation is very similar to the Lorentz force equation, which governs the evolution
of the orbital motion in an external magnetic field:

dv
dt
= −

(
e

γm

)

[B⊥]× v.

From comparing these two equations it can readily be seen that, in a pure vertical
field, the spin rotates Gγ times faster than the orbital motion. Here G = 1.7928 is
the anomalous magnetic moment of the proton and γ = E/m. In this case the factor
Gγ then gives the number of full spin precessions for every full revolution, a number
that is also called the spin tune νsp. At top energies of the Brookhaven Relativistic
Heavy Ion Collider (RHIC) this number reaches about 400. The Thomas-BMT
equation also shows that at low energies (γ ≈ 1) longitudinal fields B‖ can be quite
effective in manipulating the spin motion, but at high energies transverse fields B⊥
need to be used to have any effect beyond the always present vertical holding field.

The acceleration of polarized beams in circular accelerators is complicated by
the presence of numerous depolarizing spin resonances. During acceleration, a spin
resonance is crossed whenever the spin precession frequency equals the frequency
with which spin-perturbing magnetic fields are encountered. There are two main
types of spin resonances corresponding to the possible sources of such fields:
imperfection resonances, which are driven by magnet errors and misalignments,
and intrinsic resonances, driven by the focusing fields.

The resonance conditions are usually expressed in terms of the spin tune νsp.
For an ideal planar accelerator, where orbiting particles experience only the vertical
guide field, the spin tune is equal to Gγ , as stated earlier. The resonance condition
for imperfection depolarizing resonances arise when νsp = Gγ = n, where n

is an integer. For proton beams, imperfection resonances are therefore separated
by only 523 MeV energy steps. The condition for intrinsic resonances is νsp =
Gγ = kP ± νy , where k is an integer, νy is the vertical betatron tune and P is the
superperiodicity. For example at the Brookhaven Alternating Gradient Synchrotron
(AGS), P = 12 and νy ≈ 8.8.

Close to a spin resonance the spin tune deviates away from its value of Gγ of the
ideal flat machine. For a resonance with strength ε, which is the total spin rotation
per radian of orbit deflection due to the resonance driving fields, the new spin tune
is given by the equation

cos
(
πνsp

) = cos (πGγ ) cos (πε) .
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Fig. 1.1 The evolution of the spin tune during the crossing of a resonance at Gγ = K with
strength ε

Figure 1.1 shows the solutions of this equation with and without a resonance. A
similar calculation can be done for the effective precession direction or, as it is
often called, the stable spin direction or n0. The stable spin direction describes
those polarization components that are repeated every turn. Note that both the
stable spin direction and the spin tune are completely determined by the magnetic
structure of the accelerator and the beam energy. The magnitude and sign of the
beam polarization, however, depend on the beam polarization at injection and the
history of the acceleration process.

The spin tune and stable spin direction calculations apply only to a time-
independent static situation or if parameters are changed adiabatically. Far from
the resonance the stable spin direction coincides with the main vertical magnetic
field. Close to the resonance at Gγ = K , the stable spin direction is perturbed away
from the vertical direction by the resonance driving fields. When a polarized beam
is accelerated through an isolated resonance at arbitrary speed, the final polarization
can be calculated analytically [2] and is given by

Pf

Pi

= 2e
−π |ε|2

2α − 1,

where Pi and Pf are the polarizations before and after the resonance crossing,
respectively, and α is the change of (K − νsp) per radian of the orbit deflection.
When the beam is slowly (α � |ε|2) accelerated through the resonance, the spin
vector will adiabatically follow the stable spin direction resulting in a spin flip as is
indicated in Fig. 1.1. However, for a faster acceleration rate partial depolarization or
partial spin flip will occur.
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1.2 Polarized Proton Acceleration from ZGS to RHIC

In the first efforts to accelerate polarized proton beams to high energy, the intrinsic
resonances were overcome by using a betatron tune jump, which makes the
resonance crossing speed α large, and the imperfection resonances were overcome
with harmonic corrections of the vertical orbit to reduce the resonance strength
ε. Both of these methods aim at making the resonance crossing non-adiabatic.
They were used very successfully for the acceleration of polarized proton beams
to high energy at the Argonne Zero Gradient Synchrotron (ZGS) and at the AGS.
At the ZGS polarized protons were accelerated to 12 GeV/c in 1973, a maximum
polarization of 70% was reached using tune jump quadrupoles [3]. Later, polarized
protons were accelerated at the strong-focusing AGS to 22 GeV/c. The intrinsic
resonance strengths at the strong-focusing AGS were much stronger than at the ZGS
requiring stronger and faster pulsed quadrupoles [4]. Figure 1.2 shows the layout
used at the AGS as well as tuning curves used to adjust the timing of the pulsed
quadrupoles and the strengths of the correction dipoles. These resonance correction
techniques require very accurate adjustments at every one of the many imperfection
resonance crossings, which becomes very difficult and time consuming.

Fig. 1.2 The first effort to accelerate polarized protons at the AGS used pulsed quadrupoles and
correction dipoles, shown in the layout on the right to overcome depolarizing resonances. Typical
tuning graphs for the pulsed quadrupole timing (top) and correction dipole strengths (bottom) are
shown on the right [4]
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Several new techniques to cross both imperfection and intrinsic resonances
adiabatically have been developed at the AGS. The correction dipoles used to correct
the imperfection resonance strength to zero were replaced by a localized spin rotator
or ‘partial Siberian snake’, which makes all the imperfection resonance strengths
large and causes complete adiabatic spin flip at every imperfection resonance [5].
The tune jump quadrupoles were initially replaced by a single rf dipole magnet,
which increased the strength of the intrinsic resonances by driving large coherent
betatron oscillations [6].

Later two strong partial Siberian snakes were installed in the AGS that can
overcome both imperfection and intrinsic resonances. With strong enough partial
snakes a gap between the spin tune and an integer opens up that becomes large
enough to place the fractional part of the betatron tune and therefore the intrinsic
resonance inside this gap. Figure 1.3 shows the measured asymmetry during
acceleration in the AGS showing adiabatic spin flip at every integer value of Gγ .

At higher energies a ‘full Siberian snake’ [7], which is a 180◦ spin rotator of the
spin about a horizontal axis, will keep the stable spin direction unperturbed at all
times as long as the spin rotation due to the Siberian snake is much larger than the
spin rotation due to the resonance driving fields. Therefore the beam polarization
is preserved during acceleration. An alternative way to describe the effect of the
Siberian snake comes from the observation that the spin tune with the snake is a

Fig. 1.3 Left-right asymmetry measured by the AGS polarimeter during the acceleration cycle.
Note that the measured asymmetry flips sign at every integer value of Gγ . The drop of the
magnitude of the asymmetry during acceleration is mainly due to the decreasing analyzing power
of the analyzing reaction of small-angle proton-carbon scattering
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Fig. 1.4 The RHIC accelerator complex with the elements required for the acceleration and
collision of polarized protons highlighted

half-integer and energy independent. Therefore, neither imperfection nor intrinsic
resonance conditions can ever be met as long as the betatron tune is different from
a half-integer.

Figure 1.4 shows the lay-out of the Brookhaven accelerator complex highlighting
the components required for polarized beam acceleration in the AGS and RHIC. The
‘Optically Pumped Polarized Ion Source’ [8] is producing 1012 polarized protons
per pulse. A single source pulse is captured into a single bunch, which is ample
beam intensity to reach a RHIC bunch intensity of 2× 1011 polarized protons.

In the AGS two partial Siberian snakes are installed. One of them is an iron-based
helical dipole [9] that rotates the spin by 11◦. The other is a superconducting helical
dipole that can reach a 3 Tesla field and a spin rotation of up to 45◦ [10]. Both helical
dipoles have the same design with a variable pitch along the length of the magnet to
minimize orbit excursions and also to fit into the 3 m available straight sections in the
AGS. With the two partial snakes strategically placed with one third of the AGS ring
between them all vertical spin resonances can be avoided up to the required transfer
energy to RHIC of about 25 GeV as long as the vertical betatron tune is placed
at 8.98, very close to an integer [11]. This was achieved reliably over the whole
acceleration cycle. With an 80% polarization from the source 65% polarization was
reached at AGS extraction energy. The majority of the remaining polarization loss
in the AGS comes from weak spin resonances driven by the horizontal motion of
the beam.

The full Siberian snakes (two for each ring) and the spin rotators (four for
each collider experiment) for RHIC each consist of four 2.4 m long, 4 T helical
dipole magnet modules each having a full 360◦ helical twist. The two full snakes in
RHIC both rotate the spin by 180◦ around an axis in the horizontal plane and are
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placed such that the beam deflection between the two snakes is exactly 180◦, which
guarantees that the spin tune is energy independent. The spin tune is then given by

νsp = (αb − αa) /π.

Here αa and αb are the angles of the rotation axes of the two snakes relative to
the beam direction. At RHIC these angles are ±45◦ to achieve a half-integer spin
tune. A spin tune of 1/2 reduces the number of snake resonances to a minimum
giving more room for placing the betatron tune. With such orthogonal snake rotation
axes the spin tune is also independent of the betatron amplitude for a single spin
resonance [12], which could also minimize the amplitude dependent spin tune shift
in the presence of multiple resonances.

Figure 1.5 shows the circulating beam intensity in the blue and yellow ring, the
measured circulating beam polarizations and luminosities of a RHIC store with a
255 GeV beam energy. A peak luminosity of about 2.5×1032 cm−2 s−1 was reached.
The beam polarization of about 55% was calibrated with an absolute polarimeter.
This beam polarization is averaged over both beams and over the full store length of
about 10 h [13]. To preserve beam polarization in RHIC during acceleration and
storage the vertical betatron tune had to be controlled to better than 0.005 and
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the orbit had to be corrected to better than 1 mm rms to avoid depolarizing snake
resonances [14].

More than 20 years after Y. Derbenev and A. Kodratenko [7] made their proposal
to use local spin rotators to stabilize polarized beams in high energy rings, it was
demonstrated at RHIC that their concept is working flawlessly even in the presence
of strong spin resonances at high energy.

Table 1.1 gives a concise overview of important milestones towards high energy
polarized beam accelerator facilities.

1.3 Polarimetry, Spin Manipulation and Spin Flipping

In addition to maintaining polarization, the accurate measurement of the beam
polarization is of great importance. Very small angle elastic scattering in the
Coulomb-Nuclear interference region offers the possibility for an analyzing reaction
with a high figure-of-merit, which is not expected to be strongly energy depen-
dent [15]. For polarized beam commissioning in the AGS and RHIC an ultra-thin
carbon ribbon is used as an internal target, and the recoil carbon nuclei are detected
to measure both vertical and radial polarization components. The detection of the
recoil carbon with silicon detectors using both energy and time-of-flight information
shows excellent particle identification. It was demonstrated that this polarimeter can
be used to monitor polarization of high energy proton beams in an almost non-
destructive manner and that the carbon fiber target could be scanned through the
circulating beam to measure polarization profiles. A polarized atomic hydrogen
jet was also installed in RHIC as an internal target for small angle proton-proton
scattering, which allows the absolute calibration of the beam polarization to better
than 3%.

Artificially driven spin resonances can be used to control the polarization of the
stored proton beam. Typically a horizontal magnetic dipole field that is modulated
at or close to the spin tune frequency is used. These devices are called either rf
or ac dipoles depending on the frequency of modulation. As described above an rf
dipole was used in the AGS to overcome intrinsic resonances. By ramping the drive
frequency through the resonance condition a full spin flip can be achieved [16]. For
RHIC with a spin tune of 0.5 the two resonances that a simple rf dipole produces
interfere during the resonance crossing and prevent a full spin flip. A new device
that consists of two ac dipoles with a spin rotator in between can avoid this problem
by producing only a single resonance by properly adjusting the relative amplitude
and phase of the ac dipole excitations [17].

This device can also be used to measure the spin tune. By adiabatically exciting
the spin flipper at a drive tune close to the spin tune the beam polarization will be
tilted away from the otherwise stable vertical direction. If the strength of the spin
flipper is larger than the spin tune spread the whole beam polarization will tilt in the
same way and can be measured with the polarimeter. The ratio of the vertical and
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horizontal polarization component is then proportional to the difference between the
drive tune and the spin tune [20].

1.4 Accelerating Polarized Protons to Even Higher Energy

The strength of imperfection resonances approximately increases linearly with
energy and the strength of intrinsic resonances increases with the square root of the
beam energy. To first order the total spin rotation due to all full or partial Siberian
snakes will have to be at least as large as the total spin rotation due to the resonance
driving term. More realistically the snakes should at least provide twice the spin
rotation of the resonances. This simple rule fits the experience of the AGS, where
the partial snakes can overcome the typical AGS resonance strengths of 0.07 and at
RHIC, where the two snakes can overcome resonance strengths up to about 0.5. It
follows that at higher energy than RHIC multiple snake pairs will be needed. For
example, acceleration of polarized protons in the 7 TeV LHC would require at least
16 full snakes or 8 snake pairs to cope with the expected resonance strengths of
about 4.

For a ring with N snakes pairs the spin tune is energy independent and equal to
1/2 if

N∑

i=1

(
θ i
b − θ i

a

)
= π and

N∑

i=1

(
αi

b − αi
a

)
/π = 1/2.

Here θ i
a , θ i

b, αi
a , and αi

b are the azimuthal locations and snake rotation angles
of the i-th snake pair, respectively. After satisfying the above conditions these
parameters can then be chosen to maximize the beam polarization of particles with
large betatron amplitude. This was first examined by K. Steffen [21]. S. Mane [22]
showed that snake configurations with rotation axis angle that increase by equal
amounts around the ring preserve the property of the two snake configuration of
RHIC that the spin tune is independent of the beam emittance for an isolated single
spin resonance and should therefore be a promising configuration with minimized
amplitude dependent spin tune shift in the presence of multiple spin resonances.
Figure 1.6 shows such configurations up to 16 snakes, which would, for example,
be applicable to LHC with one snake pair per arc.

The increasing strength of intrinsic spin resonances can be overcome with
an increasing number of properly configured Siberian snakes. However, the ran-
dom residual orbit distortions, after orbit corrections have been performed, drive
imperfection resonances that are unaffected by Siberian snakes. S.Y. Lee and E.D.
Courant [23] have shown that the maximum tolerable strength for such a resonance
is about 0.05. For RHIC this corresponds to about 250 μm rms residual error of
the vertical orbit, which is achievable. However, for LHC this translates to a very
challenging 10 μm rms residual orbit error.
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Fig. 1.6 Multiple snake configurations of equally spaced Siberian snakes with rotation axis with
a steadily increasing angle [22]. Such configurations have been shown to have an emittance
independent spin tune in a single resonance model. The question marks mean that these colliders
have stopped operation and have never been used for polarized protons
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Chapter 2
Spin Dynamics

François Méot

A Gérard Leleux

Abstract This chapter is a general introduction to spin dynamics in beam lines and
accelerators, and to resonant depolarization in cyclic accelerators.

2.1 Introduction

This lecture is largely based on various of the founding theoretical papers and
earlier lectures regarding spin dynamics in cyclic accelerators, including, especially,
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work at the ZGS [6], and Courant and Ruth’s 1980 BNL report [7].
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This list, although substantial, is far from exhaustive, however it is believed to be
a sound starting point for further exploration and advanced knowledge, beyond the
present brief theoretical introduction to spin dynamics and depolarizing resonances.

2.2 Spin Precession

2.2.1 Magnetic Moment of a Spinning Charge

Consider a mass with uniform density, spinning around its center of mass: ρm =
m/V ; its spin angular momentum can be written

S = m

V

∫
r× v(r)d3r (2.1)

Assuming this volume uniformly charged, with density ρq = q/V , the resulting
magnetic dipole moment reads

μ = q

2V

∫
r× v(r)d3r (2.2)

In this model, spin angular momentum S and resulting magnetic moment μ are
colinear vectors and satisfy

μ = q

2m
S (2.3)

2.2.2 Spin Precession

If a magnetic dipole μ is dipped in a magnetic field B, it undergoes a torque

τ = μ× B (2.4)

This torque exerted by B causes μ, or equivalently its spin angular momentum S, to
precess around B. The rate of change of the angular momentum is

τ ≡ dS
dt
= g

q

2m
S

︸ ︷︷ ︸
equivalent μ

×B = S×� (2.5)
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i

dF=i dl x B                        

B

dF=i dl x B

O
r

μ // S

Fig. 2.1 A sketch of a torque effect in a current loop model. Assume μ due to a current loop: the
change in angular momentum is the direction of the torque, i.e. sideways. The torque expresses as
τ = ∫ r× dF = ∫ r× (v× B)dq = μ× B

g = 2m

q

μ

S
is the Landé factor, or gyromagnetic ratio. It takes the value g = 2 for

a point particle. Note that Sect. 2.2 model for
μ

S
isn’t that far, a factor ≈2 away

(Eq. 2.3; Fig. 2.1).

Introduce the quantity a = g − 2

2
, the gyromagnetic anomaly, a measure of the

departure of g from 2 (usually noted a for leptons, G for hadrons). It takes the
following values, for diverse particles:

1.159652× 10−3
︸ ︷︷ ︸

electron

, 1.165921× 10−3
︸ ︷︷ ︸

muon

, 1.792847︸ ︷︷ ︸
proton

, −4.184153︸ ︷︷ ︸
helion

, −0.14301︸ ︷︷ ︸
deuteron

(2.6)

2.2.3 Thomas-BMT Equation of Motion

In accelerators and beam lines particles move in the fields of guiding, focusing
and accelerating systems. These laboratory fields Lorentz-transform into a magnetic
component Bcom in the particle frame (the electric component is ignored here, as it
does not couple to the magnetic moment). A torque results, which writes

dS
dt
≡ τ = (1+G)

q

m
S× Bcom (2.7)

Expressing Bcom in terms of the Lorentz transformed laboratory fields B and E (note
that E contributes to Bcom) yields the Thomas-BMT equation of spin motion in the
laboratory frame [9]

dS
dt
= q

γm
S×

[

(1+Gγ )B⊥ + (1+G)B‖ +
(

1

γ + 1
+G

)

γ
E× β

c

]

(2.8)
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wherein

– S(t) is taken in the particle frame, it has not been Lorentz-transformed,
– all other quantities, including time, are expressed in laboratory frame,
– B‖ ‖ v and B⊥ = B− B‖ field components have been introduced.

Note that, from the expressions above it results that S· dS
dt
= 0, which establishes

that |S|=constant.

Two Comments
1. In the combined torque

dS
dt
= q

γm
S×

[
(1+Gγ )B⊥ + (1+G)B‖︸ ︷︷ ︸

≈GγB

+
(

1

γ + 1
+G

)

γ
E× β

c
︸ ︷︷ ︸

≈GγE/c

]

E ⊥ v and B ⊥ v components may be of comparable strengths, for instance in
beam optics conditions where B ≈ 100 Gauss and E ≈MV/m.

However, electric fields from accelerating RF cavities in circular accelerators
are parallel to v, thus |E× v| is small. They may usually be ignored, such will be
the case in studying depolarizing resonances in next sections.

2. Orbit perturbation by the magnetic moment of the particle will be ignored in
the remainder of this chapter, the effect is negligible at energies of concern in
accelerators. However, this is the origin of the Stern-Gerlach effect.

The Stern-Gerlach experiment (performed 3 years before Uhlenbeck and
Goudsmit hypothesis of the spinning electron) proved that (“Bohr-Sommerfeld
hypothesis”) the direction of the angular momentum of atoms is quantized:

– silver atoms travel through a region of non-uniform magnetic field,
– the atoms are deflected as they experience a force

F = dp
dt
= μ · grad B

which stems from the non-uniform interaction (a differential effect) of the
magnetic dipole with the field,

– deflections appear to be in two discrete directions (up and down, in the
experiment), they do not yield a continuum of atom distribution in space (as
would result from a continuum of magnetic moment orientations).

This deflection property by a non-uniform field allows guiding (using
quadrupole fields) and focusing (using sextupole fields) of slow neutron beams
(fermions with ±h̄/2 spin) along beam lines.
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Example 1: Spin Precession Through a Dipole Magnet

In the laboratory frame, the spin vector precesses by an angle

φsp,Lab = (1+Gγ ) ×
trajectory
deviation↓

α

while the velocity vector precesses an angle α.
In the moving frame, spin precession amounts to

φsp, moving frame = Gγ α.

R

y

v

S x

α

x

S x’

G
γα

(1+
G

γ)α

S’

B

y’

s

v’s’

Example 2: A Proton Orbiting in the Uniform Field of a Cyclotron Magnet

“Much of the physics of spin motion can be illustrated using the simplest
model of a storage ring consisting of uniform horizontal bending and no straight
sections.” [12].

The case of a 200 keV proton, γ = 1.000213, orbiting in the (XLab, YLab) plane
is illustrated in Fig. 2.2. The number of spin precessions per turn amounts to

1+Gγ = 1+ 1.793229

in the laboratory frame.
By analogy with the betatron tune, the number of spin precessions per turn is the

spin tune: νsp = ωprec − ωrev

ωrev
= Gγ

a quantity defined in the moving frame.
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Fig. 2.2 A proton is circling (solid line in the (XLab, YLab) plane) in a uniform field normal to the
orbit. The vector attached to the proton and pointing towards the (XLab.YLab)-normal represents its
spin, observed here in the moving frame. The magnitude of the spin component normal to the orbit
is given on the SZ axis

Case of an integer number of spin precessions
over a turn: νsp = Gγ = 2 here, spin motion

closes on itself after a turn

Case of a fractional number of spin
precessions over a turn: νsp = Gγ = 1.7932
here, spin motion starts at about 2 o’clock, it

does not close after a turn

Fig. 2.3 Case of a proton orbiting in a uniform field, projection of the spin vector in the bend
plane, along the proton orbit, in the case of an integer or fractional Gγ value. (a) Case of an
integer number of spin precessions over a turn: νsp = Gγ = 2 here, spin motion closes on itself
after a turn. (b) Case of a fractional number of spin precessions over a turn: νsp = Gγ = 1.7932
here, spin motion starts at about 2 o’clock, it does not close after a turn

In Fig. 2.3 spin motion is observed in the moving frame, the figure shows the
projection of the spin vector in the bend plane, in the case of an integer or fractional
Gγ value.
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These basic aspects of spin motion are further exemplified in Sect. 2.4, as follows:

– Exercise 1, which deals with a low energy spin rotator based on a Wien filter;
theoretical parameters are derived and applied in a numerical simulation of the
device;

– Exercise 2, which investigates spin motion in a uniform magnetic field, and
provides a hint at resonant spin motion, under the effect of the perturbative torque
from a field defect in an otherwise uniform magnetic field; proper parameters for
resonance are determined and used in spin tracking simulations;

– Exercise 3, a series of simulations which introduce to, and play with, periodic
spin closed orbit and stable spin precession direction in a cyclic accelerator.

2.3 Depolarizing Resonances in Cyclic Accelerators

In the bending magnets of a planar cyclic accelerator, spins precess around the
vertical axis at a frequency �sp. There is no precession in drift spaces, the
orientation of the spin vector remains unchanged. In the perturbing fields resulting

for instance from off mid-plane motion at main bend extremities (Bs = ∂By

∂s
y),

or in quadrupole fields (Bx ∝ y), spins precess around a local non-vertical axis,
with a related frequency �pert.. If the two frequencies �sp and �pert. get close to
one another, the average precession axis moves away from the vertical, the more
so as perturbative fields are stronger, and this results in beam depolarization. The
dynamics of resonant depolarization is studied with some detail in this Section,
which owes much to Ref. [3].

2.3.1 Polarization

A beam is a set of particles, polarization of a ±½ spin particle beam is defined as
the statistical average

P = n↑ − n↓

n↑ + n↓

with n
↑↓

the number of particles with spin “up” or “down”, corresponding to the
eigenstates ±h̄/2.

The average polarization behaves as a classical quantity, a spin 3-vector S, of
which the evolution is

– determined by a torque applying on the magnetic moment associated with the
spin angular momentum,

– and described by the Thomas-BMT equation.
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This is the principle of correspondence: “the expectation value of the vector
operator representing the ‘spin’ will necessarily follow the same time dependence
as one would obtain from a classical equation of motion.” [9].

Spin 1 particles—deuteron for instance—have three eigenstates+h̄, 0, −h̄. The
polarization is the statistical average

P = n↑ − n↓

n↑ + n0 + n↓

and follows the classical equation of spin motion. General considerations regarding
spin transport in relation with accelerator design can be found in Ref. [16].

2.3.2 Perturbing (Depolarizing) Fields

As aforementioned, electric fields from accelerating cavities are ignored, as they
result in essentially E ‖ v. The differential equation of spin motion (Eq. 2.8)
simplifies to

dS
dt
= q

γm
S× [(1+Gγ )B⊥ + (1+G)B‖

]
(2.9)

Writing it under the slightly different form

dS
dt
= q

γm
S× [B+G(B‖ + γ B⊥)

]
(2.10)

with B = B⊥ + B‖ the local field, the origin of depolarization is manifest: assume
S essentially vertical and B ‖ S, thus B‖ � γB⊥ and

dS
dt
∝ S× B ≈ 0

whereas, any angle between B and S causes S to vary,
dS
dt
�= 0. It can be concluded

that depolarization results from transverse field components Bx or Bs .
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Equation 2.9 shows in addition that spins S spread out, i.e. beam depolarizes,
under the effect of

– beam momentum spread (γ factor in Eq. 2.9);
– betatron motion: a different B⊥(t) and B‖(t) history for each particle.

2.3.3 Re-write Thomas-BMT Equation of Motion

Thomas-BMT equation of motion can be written with fields B‖ and B⊥ expressed
in the moving frame, i.e., in terms of particle coordinates along the accelerator
reference orbit, as it is the coordinates we use for particle dynamics in cyclic
accelerators.

Start from the differential equation in the laboratory system:

dS
dt
= q

γm
S× [(1+Gγ )B⊥ + (1+G)B‖

]
(2.11)

Fields in this equation are defined in the laboratory system (O; η, ξ, y) (Fig. 2.4).
Resort to usual working hypotheses of particle dynamics:

– the moving frame (M0; s, x, y), Fig. 2.5, is considered, normed, a direct triedra,
its origin M0 is the projection of particle position M(s, x, y) on the reference
orbit r0(s); s is tangent to the reference orbit, x is radial, y is vertical,

– M0 is at abscissa s along reference orbit and moves with velocity ds/dt ,
– reference orbit is assumed planar: an arc in bends (local curvature 1/ρ(s) along

the reference orbit), straight line otherwise,
– r(s) = r0(s) + xx + yy is the trajectory of M,
– kinematic terms will be developed to first order in x and y,
– longitudinal excursion is ignored, transverse only is considered,

Fig. 2.4 Laboratory frame
(O; η, ξ, y) (y axis normal to
the (η, ξ) plane) and moving
frame (s, x, y). Change of
frame from one to the other:⎧
⎨

⎩

s = η cos α − ξ sin α

x = η sin α + ξ cos α

y = y
[3]

s

x

α

ξ

η
O

Lab system
(fixed)
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Fig. 2.5 Moving frame
   

r (s)0
B

reference

0M

M x

y

v 

s

C

r(s)

– magnetic field considered is of general form (dipoles and lenses),
B(s, x, y) = Bss+ Bxx+ Byy, arbitrary order in x, y

Resort to the regular differential elements toolkit of particle dynamics:

– s is defined by s = dr0

ds
thus |dr0| = ds;

– θ only changes in bends;
– in bends (r, θ, y) forms a cylindrical frame;
– one has dx ‖ s, ds ‖ −x;

–
dx
ds
= s

ρ
,

ds
ds
= − x

ρ
,

dy
ds
= 0;

– in the absence of curvature:

ρ →∞, 1/ρ = 0, dx = ds = dy = 0, ds is finite and dθ = 0;

– develop kinematic terms to first order by virtue of

x

ρ
� x ′ � ρx ′′ � 1; y

ρ
� y ′ � ρy ′′ � 1

Express B‖ and B⊥ in the Moving Frame
The particle velocity writes

v(s, x, y) = dr
dt
= dr

ds

ds

dt
= ds

dt

[(

1+ x

ρ

)

s+ dx

ds
x+ dy

ds
y
]

This yields

B‖ = v
v

(v
v
· B
)
= ds

dt

v
v2

⎛

⎜
⎜
⎝

1+ x

ρ

x ′
y ′

⎞

⎟
⎟
⎠ ·
⎛

⎝
Bs

Bx

By

⎞

⎠
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Fig. 2.6 End field and
off-mid plane Bs component,
in a dipole magnet

y B

Bs

B

Bs

By

By
s

B (s)y

IRON

From this intermediate result it can be observed that, to the first order in x, y,

{ quadrupoles do not contribute B‖, as Bx ∝ y, Bs = 0, By ∝ x,

dipoles do, as By = B0y; their end fields too as Bs = B0ρ0 y
∂(1/ρ)

∂s
s (Fig. 2.6).

Note that Bs = B0ρ0 y
d(1/ρ)

ds
as used here, results from

∂Bs

∂y
= ∂By

∂s

1

1+ x
ρ︸ ︷︷ ︸

from Maxwell’s equations

≈

∂By

∂s
= B0ρ0

∂

∂s

(
1

ρ

)

Writing the scalar product explicitly yields

v · B = ds

dt

[

(1+ x

ρ
)Bs + dx

ds
Bx + dy

ds
By

]

≈ ds

dt
(1+ x

ρ
)

[

Bs + dy

ds
By(1− x

ρ
)

]

≈ ds

dt
(1+ x

ρ
)

[

Bs + dy

ds
By

]

Consistently with the earlier hypothesis of a linear approximation of the equations of

motion, drop terms quadratic in x, x’, y’ from |v| = ds

dt

[
(
1+ x

ρ

)+ x ′2 + y ′2
]1/2

,

thus v = ds

dt

[(

1+ x

ρ

)]

s, yielding

B‖ = 1

v2 v (v·B) =
[

Bs + dy

ds
By

]

s and B⊥ = B−B‖ = −dy

ds
Bys+Bxx+Byy
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Substitute B⊥ and B‖ in Eq. 2.11, this gives

dS
dt
= q

γm
S×
[

(1+G)Bss+ (1+Gγ )Bxx+ (1+Gγ )Byy+G(1− γ )
dy

ds
Bys
]

Now, back to laboratory coordinates (Fig. 2.4), using

⎧
⎨

⎩

s = η cos α − ξ sin α

x = η sin α + ξ cos α

y = y

wherein α(t) represents the precession of the velocity vector and increases in
bending magnets following α(t) = βct/ρ. This mapping yields

dS
dt
= q

mγ
S×

{

η

[

(1+G)Bs cos α +G(1− γ )
dy

ds
By cos α + (1+Gγ )Bx sin α

]

−ξ

[

(1+G)Bs sin α +G(1− γ )
dy

ds
By sin α − (1+Gγ )Bx sin α

]

+y By(1+Gγ )

}

(2.12)

or, in projection on the laboratory (η, ξ , y) axes,

d

dt

⎛

⎜
⎝

Sη

Sξ

Sy

⎞

⎟
⎠ = q

mγ
S×

⎛

⎜
⎜
⎜
⎝

(1+G)Bs cos α +G(1− γ )
dy

ds
By cos α + (1+Gγ)Bx sin α

−(1+G)Bs sin α −G(1− γ )
dy

ds
By sin α + (1+Gγ)Bx cos α

By(1+Gγ)

⎞

⎟
⎟
⎟
⎠

(2.13)

Comments
Write the torque cross product:

d

dt

⎛

⎝
Sη

Sξ

Sy

⎞

⎠ = q

mγ

⎛

⎝
Sη

Sξ

Sy

⎞

⎠×
⎛

⎝
�η

�ξ

�y

⎞

⎠ = q

mγ

⎛

⎝
Sξ�y − Sy�ξ

Sy�η − Sη�y

Sη�ξ − Sξ�η

⎞

⎠

← dSy

dt
(2.14)
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Explicit the components of the precession vector �:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�η = (1+G)Bs cos α +G(1− γ )
dy

ds
By cos α + (1+Gγ )Bx sin α perturbation

�ξ = −(1+G)Bs sin α −G(1− γ )
dy

ds
By sin α + (1+Gγ )Bx cos α perturbation

�y = By(1+Gγ ) main component
(2.15)

• When considering dipole and quadrupole fields only (Bs = 0):

– the perturbation (namely, the transverse components: �η and �ξ ) only appears
if there is vertical motion;

– quadrupole fields are the main contribution, as Bx = G y results in
dSy

dt
=

Sη�ξ − Sξ�η �= 0 (Eq. 2.14). This is however a small quantity as Sη, �ξ , Sξ

and �η all are presumably small quantities, thus the variation of Sy is slow.
If x=0 then � = (�η,�ξ , 0) ⊥ y, i.e., the local precession axis is in the

bend plane.

• Assume in addition S ≈ Sy as expected in a circular accelerator, namely,
dS/dt ≈ (−Sy�ξ , Sy�η, 0): in dipoles where �y � �η,�ξ , it results that
dS/dt ⊥ �y .

Consider fields along a 1-turn periodic closed orbit in a cyclic accelerator:
they are 1-turn periodic, namely, B(α + 2π) = B(α). As a consequence, � is
1-turn periodic (Eq. 2.15),

�(α + 2π) = �(α)

thus, �(α) describes the stable spin precession axis around the ring.

2.3.4 Integral Form of the Solution S(θ)

First simplify notations, by introducing the projection of S =
⎛

⎝
Sη

Sξ

Sy

⎞

⎠ in the bend

plane, using the complex notation

sπ = Sη + jSξ (2.16)
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Reducing the expression of the spin to two components is justified as the three
coordinates of S are not independent: as the spin vector is normalized to 1, sπ yields
the vertical spin component

Sy =
√

1− |sπ |2 (2.17)

This allows re-writing the differential equation,

dsπ

dt
= q

γm

(

− jBy(1+Gγ )sπ − Sye−jα

×
[

−j (1+G)Bs + (1+Gγ )Bx − jG(1− γ )
dy

ds
By

])

(2.18)

Introduce the guiding field By0 = B0ρ0

ρ0
, so that

– By(θ) = By0(θ)+�By(θ)

– By0 �= 0 in dipoles only

– �By is a perturbation, namely,

⎧
⎪⎪⎨

⎪⎪⎩

= By0
n

ρ0
x in combined function dipoles

∝ yk in multipoles
other dipolar field perturbation

–
dy

ds
By0: results from vertical motion slope in main bends, in general a small

effect.

The differential equation can thus be written

dsπ

dt
= q

mγ

{

− jBy0(1+Gγ )sπ − j�By(1+Gγ )sπ

−Sye−jα
[

−j (1+G)Bs + (1+Gγ )Bx − jG(1− γ )
dy

ds
By0

]}

Introduce the orbital angle

θ = s

R
, such that

∮
dθ =

∮
ds

R
= 2πR

R
= 2π

R = C
2π

denotes the mean radius of the orbit—in cyclic accelerators the use of θ

is justified by the use of Fourier series developments. The angular velocity of the
particle along the reference orbit is

ω0 = dθ

dt
= βc

R
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Take in addition

ds

dθ
= 1

ω0

ds

dt
and

q

mγω0
= qR

mγβc
= R

p/q
= R

By0ρ0

with By0 �= 0 the field in the dipoles and ρ0 their curvature radius. Introduce also

1. the instantaneous spin precession angular frequency in dipoles:

ωsp = (1+Gγ )2π

Tdip
, while

Tdip

Trev
= ρ0

R
, thus ωsp(θ) =

[
(1+Gγ )

R

ρ0
ω0

0 outside bends
2. and, in order to simplify notations, the following factors:

λx = (1+Gγ )
R

ρ0
, λy = −j (1− γ )G

R

ρ0
, λs = −j (1+G)

R

ρ0

and
�ωsp

ω0
= (1+Gγ )

R

ρ0

�By

By0

Substituting in
dsπ

dt
yields the equation of motion

dsπ

dθ
= −j

ωsp(θ)

ω0
sπ

︸ ︷︷ ︸

fundamental

term

−

depolarization
︷ ︸︸ ︷

Sye−jα
[

λs

Bs

By0
+ λx

Bx

By0
+ λy

dy

ds

]

∝ �By, modulation of

the precession frequency
︷ ︸︸ ︷

−j
�ωsp(θ)

ω0
sπ

︸ ︷︷ ︸

perturbation f (θ)

(2.19)

or, in a compact form,

dsπ

dθ
= −j

ωsp(θ)

ω0
sπ + f (θ) (2.20)

A Summary of the Origin of Spin Motion Perturbations
It results from Eq. 2.19 that

• when considering a linear lattice, i.e., dipole and quadrupole fields only, then the
perturbation f (θ) only appears if vertical motion is non-zero, y �= 0;

• horizontal motion contributes f (θ) in the presence of

– a mid-plane offset defect: this causes Bs(y = 0) �= 0,
– sextupoles: By = H (x2 − y2),
– solenoidal field: non-zero Bs ,
– or, if the equation of spin motion is developed to second or higher order in

particle coordinates (whereas kinematic terms have been limited to first order,
in the present working hypotheses);
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• vertical field perturbation �By appears

– in combined function dipoles: the field index n = − ρ0

By0

∂By

∂x
results in

�By(x) ∝ x,
– in multipoles: By = −Gy (skew quad); By = H (x2 − y2) (sextupole), etc.,

and does not depolarize, it only results in a modulation of the precession
frequency, �ωsp ∝ �By .

2.3.4.1 Solve the Unperturbed Equation of Motion

The unperturbed equation writes (Eq. 2.20 with f (θ) = 0)

dsπ

dθ
= −j

ωsp(θ)

ω0
sπ (2.21)

which readily integrates, namely,

sπ (θ) = C e
−j
∫ θ

0

ωsp(θ
′)

ω0
dθ ′

Using

1.
ωsp

ω0
=
⎡

⎣ (1+Gγ )
R

ρ
inside dipoles (R = C / 2π, mean radius)

0 outside dipoles

2. given that
∫ θ

0
ωsp(θ

′)
ω0

dθ ′ only changes in dipoles, in which dθ ′ = ds′

R
= ρ

R
dα,

thus
∫ θ

0
ωsp

ω0
dθ ′ = ∫ (1+Gγ )

R

ρ

ρ

R
dα = (1+Gγ ) α

{
assuming α and θ

have same origin
, and the

expected solution results, namely a motion of rotation,

sπ (θ) = C e−j (1+Gγ )α(θ) = C
[

cos(1+Gγ )α
︸ ︷︷ ︸

Sη

−j sin(1+Gγ )α
︸ ︷︷ ︸

−Sξ

]

(2.22)

wherein α is a function of θ = s/R. Note that this expression is consistent with the
absence of rotation in drifts, in which α does not change (whereas θ = s/R does):
sπ (θ)=constant along drifts, spin does not precess.
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2.3.4.2 Solve the Perturbed Equation of Motion

Equation 2.20 can be solved using the method of variation of the constant, as
follows.

Look for sπ (θ) with the very form of the unperturbed solution, yet with the
integration constant now a function of (θ), namely (Eq. 2.22),

sπ (θ) = C(θ) sπ,unpert.(θ) wherein sπ,unpert.(θ) = e−j (1+Gγ )α(θ) (2.23)

This yields

dsπ

dθ
= dC(θ)

dθ
sπ,unpert. + C(θ)

dsπ,unpert.

dθ

which, accounting for Eqs. 2.20 and 2.21, yields

dC

dθ
sπ,unpert.(θ) = f (θ)

Solving the perturbed equation of motion (Eq. 2.23) is thus transposed to the
question of solving

dC

dθ
= f (θ)

sπ,unpert.(θ)
= f (θ) ej (1+Gγ )α(θ) (2.24)

as the integration of dC/dθ yields the perturbed spin motion sπ (θ) =
C(θ) sπ,unpert.(θ). Following what, the quantity of interest, which is the vertical
component of the polarization vector, Sy , is obtained using (after Eqs. 2.17 and 2.23,
and given that |sπ,unpert.| = 1)

Sy =
√

1− |sπ |2 =
√

1− |C|2 (2.25)

2.3.5 Linear Resonances

Re-write Eq. 2.24 under the form

− 1

Sy

dC

dθ
=
[

λs
Bs

By0
+ λx

Bx

By0
+ λy

dy

ds

]

︸ ︷︷ ︸
perturbation

e−jGγ (θ − α) ejGγ θ (2.26)

wherein the explicit expression for f (θ) (Eq. 2.19) has been substituted (ignoring
the �ωsp term, as it only causes a precession frequency modulation).
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In further Fourier transforms, periodicity of the boxed factor in Eq. 2.26 matters:

1. e−jGγ (θ − α) is
2π

M
-periodic in an M-cell lattice;

2. perturbative fields are proportional to the betatron excursion (or a power of the
latter), for instance:

– Bs ∝ y from main dipoles, Bx ∝ y = yco + yβ from quadrupoles,
– Bx ∝ x = xco + xβ as well from skew quadrupole components,
– Bx ∝ y2, x y, etc., from non-linear multipoles;

3. regarding particle excursion,

– yco(θ) is 2π-periodic,

– yβ(θ) =
√

βy
εy

π
cos(

∫
ds
β
+ ϕy) =

Floquet solution of Hill’s Eq.
︷ ︸︸ ︷

Fy(θ) ej (νyθ + ϕy)
︸ ︷︷ ︸

2π
νy
−periodic

+CC (CC=complex conjugate),

wherein the Floquet factor Fy(θ) = 1
2

√
βy(θ)

εy

π
e
j
(
R
∫ θ

0
dθ

βy(θ)
− νyθ

)

is 2π
M

-
periodic.

The expected energies (Gγ values) where spin precession resonates with trans-
verse field torques can be inferred from what precedes: a Fourier development of
the boxed factor [pert.] × e−jGγ (θ − α) of Eq. 2.26 will evidence the resonant
conditions,

[pert.] × e−jGγ (θ − α) =
∑

n

coεne
−jnθ

︸ ︷︷ ︸
closed orbit

+
∑

n

βyεne
−j (nM ± νy)θ

︸ ︷︷ ︸
quadrupoles: Bx=G y

+
∑

n

βxεne
−j (nM ± νx)θ

︸ ︷︷ ︸
skew quadrupoles: B=G x

wherein coεn, βyεn, βxεn are the respective Fourier amplitudes of the field contribu-
tions along the closed orbit, and along the vertical an horizontal betatron excursions.
Sources of resonance excitation are as indicated: radial field along the closed orbit,
and quadrupole fields. Thus, integration of dC/dθ (Eq. 2.26) produces terms of the
form

ej (n−Gγ )θ

n−Gγ
,

︸ ︷︷ ︸

imperfection resonances
located at

Gγ = integer

e−j (nM ± νy −Gγ )θ

nM ± νy −Gγ
,

e−j (nM ± νx −Gγ )θ

nM ± νx −Gγ
︸ ︷︷ ︸

intrinsic resonances
located at

Gγ = nM ± νy, Gγ = nM ± νx
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with “imperfection resonances” arising under the effect of fields experienced due to
a non-vanishing vertical closed orbit, and “intrinsic resonances” arising under the
effect of fields experienced due to betatron motion, either vertical or horizontal.

2.3.5.1 Strength of Imperfection Depolarizing Resonances

Imperfection, or integer, depolarizing resonances are driven by a non-vanishing
vertical closed orbit yco(θ) which causes spins to experience 1-turn periodic radial
fields in quadrupoles (the main source of spin perturbation transverse fields)

Bx(θ) = G y(θ) = K(θ)× B0ρ0 × yco(θ)

Resonance occurs if the spin undergoes an integer number of precessions over a turn
(it then undergoes 1-turn-periodic torques), so that spin tilts at field perturbations
along the closed orbit add up coherently. Thus resonances occur at integer values

Gγn = n

Ignoring dipole end fields (Bs contribution) and dy/ds terms in the perturbation
(Eq. 2.26) as they are weak effects compared to quadrupole fields in strong focusing
lattices, the perturbation function (Eq. 2.19, with B0 denoting the guide field, here)
reduces to

f (θ) = −Sye−jαλx
Bx

B0
= −Sye−jαλxKρ0 yco

[
with λx = (1+Gγ )

R

ρ0

]

and the differential equation for C (Eq. 2.26) takes the form

− 1

Sy

dC

dθ
= λxρ0K(θ) yco(θ)

cell-periodic
︷ ︸︸ ︷

e−jGγ (θ − α)
︸ ︷︷ ︸

1-turn periodic

ejGγ θ

The periodic coefficient can be developed in Fourier series over a turn as this is the
periodicity of the closed orbit yco(θ),

λx ρ0 K(θ) yco(θ) e−jGγ (θ − α) =
+∞∑

n=−∞
ε

imp
n e−jnθ

with the harmonic strength given by

ε
imp
n = λxρ0

2π

∮
K(θ) yco(θ) e−jGγ (θ − α) ejnθ dθ
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which yields

− 1

Sy

dC

dθ
=
∑

n

ε
imp
n ej (Gγ − n)θ (2.27)

dC

dθ
is slowly varying if Gγ − n ≈ 0, i.e. near the resonance. On the resonance the

strength expresses as

ε
imp
n = λxρ0

2π

∮
K(θ) yco(θ) ejGγn α dθ (2.28)

In the thin-lens approximation, take (�θ)Qpole = Li/R the orbital extent of
quadrupole i located at si = s(θ = θi), the integral

∮
simplifies to a discrete sum

over the quadrupoles. Note (KL)i the integrated strength, yco(θi) the local value of
the closed orbit and αi the cumulated orbit deviation at quadrupole i location. The
strength of the Gγn harmonic then writes

{
Re(ε

imp
n )

Im(ε
imp
n )

}

= 1+Gγn

2π

∑

Qpoles

{
cos Gγn αi

sin Gγn αi

}

(KL)i yco(θi) (2.29)

Note: in a combined function magnet lattice, BNL AGS for instance, yco(θi) may
vary significantly over a main dipole, slicing may be required for this series to
converge with sufficient accuracy (5 slices about in the AGS case).

From the expression of the closed orbit in Eq. 2.30, it appears that orbit
harmonics near the betatron tune (n = Gγn ≈ νy ) excite strong resonances.
Imperfection resonance strength is further amplified in P-superperiodic rings, with
M-cell superperiods, if the betatron tune νy ≈ integer×M × P [15, Chap.3-I].

Amplification Near Orbit Harmonics
In the presence of field defects �Bx(s) experienced in quadrupoles due to non-
vanishing vertical closed orbit, the vertical equation of motion of a particle writes

dy2

ds2 +Ky(s) y = �Bx(s)

Bρ

Substitute the Courant variables

η = y
√

βy

and ϕ = 1

νy

∫
ds

βy
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this yields

dη2

dϕ2 + ν2
y η = ν2

yβ
3/2
y

�Bx(s)

Bρ
=

+∞∑

n=−∞
cn ejnϕ

wherein

cn =
ν2
y

2π

∫ 2π

0
β

3/2
y

�Bx

Bρ
e−jnϕ dϕ

Assuming perturbative field integrals (�Bxl)k at locations sk , the 1-turn closed
solution expressed under the form η =∑n ηn ejnϕ satisfies

η(s) = yco(s)√
βy(s)
↑

amplification of yco
in focusing quads

= νy

2π

∑

k

weight of defects
in focusing quads

↓√
βy(sk)

(�Bxl)k

Bρ

+∞∑

n=−∞

cos n(ϕ − ϕ(sk))

ν2
y − n2

↑
amplification of near-νy

orbit harmonics

(2.30)

This shows the efficiency of harmonic orbit correction in minimizing the strength
of imperfection resonances or, conversely, harmonic orbit excitation in enhancing
the resonance strength so as to induce spin flipping (Chap. 5.2.1).

Example: Imperfection Resonances in BNL AGS Booster

The AGS injector ring (AGS Booster) is described in Chap. 14 which may be
referred to for details. This example is part of the resonance study and spin dynamics
simulations proposed in that chapter.

A random vertical closed orbit of peak amplitude ŷco = 1 mm is excited by a
random vertical offset of the main quadrupoles. Figure 2.7 displays the resulting
Fourier spectrum (after Eq. 2.29). The effect of these resonances on the vertical spin
component of a polarized helion accelerated over Gγ : −4.19 → −16 through
these resonances is illustrated in Fig. 2.8.

2.3.5.2 Strength of Intrinsic Depolarizing Resonances

Intrinsic depolarizing resonances are driven by betatron motion, their effect on
spin depends upon betatron amplitude and phase, their effect on beam polarization
depends on beam emittance. In strong focusing synchrotrons they are driven mostly
by the radial field components met in quadrupoles namely
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Fig. 2.7 Normalized spectrum |εimp
n |/ŷ of the integer depolarizing resonances, Gγn = integer, in

the AGS Booster. Case here of 3He2+ ion, G =−4.18

Fig. 2.8 Evolution of the vertical spin component Sy during acceleration through imperfection
resonances in the AGS Booster

Bx(θ) = G y(θ) = K(θ)× B0ρ0 × yβ(θ) (2.31)

whereas longitudinal Bs from dipole ends, as well as the effect of dy/ds in f (θ),
Eq. 2.19, are usually weak effects by comparison and ignored. Note that the contrary
held in the ZGS, which was a zero-index lattice, thus with no radial fields, and
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excitation of depolarizing resonances arising from main dipole end fields. The
location of intrinsic resonances depends on betatron tune, it is given in an M-
periodic structure by

Gγn = nM ± νy

The perturbation function (Eq. 2.19, with B0 the guide field) reduces to

f (θ) = −Sye−jαλx
Bx

B0
= −Sye

−jαλxKρ0 yβ

[

with λx = (1+Gγ )
R

ρ0

]

and the differential equation for C (Eq. 2.26) takes the form

− 1

Sy

dC

dθ
= λxρ0K(θ) yβ(θ) e−jGγ (θ − α)ejGγ θ

Substituting yβ(θ) = Fy(θ) ej (νyθ + ϕy) + CC yields

− 1

Sy

dC

dθ
= λxρ0K(θ)

(
Fy ej (νyθ + ϕy) + F ∗y e−j (νyθ + ϕy)

)
e−jGγ (θ − α)ejGγ θ

and

− 1

Sy

dC

dθ
= λxρ0

⎛

⎜
⎝K(θ)Fye

−jGγ (θ − α)

︸ ︷︷ ︸
cell periodicity

ej [(Gγ + νy)θ + ϕy]

+K(θ)F ∗y e−jGγ (θ − α) ej [(Gγ − νy)θ − ϕy ]
)

Develop the cell-periodic factor in Fourier series, this gives

− 1

Sy

dC

dθ
=
(∑+∞

n=−∞ εintr
n

+
e−jnθ

)
ej [(Gγ + νy)θ + ϕy] (2.32)

+
(∑+∞

n=−∞ εintr
n
−
e−jnθ

)
ej [(Gγ−νy)θ−ϕy]

with n a multiple of the number of cells M in a perfect ring. The amplitudes of the
two families of Fourier harmonics are given by the integrals

εintr
n

+= λxρ0

2π

∫ 2π

0
K Fy(θ) e−jGγ (θ−α) ejnθdθ, (2.33)

εintr
n

−= λxρ0

2π

∫ 2π

0
K F ∗y (θ) e−jGγ (θ−α) ejnθdθ
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Substitute the Floquet factor Fy(θ) = 1
2

√
βy(θ)

εy

π
e
j
(∫ s(θ)

0
ds

βy(θ)
− νyθ

)

, this
yields

εintr
n

± = λxρ0

4π

∫ 2π

0
K(θ)

√

βy(θ)
εy

π
e
±j
(∫ s(θ)

0
ds
βy
− νyθ

)

e−jGγ (θ − α(θ)) ejnθ dθ

Near the resonance Gγ ± νy − n→ 0, hence the resonance strength,

εintr
n

± ≈ 1+Gγ

4π
R

∫ 2π

0
K(θ)

√

βy(θ)
εy

π
e

±j
∫ s(θ)

0
ds

βy ejGγα(θ)dθ

In the thin-lens approximation, take (�θ)Qpole = Li/R the orbital extent of
quadrupole i located at si = s(θ = θi), the integral

∮
simplifies to a discrete sum

over the quadrupoles. Note (KL)i the integrated quadrupole strength, βy,i = βy(θi),
αi the cumulated orbit deviation at quadrupole i, the resonance strength then writes

εintr
n

± ≈ 1+Gγ

4π

∑

Qpoles

(KL)i

√

βy,i

εy

π
ej (Gγαi ± ϕi) (2.34)

with ϕi = ∫ s(θi)

0
ds

βy

the vertical betatron phase advance from the origin.

Distinguishing the real and imaginary components, the strength of the harmonics
in the thin-lens approximation can then be written

{
Re(εintr

n

±
)

Im(εintr
n

±
)

}

= 1+Gγn

4π

∑

Qpoles

{
cos(Gγnαi ± ϕi)

sin(Gγnαi ± ϕi)

}

(KL)i

√

βy,i

εy

π
(2.35)

Note:

1. particle energy on the resonance, Gγn = n± νy , can be conveniently substituted

to n which thus disappears from the expressions εintr
n

±
;

2. it is necessary to distinguish between

– systematic resonances: n = pM, fields are M-periodic, M = number of cells or
super-cells in the ring—note that these resonances excited in the ideal machine
are all the more spaced when the number of cells is greater;

– random resonances: n can take any value, field perturbations are 1-turn

periodic—as would result for instance from loss of
2π

M
periodicity due to

defects.
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Amplification Near a Half-Integer Tune
Equation 2.34 shows that εintr

n
±

is proportional to K
√

βy , thus the strength of integer
resonances is amplified near Floquet resonances, namely, 2νy ≈integer. Indeed,
pose

cn = −
ν2
y

π

∮
β2

y δK e−j n ϕy dϕy

with δK the focusing defect and ϕy = 1
νy

∫ s

0
ds

βy(s)
the betatron phase advance. It

can be established that the perturbation of the betatron function satisfies

�βy

βy

=
+∞∑

n=−∞
cn

ejnϕy

4ν2
y − n2

↑
amplification near 2νy integer

(2.36)

Example: Linear Intrinsic Resonances in BNL AGS Booster

The AGS injector ring (AGS Booster) is described in Chap. 14 which may be
referred to for details. This example is part of the resonance study and spin dynamics
simulations proposed in that chapter.

Figure 2.9 displays AGS Booster intrinsic resonance spectrum (after Eq. 2.35),
Fig. 2.10 displays turn-by-turn individual vertical spin component Sy(Gγ ) of a few
particles launched on the same invariant with different initial betatron phase, as
observed at a fixed azimuth in the ring, and the resulting polarization

〈
Sy

〉
(Gγ ), an

average over a few tens of particles.

2.3.5.3 Case of Longitudinal Perturbing Fields

Longitudinal fields make up the field component Bs in the perturbation function
f (θ) (Eq. 2.19).

The computation of the resonance strength goes as for a Bx transverse component
(Sect. 2.3.5.2), mutatis mutandis, namely, replace

λx = (1+Gγ )
R

ρ0
by λs = −j (1+G)

R

ρ0
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Fig. 2.9 Strength of Gγn ± νy harmonics in Booster, normalized to the invariant value,
|εn|/

√
εy/π . Case here of 3He2+ ion, G=-4.18, whereas νy = 4.82. The spectrum includes random

resonances (excited with subliminal loss of the 6-periodicity of the ring). Major lines are systematic
resonances, at Gγ = 6× integer± νy : |Gγ | = 0+ νy , 12 − νy , 6+ νy , 18− νy

and replace

K = K⊥ = 1

B0ρ0

∂By(θ)

∂x
by K‖ = Bs(θ)

B0ρ0

Consider for instance a solenoid, located at azimuth s = RθS , length L, field

Bs(θ) = δ(θ − θS)Bs�θ = δ(θ − θS)
BsL

R

Assuming orbit aligned on the axis (no effect of radial fields at solenoid ends) the
perturbation function (Eq. 2.19) reduces to

f (θ) = −Sye
−jαλs

Bs

B0

[
with λs = −j (1+G)

R

ρ0

]

The strength εn of the integer depolarizing resonances Gγn which this field excites
is given by (this is readily obtained by substituting λs to λx and K‖L to KL × yco
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Fig. 2.10 Thin markers: individual turn-by-turn Sy(Gγ ); different initial betatron phases ϕy(θ =
0) result in distinct trajectories causing different torque history across resonances. Thick markers:
resulting turn-by-turn average

〈
Sy

〉
(Gγ )

in Eq. 2.29)

{ Re(εn)

Im(εn)

}

= −1+G

2π

{
cos GγnαS

sin GγnαS

}

K‖L (2.37)

with αS the cumulated orbit deviation at location θS of the solenoid. Its modulus can
be written

|εn| =
∣
∣
∣
∣
1+G

2π
K‖L

∣
∣
∣
∣ =

∣
∣
∣
∣
1+G

2π

BsL

B0ρ0

∣
∣
∣
∣ (2.38)

All spins are affected in the same amount, regardless of closed orbit or betatron
motion.

The resonance strength may also be expressed in terms of the spin rotation angle,
φsp, as follows. The latter can be derived from Eq. 2.8, retaining the sole longitudinal
component, namely

dS
dt
= S×� = q

γm
S× (1+G) B‖
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With |B‖| = Bs , � = |�| and B0ρ0 = γmv/q the spin rotation over the solenoid
extent satisfies

φsp =
∫

� dt = (1+G)
Bs

B0ρ0

∫
v dt = (1+G)

BsL

B0ρ0

Substituting in Eq. 2.38 yields

|εn| = φsp

2π
(2.39)

Additional calculations of resonance strength in various field configurations are
proposed in Exercise 4–6 (Sect. 2.4), including, (1) case of a longitudinal axis spin
rotator; (2) superimposing orbit distortion and spin rotator; (3) strength of coupling
resonances.

2.3.6 Resonance Crossing. Froissart-Stora Formula

During acceleration, as |Gγ | increases, depolarizing resonances are crossed, possi-
bly in great number (Figs. 2.8 and 2.10). These resonances are in a general manner
effective, due to the presence of orbit defects, and due to betatron motion. They
are an obstacle to the acceleration of polarized beams to high energy in circular
accelerators. This section addresses the depolarizing effect of resonance crossing.

First, re-write the differential equation for
dC

dθ
in a convenient form:

– introduce δn = Gγ −Gγn = distance to the resonance
– note εn the resonance strength (εn = ε

imp
n , εintr

n , ...). With these notations the
differential equation for C(θ) in the case of an isolated resonance writes (after
Eqs. 2.27 and 2.33)

− 1

Sy

dC

dθ
= εn

↑
res. strength

distance to resonance↓
ejδnθ

Substituting Sy =
√

1− |C|2 (Eq. 2.25) results in dC/dθ differential equation
under the form

− 1
√

1− |C|2
dC

dθ
= εn ejδnθ (2.40)



2 Spin Dynamics 41

Accelerating through a resonance, γ varies: γ ≡ γ (θ). This requires changing
δnθ ≡ (Gγ −Gγn)θ to

∫ θ

0 (Gγ −Gγn)dθ . Introduce the crossing speed,

a = d

dθ
(Gγ −Gγn) =

[G
dγ

dθ
imperfection resonance

G
dγ

dθ
± dνy

dθ
intrinsic resonance

(2.41)

Note that a possible variation of the betatron tune contributes to the crossing speed
(“tune jump” technique to preserve polarization, see Chap. 5), consider constant
vertical tune, here. Assume constant acceleration rate, this gives

Gγ −Gγn = aθ and
∫

(Gγ −Gγn)dθ = aθ2

2

thus

− 1
√

1− |C|2
dC

dθ
= εn e

j
aθ2

2 (1) (2.42)

Now,

– introduce the angle ϕ between spin vector S and vertical axis, thus

[
Sy = cos ϕ

|C| = sin ϕ
;

– and pose C = sin ϕ e−j

�=constant
↓
ψ ; note also εn = |εn|ej Arg εn , thus Eq. 2.42 takes

the form

− d

dθ

(
sin ϕ e−j ψ

)
= |εn| eja θ2

2 ejArg εn cos ϕ

Finally, pose φ = ψ − Arg εn, to get

d

dθ

(
sin ϕ e−j φ

)
= −|εn| eja θ2

2 cos ϕ (2.43)

This is the differential equation which Froissart and Stora established, in 1959,
in the context of plans for polarized ion beam acceleration in the Saturne syn-
chrotron [10]. Given the present hypothesis of an isolated resonance, integration
is over θ : −∞ → +∞. Froissart and Stora solved it by a quantum mechanical
approach where the equation to solve is linear, establishing that

cos [ϕ(+∞)− ϕ(−∞)] = 2 e
−π

2

|εn|2
a − 1
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a result commonly used under the form

Pfinal

Pinitial
= 2 e

−π

2

|εn|2
a − 1 (2.44)

with Pinitial and Pfinal the beam polarization (average of spin states over particle
ensemble) respectively far upstream and far downstream of an isolated resonance.

Figure 2.10 is a typical illustration of this depolarizing effect upon crossing of
isolated resonances; each resonance in that series of four can be considered isolated
as the distance to its neighbors is much greater than the width of the resonance (the
width of a resonance is defined in Sect. 2.3.8).

Equation 2.44 shows that in the presence of a particular configuration of
perturbing fields (which determines the resonance strength |εn|), the crossing
speed a remains the main parameter. Three resonance crossing regimes can be
distinguished:

–
|εn|2

a
large,

[ strong resonance
slow crossing

→ Pf ≈ −Pi , polarization flips;

–
|εn|2

a
small,

[weak resonance
fast crossing

→ Pf ≈ Pi , perturbative fields have marginal

effect;
– intermediate regime → |Pf / Pi | < 1→ polarization loss.

Preserving polarization requires one of the first two regimes, i.e., adiabatic
crossing resulting in spin flip (at 99% for instance), or fast crossing resulting in
marginal loss (1% for instance). Practical techniques to achieve that at discussed in
Chap. 5.

Resonance Crossing Speed

• Case of constant tune

(
dνy

dt
= 0

)

:

a ≡ d(Gγ −Gγn)

dθ
= G

dγ

dθ
is defined with respect to the azimuth

variable θ . It is in that manner close to constant.

dγ

dθ
= �γ

2π
= 1

2π

�W

E0
with

[
�W the energy gain per turn,

E0 the rest energy of the particle

p = q By0ρ0 ⇒ dp

dt
= qḂy0ρ0 = F

(

Ḃ = dB

dt

)

work of F ⇒ �W = F × 2πR = 2πR qḂy0ρ0

(continued)
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thus

dγ

dθ
= 1

2π

2πR qḂy0ρ0

E0
= R ρ0 Ḃ

E0/q
and a = G

dγ

dθ
= G

R ρ0

E0/q
Ḃ

• Case
dνy

dt
�= 0, “tune jump”:

d(Gγ −Gγn)

dθ
= d

(
Gγ − (n± νy)

)

dθ

and

a = G
dγ

dθ
± dνy

dθ

2.3.7 Spin Motion Through a Weak Resonance

In the case of a weak resonance, the spin differential equation of motion (Eq. 2.23,
with Eq. 2.24) finds an analytical solution Sy(θ) [3]. This is an interesting case to
explore at this allows an access to the details of spin motion, turn by turn through a
resonance.

In the differential equation of motion through a resonance (Eq. 2.43) pose
cos ϕ ≈ 1, i.e., angle to vertical axis left essentially unchanged by the crossing,
this yields

d

dθ

(
sin ϕ e−j φ

)
= −|εn| ej

aθ2

2 (2.45)

Pose y =
√

a

π
θ ; in d

(
sin ϕ e−j φ

)
= −

√
π

a
|εn| ej

πy2

2 dy, identify real and

imaginary parts, this yields

{ sin ϕ cos φ = −
√

π
a
|εn|

∫ y

−∞ cos πy2

2 dy

sin ϕ sin φ = +
√

π
a
|εn|

∫ y

−∞ sin πy2

2 dy

and

sin2 ϕ = π

a
|εn|2

[(∫ y

−∞ cos πy2

2 dy
)2 +

(∫ y

−∞ sin πy2

2 dy
)2
]

↑ ↑
Fresnel integrals

(2.46)
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A Check of the Weak Resonance Approximation

Consider full crossing: y → ∞. Integrate:
∫∞
−∞ cos πy2

2 dy = 1 and
∫∞
−∞ sin πy2

2 dy = 1, so that

sin2 ϕ = 2π

a
|εn|2

thus
√

1− sin2 ϕ = cos ϕ ≈ 1− π

a
|εn|2

}

a result in accord with the limited development of Froissart-Stora formula, namely
(Eq. 2.44 with �ϕ = ϕ − 0),

cos ϕ = 2 e
−π

2

|εn|2
a − 1 ≈ 2 (1− π

2

|εn|2
a

)− 1 = 1− π

a
|εn|2

Back to Eq. 2.46: introduce the Fresnel integrals

C(x) =
∫ x

0
cos

πt2

2
dt; S(x) =

∫ x

0
sin

πt2

2
dt

and use

∫ 0

−∞
cos

πt2

2
dt =

∫ ∞

0
cos

πt2

2
dt = 0.5;

∫ 0

−∞
sin

πt2

2
dt =

∫ ∞

0
sin

πt2

2
dt = 0.5

This results in

For y > 0 i.e., θ > 0 →
downstream of the resonance

︷ ︸︸ ︷

sin2 ϕ = π

a
|εn|2

[
(0.5+ C(y))2 + (0.5 + S(y))2

]

For y < 0 i.e., θ < 0
pose y = −x with x > 0

→ sin2 ϕ = π

a
|εn|2

[
(0.5− C(x))2 + (0.5 − S(x))2

]

︸ ︷︷ ︸
upstream of the resonance

(2.47)

with the origin of the orbital angle θ at the resonance. A graph of the resulting
Sy = cos ϕ =

√
1− sin2 ϕ is displayed in Fig. 2.11.
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Fig. 2.11 A graph of Sy(θ) =
√

1− sin2 ϕ(θ) (solid curve; after Eq. 2.47). Numerical conditions
are taken from AGS Booster, Gγn = νy resonance—see Sect. 14.1.1.9, markers are from turn-by-
turn tracking simulations implemented there

2.3.8 Stationary Spin Precession; Width of a Resonance

If particle energy is fixed, so is the distance to the resonance

δn = Gγ −Gγn = constant.

Start from the spin motion equation sπ (θ) = C(θ) sπ,unpert.(θ) (Eq. 2.23) with

− 1
√

1− |C|2
dC

dθ
= εn ejδn θ (Eq. 2.40).

Look for a stationary solution for C(θ): C(θ) = |sπ | ej δn θ . it comes

− 1
√

1− |sπ |2
[
d|sπ |
dθ

+ j δn |sπ |
]

ej δn θ = εn ejδn θ

Look for a solution such that |sπ | =constant, thus − j δn |sπ |√
1− |sπ |2

= εn, so yielding

|sπ |2 = 1

1+
(

δn

|εn|
)2 (2.48)
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Fig. 2.12 Polarization as a function of normalized distance δn/|εn| to the resonance (Eq. 2.49).
|εn| is the resonance width

The physical quantity of interest is the polarization
〈
Sy

〉 = n+ − n−
n+ + n−

, n±: the

number of particles with spin ±1

2
. From Eq. 2.48 it comes

〈
Sy

〉 =
√

1− |sπ |2 = δn√
ε2
n + δ2

n

(2.49)

and reciprocally

δn

|εn| =
〈
Sy

〉

√
1− 〈Sy

〉2

|εn| is the resonance width (more rigorously, a measure of the latter, at 29.3%
depolarization, Fig. 2.12).

The dependence of polarization upon distance to the resonance is displayed in
Fig. 2.12. It is for instance 70.7%, 95% and 99% at distances respectively δn = |εn|,
3 |εn| and 7 |εn|.

2.3.9 Non-linear Resonances

Sextupoles excite non-linear depolarizing resonances [4]. These are driven by
betatron motion, their effect on spin depends on both horizontal and vertical particle
invariants, εx and εy (their effect on beam polarization depends on horizontal and
vertical beam emittance): the greater εx,y , the greater the sextupole perturbative field

Bx = H x y = 2H (B0ρ0) x y (2.50)
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Their location depends on both horizontal and vertical tunes:

Gγn = n± νx ± νy

The perturbation function (Eq. 2.19) reduces to

f (θ) = −Sye−jαλx
Bx

B0
= −2Sye−jαλxH(θ)ρ0 x y [with λx = (1+Gγ )

R

ρ0
]

so that (Eq. 2.26)

− 1

Sy

dC

dθ
= 2λxρ0H(θ) x(θ) y(θ) ejGγα (2.51)

Substituting x y(θ) =
(
Fx(θ) ej (νxθ + ϕx) + CC

) (
Fy(θ) ej (νyθ + ϕy) + CC

)

wherein F
x
y

= 1

2

√√
√
√
√β

x
y

ε
x
y

π
e

j

⎛

⎜
⎝
∫ s

0
ds
β
x
y

− ν
x
y

θ

⎞

⎟
⎠

, yields

xy = 1

4

√

βx

εx

π

√

βy

εy

π

[

e
j
(∫ s

0
ds
βx
+ ∫ s

0
ds
βy
− νxθ − νyθ

)

e
j
(
νxθ + νyθ + ϕx + ϕy

)
+ CC

+e
j
(∫ s

0
ds
βx
− ∫ s

0
ds
βy
− νxθ + νyθ

)

e
j
(
νxθ − νyθ + ϕx − ϕy

)
+ CC

]

(2.52)

Consider for instance the resonance Gγn = n − νx − νy , which stems from the
term

− 1

Sy

dC

dθ
= 1+Gγ

2
H(θ)R × (2.53)

√

βx

εx

π

√

βy

εy

π
e
j
(∫ s

0
ds
βx
+ ∫ s

0
ds
βy
− νxθ − νyθ

)

e
j
(
νxθ + νyθ + ϕx + ϕy

)
ejGγα

In Eq. 2.51 re-write the factor ejGγα → e−jGγ (θ − α) ejGγ θ , re-arrange, to
get

− 1

Sy

dC

dθ
= 1+Gγ

2
H(θ)R × (2.54)

√

βx

εx

π

√

βy

εy

π
e
j
(∫ s

0
ds
βx
+ ∫ s

0
ds
βy
− νxθ − νyθ −Gγ(θ − α)

)

︸ ︷︷ ︸
1-turn periodic

e
j
(
νxθ + νyθ + ϕx + ϕy

)
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Expand the 1-turn periodic component in Eq. 2.55 in Fourier series,
∑

n εne
−jnθ ,

the harmonic strength writes

εn = 1+Gγ

4π
R

∮
H(θ)

√

βx

εx

π

√

βy

εy

π
e
j
(∫ s

0
ds
βx
+ ∫ s

0
ds
βy
− νxθ − νyθ −Gγ(θ − α)

)

ejnθ dθ

Near the resonance Gγ ≈ n− νx − νy , thus the previous expression reduces to

εn = 1+Gγ

4π
R

∮
H(θ)

√

βx
εx

π

√

βy

εy

π
e
j
(∫ s

0
ds
βx
+ ∫ s

0
ds
βy
+Gγα

)

dθ

In the thin-lens approximation, take (�θ)Sextupole = Li/R the orbital extent of
lens i located at si = s(θ = θi), the integral

∮
simplifies to a discrete sum over

the lenses. Note (HL)i the integrated sextupole strength, β
x
y ,i

= β
x
y

(θi), αi the

cumulated orbit deviation at sextupole i, the resonance strength then writes

εn = 1+Gγ

4π

∑

Sextu

(HL)i

√

βx,i
εx

π

√

βy,i

εy

π
e
j
(∫ si

0
ds
βx,i
+ ∫ si

0
ds
βy,i
+ jGγα

)

Distinguishing the real and imaginary components, the strength of the harmonics in
the thin-lens approximation writes

{ Re(εn)

Im(εn)

}

= 1+Gγ

4π

∑

Sextu

{
cos(Gγαi + ϕx,i + ϕy,i)

sin(Gγαi + ϕx,i + ϕy,i)

}

(HL)i

√

βx,i
εx

π

√

βy,i

εy

π

(2.55)

with ϕ
x
y ,i
= ∫ s(θi)

0
ds

β
x
y

the betatron phase advance from the origin.

2.4 Homework

In Exercises 1 to 3, theoretical elements introduced in the course are used to build
ad hoc elementary, short, numerical simulations aimed at producing the numerical
results expected from theory. These exercises also allow additional, “hands-on”,
insight in the arcanes of spin motion theory, spin motion in cyclic accelerators
and the effects of such parameters as energy, perturbing fields, betatron motion
frequency and amplitude. In order to complete and understand these simulations
and their input data, it is necessary to have at hand the manual of the computer code
used as this is where all useful explanations regarding optical components resorted
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to and their keywords, input and output data files and their content, etc., will be
found. Note that any code with capabilities of spin tracking through arbitrary E and
B fields, as necessitated in these three exercises, can be utilized; the code resorted
to here and its manual can be downloaded from sourceforge [17] details regarding
its utilization are given in due place in the exercises concerned, 1 to 3.

Exercises 4 to 6 are theoretical questions, only requiring paper and pencil.

•? Exercise 1: Low Energy Spin Rotator

This exercise serves two purposes: (1) moving a spin through a combined elec-
tric×magnetic field device and checking simulation outcomes against theoretical
expectations, on the one hand, but also, (2) getting a taste of numerical simulation
of spin motion through accelerator optical components.

Prior to injection into downstream stages, a linac for instance, spins generally
need be set normal to the beam propagation axis, from their longitudinal orientation
at the source. A Wien filter may be used for that: this is the case for instance in
CEBAF electron injector (Fig. 8.4, p. 204) a similar device is under study for the
EIC [18].

Working Hypotheses
Refer to the reference frame in Fig. 2.13,

– the X axis is the electron propagation direction in the Wien filter,
– take E ‖ Y, B ‖ Z, v ‖ X,
– EY (X) and BZ(X) fields are considered step functions in a first part of the

simulations; yet field fall-offs do matter and are included in a second part.

Fig. 2.13 Straight electron
trajectory across a Wien filter
spin rotator. Blue trajectory:
case E = 0; Red trajectory:
case B = 0

X

Y

Z

B

E
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1. Recall the relationship between EY and BZ for a straight electron trajectory.
2. From the analogy between velocity and spin precession equations, namely (with

()′ = d()/ds)

v ′ = v× B/Bρ and S ′ = S×�/Bρ

express the spin precession under the effect of this E, B crossed fields device, in
terms of distance s, BZ, EY , v/c, particle rigidity Bρ and Wien filter length L.

3. Take electron energy 350 keV, L=1.5 m. Find the numerical values of EY and BZ .
4. An input data file for the simulation of a 50 cm segment of the spin rotator is

provided in [19]—README files are provided there as well, for guidance. In
view of the next questions the input file is actually in two parts: WFSegment.dat
which is specific to this question and WFSegment.inc which contains the 50 cm
segment proper and called by the former, both available from [19].

WFSegment.dat computes particle and spin motion through the 50 cm Wien
filter segment, by stepwise numerical integration, and produces a graph of
spin motion over the 50 cm; the simulation material includes the corresponding
gnuplot script: gnuplot_spin.gnu, its content clarifies which computational output
data, from which output file, are concerned in the present question.

4.a It comes out of a preliminary run of WFSegment.dat (following the
README file instructions) that the Wien filter EY and BZ field values
assigned in WFSegment.inc are not accurate: electron final transverse
coordinates are not zero, its spin rotation is not 30◦.

Confirm this by running the simulation file as is and providing graphs of
the electron trajectory and spin precession over the 50 cm segment. Find in
the result listing the (present, incorrect) values of the trajectory coordinates
and spin precession angle at the exit of this loosely tuned Wien filter.

4.b In WFSegment.inc, update EY and BZ to their theoretical values, as per
question 3.

Provide the new graphs of the electron trajectory, it should be straight
along the X-axis, and of spin motion over the 150 cm Wien filter (as in
Fig. 2.14), it should end up normal to the X-axis after a 150 cm path.

4.c Using the theoretical EY and BZ values, compute the dependence of the final
electron coordinates (position and angle) and spin precession angle, on the
integration step size. Provide a graph. Explain what you observe.

Hint: use the following form of REBELOTE do-loop command to repeat
tracking through WIENFILT for a series of integration step size values:

’REBELOTE’

100 0.1 0 1 ! Repeat the previous sequence, 100 times, and prior to each repeat,

1 ! change value of one parameter,

WIENFILT 80 0.01:10. ! namely, number 80 (integration step size) in WIENFILT.

Add FAISTORE[FNAME=zgoubi.fai] before REBELOTE, to store par-
ticle data at each pass.
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"zgoubi.plt" u ($19==1 & $20==1 ? $14 : 1/0):(zero):($33*120):($34*120)

Fig. 2.14 Spin precession along the X axis, from longitudinal at s = 0 to ‖ E at s = 1.5 m

What is the maximum step size for a relative error on spin precession
below 10−4?

5. Add λE ≈ λB ≈ 5 ∼ 7 cm long E and B field fall-off at both ends of the
Wien filter 50 cm segment. Ensuring zero particle coordinates at exit and 30◦
spin precession now requires adjusting the fields.

A fitting procedure allows computing the matched values of EY and BZ ; their
relative difference to the hard edge theoretical values is expected to be small.

Provide graphs of the electron trajectory, and of EY (X) and BZ(X).
6. The E and B fringe fields in a Wien filter actually have different extents. This

causes an offset of particle trajectory.
Keep the electric field entrance and exit fall-offs λE = 5 cm fixed, and vary

the magnetic field fringe length in the range 3 ≤ λB ≤ 7 cm; re-match the field
values to recover exit coordinates equal to zero together with 30◦ spin precession
angle.

Reproduce Fig. 2.15: the series of trajectories, Y(X), obtained for this series
of values of the ratio λE/λB .

Provide a graph of the dependence on the ratio λE/λB , of the relative variation
of EY and BZ .

Hint: use the following form of REBELOTE do-loop command, placed after
FIT, to repeat the fitting procedure for a series of λE/λB values:

’REBELOTE’

37 0.1 0 1 ! NPASS is of the form int*(7[cm]-3[cm])+1 to allow for lambdaB/lambdaE=1.

2

WIENFILT 22 3.:7. ! vary lambda_B at entrance EFB from 3 to 7 cm.

WIENFILT 52 3.:7. ! vary lambda_B at exit EFB from 3 to 7 cm.
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0.0 0.2 0.4 0.6 0.8

-.001

-.0005

0.0
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0.001

Zgoubi|Zpop
17-09-2019

* # TRAJECTORIES - STORAGE FILE, 17-09-2

   Y (m)  vs.  X (m)

                      λ                                      λ                   /  =7/5             E  B      

                      λ                                      λ                   /  =3/5             E  B      

                      λ                                      λ                   =                   E  B      

Fig. 2.15 A scan of the on-momentum orbit across the Wien filter, with varying fringe field extent
ratio λE/λB . The orbit is zero at entrance by hypothesis, and zeroed at the exit

Solution
A detailed solution of this exercise is given in [20]. All computer code input files
for questions 4–6 can be found in the USPAS Spin Class repository [20], where
simulation result files (result listings, gnuplot scripts and graphs, etc.) can be found
as well.

•? Exercise 2: Synchronized Torque

This exercise resorts to theory in order to build spin motion simulations; it
includes the introduction of a local spin rotator and the investigation of subsequent
resonant behavior (the spin rotator torque superposes to the uniform field, possibly
synchronized with the betatron motion). It requires simulating orbital motion of a
single proton in a uniform field (the field of a classical cyclotron, typically), on a
constant radius orbit, thus at constant energy.

Simulation data files can be based on the following two, found in [20]:
synchSpinTorque.INC.dat which computes the circular motion of a few protons in
a uniform 5 kG field, and their spin motion, and the optical sequence file 60degSec-
tor.inc which is called by the former; both include comments, for guidance.

For each question, explain what is expected from theory, and compare with
simulation outcomes. As a guidance, Fig. 2.16 gives an idea of expected outcomes.

1. Find the closed orbit for a 200 keV proton in that 5 kG uniform field.
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Fig. 2.16 Left: vertical spin component as a function of orbital angle, for various Gγ values.
Middle: spin motion on a sphere, some non-integer Gγ value. Right: spin motion on a sphere,
integer Gγ ; every turn the spin jumps by an angle equal to the spin rotator angle, 10◦ here

2. Introduce a 30◦ precession of the spin, rotation axis is the longitudinal axis (a
local pure spin rotation may be applied as it avoids any perturbation of the orbital
motion, a solenoid can be used otherwise).

2.a Plot the vertical spin component as a function of orbital angle, over a few
tens of turns.

2.b Plot the projection of the spin vector motion in the horizontal plane.
2.c Plot the projection of the spin vector motion on a sphere.
2.d Compute the spin closed orbit vector at the origin of the optical sequence,

and the spin tune.

3. Change the proton energy to 108.412 MeV, repeat questions 1 and 2.
How many turns are needed to flip the spin?

4. Repeat for 370.082556 MeV.

Solution
A detailed solution of this exercise is given in [19]. All computer code input files
can be found in the USPAS Spin Class repository [20], where simulation result files
(result listings, gnuplot scripts and graphs, etc.) can be found as well.

•? Exercise 3: Periodic Spin Precession in a Ring

This exercise is a follow up of the previous one, “Synchronized Torque”. Orbital
motion of a single proton in a uniform field, on a constant radius orbit is considered
again, here. The periodic solution of the spin equation of motion in a cyclic
accelerator is investigated, it is known as the “stable spin precession direction”,
or “spin closed orbit”.
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Fig. 2.17 Left: spin components as a function of orbital angle, Gγ = 2.5. Right: projection of
spin motion in the bend plane, Gγ = 2

Consider the motion of the spin of a particle on a closed orbit around the ring, in
this configuration, a stable spin precession direction can be found, which closes on
itself after a turn.

1. Find the closed spin precession solution at the location of the longitudinal kick
(SPINR), in the different energy cases addressed in Exercise 2.2.

Hint: A matching procedure can be used, with constraint equal initial and final
spin coordinates.

2. Propagate that closed solution over a few turns around the ring. Produce a graph
of sπ around the ring, in the laboratory frame. Repeat for the different energies
(as in Fig. 2.17).

3. Prove that spins at an angle to the stable precession direction precess around the
latter.

Solution
A detailed solution of this exercise is given in [19]. All computer code input files
can be found in the USPAS Spin Class repository [20], where simulation result files
(result listings, gnuplot scripts and graphs, etc.) can be found as well.

•? Exercise 4: Strength of a Longitudinal Axis Spin Rotator

Show that if a device (known as a snake, see “Rotators and Snakes”, Chap. 4) is
introduced which causes a spin rotation of angle φsnake around the longitudinal axis,
the strength of the integer resonance it induces is |εsnake

n | = φsnake /2π .

Solution
The question is treated in Sect. 2.3.5.3.
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•? Exercise 5: Orbit Distortion and Spin Rotator, Superposed

Consider a lattice featuring a vertical orbit distortion which excites imperfection
resonances with strength εimp. Assume that lattice includes a longitudinal spin
rotator with resonance strength εlong..

Express the imperfection resonance strength resulting from the superposition of
these two perturbative effects. Write the Froissart and Stora formula in that case.

(Hint: consider the derivation of Eq. 2.29).

Solution
The following is a guidance, detailed calculation is left to the reader.

Consider the differential equation for C in the case of linear resonances
(Eq. 2.26): two perturbative terms have to be retained, namely, Bx arising from a
non-zero vertical closed orbit, and Bs arising from a longitudinal spin rotator. Thus,
Eq. 2.27 features two series, one for εimp, one for εlong., thus the complex strength
is the sum of the two contributions,

ε = εimp + εlong.

The Froissart and Stora formula (Eq. 2.44) in that case writes

Pfinal

Pinitial
= 2 e

−π

2

|εimp + εlong.|2
a − 1

•? Exercise 6: Strength of Coupling Resonances

Calculate the resonance strength series in the thin-lens approximation (i.e., in a
similar form to Eq. 2.35) in the case of skew quadrupole fields.

Solution
Skew quadrupoles, or quadrupole roll defects, cause horizontal field components of
the form

Bx(θ) = G x(θ) = Ksk(θ)× B0ρ0 × xβ(θ)

with Ksk the field strength. These excite resonances at all Gγn = n± νx .
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Considering Eq. 2.31, getting the resonance strength is a matter of substi-

tuting K → Ksk and yβ(θ) = Fy(θ) ej (νyθ + ϕy) + CC → xβ(θ) =
Fx(θ) ej (νxθ + ϕx) + CC. Propagating these changes in Eq. 2.35 yields the
coupling resonance strength

{ Re(ε±n )

Im(ε±n )

}

= 1+Gγn

4π

∑

Qpoles

{
cos(Gγnαi ± ϕi)

sin(Gγnαi ± ϕi)

}

(KskL)i

√

βx,i
εx

π

with ϕi =
∫ s(θi)

0
ds

βx

the horizontal betatron phase advance from the origin.
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Chapter 3
Spinor Methods

François Méot

Abstract This chapter is an introduction to spinors and spinor algebra methods and
their application in spin dynamics. Spinors and their manipulation are introduced,
first, together with a number of properties of interest for the calculation of spin
transport in special devices such as Siberian snakes, spin rotators, and in beam
lines in general, and for the calculation as well of the effects of depolarizing
resonances in cyclic accelerators. Practical application to spin transport follows.
Spinor eigenvectors are introduced and applied to the calculation of stable spin
precession direction in cyclic accelerators. Spin motion near integer and intrinsic
resonances is derived using these techniques, and allows reproducing results
obtained in the previous chapter.

3.1 Introduction

This lecture is based on several of the founding theoretical papers and earlier
lectures regarding spinor methods in spin dynamics. Publications used to prepare
these notes include A. Chao’s 2000 USPAS lecture [1], Courant-Ruth’s 1980 BNL
report [2], Montague’s 1984 article [3], Tkatchenko-Niem’s 1993 Saturne report,
[4] and textbooks by S.Y. Lee [5] and Conte and MacKay [6].
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This list is not exhaustive, however it is believed to be a sound starting point for
further exploration and advanced knowledge, beyond the present brief theoretical
introduction to spinor methods.

3.2 Spinors

In dealing with Thomas-BMT equation of spin motion for spin-½ particles in
Chap. 2, spin was considered a classical quantity (by resorting to the principle of

correspondence), handled under the form of a 3-vector in real space, S =
(

Ss

Sx
Sy

)

(in

the reference frame defined in Fig. 2.5).
An alternate method to describe spin motion uses their spinor representation: a

complex 2-vector

ψ =
(

ψ1

ψ2

)

manipulated using spinor algebra: a 2× 2 rotation matrix algebra.
The complex components ψ1 and ψ2 of a spinor represent the respective

probabilities of the +½ and −½ spin states (spin angular momentum S = ±h̄/2).
The normalization condition for the spinors reads

|ψ|2 ≡ ψ†ψ ≡ (ψ∗1 , ψ∗2 )

(
ψ1

ψ2

)

= |ψ1|2 + |ψ2|2 = 1

Two-dimensional spinors will be addressed here, for spin ½ particles. The
treatment for 3-dimensional spinors, spin 1 particles, can be found for instance in
Ref. [6].

3.3 Pauli Matrices

The wanting frame in this chapter is represented in Fig. 3.1.
A spinor matrix algebra has 4 basis elements:

– the identity matrix I =
(

1 0
0 1

)

, and

– Pauli matrices: σx =
(

0 1
1 0

)

, σs =
(

0 −i
i 0

)

, σy =
(

1 0
0 −1

)

.

Indices relate to the frame axes, this is addressed below.

Moving from a spinor 2-vector representation, ψ =
(

ψ1

ψ2

)

, to a classical 3-

vector S =
(

Sx
Ss
Sy

)

, goes as follows.
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Fig. 3.1 The moving frame
(Serret-Frénet frame). Note
that it is left-handed, for
convenience (whereas a
right-handed frame was
considered in Chap. 2,
Fig. 2.5)
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Define a 3-vector σ =
(

σx
σs

σy

)

, take ψ† = (ψ∗1 , ψ∗2 ) Hermitian conjugate of ψ ,

then

S =
(

Sx
Ss
Sy

)

≡ ψ† σψ =
(

ψ†σxψ
ψ†σsψ
ψ†σyψ

)

=
⎛

⎝
ψ1ψ

∗
2 + ψ∗1 ψ2

iψ1ψ
∗
2 − iψ∗1 ψ2

|ψ1|2 − |ψ2|2

⎞

⎠ (3.1)

Note the expected |S|2 = S2
x + S2

s + S2
y = 1, as comes out with some algebra.

Pauli Matrix Properties
A variety of properties are resorted to in manipulating spinors, which will be used
in particular in various calculations to come, as follows:

σ
†
i = σi (Hermitian); det(σi) = −1; tr(σi) = 0; σ

†
i σi = σ 2

i = I (unitary)

wherein the suffix i stands for indifferently x, s or y.

σxσs = −σsσx = iσy; σsσy = −σyσs = iσx; σyσx = −σxσy = iσs

scalar product : σ · σ = σ † · σ = σ · σ † = σ 2
x + σ 2

s + σ 2
y = 3I

vector product : σ × σ ≡
(

σx
σs
σy

)

×
(

σx
σs
σy

)

= 2iσ
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A real-space 3-vector ω =
(

ωx
ωs
ωy

)

can be represented by a 2 × 2 Hermitian

matrix:

σ · ω = ω · σ = ωxσx + ωsσs + ωyσy =
(

ωy ωx − iωs

ωx + iωs −ωy

)

with the following properties:

det|σ · ω| = −ω2; (σ · ω)n =
{

ωn I if n even
ωn−1(σ · ω) if n odd

(|ω| = ω)

(σ · ωa)(σ · ωb) = I (ωa · ωb)+ iσ · (ωa × ωb).

3.4 Spin Transport

3.4.1 An Optical Element

An optical element may be represented by a 2 × 2 matrix (noted T, here). The
transport of a spinor through that element writes

ψf = T (f ← i) ψi (3.2)

with ψi and ψf the spinor respectively before and after the element.
Assume that the matrix T describes a spinor rotation by an angle φ ω, with ω =(

ωx
ωs

ωy

)

the precession vector. T can thus be written under either one of the following

different forms:

T = e
i
2 (ω · σ ) φ

= I cos
ωφ

2
+ i

(ω

ω
· σ
)

sin
ωφ

2
= t0I + itxσx + itsσs + ityσy

=
(

t0 + ity ts + itx

−ts + itx t0 − ity

)

(3.3)
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The coefficients t0,x,s,y introduced here satisfy

t0 = cos
ωφ

2
, tx = ωx

ω
sin

ωφ

2
, ts = ωs

ω
sin

ωφ

2
, ty = ωy

ω
sin

ωφ

2
(3.4)

Note the properties:

det(T ) = t2
0 + t2

x + t2
s + t2

y = 1; tr(T ) = 2 t0;
non−Hermitian
︷ ︸︸ ︷
T † �= T ;

unitary
︷ ︸︸ ︷
T † T = I

Examples

1. In a uniform vertical field B = By y, over an orbital section [θ1, θ2],
– spins precess around B ‖ y
– by an angle φ = Gγ (θ2 − θ1) (as (θ2 − θ1) is the trajectory deviation),

thus

φ ω = Gγ (θ2−θ1)

⎛

⎝
0
0
1

⎞

⎠ so that φ ω·σ = Gγ (θ2−θ1)

⎛

⎝
0
0
1

⎞

⎠·
⎛

⎝
σx

σs

σy

⎞

⎠ = Gγ (θ2−θ1)σy

yielding (Eqs. 3.2 and 3.3)

ψ(θ2) = e
i
2 Gγ (θ2 − θ1)σy ψ(θ1)

and finally

T (θ2 ← θ1) = e
i
2 Gγ (θ2 − θ1)σy

2. Over one turn along the closed orbit in a perfect ring, in the moving frame, (θ2−
θ1) = 2π , thus

ψ(θ2) = e
i
2 Gγ 2πσy ψ(θ1) = e

i
2 2πνspσy ψ(θ1),

so that

T1−turn = e
i
2 2πνspσy
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wherein

2πνsp = 2πGγ is the spin precession angle over (θ2 − θ1) = 2π,

νsp = spin tune.

3.4.2 Transpose to 3D Space

Transposing spinor 2-vector transport through an optical element, namely,

ψf = T (f ← i) ψi

to 3D space spin 3-vector transport, using the coefficients t0, tx, ts , ty of the 2× 2
T-matrix (Eqs. 3.3 and 3.4), writes

Sf = M(f ← i) Si =
⎛

⎜
⎝

t2
0 + t2

x − t2
s − t2

y 2(tx ts + t0ty) 2(tx ty − t0ts)

2(tx ts − t0ty) t2
0 − t2

x + t2
s − t2

y 2(ts ty + t0tx)

2(tx ty + t0ts) 2(ts ty − t0tx) t2
0 − t2

x − t2
s + t2

y

⎞

⎟
⎠ Si

(3.5)

with Si and Sf the spin 3-vectors respectively at entrance and exit of the optical
element.

3.4.3 Rotations About the Moving Frame Axes

Consider a rotation by an angle φ around the x axis, noting ω = nx =
(

1
0
0

)

the unit

x-rotation vector. Thus ω · σ = σx . This x-axis spinor rotation is represented by the
matrix (Eq. 3.3)

Tx−rot = e
i
2 (nx · σ ) φ = e

i
2 σx φ = I cos

φ

2
+ i σx sin

φ

2
= t0I + itxσx

=
(

cos φ
2 i sin φ

2
i sin φ

2 cos φ
2

)

(3.6)
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Transpose to the 3D space rotation matrix Mx using the t0,x,s,y coefficient notation
(Eq. 3.5), this gives

Mx−rot =
⎛

⎝
t2
0 + t2

x 0 0
0 t2

0 − t2
x 2t0tx

0 −2t0tx t2
0 − t2

x

⎞

⎠ =
⎛

⎝
1 0 0
0 cos φ sin φ

0 − sin φ cos φ

⎞

⎠

which is the expected form for a φ angle rotation around the x axis.

Repeat the Previous Calculation for the s-Axis and y-Axis Rotations

An s-axis spinor rotation is represented by the matrix

Ts−rot = e
i
2 (ns · σ ) φ = e

i
2 σs φ = I cos

φ

2
+ i σs sin

φ

2
= t0I + itsσs

=
(

cos φ
2 sin φ

2
− sin φ

2 cos φ
2

)

(3.7)

Transpose to 3D space to get Ms − rot =
(

cos φ 0 sin φ
0 1 0

− sin φ 0 cos φ

)

A y-axis spinor rotation is represented by the matrix

Ty−rot = e
i
2 (ny · σ ) φ = e

i
2 σy φ = I cos

φ

2
+ i σy sin

φ

2
= t0I + ityσy

=
⎛

⎝ e
i
φ
2 0

0 e
−i

φ
2

⎞

⎠ (3.8)

Transpose to 3D space to get My − rot =
(

cos φ sin φ 0
− sin φ cos φ 0

0 0 1

)
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3.4.4 φ-Rotation About an Arbitrary Axis

Let n =
⎛

⎝
nx

ns

ny

⎞

⎠ be the rotation axis. The spinor rotation matrix writes

Tn−rot = e
i
2 (n · σ ) φ = I cos

φ

2
+ i (n · σ ) sin

φ

2
=
(

cos φ
2 + iny sin φ

2 (inx + ns) sin φ
2

(inx − ns) sin φ
2 cos φ

2 − iny sin φ
2

)

3.4.5 Transport Through a Sequence of Optical Elements

Given the respective 2 × 2 spinor transport matrices T1 (1st element) and T2 (2nd
element), and spinor states ψi and ψf respectively before the first and after the
second element, the transport writes

ψf = T2 T1 ψi = e
i
2 (ω2 · σ ) φ2 e

i
2 (ω1 · σ ) φ1 ψi.

=
[

cos
ω2φ2

2
+ i

(
ω2

ω2
· σ
)

sin
ω2φ2

2

][
cos

ω1φ1

2
+ i

(
ω1

ω1
· σ
)

sin
ω1φ1

2

]

The Pauli matrix properties and other aforementioned rules can be applied to expand
this product. Alternatively, use the t0, tx , ts , ty coefficient notation (Eq. 3.3), which
gives

T2 T1 = (I t2,o + iσxt2,x + iσst2,s + iσyt2,y)(I t1,o + iσxt1,x + iσst1,s + iσyt1,y)

= I (t2,ot1,o − t2,x t1,x − t2,s t1,s − t2,y t1,y)

+iσx(t2,ot1,x + t2,x t1,o − t2,s t1,y + t2,y t1,s)

+iσs(t2,ot1,s + t2,x t1,y + t2,s t1,o − t2,y t1,x)

+iσy(t2,ot1,y − t2,x t1,s + t2,s t1,x + t2,y t1,o) (3.9)

This generalizes to N optical elements:

ψf = TN × . . .× T2 × T1 ψi (3.10)
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Example: A Local Field Error in an Otherwise Perfect Ring

It has been shown that, for a y-axis spin precession by an angle φ = Gγ (θ2− θ1)

over an orbital section (θ2 − θ1) in uniform field,

ψ(θ2) = T (θ2 ← θ1)ψ(θ1) , T (θ2 ← θ1) = e
i
2 Gγ (θ2 − θ1)σy

Now, add a local field error

– at orbital azimuth θe,
– causing spin to precess locally by angle φe around direction ne, so that

Terror = e
i
2 (ne · σ )φe .

Thus, by virtue of the transport through a sequence of optical elements, the spinor
transport matrix around the ring (θ1 = 0, θ2 = 2π , 0 < θe < 2π) writes

T1−turn = T (2π ← θe) Terror T (θe ← 0)

= e
i
2 Gγ (2π − θe)σy e

i
2 (ne · σ )φe e

i
2 Gγθeσy

3.4.6 Precession Angle and Axis, from the 2 × 2 Spinor Map

As seen earlier (Eq. 3.3), from the known quantities

precession angle ωφ and precession vector
ω

ω

the 2×2 spinor transport matrix can be written

T = e
i
2 (ω · σ ) φ = I cos

ωφ

2
+ i (

ω

ω
· σ ) sin

ωφ

2
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Now, conversely, if T is a spinor map, then

the precession angle ωφ satisfies cos
ωφ

2
= 1

2
tr(T ),

and the precession vector is ω = −i

2 sin
ωφ

2

tr(T σ ) = −i

2 sin
ωφ

2

⎛

⎝
tr(T σx)

tr(T σs)

tr(T σy)

⎞

⎠ .

•? Precession Vector

Demonstrate this latter relationship.

With the material introduced so far, the problem “Low Energy Spin Rotator”
of Sect. 2.4 can be solved using spinor methods, this is the object of Exercise 1
(Sect. 3.7).

3.5 Periodic Structures

From what precedes, with T1−turn the 1-turn spinor map of a planar, defect free
periodic structure, and νsp = ωφ/ 2π the spin tune, one gets

cos πνsp = 1

2
tr(T1−turn) (3.11)

whereas the stable precession vector satisfies

n = −i

2 sin πνsp
tr(T1−turn σ ) (3.12)

3.5.1 Eigenvectors

Note T (θ + 2π ← θ) = T1−turn the 1-turn spinor transport matrix at orbital angle
θ (note that it can be transported at arbitrary observation azimuth θ using Eqs. 3.9
and 3.10). Let �(θ) be the 2-vector eigenvector, this property writes

�(θ + 2π) = T1−turn �(θ) (this is the periodicity condition)
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or equivalently

(T1−turn − λI)� = 0 eigenvalue equation

The two eigenvalues λ± satisfy

det (T1−turn − λI) = λ2 − λ tr(T )+ det (T ) = 0

wherein (Eq. 3.3) T r(T ) = 2 t0 = 2 cos
ωφ

2
, det (T ) = 1. This yields

λ± = t0 ± i

√
1− t2

0 = cos
ωφ

2
± i sin

ωφ

2
= e

±i
ωφ

2 ,

with ωφ the spin precession angle over a turn. The eigenvectors result, namely,

�± =
(

ity,1−turn ∓
√

1− t2
0,1−turn

− ts,1−turn + itx,1−turn

)

This result can be transposed to real space 3-vector, using (Eq. 3.1)

n± = �
†
± σ �±

which yields

n± = (±)
√

1− t2
0,1−turn

⎛

⎝
tx,1−turn

ts,1−turn

ty,1−turn

⎞

⎠ = (±)

ω

⎛

⎝
ωx

ωs

ωy

⎞

⎠ (3.13)

With the material introduced so far, the problem “Synchronized Torque” of
Sect. 2.4 can be solved using spinor methods, this is the object of Exercise 2
(Sect. 3.7).

3.5.2 Differential Equation of Spin Motion

Using spinors, the differential equation of spin motion writes
dψ

dθ
= i

2
(� · σ )ψ ⇔ dS

dθ
= S×�

Following an oft-met notation θ here denotes the trajectory deviation angle
(velocity vector precession angle), not the orbital angle; dθ = 0 in field-free
sections.
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If the precession vector � does not depend on θ the spinor form is readily
integrated:

dψ

ψ
= i

2
(� · σ )dθ

∫ θ2
θ1−→ ψ(θ2) = e

i

2
(� · σ )(θ2 − θ1)

ψ(θ1)

This represents a spin rotation around �, by an angle φ = �(θ2 − θ1).
In a perfect ring, flat orbit, in the moving frame,

� =
(

0
0

Gγ

)

so that � · σ = Gγ σy

– which denotes a vertical rotation axis—this is what σy signifies,
– with precession angle φ = Gγ (θ2 − θ1) over the interval [θ1, θ2].

If θ2 − θ1 = 2π the particle completes a full revolution, φ / 2π = Gγ is the
number of spin precessions per turn, “spin tune”,

νsp = Gγ

3.6 Spin Motion Near an Isolated Resonance

Spin motion satisfies

dS
dθ
= S×�

In the presence of perturbing fields the precession axis is no longer vertical, namely,

� =
(

ξR−ξI−Gγ

)

with horizontal components �x and �s as detailed in Eqs. 2.14, 2.15, Chap. 2; note
that the opposite sign of the �y component stems from the choice of clockwise
reference frame rotation along the reference orbit, there (Fig. 2.5), versus anti-
clockwise here (Fig. 3.1).

Reformulated in terms of spinors the equation of motion writes

dψ

dθ
= i

2
(� · σ )ψ = i

2
(ξRσx − ξI σs −Gγσy) ψ = i

2

(−Gγ ξ

ξ∗ Gγ

)

ψ
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Develop the resonance strength in Fourier series:

ξ = ξR+iξI =
Fourier series over a period
︷ ︸︸ ︷
(εR + iεI ) e−iGγnθ

[
εR + iεI = εn, resonance strength
Gγn = n± νy, location of the resonance

Move into the Gγn-frequency precessing frame; this change of variable has the merit
of yielding a differential equation with constant coefficient,

ψ= e
− i

2
Gγnθσy

φ=
(

I cos
Gγn θ

2
− iσy sin

Gγn θ

2

)

φ

Hence the new form

dφ

dθ
= i

2

[
εRσx − εI σs − (Gγ −Gγn)σy

]
φ = i

2
(ω · σ )φ

[
ω =

⎛

⎝
εR

−εI

−δn

⎞

⎠ , δn = Gγ −Gγn

]
,

which can readily be integrated,

dφ

φ
= i

2
(ω · σ )dθ

∫ θ2
θ1−→ φ(θ2) = e

i

2
(ω · σ )(θ2 − θ1)

φ(θ1)

Back to the orbital frame:

ψ(θ2) = e
− i

2
Gγnθ2σy

e

i

2
(ω · σ )(θ2 − θ1)

e

i

2
Gγnθ1σy

ψ(θ1)

Introduce the t0,x,s,y coefficient notation, note that ω = √|εn|2 + δ2
n; after some

algebra (using Eqs. 3.3 and 3.9) the spinor transport matrix in the moving frame
comes out [4],

T (θ2 ← θ1) = (3.14)

I

(

cos
Gγn(θ2 − θ1)

2
cos

ω(θ2 − θ1)

2
− δn

ω
sin

Gγn(θ2 − θ1)

2
sin

ω(θ2 − θ1)

2

)

+iσx

(
εR

ω
cos

Gγn(θ1 + θ2)

2
sin

ω(θ2 − θ1)

2
+ εI

ω
sin

Gγn(θ1 + θ2)

2
sin

ω(θ2 − θ1)

2

)
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+iσs

(

− εI

ω
cos

Gγn(θ1 + θ2)

2
sin

ω(θ2 − θ1)

2
+ εR

ω
sin

Gγn(θ1 + θ2)

2
sin

ω(θ2 − θ1)

2

)

+iσy

(

− δn

ω
cos

Gγn(θ2 − θ1)

2
sin

ω(θ2 − θ1)

2
− sin

Gγn(θ2 − θ1)

2
sin

ω(θ2 − θ1)

2

)

From this mapping it can be seen that the spin precession features a double
frequency:

– Gγn on the high frequency side—tens to hundreds of units, in high energy proton
rings for instance,

– and ω = √|εn|2 + δ2
n on the low frequency side near resonance (δn → 0), with

resonance strength |εn| < 1 as in existing installations.

3.6.1 Case of an Integer Resonance, Gγn = integer

In the expression for T (θ2 ← θ1) (Eq. 3.14) take

– θ1 = 0, θ2 = 2πm with m=number of turns,
– Gγn=integer thus cos(Gγnmπ) = ±1 and sin(Gγnmπ) = 0.

This results in:

Tm−turn = ±
(

I cos mωπ + iσx

εR

ω
sin mωπ − iσs

εI

ω
sin mωπ − iσy

δn

ω
sin mωπ

)

Note that with Gγn=integer, the Gγn frequency component vanishes, the ω

frequency only is left.
Transpose to 3D space using the t0,x,s,y notation, that yields for the spin vector

after m turns [4],

S(m) =
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2
ε2
R

ω2
sin2(mωπ)+ cos(2mωπ) −2

εRεI

ω2
sin2(mωπ)− δn

ω
sin(2mωπ) −2

εRδn

ω2
sin2(mωπ)+ εI

ω
sin(2mωπ)

−2
εRεI

ω2
sin2(mωπ)+ δn

ω
sin(2mωπ) 2

ε2
I

ω2
sin2(mωπ)+ cos(2mωπ) 2

εI δn

ω2
sin2(mωπ)+ εR

ω
sin(2mωπ)

−2
εRδn

ω2
sin2(mωπ)− εI

ω
sin(2mωπ) 2

εI δn

ω2
sin2(mωπ)− εR

ω
sin(2mωπ) 2

δ2
n

ω2
sin2(mωπ)+ cos(2mωπ)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

S(0)
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Spins precess at a frequency ω = √|εn|2 + δ2
n, around a 3-vector which can be

obtained by averaging over turns (an average denoted ∗), namely

S =
⎛

⎝
Sx

Ss

Sy

⎞

⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ε2
R

ω2 −εRεI

ω2 −εRδn

ω2

−εRεI

ω2

ε2
I

ω2

εI δn

ω2

−εRδn

ω2

εI δn

ω2

δ2
n

ω2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

S(0) (3.15)

Polarization |S| depends on the initial spin vector S(0). In particular if S(0) =
(0, 0,∓1), along the vertical axis, Eq. 3.15 yields the polarization vector (Fig. 3.2)

S = ±δn

|εn|2 + δ2
n

⎛

⎝
εR

−εI

−δn

⎞

⎠

It can be verified that S is aligned on the periodic spin precession direction, as
follows. Set m=1 in the m-turn matrix Tm−turn

T1−turn = ±
(
I cos ωπ + iσx

εR

ω
sin ωπ − iσs

εI

ω
sin ωπ − iσy

δn

ω
sin ωπ

)

Fig. 3.2 Spins S(m) precess
at frequency ω around the
local, fixed, spin closed orbit
n0

n 0

x

s

y

S_

S
(0

)

S
(m

)
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This provides (Eq. 3.4) the coefficients t0 = cos ωπ , tx = εR

ω
sin ωπ , ts =

− εI

ω
sin ωπ , ty = − δn

ω
sin ωπ used in defining the eigenvectors n0 (Eq. 3.13), so

yielding

n0 = (±)
√|εn|2 + δ2

n

⎛

⎝
εR

−εI

−δn

⎞

⎠

Far from the resonance:

|δn| = |Gγ −Gγn| → ∞ thus nxand ns → 0, ny → 1, n0 ‖ y

beam polarization is vertical. On the resonance:

|δn| = 0 thus ny = 0, n0 ⊥ y,

beam polarization lies in the (x,s) plane, along a direction

(
εR

−εI

)

which depends

on the observation azimuth θ .

3.6.2 Case of an Intrinsic Resonance, Gγn = integer ± νy

In the expression for T (θ2 ← θ1) (Eq. 3.14) substitute

θ1 = 0, θ2 = 2πm;

This yields [4]

Tm−turn = I (cos mGγnπ cos mωπ − δn

ω
sin mGγnπ sin mωπ)

+iσx(
εR

ω
cos mGγnπ sin mωπ + εI

ω
sin mGγnπ sin mωπ)

+iσs(− εI

ω
cos mGγnπ sin mωπ + εR

ω
sin mGγnπ sin mωπ)

+iσy(− δn

ω
cos mGγnπ sin mωπ − sin mGγnπ cos mωπ) (3.16)

Regarding the precession motion of the spin vector S, inspection of the Tm−turn
matrix shows that (Fig. 3.3)

• spin vectors S precess at frequency ω around the eigenvector n±,
• while n± precesses around the vertical axis at a frequency Gγn;
• the Sx and Ss components of S oscillate

– with an average zero value:

< Sx >turn= 0 and < Ss >turn= 0
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Fig. 3.3 Spins S(m) precess
at frequency ω around the
eigenvector vector n, which
itself precesses around the
vertical axis at frequency Gγ

by contrast with the integer resonance case,
– at a frequency ω (precession frequency around n±),
– modulated by a frequency Gγn (precession of n± around the vertical);

• the vertical component of S, Sy , oscillates at frequency ω around an average
which is S(0)-dependent, namely

Sy = −
(

2 εRδn

ω2 sin2(mωπ)+ εI

ω
sin(2mωπ)

)
Sx(0)

+
(

2 εI δn

ω2 sin2(mωπ) − εR

ω
sin(2mωπ)

)
Ss(0)+

(
2 δ2

n

ω2 sin2(mωπ) + cos(2mωπ)
)

Sy(0)

– thus a polarization state (the average over turns)

S = δn

|εn|2 + δ2
n

⎛

⎝
0
0

−εRSx(0)+ εI Ss(0)+ δnSy(0)

⎞

⎠

– and note: the vertical component < Sy > has the same value as in the case of
an integer resonance (Eq. 3.15).

The spin precession vector is obtained from the 1-turn spinor transport matrix, as
follows.
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Take an arbitrary turn, θ1 = 2πm, and θ2 = θ1 + 2π , thus (Eq. 3.17)

T1−turn = I
(

cos Gγnπ cos ωπ − δn

ω
sin Gγnπ sin ωπ

)

+iσx

(
εR

ω
cos Gγnπ(2m+ 1) sin ωπ + εI

ω
sin Gγnπ(2m+ 1) sin ωπ

)

+iσs

(
− εI

ω
cos Gγnπ(2m+ 1) sin ωπ + εR

ω
sin Gγnπ(2m+ 1) sin ωπ

)

+iσy

(
− δn

ω
cos Gγnπ sin ωπ − sin Gγnπ sin ωπ

)
(3.17)

the eigenvector is obtained from the 1-turn matrix, for the record (Eq. 3.13)

n± = (±)
√

1− t2
0,1−turn

⎛

⎝
tx,1−turn

ts,1−turn

ty,1−turn

⎞

⎠

with the following properties:

– its vertical component is ∝ ty , thus constant (independent of m, Eq. 3.17),
– as a consequence n± precesses around the y axis with frequency Gγn;
– its x and s components oscillate with frequency Gγn.

Example: Proximity of Gγ = 0− νy Intrinsic Resonance in the AGS Booster

The AGS injector ring (AGS Booster) is described in Chap. 14 which may be
referred to for details. Polarized helion particles are considered, G = −4.184153.
The vertical tune is set to νy = 4.82, resonance occurs at Gγ = −4.82.

Given the betatron amplitude considered here, the resonance strength (Eq. 2.35)
takes the value |εn| = 0.00132.

Consider Fig. 3.4:

– the slow Sy component oscillation with ±1 amplitude occurs on resonance. The
frequency satisfies ω−1 = 755 turns, measured from the turn-by-turn record. This
value of ω coincides with the resonance strength |εn| = 0.001324 as δn = 0;

– two additional slow Sy oscillations are displayed, for respective distances to the
resonance δn = |εn| and δn = 2|εn| (smallest amplitude). Their frequencies
satisfy ω = √

δ2
n + |εn|, this can be checked from the number of turns per

oscillation.
– rapid oscillations in the graph concern the Sx and Ss components, frequency is

Gγn = 4.82, the case δn = 0 is represented here, Sx and Ss oscillations are
modulated at the frequency of the Sy component oscillation, ω = |εn|.
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Fig. 3.4 Helion spin precession at Gγ = −νy in the AGS Booster, observed turn-by-turn at
some azimuth around the ring. The vertical spin component Sy oscillates slowly (solid sinusoids),
frequency ω � 1; three different distances to the resonance are plotted, δn = 0 (0), δn = |εn| (1)
and 2|εn| (2). Full amplitude occurs on the resonance. The oscillation of Sx and Ss components
(dots) is fast, frequency Gγn = 4.82, and modulated, modulation frequency ω = √δ2

n + |εn|2 =
|εn| here, on resonance

3.7 Homework

In the following two exercises, the questions addressed in the Exercises 1 and 3 of
Chap. 2 (Sect. 2.3) via numerical simulations, are treated using spinors.

•? Exercise 1: Low Energy Spin Rotator

1.a Give the spinor representation of the Wien filter rotator of Exercise 1 in Chap. 2
(Sect. 2.3).

1.b Check consistency (spin precession angle, precession axis) with the numerical
simulation results of question 2 in that exercise.

Solution
1.a: The spinor rotation matrix is (� · σ )φ with �φ the spin rotation angle.

The 2× 2 transfer matrix is

T = e

i

2
(� · σ )φ = I cos

�φ

2
+ i (

�

�
· σ ) sin

�φ

2
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� =
⎛

⎝
�X

�Y

�Z

⎞

⎠ ≡
⎛

⎝
0
0

�Z

⎞

⎠ as both E and B result in a precession around the vertical

(Z) axis.

Thus � · σ = �Z σZ , |�Z| = |�|, T = e

i

2
�Z φ σZ = I cos

�Zφ

2
+

i σZ sin
�Zφ

2

= cos
�Zφ

2

(
1 0
0 1

)

+ i sin
�Zφ

2

(
1 0
0 −1

)

=

⎛

⎜
⎜
⎝

e
i
�Zφ

2 0

0 e
−i

�Zφ

2

⎞

⎟
⎟
⎠

With precession angle �Zφ = π/2,
�Zφ

2
= π/4, one gets e

±i
�Zφ

2 = 1± i√
2

, thus

T =

⎛

⎜
⎜
⎝

1+ i√
2

0

0
1− i√

2

⎞

⎟
⎟
⎠

Transform to real 3D space using S = ψ† σψ , this yields the expected π/2 angle
Z-rotation matrix

Mx =
⎛

⎝
0 1 0
−1 0 1
0 0 1

⎞

⎠

Apply to initial Si =
(

1
0
0

)

, this yields the expected

Sf =M Si =
(

0
−1
0

)

1.b: Numerical checks with tracking simulation outcomes are straight forward.
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•? Exercise 2: Synchronized Torque

2.a Give the spinor representation of the solenoid spin rotator of Exercise 2 in
Chap. 2 (Sect. 2.3).

2.b Give the spinor representation of the ring including the solenoid spin rotator.
2.c Find the spin tune. Compare with the numerical outcomes of Exercise 2 in

Chap. 2.
2.d Deduce the spin closed orbit vector at the solenoid, and the spin tune.

Solution
2.a: The solenoid causes a s-rotation of angle φs , it is thus represented by the matrix
(with ns a unit vector along the s-axis)

TspinR = e

i

2
(ns · σ )φs = e

i

2
σsφs = I cos

φs

2
+ iσs sin

φs

2
=
(

cos φs

2 sin φs

2
− sin φs

2 cos φs

2

)

which expectedly coincides with the s-axis spinor rotation matrix (Eq. 3.7).
2.b: The ring with φs torque is represented by the spinor matrix

Tring = e

i

2
(ny · σ )Gγ 2π

e

i

2
(ns · σ )φs = (I cos Gγπ + iσy sin Gγπ) (I cos

φs

2
+ iσs sin

φs

2
)

thus, given −σyσs = iσx ,

Tring = I cos Gγπ cos
φs

2
+ iσx sin Gγπ sin

φs

2
+ iσs sin

φs

2
cos Gγπ + iσy sin Gγπ cos

φs

2

Under explicit 2×2 matrix form: this is also simply the product of y-axis and s-axis
spinor rotations, namely

Tring =
(

eiGγπ 0

0 e−iGγπ

)(
cos φs

2 sin φs

2

− sin φs

2 cos φs

2

)

=
(

eiGγπ cos φs

2 eiGγπ sin φs

2

−e−iGγπ sin φs

2 e−iGγπ cos φs

2

)

2.c: The spin tune satisfies: cos πνsp = 1
2 Tr(Tring) = cos Gγπ cos φs

2 , so

frac(νsp) = ± 1

π
acos

(
cos Gγπ cos

φs

2

)
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Numerically:

case E = 200 keV, Gγ = 1.793229, φs = π

6
⇒ frac(νsp) = 0.220656

case E = 370.0825 MeV, Gγ = 2, φs = π

6
⇒ frac(νsp) = 0.08333

case E = 370.0825 MeV, Gγ = 2.5, φs = π

6
⇒ frac(νsp) = 0.5

All three cases are in accord with the numerical simulation results of Exercise 2 in
Chap. 2.

2.d: The spin closed orbit, or periodic spin vector, can be obtained by taking the
ti components from the form (slide 7) Tring = t0I + iσxtx + iσs ts + iσyty , namely

n± =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

± tx,1−turn√
1− t2

0,1−turn

± ts,1−turn√
1− t2

0,1−turn

± ty,1−turn
√

1− t2
0,1−turn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Thus Tring as obtained above yields

t0 = cos Gγπ cos
φs

2
→

√
1− t2

0,1−turn = sin πνsp

and

tx = sin Gγπ sin
φs

2
, ty = sin

φs

2
cos Gγπ, tz = sin Gγπ cos

φs

2

so that

n± = ±

⎛

⎜
⎜
⎜
⎜
⎝

sin Gγπ sin
φs

2
/ sin πνsp

cos Gγπ sin
φs

2
/ sin πνsp

sin Gγπ cos
φs

2
/ sin πνsp

⎞

⎟
⎟
⎟
⎟
⎠

.
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Numerically

case E = 200 keV,, n± = ±
⎛

⎝
0.3225386
−0.2449867
−0.91430318

⎞

⎠

case E = 108.4116 MeV,, n± = ±
⎛

⎝
1
0
0

⎞

⎠

case E = 370.0825 MeV,, n± = ±
⎛

⎝
0

0.258819
0.96592

⎞

⎠

to be compared with the numerical results for the spin closed orbit vector at the
origin of the optical sequence in Exercise 2.d, Chap. 2.
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Chapter 4
Rotators and Snakes

Vadim Ptitsyn

Abstract This lecture introduces various kinds of spin rotating devices used in
present particle accelerators. They include Siberian Snakes used for polarization
preservation and spin rotators used for creating a specific polarization orientation in
experimental locations. Following the analysis of spin rotation in different types
of magnets, approaches for designing spin rotating devices are discussed. Con-
siderations for appropriate design choices of spin rotating devices in dependence
on the beam energy are given. Examples of Snakes and spin rotators used in past
accelerators as well as designs considered for future ones are presented.

4.1 Spin Rotation Devices

When describing spin motion in a circular accelerator the central role belongs to
periodical spin solution n̂0 on beam closed orbit:

n̂0(s) = n̂0(s + C) (4.1)

which is also called the stable spin direction. The importance of the vector n̂0(s)

comes from the fact that particle spin aligned along this vector repeats its direction
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on every turn. Particle spins not aligned with the vector n̂0 rotate around this vector,
thus the spin projections on the vector n̂0 are preserved. This defines an observable
beam polarization at a given location.

Let’s first consider a circular accelerator without any spin rotators. We assume
that there is no magnet misalignments or magnet errors affecting the beam vertical
orbit. Thus, the closed beam orbit is formed by vertical guiding field of dipole
magnets and is in the horizontal plane everywhere. It is easy to see that in this
case the periodical spin solution n̂0 is vertical at any ring azimuth s. And it remains
vertical for any beam energy. Without betatron coupling the stable spin solution
also remains vertical on a closed orbit for off-momentum particle, defined by the
horizontal dispersion function. Obviously, this is very good case for controlling the
polarization since one gets spin orientation at all energies parallel.

But often one needs to change the stable spin direction from vertical, which
can be done by introducing non-vertical fields on the closed beam orbit in the
accelerator. It affects the stable spin direction and makes it to deviate locally
or globally from the vertical. Examples of such non-vertical fields are solenoid
magnets having longitudinal field, or vertical bending magnets having a horizontal
magnetic field. Various kinds of spin rotating devices utilizing non-vertical guiding
fields are used in circular accelerators. They include:

• Siberian Snakes (or Full Snakes) which are used to prevent polarization loss when
crossing spin resonances

• Partial Snakes which are used to improve the spin resonance crossing when Full
Snakes are not feasible

• Spin Rotators around an experimental point to produce different from vertical
beam polarization orientation at an experimental detector.

When working on design of a spin rotating device scientists and engineers
become concerned with several design aspects. The spin rotating device should be
compact in order to fit well into the accelerator lattice. It should produce sufficiently
small orbit excursions. It also should have minimum effect on the beam optics and
non-linear beam dynamics. Some of spin rotating devices have to operate in wide
energy range.

In following description spin rotation matrices in the spinor presentation will be
given for different types of magnets and spin rotating devices. We will use the spinor
matrix form corresponding to right-handed convention for the spin rotation:

M = exp[−i(σ · b)
ϕ

2
] = I cos(ϕ/2)− i(σ · b) sin(ϕ/2) (4.2)

where ϕ is the spin rotation angle around the rotation axis b (b is unit vector), and
σ is a vector with components the Pauli matrices (Chap. 3).
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4.2 Spin Rotation in Different Types of Accelerator Magnets

4.2.1 Spin Rotation in Solenoidal Field

First, we consider a solenoidal magnet which is a magnet with the longitudinally
oriented magnetic field. In such magnet a particle which travels along the magnet
axis preserves straight line trajectory. The spin rotates around longitudinal direction,
hence the longitudinally oriented spin is preserved. The spin rotation angle around
the longitudinal axis for a particle with the charge e, momentum p and anomalous
magnetic moment G is defined by the field integral of solenoidal field:

φsp = −(1+G)
e

p

∫
Bsol · ds (4.3)

If one would want to realize the spin rotation φ using the solenoidal magnet, the
required field integral is:

Bsol · L = φ

π

10.479

1+G
p(GeV/c) (4.4)

For 20 GeV/c protons (G = 1.79) to rotate spin by 180◦ the field integral Bsol ·L =
75.1 T·m is needed. For the electron beam (G = 0.00116)1 having the same 20 GeV
energy, the required field integral is considerably larger: Bsol · L = 209.3 T·m .

The major convenience of the spin rotator design based on solenoidal magnets
is that the beam orbit is not distorted in this case. A disadvantage is that the field
integral required for spin rotation is proportional to particle momentum. Thus, the
use of these spin rotators is limited to the energies below 30 GeV.

The spinor transformation matrix for solenoidal field is written as:

Msol = cos(φsp/2)− iσ2 sin(φsp/2) (4.5)

4.2.2 Spin Rotation in Dipole Field

In a dipole magnet the magnetic field is orthogonal to the particle trajectory. The
beam trajectory is curved. The spin equation becomes:

dS
ds
= −e(1+Gγ )

p
Bdip × S (4.6)

1 We would like to note that the accepted symbol in scientific papers for the electron magnetic
anomaly is a.
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The particle spin rotates around the magnetic field direction. But when consider-
ing the spin rotation angle resulting formulas depend on the coordinate frame. Often
the laboratory frame, which has fixed orientation of coordinate axes, presents an
appropriate coordinate frame for considering spin propagation. For instance, when
considering a spin rotator with the particle orbit restored at the end of the rotator the
laboratory frame is more convenient choice for design consideration. Resulting spin
rotation angle in the laboratory frame can be written as:

φsp = −(1+Gγ )
e

p

∫
Bdip · ds = −(

1

γ
+G)

e

mβc

∫
Bdip · ds (4.7)

Let’s note that in this case for relativistic beams (γ >> 1) the spin rotation does not
depend on the beam energy. It is all defined by the field integral.

Another coordinate frame that can be used is the accelerator frame which follows
particle velocity rotation on the design closed orbit. The particle velocity vector
remains constant in the accelerator frame. If one considers the spin rotation in a
dipole magnet in such frame, the rotation of particle velocity is subtracted. It leads
to the spin rotation proportional to the particle γ :

φsp = Gγ
e

p

∫
Bdipds = Gγθ (4.8)

where θ is the velocity rotation angle. One obvious conclusion from the formula
(4.8) is that in a ring with only vertical guiding field one turn spin rotation is 2πGγ ,
which defines the spin tune equal to Gγ .

4.2.3 Spin Rotation in Helical Dipole Field

As shown in Fig. 4.1 a helical dipole magnet is described by the following paraxial
field (without magnet edges):

By = B0 cos ks, Bx = −B0 sin ks (4.9)

Fig. 4.1 The fields in one
period of helical dipole
magnet

BxBy
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where

k = R
2π

λ
(4.10)

and λ is the helical twist period. Compared with common dipole the helical dipole
has an additional parameter, the helicity R, which is equal to either +1 or -1.

Actual helical field is intrinsically nonlinear. It also contains longitudinal off-
axis component. For instance, if we limit consideration to second order terms in
transverse coordinates, the helical field expressions become:

Bx = −B0{[1+ k2

8
(3x2 + y2)] sin(ks)− k2

4
xy cos(ks)}

By = B0{[1+ k2

8
(x2 + 3y2)] cos(ks)− k2

4
xy sin(ks)} (4.11)

Bs = −B0k{x cos(ks)+ y sin(ks)}

But, in most cases, when the particle trajectory stays close to the helical magnet
axis, the evaluation of the spin and particle motion using the paraxial helical fields
presents a quite good approximation.

Resolving the orbital motion in the paraxial approximation one gets following
expressions for a particle trajectory:

x(s) = −r(1− cos(ks))+ x0 + x ′0s, (4.12)

y(s) = −r sin(ks)+ y0 + (y ′0 + kr)s

The trajectory is a spiral with a shifted axis. The radius r of the spiral orbit is:

r = eB0

k2p
= B0c

k2β

e

E
(4.13)

If x ′0 = 0 and y ′0 = 0 the orbit is shifted after one helix period by:

δy = 2πRr (4.14)

as shown in Fig. 4.2. One can note that flipping simultaneously the sign of magnetic
field and the helicity does not change the orbit shift.

For evaluation of the spin motion it is convenient to use a coordinate frame,
rotating around the longitudinal axis in which the vector of magnetic field remains
constant. In the rotating coordinate frame the spin motion equation

dS
ds
= W̃k × S (4.15)
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Fig. 4.2 The beam orbit
transformation through one
period of helical dipole
magnet
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has the spin precession vector W̃k with following components:

W̃x = 0

W̃y = −e(1+Gγ )

p
B0, (4.16)

W̃s = −k

Since the precession frequency is constant the spin motion is easily resolved.
After one helix period the axes of rotating and laboratory frame coincide. From here
one can find one period transformation of the spin vector in the laboratory frame.
This transformation is characterized by the rotation angle φsp and the rotation axis
b:

φsp = 2π

√
1+ χ2 (4.17)

bx = 0, by = − χ
√

1+ χ2
, bs = − R

√
1+ χ2

. (4.18)

χ = (G+ 1/γ )
eB0

mβc|k| (4.19)

The helical dipole has an additional degree of freedom compared with the normal
dipole: the helicity of helical twist R. That leads to four possible orientations of spin
rotation axis of one period spin transformation, as shown in Fig. 4.3 with the same
spin rotation angle φsp. Two of the axes orientations correspond to a positive shift of
the beam orbit, while two others correspond to a negative shift. All this provides a
good degree of flexibility when designing a spin rotator device consisting of several
one period helical dipole modules. In addition, by rotating a helical dipole magnet
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Fig. 4.3 Possible spin
rotation axes of one turn spin
transformation in a helical
dipole magnet

Fig. 4.4 The Wien filter
exploits a combination of
orthogonal electric and
magnetic fields to rotate spin
but keep the beam orbit not
distorted

trajectory

around its longitudinal axis one can place the spin rotation axis in other planes,
defined by the orientation of the magnetic field at the magnet entrance.

4.2.4 Spin Rotation in Combined Electrical and Magnetic
Field: Wien Filter

At very low energies an elegant way to realize spin rotation without distorting the
beam orbit is given by the Wien filter. The Wien filter utilizes a combination of
static transverse electrical and magnetic fields, oriented orthogonally to each other
(Fig. 4.4). In order to have the beam trajectory straight the following condition
relating electric and magnetic field values has to be satisfied:

E× v
c2 = 1− γ 2

γ 2 B⊥ (4.20)

The spin rotation axis is defined by magnetic field direction. And the spin rotation
angle is:

ϕ = e(1+G)

γ 2βmc

∫
Bds (4.21)

γ 2 dependence of the spin rotation limits using this device to very low energies. The
required electrical field also becomes unreasonably large at kinetic beam energies
above few MeV. The Wien filter is commonly used as a spin rotator for polarized
particle sources.
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4.3 Siberian Snakes

4.3.1 Main Properties of the Snakes

The Siberian Snake (or the Full Snake) is a spin rotating device which rotates
particle spin by 180◦ around some rotation axis (Fig. 4.5). The rotation axis is
called the Snake axis and usually placed in horizontal plane. In the following we
will consider only Snake with the Snake axis in the horizontal plane. The angle αs

characterizing the orientation of the Snake axis in the horizontal plane is called the
Snake axis angle. We will count the value of αs from the horizontal transverse axis.

For the Siberian Snake having the Snake axis in the horizontal plane the spinor
matrix is written as:

Msnake = −i(σ1 cos αs + σ2 sin αs) (4.22)

Following two relations are very useful when analyzing spin transformation
properties of an accelerator ring with Full Snakes.

1. Relation 1:

Msnake = exp(−iαsσ3) · (−iσ1) (4.23)

This relation means that any Siberian Snake transformation can be presented as a
rotation by 180◦ around horizontal axis, followed by the rotation by 2αs around
vertical axis.

2. Relation 2:

V (φ)Msnake = MsnakeV (−φ) (4.24)

where V (φ) is the rotation about vertical axis by an angle φ:

V (φ) = exp(−iσ3
φ

2
) (4.25)

Fig. 4.5 The spin
transformation by a Siberian
Snake



4 Rotators and Snakes 91

Deriving these relations by exercising the spinor math we leave for the homework
(see Exercise 1 in the Sect. 4.6).

Original Siberian Snake concept was invented by Derbenev and Kondratenko [1].
As you will see in the following the Siberian Snakes can be applied for two purposes.
First is for controlling a direction of beam polarization in a particular location. For
this purpose one Siberian Snake can be used. The second purpose is to prevent
depolarization caused by spin resonance crossings when accelerating a particle
beam in an accelerator ring. For this purpose, two Snakes (or, in general even
number of Snakes) are usually considered. The invention of the Siberian Snake
concept opened a way for achieving highly polarized proton beams at the energies
of tens of GeV and higher.

4.3.2 Case of One Snake

We start with considering an accelerator ring with one Snake (Fig. 4.6). It is
convenient to take the origin point of the ring azimuth in a ring location opposite to
the Snake. Spin rotation in the arcs is described by the matrix V which represents
rotation around vertical axis by Gγπ . To evaluate one turn matrix the Relation 2
can be used:

Mturn = V (Gγπ)MsnakeV (Gγπ) = MsnakeV (−Gγπ)V (Gγπ) = Msnake

(4.26)

arriving to the conclusion that one turn spin transformation matrix is the Snake
matrix.

Fig. 4.6 The layout of a ring
with one Snake
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From here one can deduce the following properties for the accelerator ring with
one Full Snake:

• The stable spin direction n̂0 at the ring azimuth opposite to the Snake is directed
along the Snake axis.

• The stable spin vector n̂0 remains in the horizontal plane in the accelerator ring
arcs.

• The spin rotation angle μ of the one turn matrix is equal to 180◦. Therefore the
spin tune is:

νsp = μ

2π
= π

2π
= 1

2
(4.27)

Thus, the spin tune remains at constant value 1/2 independently of the beam
energy. This is a wonderful property which, as will be seen in following sections,
is characteristic for accelerators with Full Snakes.

Main application of the single Snake configuration is related with producing the
longitudinal polarization orientation for physics experiments. For this purpose, the
Snake with longitudinal Snake axis has to be put at the ring azimuth opposite to
the experimental detector. Such configuration was used in two electron accelerators,
AmPS [2] in Amsterdam and the SHR ring [3] at MIT-Bates. They applied a single
Siberian Snake to create the longitudinal polarization at the locations of internal
targets.

The single Snake configuration can be also used for preventing depolarization
during proton beam acceleration by avoiding spin resonance conditions, since the
spin tune is held at fixed value 1/2. But having the stable spin vector in horizontal
plane creates the coupling with horizontal betatron motion. Another inconvenience
is that the vector n̂0 has strong dependence on beam energy in the ring arcs. These
issues can be resolved by using two Snakes.

4.3.3 Case of Two Snakes

Now we consider an arrangement with two Snakes placed at opposite azimuths of
the accelerator ring (Fig. 4.7). The Snake axis angles of these Snakes are αs1 and
αs2.

Again for the analysis of the 2-Snake configuration properties one needs to start
with calculating one-turn spin transformation matrix. For the ring azimuth right after
the first Snake, one turn matrix calculation, using on the way both Relations 1 and
2, leads to:

Mturn = Msnake1V (Gγπ)Msnake2V (Gγπ) = Msnake1Msnake2V (−Gγπ)V (Gγπ)

= Msnake1Msnake2 = exp(−iαs1σ3) · (−iσ1) exp(−iαs2σ3) · (−iσ1)

= exp(−i(αs1 − αs2)σ3)(−σ 2
1 ) = exp(−i(αs1 − αs2)σ3) (4.28)
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Fig. 4.7 The layout of a ring
with two Snakes

From the one turn spin transformation matrix Mturn one can get two characteris-
tic properties of two Snake configuration:

• Stable spin direction n̂0 is vertical in the ring arcs, pointing up in one half, and
down on another.

• Spin tune is independent of particle energy and is defined by the Snake axis
orientations:

νsp = 2(αs1 − αs2)

2π
= (αs1 − αs2)

π
(4.29)

For instance, to get the spin tune equal to 0.5, the Snake axes should be at 90◦
angle to each other. And unlike the case with one Snake per ring, the 2-Snake
configuration allows for any choice of the spin tune, not only 0.5 value. It should
be noted that the energy independence of the spin tune is due to Snake placement at
the opposite ring azimuths. The homework Exercise 3 in the Sect. 4.6 considers the
effect of the Snake axis and bending angle errors on the spin tune.

With the stable spin oriented vertically at all energies the 2-Snake configu-
ration is a preferable solution for accelerating polarized beams through the spin
resonances.This configuration was implemented in RHIC for accelerating polarized
protons from 25 GeV to 255 GeV energy [4]. Each RHIC ring contains two Snakes
placed in opposite ring azimuths to each other (Fig. 4.8). The Snake axes of RHIC
Snakes were chosen to be at 45 and 135◦, that is symmetrical with respect to
the longitudinal direction. According to (4.29) the spin tune is equal to 0.5 . Due
to the Snakes polarized protons in RHIC have been accelerated to 255 GeV with
minimal polarization loss. The polarization loss still happens due to high order
resonances (so-called Snake resonances [5]). The resonance conditions for the
Snake resonances are:

νsp = N +m ·Qy + n ·Qx (4.30)
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Fig. 4.8 The scheme of RHIC setup for polarization. Each ring contains two Siberian Snakes. In
addition, the spin rotators are used around experimental detectors

where N , m and n are arbitrary integers. The Snake resonances must be avoided
by proper control of the betatron tune and betatron coupling. The analysis of the
Snake resonances is beyond the scope of this lecture, but if you are interested in
getting more information on them the following papers are recommended: [5–7].
The homework Exercise 4 in the Sect. 4.6 considers the Snake resonance values and
the number of resonances for different spin tunes.

4.3.4 Case of Multiple Snakes

As the spin resonance strength increases with the beam energy, the increased
number of Snakes may need to be employed in future high energy accelerators.
Thus we consider the case of 2N Snakes distributed around the ring at azimuth
θ1, θ2, . . . , θ2N = 2π . Each Snake is characterized by its own Snake axis angle αsi

and by the spin transformation matrix Msn,i . Between the Snakes the spin rotates
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around vertical direction as the beam goes through the arcs which are presented by
spin transformation matrices Vθi,θi−1

Calculation of one turn matrix is a nice homework exercise (see Exercise 2 in the
Sect. 4.6). The result of the exercise is:

Mturn = Msn,2NVθ2N,θ2N−1Msn,2N−1Vθ2N−1,θ2N−2 . . .Msn,1Vθ1,θ0

= . . .

= V (φ) = exp(−iσ3
φ

2
) (4.31)

where the spin rotation angle φ depends on Snake location and Snake axis
orientation:

φ = Gγ

2N∑

i=1

(−1)i−1(θi − θi−1)+ 2
N∑

i=1

(αs,2i − αs,2i−1) (4.32)

From here the spin tune then is obtained as:

νsp = Gγ

2π

2N∑

i=1

(−1)i−1(θi − θi−1)+ 1

π

N∑

i=1

(αs,2i − αs,2i−1) (4.33)

In order to avoid spin resonance conditions during beam acceleration one would
want the spin tune to be independent of energy. The formula (4.33) shows that
this can be achieved by allocating the Snakes around the ring so that the first
term in (4.33) becomes 0. Then the spin tune value can be chosen by selecting
proper orientations of Snake axes. Common approach is to have the spin tune at 0.5,
providing maximum detuning from all first-order spin resonance conditions.

From (4.31) one can also deduce that the stable spin direction n̂0 is vertical in all
arcs. Each Snake switches n̂0 direction from up to down, and vice versa.

Thus, with even number of Snakes one can maintain the vertical stable spin at
all beam energies as well as have the spin resonances contained. If in locations of
particle physics experiments a specific polarization orientation (often, longitudinal)
is required, a pair of spin rotators can be installed, to convert the polarization
orientation from the vertical to one required by the experiment, and then back to
the vertical. This represents a general recipe for providing highly polarized beams
at high energies for physics experiments.
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4.4 Realization of Snakes and Spin Rotators

4.4.1 Solenoidal Snake and Spin Rotator

A Siberian Snake with longitudinal Snake axis can be simply constructed by using
a solenoidal magnet. The required magnetic fields for 180◦ spin rotation are:

• For electrons:

Bsol · L = 10.47 · p(GeV/c) (4.34)

• For protons:

Bsol · L = 3.75 · p(GeV/c) (4.35)

A notable advantage of solenoidal Snake is that the beam closed orbit is not
affected by the Snake. But the longitudinal magnetic field introduces a betatron
coupling which, in most cases, would require compensation. Since required mag-
netic field increases with the particle energy the energy range for solenoid-based
Full Snake applications is limited to below 10–20 GeV.

A solenoidal Snake was used in IUCF 500 MeV Cooler Ring for Siberian
Snake proof-of-principle experiments (1989–1997) [8]. The IUCF Snake used 2 T·m
solenoid. The experiments provided a first observation that depolarizing resonances
were overcome by the Snake, confirming the main principle of the Snake. High-
order spin resonances, Snake resonances, have been also first observed during the
IUCF Snake studies.

In following years the solenoidal Snakes were used in nuclear physics exper-
iments in AmPS (Netherlands) [2] and MIT-Bates SHR (USA) [3] to create
longitudinal polarization on internal targets. Beam energy in these accelerators was
in 0.7–1 GeV range. For compensating betatron coupling the system of normal
and skew-quadrupoles were incorporated into the solenoidal insertion as shown
in Fig. 4.9. To make the Snakes as compact as possible the Snake solenoids were
implemented as superconducting magnets.

A solenoidal magnet can be also used to realize a simple spin rotator. This is
done by a combination of a solenoidal magnet and horizontally bending dipole.
Spin transformation matrix for converting the vertical spin to longitudinal one is

Fig. 4.9 Solenoidal Snake
coupling compensation
scheme. SQ are
skew-quadrupoles. QC is a
normal quadrupole
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very simple:

Mrot = exp(−iπσ3/4) exp(−iπσ2/4) (4.36)

It requires 90◦ spin rotation by the solenoid magnet accompanied by 90◦ spin
rotation by the horizontal bend. Similar rotator can be used also in transfer lines to
convert the longitudinal beam polarization produced in a polarized electron source
to the vertical one. One deficiency of such rotator is that it works perfectly only at
one particular energy.

In order to operate in wide energy range the rotator scheme must use more than
one solenoidal insertion. For instance, a general electron rotator scheme for EIC has
to cover energy rage 6–18 GeV. In this case to convert vertical spin to longitudinal
at the experimental location at all required energies a combination of two solenoidal
insertions and two horizontal bending sections can be used. The schematic of
such rotator is shown in Fig. 4.10. After passing the experiment location a similar
combination of solenoidal and dipole magnets is used to convert the spin back to the
vertical.

The rotator system consideration using spin transformation matrices is a bit
cumbersome in this case. But when one gets through it comes to the relations which
define required solenoidal spin rotations ϕi as a function of spin rotation ψ1 in dipole
magnets:

tan ϕ1 = ± cos ψ2√− cos(ψ1 + ψ2) cos(ψ1 − ψ2)
(4.37)

cos ϕ2 = cot ψ1 cot ψ2 (4.38)

From here the required solenoidal fields in all energy range can be found.
In order to properly integrate the solenoidal insertions into the electron ring

lattice the optics of the solenoid insertion must satisfy two independent conditions:

1. Betatron coupling has to be compensated by the use of normal and skew
quadrupoles.

2. Specific spin matching conditions have to be satisfied to minimize depolarization.

Fig. 4.10 The schematic layout of the electron spin rotator for EIC
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Realization detail for such solenoidal insertion will be considered in the lecture on
spin matching.

4.4.2 Siberian Snake and Spin Rotator Based on Dipole
Magnets

A Siberian Snake can be constructed using a sequence of alternating vertical (V )
and horizontal (H ) bends, as shown in Fig. 4.11. Such design of the Siberian Snake
was proposed by Steffen [9]. In more general form the Snake configuration can be
written as:

(−H,−V,m ·H, 2V,−m ·H,−V,H).

here m is a number more than 1 [10]. The design uses a special field symmetry with
respect to the Snake center:

• the vertical field (H -bends) is anti-symmetric
• the horizontal field (V -bends) is symmetric

Such symmetry makes the beam orbit restored at the Snake exit. It also results in
the Snake axis lying in the horizontal plane. Then, by choosing fields of H and V

bending magnets one can setup the required spin rotation angle (180◦ for the Full
Snake) and a preferred direction of the Snake axis. Due to capability to select any
Snake axis orientation such Snake configuration is called the continuous axis Snake.

From the analysis of the spin transformation matrix of this Snake one can derive
that for getting 180◦ spin rotation the following relation connecting spin rotations
in horizontal (ψH ) and vertical (ψV ) bends must be satisfied:

sin2 ψH sin2 ψV = 1

2
(4.39)

Thus, this relation connects horizontal and vertical magnetic fields of the Snake
magnets in order to realize the Full Snake. Using this relation and the Snake

Fig. 4.11 The schematic layout of Steffen’s Snake based on vertical and horizontal dipole magnets
[6]
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Fig. 4.12 Dipole magnet Snake parameter plot defining the spin rotation in vertical bends required
to get a particular Snake axis orientation [6]

parameter plot shown in Fig. 4.12 one can select any Snake axis orientation in the
horizontal plane and find corresponding set of magnetic fields.

The Snakes based on dipole magnets have following characteristics properties.
First, required fields scale inversely proportionally to particle velocity, thus for
relativistic beams the magnetic fields very weakly depend on the beam energy.
Second, the orbit excursion changes inversely proportionally to the particle energy.
And, at last, the required integrated magnetic field is generally in the range 15–
35 T · m, depending on the orientation of the Snake axis. Therefore this type of
Snake is preferred at the high beam energy.

Unlike the Snake based on solenoidal magnets in the dipole magnet Snake the
beam orbit makes excursion inside the Snake. Below 20 GeV the orbit excursion
reaches tens of centimeters. But at the energies above 20 GeV the orbit excursion
becomes reasonable. And while the required field of solenoidal Snake increases
with the beam energy, the field of the dipole-based Snake is nearly constant at high
energies. Thus, the Snake based on dipole magnets would be a good choice at the
beam energies above 20 GeV.

The spin rotators based on dipole magnets were used in HERA [11]. HERA
was the first e-p collider, operated with 27.5 GeV electrons and 920 GeV protons.
The spin rotators were implemented for electron beam to produce longitudinal
polarization at the experimental detectors. To this day it is the highest energy
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application of the spin rotators in electron accelerators. The HERA rotator was a
sequence of three horizontal and three vertical bending magnets:

(V 3,H3, V 2,H2, V 2,H1).

Since the vertical orbit needs to be restored the fields of vertical bending magnets
are connected by the relation:

V 3 = −(V 1+ V 2) (4.40)

Since the HERA spin rotators were for electron beam the rotator optics had to be
designed to satisfy the spin matching conditions (see the lecture on spin matching).
The vertical orbit excursion characteristic for rotators based on dipole magnets was
addressed by placing some magnets off the horizontal plane to keep them centered
on the beam orbit. But changing polarization direction at the experiments was
challenging, since it required moving the magnets vertically to maintain the magnet
alignment on the beam orbit.

4.4.3 Siberian Snake and Spin Rotator Based on Helical
Magnets

The Siberian Snake can be created with four full twist helical dipole magnets,
having vertically oriented field at the entrance of each helix [12]. Each magnet is
characterized by the strength of magnetic field on the magnet axis Bi , the helical
twist helicity Ri and the number of helical periods Ni . Similar to the continuous
axis Snake based on dipole magnets one can identify symmetry conditions which
automatically provide the beam orbit restoration and the Snake axis being in the
horizontal plane. The symmetry conditions in the case of the helical magnets can
be written by relating fields, helicities and numbers of helical periods of different
Snake magnets:

B1 = −B4; B2 = −B3; R1 = R4; R2 = R3; N1 = N4; N2 = N3. (4.41)

These conditions define the continuous axis helical Snake.
The Siberian Snakes based on the helical magnets have been implemented in

collider RHIC in Brookhaven National Laboratory. In the RHIC Snake each helical
magnet has one helical period. Fields of the Snake magnets can be found from
the parameter plot that is obtained from the Snake spin transformation matrix.
Figure 4.13 shows the parameter plot for RHIC Snake [4]. μ is the spin rotation
angle. For the Full Snake μ = 180◦ is needed (green curve). αs is the Snake axis
angle. (On this plot it is accounted from the longitudinal axis!). From this plot one
can find helical fields (B1, B2) required to achieve given μ and αs . Natural choice,
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Fig. 4.13 Parameter plot defining the magnet strength of helical magnets for the RHIC Snake [4]

applied in RHIC is to have one Snake axis at+45◦ with other Snake axis oriented at
−45◦ with respect to longitudinal axis. Blue circles show possible parameter points
for the 45◦ Snake axis.

Figure 4.14 shows spin and orbit evolution through RHIC helical Snake at
the injection energy (γ = 25). Since the orbit excursion reduces inversely
proportionally to beam energy at the store energy (γ = 270) the maximum orbit
deviation is just a couple of millimeters. Comparing the helical Snake with a Steffen
Snake of similar total length one gets smaller resulting orbit excursion in the helical
Snake. Some disadvantage of using helical magnets is related with the fact that
their field is intrinsically non-linear. Because of this the effects of such spin rotators
on particle dynamics has to be carefully considered. That includes betatron tune
shifts and beta-function distortions induced by the helical Snakes. The homework
Exercise 5 in the Sect. 4.6 compares several design options for the helical Siberian
Snakes.

The sequence of the four helical magnets can also be used to realize a spin rotator
for transforming the vertical polarization at the rotator entrance into longitudinal
polarization in the location of experimental detector. It was shown that most efficient
scheme was one based on the helical magnets having horizontal field orientation at
the magnet entrance [12]. Helical spin rotators were implemented in RHIC.

Stronger magnetic field makes the spin rotator or the Snake more compact and
minimizes the beam orbit excursions inside the rotators. Because of this, supercon-
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Fig. 4.14 Spin and orbit trajectories in RHIC helical Snake at γ = 25 [4]

ducting magnet technology, using NbTi superconductor, has been used for building
4 T helical magnets for RHIC Snakes and spin rotators. Figure 4.15 shows the
cross-sections of the helical magnets of RHIC spin rotators. The superconducting
coil is surrounded by the iron collar. All magnet elements are cooled to 4.2 K by
using liquid He. Since the orbit excursion gets larger at lower energies, the magnet
aperture is defined at low energies. For instance, for RHIC the magnet aperture must
be large enough to accommodate sufficiently large orbit excursion (∼2 cm) at RHIC
injection energy 25 GeV.
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Fig. 4.15 The cross-section of RHIC spin rotator helical magnets

4.5 Summary

Various types of spin rotating devices can be used in accelerator rings for different
purposes. Among them the Siberian Snake represents an amazing device allowing
polarization preservation when crossing numerous spin resonances during beam
acceleration. Most efficient use of Snakes is in pairs (even number), with proper
distribution of an accelerator ring. Proper selection of the Snake axis angle ensures
spin tune 0.5. Even with Snakes one needs to be careful about depolarization, since
there are higher order resonances, Snake resonances. And larger beam energies
require larger number of the Snake pairs. Spin rotators also play very important
role in accelerators which require longitudinally polarized beam at experimental
detectors. Practical realization of Snakes and rotators depends on the energy
of a particular accelerator. Dipole and helical dipole-based Snakes would be a
proper choice at higher energies (>20 GeV); while solenoidal based Snakes more
appropriate at lower energies (<20 GeV).

4.6 Homework Exercises

In this section several exercises referred throughout this Chapter are given together
with their solutions.



104 V. Ptitsyn

•? Exercise 1

A general spinor transformation matrix has the form:

M = exp[−i(σ · b)
ϕ

2
] = I cos(ϕ/2)− i(σ · b) sin(ϕ/2) (4.42)

where ϕ is the spin rotation angle and b is the rotation axis unit vector.
The matrix of the Siberian Snake with the Snake axis angle αs is:

Msnake = −i(σ1 cos αs + σ2 sin αs) (4.43)

And the matrix of spin rotation in the ring arcs, where the spin rotates around the
vertical guiding magnetic field of dipole magnets is:

V (φ) = exp[−i(σ3
φ

2
)] = I cos(φ/2)− i(σ3 sin(φ/2) (4.44)

where φ = Gγθ and θ is the arc bending angle.
Then, first, prove that the Snake matrix can be presented as the product of two

consecutive rotations (around horizontal and vertical axes):

Msnake = exp(−iαsσ3) · (−iσ1) (4.45)

Second, prove the relation between arc and Snake matrices

V (φ)Msnake = MsnakeV (−φ)

Solution
Please note, that there are different ways to prove these relations. Only one possible
way is shown, as an example.

For proving the relation:

Msnake = exp(−iαsσ3) · (−iσ1) (4.46)

one could use the following properties of σ matrices:

σ1σ1 = I, σ2σ1 = −iσ3 (4.47)

To prove the first relation one can follow this path:

Msnake = −i(σ1 cos αs + σ2 sin αs) = −i(σ1 cos αs + σ2σ
2
1 sin αs)

= (cos αs + σ2σ1 sin αs)(−iσ1) = (cos αs − iσ3 sin αs)(−iσ1)

= exp(−iαsσ3)(−iσ1) (4.48)
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For proving the relation:

V (φ)Msnake = MsnakeV (−φ)

one could use the following properties of σ matrices:

σ3σ1 = −σ1σ3, σ3σ2 = −σ2σ3 (4.49)

Then this relation can be proved in following way:

V (φ)Msnake = (I cos(φ/2)− iσ3 sin(φ/2)) · (−i)(σ1 cos αs + σ2 sin αs)

= (−i)[I cos(φ/2)(σ1 cos αs + σ2 sin αs)−
− i sin(φ/2)(σ3σ1 cos αs + σ3σ2 sin αs)] =
= (−i)[(σ1 cos αs + σ2 sin αs) · I cos(φ/2)+
+ i(σ1σ3 cos αs + σ2σ3 sin αs) sin(φ/2)] =
= (−i)(σ1 cos αs + σ2 sin αs) · (I cos(φ/2)+ iσ3 sin(φ/2)) =
= MsnakeV

−1(φ) = MsnakeV (−φ) (4.50)

•? Exercise 2

Consider a system of 2N Siberian Snakes placed at the azimuths θ1, θ2, . . . , θ2N in
an accelerator ring. Each Snake is characterized by its own Snake axis angle αs,i .

Show that the one turn matrix is the matrix of the spin rotation around the vertical
axis and confirm the spin tune expression (4.33):

Mturn = Msn,2NVθ2N,θ2N−1Msn,2N−1Vθ2N−1,θ2N−2 . . .Msn,1Vθ1,θ0

= . . .

= V (φ) = exp(−iσ3
φ

2
) (4.51)

and

φ = Gγ

2N∑

i=1

(−1)i−1(θi − θi−1)+ 2
N∑

i=1

(αs,2i − αs,2i−1) (4.52)
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Solution
Please note that there might be different ways to prove this relation. Only one
possible way is shown, as an example.

Let’s note first that Vθi,θi−1 = V (Gγ (θi − θi−1)) Then, using the relation
V (φ)Msnake = MsnakeV (−φ) one can consecutively exchange positions of Snake
matrices

Mturn = Msn,2NV (Gγ (θ2N − θ2N−1))Msn,2N−1V (Gγ (θ2N−1 − θ2N−2)) . . .

. . . Msn,1V (Gγ (θ1 − θ0)) =
= V (Gγ (θ2N−1 − θ2N))V (Gγ (θ2N−1 − θ2N−2)) . . .

. . . V (Gγ (θ1 − θ0))Msn,2NMsn,2N−1 . . .Msn,1 =
= V (Gγ [(θ2N−1 − θ2N)+ (θ2N−1 − θ2N−2)+ . . . .

. . . +(θ1 − θ0)])Msn,2NMsn,2N−1 . . .Msn,1 =
= V (ϕ1)Msn,2NMsn,2N−1 . . .Msn,1 (4.53)

where

ϕ1 = Gγ

2N∑

i=1

(−1)i−1(θi − θi−1) (4.54)

On next step we transform the product of the Snake matrices:

Msn,2NMsn,2N−1 . . .Msn,1 = exp(−iαs,2Nσ3)(−iσ1) exp(−iαs,2N−1σ3)(−iσ1)

. . . exp(−iαs,1σ3)(−iσ1) =
= exp(−iαs,2Nσ3) exp(iαs,2N−1 . . .

. . . exp(−iαs,1(−iσ1)(−iσ1) . . . (−iσ1) =
= exp(−i(αs,2N − αs,2N−1 + . . .+ αs,1)σ3)(−iσ1)

2N

= V (ϕ2)(−1)N (4.55)

where

ϕ2 = 2
N∑

i=1

(αs,2i − αs,2i−1) (4.56)

Finally:

Mturn = V (ϕ1)Msn,2NMsn,2N−1 . . .Msn,1 = (−1)NV (ϕ1)V (ϕ2) =
= (−1)NV (ϕ1 + ϕ2) = V (φ) (4.57)
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where

φ = ϕ1 + ϕ2 = Gγ

2N∑

i=1

(−1)i−1(θi − θi−1)+ 2
N∑

i=1

(αs,2i − αs,2i−1) (4.58)

Note, that factor (−1)N in Eq. (4.57) can be dropped out since it increments φ by
2π .

•? Exercise 3

Consider a system of two Full Snakes separated precisely by 180◦ bending angle.
The Snake axes are chosen such that αs,2 − αs,1 = π/2, so the spin tune is equal to
one half.

1. Let’s assume that there is some error in the Snake axis orientation. Find a
tolerance of the Snake axis angle to have the spin tune deviation less than 0.1.

2. Let’s assume that one Snake was placed imperfectly, shifted by 0.1◦ of bending
angle from the perfect location. Evaluate the spin tune shift when accelerating
protons from 240 to 250 GeV.

Solution
One can use the expression (4.33) for spin tune in the system with 2N Snakes. With
only 2 Snakes the expression reads as:

νsp = Gγ

2π
[(θ1 − θ2)+ (θ1 − θ0)] + 1

π
(αs,2 − αs,1) =

= Gγ

π
(θ1 − π)+ 1

π
(αs,2 − αs,1) (4.59)

since θ0 = 0 and θ2 = 2π .
For perfectly placed Snakes (θ1 = π) and with αs,2 − αs,1 = π/2 the spin tune

is νsp = 1/2.

1. Let’s consider that one of the Snake axis (say, αs,1) is shifted by δαs,1.
Corresponding change in the spin tune can be written as:

νsp = 1

π
(π/2− δαs,1) (4.60)

Thus the spin tune shift is

δνsp = − 1

π
δαs,1 (4.61)
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From here, in order to have the spin tune shift less than 0.1, |δαs,1| has to be
less than 0.1π . That is the tolerance on |δαs,1| is 0.314 rad (or 18◦).

2. Now let’s consider that there is an error δθ in the bending angle between the
Snakes. That is θ1 = π + δθ The spin tune becomes

νsp = Gγ

π
(δθ)+ 1/2. (4.62)

For protons G = 1.79. Relativistic factor γ = 255.8 for 240 GeV, and γ = 266.5
for 250 GeV.

Then from the Eq. (4.62 ) the spin tune shifts corresponding to 0.1◦ bending angle
error can be calculated to be 0.254 at 240 GeV and 0.265 at 250 GeV, changing
linearly with the beam energy between these two energies.

•? Exercise 4

Consider system of two Full Snakes separated by 180◦ bending angle. The Snake
axes are chosen such that αs,2 − αs,1 = π/2. Spin tune for such system is 0.5.

Calculate vertical betatron tune values corresponding to the resonance conditions
of 2nd, 3rd and 4th order spin resonances.

Next, consider that Snake axes were retuned to get the spin tune 0.25. Find the
required orientation of the Snake axes and calculate vertical betatron tune values
corresponding to the locations of 2nd, 3rd and 4th order spin resonances.

How does the number of the resonances compare in two cases?

Solution
The general condition of the spin resonance between the spin tune νsp and vertical
betatron tune Qy is :

νsp = N +mQy (4.63)

where N and m are arbitrary integer numbers. Absolute value of m defines the order
of the resonance.

Let’s present Qy as Qy = [Qy] + {Qy} where [Qy ] is the integer part of the
vertical betatron tune, and {Qy} is the fractional part, which is between 0 and 1. For
the fractional part of vertical betatron tune, using the Eq. (4.63) one gets:

{Qy} = νsp −N −m[Qy ]
m

(4.64)
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If the spin tune is equal to 1/2, then resonance condition becomes:

{Qy} = 1− 2N − 2m[Qy]
2m

= 1+ 2 ∗ Ñ

2m
(4.65)

where Ñ is an arbitrary integer which gives {Qy} between 0 and 1. From here the
following table of high-order spin resonance values of {Qy} can be compiled:

m Resonance {Qy }
2nd order m = −2 or m = 2 1/4, 3/4

3rd order m = −3 or m = 3 1/6, 1/2, 5/6

4th order m = −4 or m = 4 1/8, 3/8, 5/8, 7/8

Now let’s take the spin tune equal to 1/4. As follows from the formula (4.29), to
obtain this spin tune the Snake axis angles have to be in the relations:

αs,2 − αs,1 = π/4 (4.66)

The spin resonance condition in this case becomes:

{Qy} = 1− 4N − 4m[Qy]
4m

= 1+ 4 ∗ Ñ

4m
(4.67)

where Ñ is again an arbitrary integer which gives {Qy} between 0 and 1. Then one
gets the following table of high-order spin resonance values of {Qy}:

m Resonance {Qy }
2nd order m = −2 or m = 2 1/8, 3/8, 5/8, 7/8

3rd order m = −3 or m = 3 1/12, 3/12, 5/12, 7/12, 9/12, 11/12

4th order m = −4 or m = 4 1/16, 3/16, 5/16, 7/16, 9/16, 11/16, 13/16, 15/16

Comparing the results for νsp = 1/2 and νsp = 1/4 one can note that, beside
different resonance locations, the total number of resonances of any order is twice
smaller in the case of νsp = 1/2. It happens because with νsp = 1/2 high-order
resonances are paired together. This can be considered as one of advantages of using
νsp = 1/2, since it provides a cleaner working point space for choosing the betatron
tune.
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•? Exercise 5

One needs to design a continuous axis Siberian Snake for a proton accelerator ring
based on helical dipole modules. Three schemes have been proposed, which are
summarized in the table:

Scheme 1 Scheme 2 Scheme 3

B0 R N B0 R N B0 R N

1st Helix 3.5 T +1 1 1.3 T +1 1 2.5 T +1 1

2nd Helix −1.1 T +1 2 −4 T +1 1 −2.5 T +1 1

3rd Helix 1.1 T +1 2 4 T +1 1 2.4 T −1 1

4th Helix 3.5 T +1 1 −1.3 T +1 1 −2.4 T −1 1

All Snakes use helical magnets with twist period 2.4 m. N characterizes a number
of helical twist periods in each magnet. Using the formula (4.14) for the orbit shift
on one twist period, find the maximum orbit excursion inside each Snake design
scheme at E = 25 GeV. Also, calculate the absolute total field integral for each
design option. On the basis of these calculations and, may be, other considerations
select a design scheme which you would recommend for the accelerator ring.

Solution
From the orbit shift formula (4.14) one gets for the orbit shift on one helical period:

�y = 2πRr = 2πRB0c

k2β

e

E
= λ2RB0c

2πβ

e

E
(4.68)

For 25 GeV one then obtains:

�y(mm) ≈ 11.0 ∗ R ∗ B0(T ) (4.69)

Then using values of B0, R and N for three design options one can calculate �y

and y after each helix:

Scheme 1 Scheme 2 Scheme 3

�y, mm y, mm �y, mm y, mm �y, mm y, mm

1st Helix 38.5 38.5 14.3 14.3 27.5 27.5

2nd Helix −24.2 14.3 −44.0 −29.7 −27.5 0

3rd Helix 24.2 38.5 44.0 14.3 26.4 26.4

4th Helix −38.5 0 −14.3 0 −25.4 0

From there the maximum orbit excursion and the absolute field integral for every
scheme can be summarized as:

The Scheme 3 demonstrates smaller orbit excursion and smaller field integral
than other two schemes. However, it does not satisfy symmetry conditions for field
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Max. Orbit |y|, Total field integral,

mm T·m
Scheme 1 38.5 27.36

Scheme 2 29.7 25.44

Scheme 3 27.5 23.52

and twist helicities, required for the continuous axis Snake (4.41). Thus, the Scheme
2 would be a preferable choice. In fact, the Scheme 2 was realized at RHIC.
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Chapter 5
Polarization Preservation and Spin
Manipulation

Haixin Huang

Abstract In this chapter, we will discuss how the polarization is preserved with
real accelerators, including both electrons and protons. In the end, we also present a
few examples of spin manipulations.

5.1 Introduction

Before we start, first let us summarize what we have learned so far:
As we learned from previous chapters, spin motion in external electromagnetic

fields is governed by Thomas-BMT equation. Spin motion in a synchrotron can be
treated with spinors in the form of one-turn matrix of spin. In periodic accelerator
structures, spin motion is periodic, which results in the spin tune concept. Because of
the periodicity, the spin precession experiences resonant motions. These resonances
can be divided into a few categories: imperfection resonances, intrinsic resonances,
synchrotron side band resonances, etc. The resonance strength is a function of
energy (Gγ ), the lattice used (betatron tunes, beta functions), the magnitudes of field
errors and orbit errors. They can be calculated with Fourier analysis, by programs
such as DEPOL [1]. For an isolated resonance, the final spin can be determined
from the initial spin by the crossing speed α and the resonance strength ε, using the
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Froissart-Stora formula [2]. The depolarizing resonance is different from betatron
resonances where stronger resonances cause more damage. When the adiabatic

condition is satisfied, |ε|
2

α
� 1, polarization amplitude can be preserved, by a full

spin flip.
A beam bunch is composed of particles with different betatron amplitudes and

phases. For an intrinsic resonance, the Froissart-Stora formula needs to be applied to
an ensemble of particles with a certain distribution. The most common distribution is
Gaussian distribution. Let ε be the Courant invariant of a particle and the distribution
function be ρ(ε). The polarization of the beam after passing through an isolated
resonance is given by:

< Pf /Pi >=
∫ ∞

0
(2e

−π |ε(ε)|2
2α − 1)ρ(ε)dε, ρ(ε) = 1

2ε0
e−ε/2ε0. (5.1)

Using the fact that the intrinsic resonance strength is proportional to the square of
the particle emittance,

|ε(ε)|2 = |ε(ε0)|2 ε

ε0
(5.2)

With these conditions, the Froissart-Stora formula for a beam with Gaussian
distribution is given as

Pf /Pi = 1− πε2

α

1+ πε2

α

. (5.3)

It should be noted that Froissart-Stora formula can only be applied to isolated
resonances. The isolated resonance has to satisfy following condition: the distance
δ between resonances (assume respective strengths ε1, ε2) is much larger than the
resonance strengths. Namely: δ � max(ε1, ε2).

From the Froissart-Stora formula, depending on the resonance strength, there
are two ways to preserve polarization through a depolarizing resonance. Very fast
crossing applies when π |ε|2/(2α) � 1, which will result in Pf /Pi → 1. The
adiabatic condition applies when π |ε|2/(2α) � 1, which will result in Pf /Pi →
−1.

To maintain the polarization through a resonance, one of two things should
happen:

1. strong enough resonance to generate a full spin flip;
2. very fast crossing speed so no or negligible depolarization effect.

In almost all cases we will discuss in this chapter, the isolated resonance condition
is satisfied.
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5.2 Overcome Resonances by Reducing Their Effects

This section reviews various techniques used to overcome depolarizing resonances
by reducing their effects.

5.2.1 Harmonic Orbit Correction

Since the imperfection resonance strength is proportional to the error harmonic of
the closed orbit (Sect. 2.3.5.1), by introducing the specific vertical harmonic orbit
correction, the resonance can be compensated so that the total resonance strength
is either zero or strong enough to fully flip the spin. This method has been used
by many accelerators such as Brookhaven AGS [3], KEK [4], KEK Booster [4],
Saturne [5] and COSY [6]. There are drawbacks of this method. It is tedious, and
the optimal setting could change with time and the tuning of the ring has to be
redone. This is a problem if many resonances need to be corrected.

Consider the AGS Booster as an example. In the AGS Booster, the polarized
proton beam comes in at Gγ = 2.18 and normally is extracted at Gγ = 4.5. The
vertical tune is set at 4.9 to avoid the intrinsic resonance at 0 + νy in the Booster.
There are two imperfection resonances in the energy range at Gγ = 3 and 4. They
both are corrected by the harmonic correction: Gγ = 3 resonance is corrected by
compensating the resonance strength to zero and Gγ = 4 resonance is corrected
by introducing a full spin flip with strong harmonic orbit component. In the case
of Gγ = 4, the resonance strength is enhanced instead. This is possible because
Gγ = 4 resonance itself is strong enough that a modest corrector strength can
enhance it to get a full spin flip.

For a given corrector current, the effective resonance strength is the combination
of both the original imperfection resonance and the corrector resonance strengths.
Namely, the Froissart-Stora formula takes the form

Pf = Pi(2 exp[−π |ε1 − ε2|2
2α

] − 1), (5.4)

where ε1 and ε2 are the resonance strengths of the original imperfection resonance
and the one introduced by the correctors. The resonance strength is a complex
number, it has real and imaginary parts or two orthogonal components: cosine and
sine (Eq. (2.29)). At proper current of the two orthogonal components, the effective
resonance strength is zero and polarization is fully preserved in this case. Since we
are going to scan the corrector current, we rewrite the above formula in a slightly
different form:

Pf = Pi(2 e

−π(Is−Is0)2

2σ2
s e

−π(Ic−Ic0)2

2σ2
c − 1), (5.5)
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where Is (Ic) is the corrector current for sine (cosine) component, Is0 (Ic0) is the
sine (cosine) corrector current corresponding to the optimized polarization, and σs

(σc) will provide the width of the sine (cosine) current scan, or sensitivity of the
current variation. During the current scan, only one component, either Ic or Is , is
varied. The other component needs to be set as a constant. In other words, the fitting
is done with the following format for cosine and sine components separately:

Pf = p0(2e

−π(I−p1)2

2p2
2 − p3), (5.6)

where p0, p1, p2 and p3 are the fitting parameters. For the cosine component scan,

p0 = Pi exp
−π(Is − Is0)

2

2σ 2
s

,

I − p1 = Ic − Ic0,

p2 = σc,

p3 = 1/ exp[−π(Is − Is0)
2

2σ 2
s

] (5.7)

The terms related to the sine component are absorbed into the fitting parameters.
Exercise 2 (Sect. 5.6) addresses the matching of experimental data using

Eq. (5.6).

5.2.2 Speedup the Crossing Speed

The crossing speed can be increased in several ways. The maximum acceleration
rate for a beam in a synchrotron is usually set by engineering limits on the maximum
achievable ramp rate of the main dipole current and field, so typically increasing the
acceleration rate is not an option. The options to increase the crossing speed include
rapidly changing betatron tunes over one or a few orbit turns (tune jump); changing
radius rapidly while keeping main magnet field constant (radial jump). A complete
resonance crossing speed is given in the presence of tune jump:

α = G
dγ

dθ
± dν

dθ
(5.8)

The crossing speed can be changed by acceleration speed, radial shift (RF manœu-
ver) and rapid tune jump.
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5.2.3 Radial Jump

In the case that magnet ramping speed is limited but the RF system is powerful
enough, the energy can be quickly changed by shifting the radius while maintaining
the main magnet field constant. It is called energy-jump method. An experiment was
carried out at the AGS to demonstrate the idea [7]. In the presence of a solenoidal
partial snake, a strong coupling is introduced, which in turn generates coupling
resonances. The energy jump method was used to cross the coupling resonance near
intrinsic resonance 0+ νy , at 0+ νx (a horizontal resonance which is excited in the
presence of solenoidal partial snake). The energy-jump was accomplished by rapidly
changing the beam circumference by 88 mm using the powerful AGS RF system
over 40 turns. Due to the momentum spread, not all the beam particles are crossing
the resonance during the jump unless the jump timing is centered. The polarization
was measured as function of the jump time Tjump. As shown in Fig. 5.1, the final
polarization is optimized when the jump time is centered at the resonance 0+ νx .

5.2.4 Tune Jump (Both Fast and Benign)

The tune jump can be achieved by using pulsed quadrupoles to rapidly shift the
tune and thus make the resonance crossing rate α very large. This method has been
applied in AGS [3], KEK, KEK Booster[4], COSY[8] and other accelerators. The
mechanism of the tune jump is illustrated in Fig. 5.2.

In the AGS, the rapid tune shifts were produced by special fast quadrupole
magnets; ten quadrupoles were installed in ten of the twelve superperiods. Sophisti-
cated power supplies, which generated pulses with a maximum output of 2250 A
at 15 000 V, were connected to 10 of these quadrupoles. The field in each fast
quadrupole had a 1.6 μs rise time and then decayed back to zero in about 3 ms.
Each quadrupole had a maximum field gradient of 11.7 kG/m. The AGS revolution
time is in the order of 3 μs, and this fast tune jump is a one turn tune jump. It can
generate a tune jump in the order of 0.2 unit in one orbit turn. One example of
the tune jump effect on polarization is shown in Fig. 5.3. When the jump timing is
centered at the intrinsic resonance, the polarization is maximized. The plateau of
polarization means there is a tolerance of 0.1 GeV/c for the jump timing.

The major problem of the fast tune jump is the emittance growth due to the large
and fast tune jump: non-adiabatic excitation of quadrupoles will generate emittance
growth due to the non-adiabatic excitation of closed orbit and the non-adiabatic
betatron amplitude mismatch. This is especially true if the center of the closed
orbit does not coincide with the center of the tune jump quadrupoles. Closed orbit
oscillations arising from the non-adiabatic dipole fields in tune jump quadrupoles
will generate emittance growth. Efforts were made to center tune jump quadrupoles
in the AGS and the emittance growth was greatly reduced [9]. Experimental tests in
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Fig. 5.1 Radial jump scheme and polarization gain with the jump. The hash lines represent the
beam with a certain momentum spread

1990s showed that the single turn tune jump can be further relaxed to multiple turns
(20–30 turns). The emittance growth in this case is further reduced [7].

These tune jump quadrupoles eventually were removed from AGS after AGS
polarization preservation switched to strong partial snakes (see below). However,
a new type of resonance, so-called horizontal intrinsic resonances [10], gives this
method a new life. In the presence of strong partial snakes, the stable spin direction
is not vertical. Therefore the perturbing fields that rotate the spin away from the
stable direction have vertical as well as horizontal components. Particles undergoing
horizontal betatron oscillations encounter vertical field deviations at the horizontal
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Fig. 5.2 Tune jump scheme illustration. The beam energy is shown as a thick line (to include the
momentum spread) and the intrinsic resonance is represented by the horizontal line with arrow in
the left plot. On the right plot, the resonance curve is shown along with the fast tune shift due to
the pulsed quadrupoles. The resonance crossing time is greatly reduced from �t to �τ

Fig. 5.3 The measured asymmetry (proportional to polarization) is plotted vs. the tune jump firing
energy in unit of Gauss Clock Counts (GCC). For a given radius, the beam energy is proportional
to the beam momentum. The GCC is converted to momentum at the top of the figure

oscillation frequency. As a result, resonances are driven by the horizontal betatron
oscillations, and will occur whenever the spin tune satisfies νsp = k ± νx . This type
of resonance is called horizontal intrinsic resonance. Since the two partial snakes are
helical dipole magnets, the vertical magnetic field deviations distributed along the
snakes are the main parts of the polarization perturbation. They have been observed
in the AGS [10] (Fig. 5.4).

These resonances in general are weak but they are numerous. For an RMS
emittance of 2 μm, the resonance strength is in the order of 10−5 to 10−4, but
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Fig. 5.4 The schematics of tune jump scheme. The blue trace is the spin tune as a function of Gγ

during the acceleration. The red lines are the horizontal intrinsic resonance lines. The green lines
are vertical intrinsic resonance lines. Over one unit of Gγ , two horizontal intrinsic resonances are
crossed. M,K , and N are integers

there are over seventy of them! Given the AGS nominal ramp rate, a tune jump of
0.04 in 100 μs should work. This increases the crossing speed by about 4 times.
Maintaining the adiabaticity of the particle motion is the key to minimize any
emittance growth, even for a small tune jump. A tune jump adiabatic enough to
produce negligible emittance growth is sometimes called “benign”. A pair of tune
jump quads were installed in straight sections in two adjacent superperiods in the
AGS, I5 and J5, where the βx is at its maximum. It should be noted that the vertical
tune would also be affected by the tune jump quads, but at a small amplitude due to
the small beta function. As the vertical tune is fairly close to integer (νy ∼ 8.98), the
perturbation to orbit motion needs to be minimized. Figure 5.5 shows the betatron
tune measurements along the energy ramp. The tune measurement time was chosen
such that it gave tunes alternatively as jump up value and jump down value (or no
jump value). The ramp starts at 149 ms and reaches flattop at 581 ms. The figure
shows that the horizontal tune jump amplitude is about 0.04 and the vertical tune
jump amplitude is about 0.02.

Figure 5.6 illustrate the resonance crossing with tune and energy spreads. They
are plotted for resonances near Gγ = 45, but are representative for all resonances
when Gγ > 19. To benefit from the tune jump, the beam particles have to cross
the resonance line during the jump. For the given beam parameters (tune jump
amplitude, chromaticity, beam momentum spread), about 76% beam will benefit
from the tune jumps above Gγ > 19. The jump timing determination requires
accurate determination of beam energy as function of ramp time. The beam energy
information on the energy ramp comes from measuring the AGS main magnetic
field and measuring the beam momentum offset using the radial average from the
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Fig. 5.5 The measured betatron tunes along the ramp as a function of time from AGS T0. Note
that there was no tune jump around 300 ms to avoid interference with other beam operation system

Fig. 5.6 Sketch of a resonance crossing on the increasing νx side of the pulse (Gγ = 54 − νx =
45.3). The horizontal axis is relative time to the resonance crossing. The vertical axis is energy
relative to the synchronous particle at jump time in units of Gγ . The solid line applies to the
synchronous particle, and the two types of broken lines apply to the boundary particles at the
FWHM. The momentum FWHM width is assumed as 10−3, which is close to the real dp/p in
the later part of the ramp. A chromaticity of −8 is used for the plot. The ramp rate dGγ/dt is
0.117/ms. The plot shows that particles within FWHM (76 % of the beam) benefit from the tune
jump
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Fig. 5.7 The measured polarization at the AGS extraction as a function of overall jump quad
timing. Error bars are statistical errors only. The solid line is a fit of Gaussian distribution with
σ = 214 μs

beam position measuring system. As a cross check, the second set of beam energy
information is derived from beam frequency and path length. The jump timing is
then derived from the beam energy and horizontal tune as a function of the ramp
time.

Since the polarization loss from an individual resonance is too small to measure,
it is only practical to do the overall timing scan to check the effect of tune jump on
the polarization (Fig. 5.7). With the assumption of Gaussian beam distribution, the
polarization distribution is expected to be Gaussian. From the beam parameters, the
width of this Gaussian is expected to be around 145 μs. If there are errors in the
individual jump quad timing, the distribution σ will be larger, which is what has
been observed.

In summary, the tune jump method is very powerful to overcome intrinsic
resonances. The associated emittance growth requires centering the beam orbit
inside the jump quads. When the tune jump speed can be relaxed to 20–30 turns,
the emittance growth is manageable at a few percents level. This method is still in
use such as the AGS horizontal tune jump system [11] and it is also planned for the
future EIC polarized deuteron program [12].

5.2.5 Fast Acceleration for Weak Resonance

The intrinsic resonance condition is given as νsp = nP ± νy . If the superiodicity
P can be increased in the lattice design stage, the space between strong intrinsic
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resonances can be increased. It is possible that the resonance condition for strong
intrinsic resonances are pushed out of a given energy range. Specifically, for P >

νy , the first two important intrinsic resonances occur at Gγ = νy and at Gγ =
P − νy . If we now ensure that both νy and P − νy are greater than the maximum
Gγ value then all the major intrinsic spin resonances can be avoided. Alternatively,
one could also choose νy to be greater than the maximum Gγ and P − νy less than
the lowest Gγ value. This ingenious optical design has been used in the EIC RSC
ring design [13]. By choosing P = 96 and integer part of the vertical betatron tune
to be 41 < [νy] < 55, polarized beam can be accelerated to Gγ = 41 from low
energy without crossing a strong intrinsic resonance. Here [νy] indicates the nearest
integer to the vertical betatron tune.

Unfortunately, the existing RHIC tunnel resembles a hexagon with rounded
corners rather than a circle, and therefore has a natural periodicity of six. However,
if we consider that the spin precession, which advances as Gγ , occurs in the dipoles
and does not advance at all in a drift, one can recover the periodicity of 96 from the
point of view of Gγ precession. This can be accomplished by designing the straight
sections such that their betatron phase advance is equal to 2πk with k ∈ {1, 2, 3, ...}.
In this way the straight sections will not contribute to the integral which defines
the strength of the spin resonance (see Fig. 5.8). Thus the 96 periodicity can be
maintained from the point of view of the spin precession. High periodicity arcs are
used and unity transformation in the straight sections are used to transform the ring
to the hexagon shape of RHIC tunnel. This suppresses all systematic depolarizing
resonances up to Gγ =41.

The RCS is designed to eliminate intrinsic spin resonances during the acceler-
ation cycle. However, any deviation from this ideal geometry, whether intentional,
like insertion regions or accidental, like survey errors, has the potential to spoil
the symmetry that keeps all the intrinsic resonance strengths sufficiently low. By
minimizing the contributions to the spin integral introduced by these insertions we
can ensure that polarization is maintained to emittances well beyond foreseeable

Fig. 5.8 Projecting the pure
ring lattice with 96
periodicity onto the RHIC
sixfold periodic ring

Spin transparent
straight section

Ring with pure P=96 super-periodicity
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operational conditions. The results in Fig. 5.9, show that for the slowest ramp time
of 200 ms 94% polarization transmission can be achieved.

5.2.6 Full Siberian Snake

The snake magnet concept was first introduced by Russian physicists S. Derbenev
and A.M. Kondratenko and the trajectory inside the magnet is like a snake (as shown
in Fig 5.10). The idea is simple but genius: the spin is rotated by 180◦ around an axis
in the horizontal plane. Any perturbation to the spin before the snake is unwounded
by similar perturbation in the following section or orbit turn. For this reason, full
snake is put into the category of overcoming resonances by reducing their effects.
Because of the Siberian origins of the idea and the serpentine shape of the particle

Fig. 5.9 ZGOUBI tracking results for 8 particles at 1000 mm-mrad normalized emittance. Com-
paring ramp times 50–200 ms. The vertical axis 〈Sy〉 represents the average vertical components
of the spin vector. The vertical line marks the location of Gγ = 41

Fig. 5.10 Three-dimensional view of the trajectory through a RHIC Snake
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Fig. 5.11 Schematics of the
figure-8 ring principle. The
red and blue arrows are
possible spin components in
the ring: vertical or
horizontal. With two identical
halves of the ring except for
the dipole magnet fields
which are reversed, the
perturbation to spin motion in
the two half rings are
compensated

trajectory, these magnets were dubbed Siberian snakes by Ernest Courant. In RHIC,
dual full snakes are separated by half of the ring. Each snake rotates the spin vector
180◦ around an axis in the horizontal plane. There are two consequences of two
snakes. First the stable spin direction of the whole ring is vertical. Second, for two
snakes with the axis perpendicular to each other, spin tune is 0.5.

In the presence of snakes, one would think that the polarization can be preserved.
However, there are additional high order depolarizing resonances, called snake
resonances [14]. The snake resonance condition is given as

mνy = νsp + k (5.9)

where m and k are integers. m is called the snake resonance order. Examples of the
resonance conditions are 5 × 0.7 = 0.5 + 3 for νy = 0.7; 2 × 0.75 = 0.5 + 1 for
νy = 0.75. For two snakes in a synchrotron, the even order resonances do not exist
if the closed orbit is fully corrected, but the odd order resonances do. In the RHIC
operation, there is almost no polarization loss on the ramp below 100 GeV, about
10%–15% polarization loss between 100 and 255 GeV [15].

Another idea similar to the snake is the figure-8 ring (Fig. 5.11). The perturbation
to the spin motion in a figure-8 ring is also compensated in the two half rings,
because the magnetic fields reverse signs [16].

5.3 Resonance Enhancement Method

As the Froissart-Stora formula shows, with strong enough resonance strength, the
spin can be fully flipped when crossing the resonance adiabatically. Polarization is
preserved as the result. Options to enhance the resonance strength include running
an AC dipole to enhance the intrinsic resonances and running a partial snake to
enhance imperfection resonances. When the partial snake strength is strong enough,
it can also overpower the intrinsic resonances. In these cases, the two resonances
can be made to occur at nearly the same energy by choosing a tune very near an
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integer to create overlapping resonances. Condition for overlapping resonances is

δ � min(ε1, ε2) (5.10)

This condition can be easily satisfied if using partial snake for the imperfection
resonance case, as the two resonances are at the exact same location, and δ = 0.
From this condition, one can see that AC dipole is not usable for a weak resonance:
the required separation is not feasible.

5.3.1 AC Dipole

An AC dipole is a magnet that can be adiabatically excited and de-excited with a
continuous sine-wave in order to coherently move circulating beam out to large
betatron amplitudes without incurring the emittance blow up. It has also been
referred as RF dipole in some references.

Since the intrinsic spin resonance strength is proportional to the betatron
amplitude, the final polarization is an ensemble average of the Froissart-Stora
formula over the betatron amplitude of the beam particles. It is difficult to achieve
a full spin flip for all particles since the resonance strength of the beam core is
small. Alternatively, if the beam is kicked to induce a coherent betatron oscillation
so that the betatron oscillation amplitudes of all particles are large, a full spin flip
can be attained [17]. Essentially, the AC dipole field and the focusing potential of
the accelerator form a potential well that preserves the emittance of the beam. Such
a controlled coherent betatron oscillation can be obtained by using an AC dipole
magnet operating at a frequency close to a betatron sideband. The schematics of
the method is shown in Fig. 5.12. There are two requirements to use the AC dipole.
First, there should be a large enough physical aperture for the needed large betatron
motion amplitudes. Second, the original intrinsic resonance strength needs to be
strong enough that the needed artificial resonance strength can be achieved with
feasible tune separation. To preserve the emittance, the AC dipole amplitude was
ramped up and down adiabatically. The drive signal and the measured beam position
signals from the AGS AC dipole are shown in Fig. 5.13.

In a linear approximation, the amplitude of the coherent betatron motion is given
by

ycoh = Bml

4π(Bρ)δ
βy (5.11)

where Bml is the integrated field of the AC dipole, Bρ is the magnetic rigidity
of the beam, βy is the vertical betatron function at the AC dipole, and δ is the
difference between the AC dipole tune and the tune of the nearest betatron sideband.
Equation 5.11 shows that although the coherent amplitude is larger with smaller
tune separation δ, the beam is unstable at δ = 0. Figure 5.14 shows the measured
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Fig. 5.12 Beam in a quadrupole with and without AC dipole. The dash lines are the magnetic
fields of the quadrupole. Left: beam stays in the center of the quadrupole and particles experience
different magnetic fields. Right: the whole beam experiences large enough betatron amplitudes
which results in full spin flip

Fig. 5.13 Transverse displacement from BPM (top) and the AC dipole magnet field amplitude
(bottom) as a function of turn number of AGS
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Fig. 5.14 Measured proton polarization vs the coherent betatron oscillation amplitude for different
tune separations at spin depolarizing resonances 0 + νy (bottom plot), 12 + νy (middle plot), and
36 − νy (upper plot). Py stands for the vertical polarization, while Ycoh stands for the vertical
coherent oscillation amplitude (Note that in Bai et al. [18] notations, vertical axis y is denoted
by z). The error bars show only the statistical errors. The resonance strength of the coherent spin
resonance due to the AC dipole is proportional to the coherent betatron amplitude. The lines are the
results of multi-particle spin simulations based on a model with two overlapping spin resonances

polarization at three energies versus the AC dipole strength, which is converted
to the corresponding coherent betatron amplitude [18]. The lines shown on the
figure correspond to results obtained from numerical spin simulations of a two spin
resonance model. The oscillatory behavior of the simulation result is due to the
interference between the coherent betatron oscillations and the intrinsic betatron
motion. The spin vector of each particle was tracked by multiplying its turn by turn
transform matrix. The beam polarization was then obtained from the spin ensemble
average of a Gaussian beam distribution. The agreement between experimental data
and simulations are very good.
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5.3.2 Partial Snake for Imperfection Resonances

Partial snake is a device to rotate the spin by an angle φsp less than 180◦ in one orbit
turn. Such a spin rotator can be constructed by using either solenoidal magnets,
or a sequence of interleaved horizontal and vertical dipole magnets producing
only local orbit distortions. For low energy synchrotrons like the Brookhaven
AGS with weak depolarizing resonances, one might consider solenoidal snake.
However, for practical field strengths, a full solenoidal snake would require 10 m
of straight section, which is not available in the AGS. Strong solenoids can also
cause undesirable coupling between horizontal and vertical betatron oscillations,
which would require compensation to maintain beam stability. Another option is to
use helical dipole as snake. The required magnet field is not practical to be ramped
quick enough along the energy ramp. For a constant field, the optical distortions at
lower energies would reduce the dynamic aperture. With the constraints in the AGS,
it is better to overcome the imperfection resonances with a partial snake [19].

To illustrate how a partial snake works, we consider a perfect synchrotron with a
solenoidal snake inserted. For an ideal particle (which moves on the betatron closed
orbit without displacement) in a perfect synchrotron, where ξ = 0, the spinor is
transformed according to

�(θf ) = e−
1
2 iGγ [θf−θi ]σ3�(θi) = T (θf , θi)�(θi), (5.12)

where θi and θf are the initial and final orbit angles, respectively. When θf − θi =
2π , the spinor is transformed by a spin transfer matrix, called one turn map
(OTM) [20],

T (θi + 2π, θi) = e−iGγπσ3, (5.13)

where the stable spin direction is vertical (ê3). When solenoidal fields (rotating the
spin by φsp radian along the longitudinal ê2 direction) are present, the OTM, T , is
obtained as a product of a spin rotation in the Siberian snake by an angle φsp around
the longitudinal direction and the precession in the main bending magnets around
the vertical direction by the angles Gγθ (before the snake) and Gγ (2π − θ) (after
the snake):

T = e−i 1
2 Gγ (2π−θ)σ3e−i 1

2 φspσ2e−i 1
2 Gγθσ3, (5.14)

where θ is the orbit angle between the observation point and the snake. Complete-
ness of Pauli matrices guarantees that any succession of rotations in the 3-D space
is equivalent to a rotation around a specified axis. If the spin vector is lying on this
direction initially, it will stay on this direction. That is the so-called spin closed orbit.
The OTM can be rewritten as a precession around the spin close orbit n̂co (canonical
form):

T = e−iπνspn̂co·σ , n̂co = cos α3ê3 + cos α2ê2 + cos α1ê1, (5.15)
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where νsp is the spin tune and (cos α1, cos α2, cos α3) is direction cosine of n̂co

along (ê1, ê2, ê3) axes respectively. A spin vector lying along the n̂co is invariant
under the transformation of the Eq. (5.15). On the other hand, any spin vector which
is not lying along the n̂co, will precess around the n̂co at a rate of νsp precessing turns
per revolution around the synchrotron. Identifying matrix elements of Eq. (5.14)
with those of Eq. (5.15),

cos πνsp = cos
φsp

2
cos Gγπ (5.16)

and

cos α3 = 1

sin πνsp

sin(πGγ ) cos(
φsp

2
), (5.17)

cos α1 = − 1

sin πνsp

sin Gγ (π − θ) sin(
φsp

2
), (5.18)

cos α2 = 1

sin πνsp

cos Gγ (π − θ) sin(
φsp

2
). (5.19)

For a 100% snake, φsp = π , we have νsp = 1/2. Neither resonance condition
discussed in Chapter 1 is therefore ever satisfied regardless of the beam energy.
For a partial snake, φsp < π , when φsp is small, the spin tune is nearly equal to
Gγ except when Gγ equals an integer n, where the spin tune νsp obtained from
Eq. (5.16) is shifted from the integer by ±φsp/2. Thus, the partial snake creates a
gap at all integers in the spin tune, and since the spin tune never equals an integer,
the imperfection resonance condition is never satisfied. Thus the partial snake
can overcome all imperfection resonances, provided that the existing resonance
strengths in the lattice are much smaller than the gap created by the partial snake.
The denominator in Eqs .(5.17)–(5.19) can be calculated from Eq. (5.16):

sin πνsp = ±
√

1− cos2(πGγ ) cos2(φsp/2). (5.20)

The physics constraint is that the change of the stable spin direction has to be
continuous with Gγ . Due to the gap ±φsp/2, sin πνsp is not continuous when
changing the sign. So we should choose positive root in Eq. (5.20). The Eqs. (5.17)–
(5.19) can be rewritten as

cos α3 = 1
√

1− cos2(πGγ ) cos2(φsp/2)

sin(πGγ ) cos(
φsp

2
) (5.21)

cos α1 = − 1
√

1− cos2(πGγ ) cos2(φsp/2)

sin Gγ (π − θ) sin(
φsp

2
), (5.22)
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cos α2 = 1
√

1− cos2(πGγ ) cos2(φsp/2)

cos Gγ (π − θ) sin(
φsp

2
). (5.23)

The effect of a partial snake can also be analyzed in another view. The localized
spin rotation by a partial snake is

φspδ(θ − θ0)

and the strength of generated resonance is the Fourier amplitude:

φsp

2π
einθ0 for all Gγ = n.

This means that the spin rotator is equivalent to imperfection resonances at
all integer harmonics with equal resonance strengths. With the presence of an
imperfection resonance and a partial snake, the Froissart-Stora formula can be
rewritten as

Pf

Pi

= 2 exp(− π

2α
|ε + φsp

2π
einθ0 |2)− 1. (5.24)

Complete spin-flip occurs if

φsp � 2π |ε| + √8πα.

For the AGS, α = 4.5 × 10−5, |ε| < 0.01 from previous experiment [3, 9], thus
φsp = 0.05π is enough to overcome all imperfection resonances. Then the spin
dynamics when crossing the imperfection resonances will be dominated by the
partial snake.

The experiment of a partial snake was carried out in the AGS [21]. Figure 5.15
shows the measured polarization as a function of Gγ for a 10% partial snake. The
polarization was observed to follow the predicted spin flip in passing through each
imperfection resonance without loss of polarization. Without the snake, shown as
open circles, there was some depolarization at Gγ = 8. The increased depolariza-
tion when Gγ is slightly larger than an integer, particularly noticeable for Gγ = 8,
is due to the reduced acceleration rate just before the polarization measuring flat top.
With the partial snake to overcome the imperfection resonances, the polarization
is maintained through the imperfection resonances at Gγ =integers, but there are
losses at intrinsic resonances. Without the partial snake, polarization is lost after
Gγ = 12.5 as shown in Fig. 5.16.
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Fig. 5.15 The measured vertical polarization as a function of the spin tune Gγ for a 10% snake is
shown with and without a partial snake. Note that partial depolarization at Gγ = 8 is avoided by
using a 10% snake. The error bars only represent the statistical errors. The solid line is the result
of Eq. (5.22). The measurement was done at betatron tunes of νx = 8.7 and νy=8.8

Fig. 5.16 The measured absolute value of the vertical polarization at Gγ = n ± 1
2 , up to Gγ =

22.5 (solid points). Note that partial depolarization is due to intrinsic spin resonances at Gγ =
0+ νy, 24− νy and 12− νy
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5.3.3 Strong Partial Snake to Overcome Intrinsic Resonances

For a full snake, the spin tune is 1/2 for all energies, the spin tune gap is 0.5. A strong
partial snake generates large spin tune gap for Gγ = N , where N is an integer.
When the gap is large enough to put the vertical tune inside the spin tune gap,
the intrinsic resonance condition can never be satisfied. Then it can overcome both
intrinsic and imperfection resonances. The spin tune gaps for various partial snake
strengths are shown in Fig. 5.17. Alternatively, this can be understood by a strong
resonance at Gγ = N which overpowers the nearby imperfection and intrinsic
resonances.

An experiment was carried out in the AGS with the solenoidal partial snake [22].
At low energies, the magnet can generate a stronger partial snake. The experiment
was carried out to overcome 0+ νy resonance located near Gγ = 8.7 with solenoid
magnet running as an 11.4% partial snake. The polarization was measured at Gγ =
12.5. The results are shown in Fig. 5.18. Note that with a strong snake, the stable
spin detection will deviate from vertical significantly. For example, it will be 18◦ for
a 20% partial snake.

As shown in Fig. 5.18, the measured polarization reached a plateau when the
vertical betatron tune was very close to 9.00. The polarization loss in this region
was only about 6% and can be completely explained by spin mismatching at AGS
injection and depolarization from coupling resonances as discussed below.
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Fig. 5.17 Spin tune for various partial Siberian snake strengths. The straight line indicates a
possible value for the vertical betatron tune
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Fig. 5.18 The measured vertical polarization as a function of the vertical betatron tune for an
11.4% partial Siberian snake. The dashed straight line indicates the polarization level measured
at the end of the linac. Since the two imperfection resonances in the Booster have been corrected
by harmonic orbit correctors, this is also the beam polarization at AGS injection. The solid curve
shows the results of both multi-particle simulations and DEPOL calculations

These observations agree well with spin dynamics calculations.With a partial
Siberian snake inserted, there are two strong resonances in this energy region:
one located at Gγ = 9 generated by the partial Siberian snake and the intrinsic
resonance at Gγ = 0 + νy . When the intrinsic and artificial resonances do not
overlap (νy � 8.85), the resonance at Gγ = 9 should flip the spin completely
while the intrinsic resonance at Gγ = 0 + νy causes some depolarization. When
the two resonances are very close, such as for νy = 8.98, the intrinsic resonance is
overpowered by the resonance at Gγ = 9. The particles essentially just experience
one resonance at Gγ = 9, and full spin flip is observed. When the two resonances
are at intermediate separations, such as for νy ≈ 8.90 to 8.95, they interfere with
each other.

Since there is linear coupling between the beam motion in the two transverse
planes, the following coupling resonances in the vicinity of Gγ = 9 should also
be considered: Gγ = 17 − νx, 0 + νx, 18 − νx , and 1 + νx . These resonances are
not in the spin-tune gap generated by the strong partial snake. Since νx and νy are
well separated, these resonances can be treated separately as isolated resonances.
Using the Froissart-Stora formula, the total polarization loss due to the coupling
resonances was calculated to be 5%. The polarization loss due to spin mismatching
at injection was calculated to be 1%. The difference of the injection polarization and
the measured one at Gγ = 12.5 is well understood.
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5.3.4 Dual Partial Snakes

For a strong partial snake, however, polarization loss due to spin mismatch at
injection and extraction is no longer negligible. A 20% snake will lead to a 10%
polarization loss due to this spin direction mismatch. This could be solved with
appropriate spin rotators in the injection and extraction beam lines. However, a
single additional partial snake located in the synchrotron can provide the spin
direction matching at injection and extraction and also increase the effective partial
snake strength if its position is chosen properly.

The location and the precession axis direction of multiple partial snakes has to
be chosen very carefully to maintain control of the spin tune in a similar way as is
necessary for multiple full snakes. For practical partial snakes the precession axis
direction is always very close to longitudinal, which leaves only the location and
strength of the partial snakes as free parameters.

The spin tune for two partial snakes separated by the fraction 1/m of the ring
circumference is given by Roser et al. [23]:

cos πνsp = cos
s1π

2
cos

s2π

2
cos Gγπ −

sin
s1π

2
sin

s2π

2
cos

Gγπ(m− 2)

m
, (5.25)

where s1π and s2π are the rotation angles of the two partial snakes. The derivation
is similar to the one partial snake case by using OTM method.

Separating the two partial snakes by one third of the ring is of particular interest
since it will introduce a periodicity of three units in the spin tune dependence on
Gγ . Since both the super-periodicity of the AGS (12) and the vertical betatron tune
(∼9) are divisible by three, the spin tune will be the same at all strong intrinsic
resonances, namely νsp = (s1 + s2)/2 for Gγ = 3n, where n is an integer. With
both snakes at equal strength s, νsp = s they effectively double the strength of one
partial snake. At the injection and extraction energies, for which Gγ = 3n+1.5, the
two partial snakes cancel. The polarization direction in the AGS is therefore exactly
vertical and no polarization is lost due to spin direction mismatch.

Even using the 10% partial snake together with the presently installed warm
helical partial snake with a rotation angle of 10.6◦ (5.9%) at extraction energy,
a very substantial reduction of the injection and extraction spin mismatch can be
achieved. At the same time the effective strength of the partial snakes at the strong
intrinsic resonances is significantly increased. Since it is not practical to ramp the
two partial snake magnets, their fields are kept constant. The snake strength quoted
here is the strength at extraction energy. Figure 5.19 shows the spin tune and the
vertical betatron tune in the AGS with two partial snakes of 2.11 T (10% partial
snake) and 1.53 T (5.9% partial snake), respectively. The partial snakes have to be
located as shown in Fig. 5.20, spaced one third of the ring apart. In this case the
polarization loss due to injection and extraction mismatch is about 1%. For a single
partial snake with strength of 15.9%, the loss would be 6%.
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Fig. 5.19 Fractional part of measured vertical tune (dots connected with dashed line) along the
energy ramp and spin tune for the combination of 2.11 T and 1.53 T partial snakes

10−14%

5.9%

120 deg.

Fig. 5.20 Locations of the partial snakes and the injection and extraction regions that give
minimum polarization loss due to spin direction mismatch

To maintain polarization in the AGS, the vertical tunes along the energy ramp
have to be put into the spin tune gap generated by the two partial snakes. Moreover,
due to the so-called partial snake resonances[14], the available tune space is reduced
even further. The partial snake resonances occur when

νsp = k ± lνy, (5.26)

where k and l(> 1) are integers. This is the same condition as for full snake
resonances [24, 25]. The polarization was measured as a function of the vertical
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Fig. 5.21 Polarization as function of vertical tunes at two intrinsic resonances with different
resonance strength.The dash line shows the position of the spin tune gap for a combined 19.9%
(14% + 5.9%) partial snake strength.The locations of high order (l = 2, 3 and 4) snake resonances
near intrinsic resonance 36+ νy are marked

betatron tune in the vicinity of several intrinsic resonances. Figure 5.21 depicts
the effect of the partial snake resonances near the two intrinsic resonances for the
14% cold partial snake and 5.9% warm partial snake. Similar structure has also
been observed in the earlier experiment with single partial snake in Fig. 5.18. The
high order snake resonance locations can be calculated by solving Eqs. (5.25) and
(5.26) and they agree well with the measured values as marked in Fig. 5.21 [26].
The snake resonance strength is proportional to the strength of the nearby intrinsic
resonance. The intrinsic resonance strength can be calculated from DEPOL [1] for
a given lattice. For the weak intrinsic resonance (12 + νy ), there is only a benign
effect from the snake resonances and polarization reaches a plateau above 8.96.
For the strong intrinsic resonance (36 + νy ), the data shows the effect from the
second, third and forth order partial snake resonances. The vertical chromaticity
was set close to zero along the energy ramp to reduce the betatron tune spread due
to the momentum spread. This helps to reduce the depolarization from the snake
resonances. As expected, the higher the resonance order, the weaker the resonance
strength shown as less of a polarization dip. In addition, when the vertical tune
is pushed beyond 8.99, the associated large orbit distortions (see discussion after
Eq. (5.27) is likely the cause of the polarization drop of the last data point.
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In a synchrotron, the vertical rms closed orbit is given by

yco,rms ≈ βav

2
√

2 | sin πνy |
√

Nθrms, (5.27)

where βav, N, νy , and θrms are respectively the average vertical β-function, the
number of dipoles with field errors, the vertical betatron tune and the rms steering
errors. As seen from Eq. (5.27), the closed orbit amplitude is greatly enhanced
when the betatron tune is close to an integer for the same steering errors. As the
imperfection resonance strength is proportional to the closed orbit amplitude and
beam energy, the imperfection resonance can still be important at high energies
even with two partial snakes installed. Since the betatron tune is close to 9, the 9th
and multiple of 9 harmonics are strong. The strength of the imperfection resonance
calculated for AGS lattice with a large orbit distortion and vertical tune close to 9
could be comparable to the partial snake strength. If they have opposite phase, the
imperfection resonance just cancels the effect of the two partial snakes. In fact, we
observed polarization loss when the amplitudes of the 9th harmonic of the closed
orbit are large. A measurement of polarization as a function of the 9th harmonic
orbit amplitude is shown in Fig. 5.22. The depolarization occurs at the expected
amplitude.
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Fig. 5.22 Measured polarization as a function of the sine 9th harmonic amplitude at 36+νy . The
dashed line is to guide the eyes. The location of the polarization dip agrees with calculation
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5.4 Spin Manipulations

5.4.1 Spin Flipper

In polarized proton collision experiments, it is highly advantageous to flip the spin
of each bunch of protons during the stores to reduce the systematic errors. The
Froissart-Stora formula shows that an artificial resonance can be introduced to flip
the spin.

The traditional spin flipping technique uses a single rf spin rotator that rotates the
spin around an axis in the horizontal plane. The spin rotator can be implemented as
a dipole or a solenoid running with certain rf frequency. It can be done by ramping
the frequency of the spin rotator tune νosc across the spin tune νsp adiabatically and
the spin can be flipped following the Froissart-Stora formula:

Pf

Pi

= 2 exp[−π

2

|ε|2
α
] − 1, (5.28)

where

α = �νosc

2πN
(5.29)

where �νosc is the range of the rf spin rotator tune sweep range, N is the number of
turns the sweep covers. As long as the spin tune is covered by the sweeping range
of the rf device, a resonance will be crossed. With proper sweeping speed, the spin
can be flipped. Simulations of such a process is shown in Figs. 5.23 and 5.24.

Experiments done at low energies (from 100 MeV to 2 GeV) have demonstrated
a spin flip efficiency over 99% [27, 28]. The spin flip is achieved by ramping the rf

Fig. 5.23 The AC dipole running with frequency sweeping over time
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Fig. 5.24 Simulations of spin of an ensemble beam particles in the presence of the artificial
resonance from a sweeping AC dipole

spin rotator tune νosc across the spin tune νsp adiabatically. The experimental results
are shown in Fig. 5.25.

It should be noted that such a single spin rotator generates two spin resonances,
one at νsp = νosc, and one at νsp = 1− νosc or the so-called “mirror” resonance. As
long as the spin tune is sufficiently far away from half integer, say at 0.47, then the
two spin resonances are sufficiently far from each other and each one can be treated
as an isolated resonance. This is the case for low energies when Siberian Snakes are
not needed and the spin tune is not at or near half integer. In high energy polarized
proton colliders such as RHIC, the spin tune is very close to half integer. The two
spin resonances overlap and their interference makes the full spin flip impossible
with such a single rf spin rotator. To reach a full spin flip, the “mirror” resonance
has to be eliminated [29].

For the spin flipper to work with a spin tune near 0.5 it has to induce only one
spin resonance at νsp = νosc. In addition, it is critical to eliminate any global
vertical betatron oscillations driven by the AC dipole to achieve full spin flip [30].
Thus we have chosen a spin flipper design which consists of five AC dipoles with
horizontal magnetic field and four DC dipoles with vertical magnetic field, which
not only eliminates the “mirror” resonance, but also forms two closed vertical orbital
bumps and eliminates the global vertical oscillations outside the spin flipper [31].
Figure 5.26 shows the schematic drawing of the spin flipper design. The first three
AC dipoles form the first closed orbital bump and the last three AC dipoles form the
second closed orbital bump. The middle AC dipole (No. 3) is used twice. The four
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Fig. 5.25 The vertical polarization as a function of the flip time. When the flip time is long enough
to satisfy the adiabatic condition, the spin is flipped

Fig. 5.26 Schematics of the high energy spin flipper in RHIC. It consists of five AC dipoles and
four DC dipoles

DC dipoles yield spin rotation angles of +ψ0/-ψ0/-ψ0/+ψ0. The rotation angle ψ0 is
given by

ψ0 = (1+Gγ )
BdcL

Bρ
(5.30)

where Bρ is the beam particle magnetic rigidity, BdcL is the integrated B field of
each DC dipole. These DC dipoles create a closed local horizontal bump leaving
the spin tune νsp unchanged. The five AC dipoles are operated at the frequency
about half of revolution frequency, so that the tune νosc is in the vicinity of νsp. AC
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dipoles 1–3 and AC dipoles 3–5 create a local vertical orbit bump with a+φosc/−2
φosc/+ φosc spin rotation sequence. The rotation angle φosc is given by

φosc = (1+Gγ )
Bacl

Bρ
(5.31)

where Bacl is the integrated B field of AC dipole. This configuration induces a spin
resonance at νosc = νsp while eliminating the “mirror” resonance at 1 − νsp and
therefore ensuring a single resonance crossing during a νosc sweep through νsp ≈ 1

2
and producing full spin flip. In the presence of a “mirror” resonance, the isolated
resonance crossing condition would otherwise require νsp to be far enough away
from 1

2 . The effective spin resonance strength of the spin flipper εk then becomes

εk = 2
φosc

π
sin ψ0 sin

ψ0

2
(5.32)

In order to eliminate the global AC dipole driven vertical betatron oscillations,
the currents of the five AC dipoles have to satisfy Eq. (5.33) so that they excite only
two closed vertical orbit bumps:

I2 = I0 sin(2πνosci + χ1)

I4 = I0 sin(2πνosci + χ2)

I1 = 1

2
I0 sin(2πνosci + χ1 + π) (5.33)

I5 = 1

2
I0 sin(2πνosci + χ2 + π)

I3 = I1 + I5

where Ik is the current of kth AC dipole and i is the ith orbital revolution. χ1 and χ2
correspond to the initial phase of AC dipole bump 1 and 2, respectively. χ1 − χ2 =
ψ0 is the condition for exciting a single isolated resonance at νsp = νosc with the
spin flipper.

Besides eliminating the “mirror” resonance and any global vertical betatron
oscillation driven by AC dipoles, the reduction of the spin tune spread is also critical
for achieving full spin flip. The spin tune of a synchrotron with two Siberian Snakes
installed at opposite sides of the ring is given by

νsp = 1

2
+ (1+Gγ )(θ1 − θ2)

2π
, (5.34)
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where θ1 and θ2 are the integrated bending angles of the first half arc and second half
arc, respectively. For the on-energy and on-axis protons both θ1 and θ2 are equal (π)
and the design-orbit spin tune is 1

2 independent of the beam energy. This changes

when synchrotron motion and the resulting momentum spread �p
p

are considered.
The change in the bending angles are �θ1 = (x ′1 − x ′2) and �θ2 = (x ′2 − x ′1)
respectively, where x ′1 and x ′2 are the slopes of the beam trajectory at the first and
the second Siberian Snake. The spin tune then becomes 1

2+(1+Gγ )(x ′2−x ′1)/π . To

the first order, x ′ can be expressed as x ′ = D′�p
p

, which measures orbit difference
due to the momentum offset. Here D′ is the slope of the dispersion function D,
which measures orbit difference due to momentum offset. The momentum spread
causes a spin tune spread when the dispersion slopes are different at the two Siberian
Snakes [32]:

�νsp = (1+Gγ )

π
(D′1 −D′2)

�p

p
(5.35)

In RHIC, this local dispersion slope difference between the two Siberian Snakes is
about 0.045 at 255 GeV, which corresponds to 0.007 spin tune spread for a beam
with a momentum spread of 0.001. This is comparable to the proposed spin tune
sweep range of 0.02. Hence, successful full spin flipping requires to match the
dispersion slopes. Since the Gγ values of 24 GeV (Gγ = 45.5) and 255 GeV
(Gγ = 487) differ by a factor of ten, the required �D′ = (D′1 − D′2) is ten times
smaller at 255 GeV than at 24 GeV to maintain the same spin tune spread �νsp.
Such a small �D′ lattice was achieved by using γtr transition jump quads [33].

In sweep measurements, the driving tune was swept over typical 0.005 range for
a certain time (such as 1 second). The polarization was measured before and after
each sweep. At injection, the final to initial polarization ratio was measured with
�D′ as low as 0.003. The spin flipper was set to sweep from 0.4995 to 0.5045 and
the spin tune was 0.5025. The final to initial polarization ratio was measured as
function of �D′ and the results are shown in Fig. 5.27. The spin flipper sweep time
was fixed as 3 seconds during these measurements. It clearly demonstrates that the
�D′ suppression is critical to achieve a high spin flip efficiency. For a normal lattice
where the �D′ was large, the polarization was lost with a single spin flipper sweep.

With the 0.005 tune sweep range and the given spin flipper strength, a 99% spin
flip efficiency is predicted for a sweep time of 0.6 second or longer at 24 GeV from
Eq. (5.28) and numerical simulations [34]. The final to initial polarization ratio from
Eq. (5.28) for the given spin flipper strength at injection is plotted in Fig. 5.28 as
solid line. But this is an over-simplified model. In reality, the synchrotron motion
and residual spin tune spread can have an impact on the final spin flip efficiency.
The measured spin flip efficiencies for three different sweep times are also shown in
Fig. 5.28 [35]. Each efficiency is the average of 10 to 12 spin flip measurements.
The best final to initial polarization ratio −97.5 ± 1.9% was obtained with a 1
second sweep time . This is close to the simple model prediction of −99%. At
0.5 second, the final to initial polarization ratio is expected to be slightly worse due
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Fig. 5.27 The average final to initial polarization ratio for 3 seconds sweep time at injection as
function of �D’ at the two Siberian Snakes. The small �D′ is critical for full spin flip
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Fig. 5.28 The average final to initial polarization ratio at 24 GeV and 255 GeV. The solid line is
the polarization flip ratio from Eq. (5.28) for the resonance strength 0.00024 and the filled points
are the averaged spin flip efficiencies for three different sweep times at 24 GeV. The dashed line
and open points are for 255 GeV and the resonance strength 0.00057

to faster crossing speed, and the measured value −95 ± 2.6% is indeed slightly
smaller. For the slowest sweep time, 3 seconds, the final to initial polarization ratio
is only −92.0± 1.5%. There are several reasons for this. First, with a slower sweep
speed, multiple spin resonance crossings with different resonance crossing speeds
can happen due to the synchrotron oscillation. Second, the polarization loss from
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weak higher order depolarizing resonances would be enhanced with a slow sweep
speed.

The final to initial polarization ratio obtained from the given spin flipper strength
at 255 GeV is plotted in Fig. 5.28 as dashed line. The spin flip efficiencies for the
two different sweep times are also shown in Fig. 5.28. As before, each efficiency is
the average of 10 to 12 spin flip measurements. The better final to initial polarization
ratio −97.2± 3.1% was obtained at the 0.5 second sweep time. This is close to the
simple model prediction of −99%. For the slower sweep time of 1 second the final
to initial polarization ratio is −90.2± 2.8%. Similar to the 24 GeV case, the final to
initial polarization ratio is worse with slow sweep speed.

5.4.2 Spin Tune Measurement

In principle, the spin tune can be measured with a similar idea as the betatron
tune measurement: measuring the spin response to a driven spin coherence. Such a
method can also be non-destructive. A coherent spin precession around the vertical
direction can be adiabatically induced by driving the AC spin rotator at a drive tune
near the spin tune.

If the undisturbed stable spin direction on the designed orbit is vertical, the
vertical component of polarization P in the neighborhood of an isolated spin
resonance is given by Lee [20] and Bai and Roser [29]:

Py = νsp − νosc
√
|νsp − νosc|2 + |ε|2

, (5.36)

where ε is the strength of the driven spin resonance and νosc is the drive tune. The
horizontal component oscillates with νosc:

Px = |ε|
√
|νsp − νosc|2 + |ε|2

cos(2πνosci −�) , (5.37)

where i is the ith orbital revolution and � is the initial phase offset. Equations (5.36)
and (5.37) describe the vertical and horizontal components in a perfect accelerator
in the presence of a single isolated spin resonance. The ratio of P̂x and Py gives the
difference between νs and νosc:

tan θ0 = P̂x

Py

= |ε|
νs − νosc

, (5.38)

where θ0 is the opening angle of the polarization vector. With the known resonance
strength ε from the spin flipper and the drive tune νosc, the spin tune νsp can be
derived from the measured quantity tan θ0.
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This technique has two advantages. First, it is an adiabatic spin manipulation
and preserves the beam polarization. Second, it is a relatively fast measurement.
Hence, this technique is ideal for measuring the spin tune at the store energy of a
high-energy polarized synchrotron, such as RHIC or a future polarized electron ion
collider [36]. The spin tune measurement with coherent spin motion has been used
for deuteron beams [37] at low energy (∼1 GeV) in COSY, although the coherent
spin motion was not driven. Here the first spin tune measurement at high energies
(24 and 255 GeV) for protons in RHIC using a driven coherent spin motion will be
discussed as examples [38].

The focus of this experiment is to measure θsp, the azimuthal angle of the spin
vector in the plane transverse to the beam moving direction, and understand how
it is influenced by the coherent spin motion. To measure the driven coherent spin
motion, recoil carbon events from the proton-carbon (pC) polarimeter [39] need
to be recorded on a turn-by-turn basis. The polarimeter related information can be
found in Chap. 12 for the hadron polarimeter. Figure 5.29 shows the spin precession
projected onto the x-y plane transverse to the beam direction. The pC polarimeter
measures the spin vector projection in this plane. With a driven coherent spin motion
the spin vector in this plane oscillates over the range shown by the two dashed
arrows, with a period equal to that of the driven resonance. The amplitude of the
precession is θ0 from Eq. (5.38); θtilt is an arbitrary offset between vertical and the
stable spin direction. From P̂x/Py the spin azimuthal angle θsp measured by the pC
polarimeter with a possible tilt angle θtilt will follow the precession

P̂x

Py

= tan(θsp − θtilt) = tan θ0 cos(2πνosci −�) . (5.39)

Fig. 5.29 Projection of the
spin vector into the transverse
plane when the spin tune is
near a spin resonance. The
spin oscillates around the
stable spin direction (solid
arrow) between the two
boundaries (dashed arrows)
over many orbit turns 0
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Fig. 5.30 Measured spin
azimuthal angle as a function
of the driven oscillation phase
at 24 GeV with drive tune as
0.498. All angles
(θsp, θtilt, θ0, �) are in the
unit of radian. The nonzero
θtilt means that the stable spin
direction is tilted away from
vertical
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Note that only the two transverse components of the polarization can be measured.
If the spin direction has a significant longitudinal component in addition to the angle
θtilt, the simple form of Eq. (5.39) should be modified.

The experiment was carried out at injection energy of 24 GeV and the store
energy of 255 GeV. The revolution frequency in RHIC is about 78.20 kHz. The
bunch pattern was 120 bunches in the ring and RHIC bunch crossings were used as
a clock signal for the analysis. For these measurements, a signal from the resonance
drive was provided to the polarimeter readout, which allowed the alignment of the
phase of carbon hits within one period of the resonance drive. The drive signal was
read with an accuracy of two bunch crossings, whereas the typical period of the
drive was ∼240 bunch crossings (for a drive tune near 0.5), so the phase of carbon
hits was known to within 1% of a period.

Figure 5.30 shows θsp versus one cycle of drive phase for one drive setting. To
improve the statistical accuracy, the carbon hits were grouped in six bins of 40 bunch
crossings, spanning nearly one entire drive cycle; the mean spin azimuthal angle θsp

was measured for each bin. The curve is fit to the function, from rearrangement of
Eq. (5.39):

θsp(i) = θtilt + tan−1[tan θ0 cos(2πνosci − �)] . (5.40)

The arbitrary phase offset � depends on the propagation time of proton bunches
from the drive to the polarimeter, and the cable delay of the signal from the drive to
the polarimeter readout. With the measured θ0 = 0.1338± 0.01519 and the driving
tune at 0.498, the spin tune can be derived from Eq. (5.38) as 0.4998±0.0002, fairly
close to 0.5.

Driven coherent spin motion has been used to measure the spin tune in RHIC
at 24 and 255 GeV. The results show that the spin tune can be measured by driven
spin coherence when the tune separation is small enough. The drive tune needs to
be close to the spin tune, which requires a small spin tune spread. In RHIC, where
a pair of Siberian snakes are used, the small spin tune spread was achieved by the



148 H. Huang

reduction of the dispersion slope difference at the two Siberian snakes [32, 33].
These experimental results prove that it is possible to routinely measure the spin tune
of polarized proton beams—the most important polarized beam parameter. This will
lead to more stable and optimized operations of a high-energy polarized collider,
such as RHIC or a future polarized electron ion collider.

5.5 Summary

The preservation of polarization through the acceleration can be divided into two
big categories. The first one is to reduce or eliminate the effect of spin resonances.
Harmonic orbit correction, fast acceleration, radial jump, tune jump and full snake
are the mechanisms that can be applied in this category. Among them, the harmonic
orbit correction could be tedious if many are needed. The fast tune jump could lead
to a emittance growth as this is a non-adiabatic operation. The full snake eliminates
the resonance condition completely but the higher order resonances called snake
resonances are still present which requires special optical design to avoid and
mitigate them. The second category is to enhance the resonance strength. AC dipole,
partial snake (weak or strong) are in this category. An AC dipole requires a large
machine aperture and/or reasonable strong resonance strengths to overcome intrinsic
resonances, which in reality can not always be met. Most of these methods are based
on the Froissart-Stora formula. This formula is also the basis of spin manipulation in
a synchrotron. The examples of spin flip and spin tune measurement were presented
and discussed.

5.6 Homework

•? Exercise 1: Polarization of a Gaussian Beam

For a Gaussian distribution, derive the Froissart-Stora formula for the whole beam,
namely, Eq. (5.3).

Solution
In the integrand of < Pf /Pi >, Eq. (5.1):

– substitute the expression for the density ρ(ε) (Eq. (5.1), right hand side),
– substitute the expression for the strength |ε(ε)| (Eq. (5.2)).

Equation (5.1) can thus be recast under the form

< Pf /Pi > =
∫ ∞

0
exp

−ε

2ε0

(

1+ π |ε(ε0)|2
α

)
dε

ε0
−
∫ ∞

0
ρ(ε) dε

︸ ︷︷ ︸
=1
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Introduce the change of variable ε
2ε0

(1 + π |ε(ε0)|2
α

) = x, then dε
ε0
= 2

1+ π |ε(ε0)|2
α

dx.

Substituting into the integral above gives the expected result:

< Pf /Pi >= 2

1+ π |ε(ε0)|2
α

∫ ∞

0
e−xdx − 1 = 1− π |ε(ε0)|2

α

1+ π |ε(ε0)|2
α

•? Exercise 2: Harmonic Orbit Correction, Experimental Data

Tables 5.1 and 5.2 provide the experimental data from a scan of the vertical third
harmonics (the cos3v and sin3v components of the vertical closed orbit) in the
AGS Booster. The polarization is given in an arbitrary unit. Actually, it is called
asymmetry and needs to be divided by the so-called analyzing power to give a
polarization value between −1 and +1. Use the Eq. (5.6) to fit these data. The
exercise is to find the corrector current value I0 (i.e., Ic0 and Is0 for respectively
the cosine and sine corrector families) to be used for a full correction of the third
orbit harmonic. For this purpose, we don’t care about the unit of the polarization.
There are three parameters for the data fitting (Eq. (5.7)): Pi , I0 and σ . Among the
three parameters, I0 is the most important one and σ provides sensitivity of the
polarization to the variation of the particular harmonic component. If possible, plot
the fitted curve and experiment data together on one plot.

Solution
The harmonic scan data need to be fitted with the following equation for the sine
and cosine components (see Eqs. (5.6) and (5.7)):

Pf = p0

(

2 exp
−π(I − p1)

2

2p2
2

− p3

)

The fitting results are shown in Figs. 5.31 and 5.32. The experimental data of sin3v
was taken first followed by cos3v data taking. The optimized sin3v setting was put
in before cos3v scan. As one can see, the parameter p3 (Eq. (5.7)) in the cos3v fitting
is close to 1 as expected.

Note that since the p0 and p3 parameters are correlated, one can get different sets
of p0 and p3 from the fitting.
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Table 5.1 3rd harmonic sine
current scan

cos3v I (A) Asymmetry Error bar

10 270.471 4.096

9 187.052 4.719

8 123.548 4.211

7 40.727 4.15

6 −39.088 4.184

5 −124.047 4.225

4 −205.082 4.084

3 −303.959 5.397

2 −374.321 4.215

1 −438.749 4.064

0 −510.413 4.076

−1 −579.386 4.07

−2 −628.054 4.051

−3 −676.508 4.087

−4 −701.441 4.121

−5 −727.928 4.312

−6 −730.051 4.902

−7 −733.544 4.089

−8 −719.381 4.495

−9 −683.714 4.318

−10 −626.98 4.124

−11 −578.39 4.194

−12 −523.706 4.167

−13 −454.92 4.242

Table 5.2 3rd harmonic
cosine current scan

sin3v I (A) Asymmetry Error bar

5.2 −164.591 3.963

4.2 −297.504 4.098

3.2 −438.518 3.999

2.2 −569.737 4.015

1.2 −672.803 4.032

0.2 −719.652 3.988

−0.8 −756.134 4.035

−1.8 −737.453 4.095

−2.8 −694.489 4.086

−3.8 −595.165 4.006

−4.8 −481.373 4.162
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Fig. 5.31 The fitting results for sin3v data. The fitting parameter values are given at the top of the
plot
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Fig. 5.32 The fitting results for cos3v data. The fitting parameter values are given at the top of the
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Chapter 6
Electron Polarization

Fanglei Lin

Abstract This chapter focuses on the introduction and discussion of electron
polarization. In addition to the gyromagnetic ratio, the most different character of
electrons compared to protons is that electrons radiate electromagnetic energy in
a circular accelerator. A very small correction has to be applied to the electron
spin flip to account for the synchrotron radiation. The different instantaneous
spin flip probabilities, up to down and down to up, can build up the electron
beam polarization state. However, mostly synchrotron radiation tends to disturb the
electron orbital motion that is eventually balanced by the radiation damping along
an equilibrium orbit. The electron spin motion is described by the modified Thomas-
BMT equation with the radiative spin transition term included. Detail of the electron
(de)polarization phenomena is described in this chapter. The lecture is extracted
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6.1 Synchrotron Radiation

One key aspect of electrons differing from ions in a circular accelerator is that
electrons emit much more synchrotron radiation in dipoles. The energy loss of
electrons due to the radiation is restored in the RF cavities. Synchrotron radiation
spans a continuous spectrum. As shown in Fig. 6.1, the integrated spectral density
up to the critical frequency ωc contains half of the total radiated energy, with the
peak occurring approximately at 0.3ωc.

The critical photon energy is given by

uc = h̄ωc = 3

2

h̄c

ρ
γ 3. (6.1)

For electrons, the critical energy in practical units is

uc[keV] = 2.218
E3[GeV]

ρ[m] = 0.665 · E2[GeV] · B[T ]. (6.2)

The radiation spectrum falls off exponentially beyond ωc as e−ω/ωc with the total
integrated radiation power of

Pclassical = cCrE
4

2πρ2
, (6.3)

Fig. 6.1 Integrated spectral density from the synchrotron radiation of electrons
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where Cr = 4πre
3(mc2)3 = 8.85 × 10−5 m

(GeV)3 . The total energy radiated in one
revolution becomes [1]

U0 = CrE
4

2π

∮
ds

ρ2 . (6.4)

The synchrotron radiation is basically a quantum mechanical process. When
photons are emitted, the energy of the electron will decrease by the same discrete
amount. The corresponding instantaneous radiation power will be reduced. To the
first order in h̄, the quantum correction to the radiation power is given by Lee [2]

Pqm = Pclassical(1− 55h̄ωc

8
√

3E
). (6.5)

The quantum correction factor is of the order of 10−5 and can not be easily
measured. However, the quantum effect is observable in the phase space, where
an equilibrium distribution is eventually reached in a balance between radiation
damping (a classical phenomenon) and radiation excitation (a quantum mechanical
effect) within a few damping times. The corresponding damping time constants in
all three dimensions are [1]

τx = 2E

JxU0
T0,

τy = 2E

JyU0
T0,

τE = 2E

JEU0
T0,

(6.6)

where E is the electron energy, U0 is the energy loss in one revolution, T0 is the
revolution period, Jx = 1−D, Jy = 1, JE = 2+D are the horizontal, vertical and
longitudinal damping partition numbers respectively, and D = 1

2π

∮
dipoles

Dx(s)

ρ2(s)
ds

is the integral evaluated in dipoles where quadrupole focusing and/or defocusing
effects are not considered.

The horizontal beam emittance and fractional energy spread in a planar acceler-
ator are given by Lee [1]

εx = Cqγ 2

∮
H
|ρ|3 ds

Jx

∮ 1
ρ2 ds

,

(
σE

E
)2 = Cqγ 2

∮ 1
|ρ|3 ds

JE

∮ 1
ρ2 ds

.

(6.7)
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Here Cq = 3.84× 10−13m. The dispersion H -function is defined as H = γxD
2
x +

2αxDxD
′
x + βxD

′2
x . βx, αx, γx are the horizontal Twiss parameters and Dx and D

′
x

are the horizontal dispersion and its derivative, respectively. Note that the natural
vertical emittance is orders of magnitude smaller than the horizontal one in a planar
accelerator and ignored unless vertical emittance is excited on purpose.

6.2 Spin-Dependent Synchrotron Radiation

The electron has an intrinsic spin quantum number carrying the angular momentum.
With the spin correction included, the radiation power is given by Eq. (6.8).
Averaging overall spin orientations for an unpolarized beam, Eq. (6.8) reduces to
Eq. (6.5). Spin dependent synchrotron radiation power is very small, however, the
disparity of instantaneous spin flip transition rate is significant [2, 3].

Pqm = Pclassical[1− (
55

8
√

3
+ S · z) h̄ωc

E
]. (6.8)

Ternov et al. [4] discovered that the probability for an electron to emit a photon
depends slightly on the initial spin state of the electron. In 1964, Sokolov and Ternov
[5] completed the formula of the rate of photon emission for an electron with given
initial si and final sf spin states in the direction of the magnetic field

w(si , sf ) = 5
√

3

6

e2c

h̄cρ

E

mec2

{
(if si = sf ) 1− 16

√
3

45 ξ + 25
18ξ2 − sf

5 (1− 20
√

3
9 ξ)ξ

(if si �= sf ) 1
6 (1− sf

8
√

3
15 )ξ2

(6.9)

where ξ = h̄ωc/E. ξ is very small in general, for example 10−6 for the electron
beam energy at 45 GeV. Three messages are delivered from Eq. (6.9):

1. the majority of photon emissions does not contribute to the spin flip, since w(si =
sf )� w(si �= sf ).

2. a polarized beam radiates slightly less than an unpolarized beam, since w(si =
sf )+w(si �= sf ) � 1.

3. there is an asymmetry in the spin flip probability, depending on sf . This leads to
the polarization build-up with w↑↓ �= w↓↑.

Note that the probability for spin flipping (w↑↓: spin flips from up ↑ to down
↓ and w↓↑: spin flips from down ↓ to up ↑) versus non-spin flipping (w↑↑: spin
flips from up ↑ to up ↑, and w↓↓: spin flips from down ↓ to down ↓) events is very
small, in an order of 10−12 given in Eq. (6.10). However, in the case of spin flip
for electrons, the preference of A ≈ 92.4% for the spin state is antiparallel to the
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magnetic field. A stored positron beam can become polarized as well as an electron
beam, with the direction of polarization parallel to the magnetic field.

w↑↓ +w↓↑
w↑↑ +w↓↓

∼ ξ2 (6.10)

A = w↑↓ −w↓↑
w↑↓ +w↓↑

= 8

5
√

3
≈ 0.924 (6.11)

6.3 Sokolov-Ternov Effect

Simplify the conditions with the homogeneous magnetic field and absence of
depolarizing effects, the dynamics of polarization can be calculated from Eq. (6.9).
At a given time, the beam polarization and its time derivative are:

P = N↑ − N↓
N

, (6.12)

dP

dt
= 1

N
(
dN↑
dt

− dN↓
dt

). (6.13)

N↑ and N↓ are the numbers of electrons with spin up and spin down, respectively.
Their rates of change may be deduced from the transition probabilities in Eq. (6.9):

dN↑
dt

= N↓w↓↑ − N↑w↑↓ = Nw↓↑ −N↑(w↓↑ +w↑↓), (6.14)

dN↓
dt

= Nw↑↓ −N↓(w↓↑ +w↑↓). (6.15)

Then, the growth of the polarization is

P(t) = A(1− e−t/τp). (6.16)

The maximum degree of polarization is equal to the asymmetry A = 8
5
√

3
≈ 0.924.

The characteristic time τp (noted τst to distinguish it from other characteristic times
to be further introduced) of the polarization build-up is given by

τ−1
p = τ−1

st = (w↑↓ +w↓↑) = 5
√

3

8

λ

2π

creγ
5

|ρ|3 = 5
√

3

8

h̄reγ
5

me|ρ|3 (6.17)

The guiding field in a real accelerator is piece-wise constant, with changes of its
strength and polarity. In the most common cases, the build-up polarization and time
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Table 6.1 Characteristic parameters of past and future polarized electron storage rings

Parameter Units ACO VEPP-2M SPEAR LEP TRISTAN HERA PETRA EIC

E [GeV] 0.53 0.65 4 46.5 30 27.521 16.5 5–18

aγ 1.2 1.5 9.07 105.5 68 62.45 37.4 11.3–40.8

h̄ωc [keV] 0.3 0.5 11.2 72 243 80.28 52 0.94–44.0

R [m] 3.5 2.85 37.2 4243 480 1008 367 379.3

ρ [m] 1.1 1.22 12.7 3096.2 246.5 575 192 294.3

τst [min.] 163 50 9.6 308 2 35 18 660–36

Pol. [%] ∼80 ∼90 ∼85 56 75± 15 56± 6 60–80 ∼83

due to the Sokolov-Ternov effect [5] can be generalized as

Pst = − 8

5
√

3

∮
ds

ρ3(s)
∮

ds
|ρ(s)|3

, (6.18)

τ−1
st = 5

√
3

8

h̄reγ
5

meC

∮
ds

|ρ(s)|3 . (6.19)

Here C is the accelerator circumference and re is the classical electron radius.
Table 6.1 lists several characteristic parameters of several electron storage rings.

Note that the polarization build-up time is much longer than the phase space
damping time in an electron storage ring. Typically, the polarization build-up time
is of the order of minutes to hours, while the phase space damping time is of the
order of milliseconds.

6.4 Baier-Katkov-Strakhovenko Equation

In the late 1960s, Baier, Katkov and Strakhovenko (BKS) [6] generalized the spin-
flip transition probability from the uniform magnetic fields to arbitrary magnetic
field configurations. The general equation of evolution of electron polarization
is derived as follows, in the presence of radiative polarization and absence of
depolarizing effects due to the stochastic photon emission on the orbit [7]:

dP
dt
= �co × P− 1

τst (s)
[P− 2

9
s(P · s)+ 8

5
√

3
b(s)]. (6.20)

The first part of the equation is the standard Thomas-BMT equation on the closed
orbit, which can be solved in the form of P(s) = Rco

3×3(s, s0)P(s0), described in the
early chapters in this book. Here Rco

3×3(s, s0) is the 3× 3 spin transfer matrix on the
closed orbit. The second part of the equation describes the polarization motion with
the spin flipping rate given by Baier and Katkov.
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The BKS equation does not contain depolarizing terms, however, a derivation
of its solution is a useful step towards incorporating the spin-orbit coupling
depolarization effect. We replace t with θ , commonly used to describe the particle
motions in an accelerator, as the independent variable in the Eq. (6.20), then the
instantaneous polarization build-up rate is given by

τ−1
ip = 5

√
3

8

Rh̄reγ
5

mecρ3 , (6.21)

where R is the average radius of the machine. Choosing the unit reference vectors
(e1, e2, n0) with respect to that the spin precesses at a constant rate ν0, we have
�co = ν0n0 and the equation of motion for the electron polarization is written as

dP
dθ
= ν0n0 × P− 1

τip

[P− 2

9
s(P · s)+ 8

5
√

3
b(s)]. (6.22)

Making the scalar product of n0 yields the equation of evolution for the projection
of P on the closed solution n0, that is P3 = n0 · P

dP3

dθ
= − 1

τip

[P3{1− 2

9
(n0 · s)2} + 8

5
√

3
(n0 · b)− 2

9
(n0 · s){P1 + P2}].

(6.23)

In most cases, τ−1
ip is very small compared to ν0. Hence, the fast-oscillating

components P1 and P2 transverse to n0 make a negligible contribution if Eq. (6.23)
is averaged over one revolution and initial spin phases, then the third term can be
dropped consequently

dP3

dθ
= − 1

τip

[P3{1− 2

9
(n0 · s)2} + 8

5
√

3
(n0 · b)]. (6.24)

For the initial condition of P3(0) = 0, Eq. (6.24) can be integrated to yield

P3 = −B

A
(1− e−Aθ ). (6.25)

Since τ−1
ip is small, the coefficients A and B can be expressed as averages over the

machine circumference as

A = 5
√

3

8

Rh̄reγ
5

mec

∮
ds

1− 2
9 (n0(s) · s)2

|ρ(s)|3 ,

B = Rh̄reγ
5

mec

∮
ds

n0(s) · b(s)

|ρ(s)|3 .

(6.26)
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The asymptotic polarization for θ −→∞ becomes [8]

Pbks = P3(∞) = −B

A
= − 8

5
√

3

∮
ds

n0(s)·b(s)

|ρ|3
∮

ds
1− 2

9 (n0(s)·s)2

|ρ(s)|3
, (6.27)

with the BKS polarization build-up rate of [8]

τ−1
bks =

5
√

3

8

h̄reγ
5

meC

∮
ds

1− 2
9 (n0(s) · s)2

|ρ(s)|3 . (6.28)

Comments on the BKS equation:

• The asymptotic polarization of a beam is built up along the direction of the closed
solution n0, which does not in general lie along the direction of magnetic field
b. In a perfectly aligned accelerator, where n0 × b = 0 and n0 · s = 0, the
asymptotic polarization is 8

5
√

3
≈ 92.4% with the direction anti-parallel (parallel)

to the magnetic field for electrons (positrons).
• It is illusory that the negative sign of (n0 · s) would appear to increase Pbks , since

(n0 · b) dominates over (n0 · s)2 in the denominator.
• The (n0 · s)2 term results in some reduction of the polarization rate. However,

this is a rather small effect in practice because (n0 · s) cannot be permitted to
differ substantially from zero over a large fraction of the machine circumference;
otherwise it would imply a large average value of |d|2 (the square of spin-orbit
coupling function) and strong depolarization.

• The absolute value |ρ|3 appears inside the averaging brackets. This is because
we assume implicitly that τip is always positive, and the presence of regions
where the magnetic field is not in the vertical direction is taken care of by the
term (n0 · b) in the expression. For example, the machine may contain wigglers,
composed of a sequence of dipole magnets with alternating polarities, which
cause the sign of (n0 · b) to alternate.

6.5 Spin Diffusion

6.5.1 Spin Perturbation by Quantum Excitation

There are two distinct aspects related to the synchrotron radiation that modify
depolarizing effects for electrons as compared with protons: sudden change of the
energy due to the photon emission on the one hand and much slower energy recovery
from the RF system on the other hand. As described in Eq. (6.9), the majority of
photon emission is not associated with a spin flip. The abrupt energy jump causes
the electron to initiate additional synchrotron and betatron oscillations since the
closed orbit is in general energy dependent. During the subsequent evolution of the
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trajectory, the electron is subjected to a different sequence of magnetic fields from
that corresponding to the original closed orbit, and the spin motion is consequently
perturbed with respect to the initial state. The recovery of the lost energy from the
RF system is accompanied by damping of orbit oscillations, and the electron damps
to its initial orbit after several damping times. During the orbital damping time, the
spin precesses many times and follows adiabatically the slow changes in magnetic
field experienced by the electron. However, there is no damping of the spin motion:
electron spin depends on the whole of its history following the photon emission and
ends up with a different orientation from its initial one. The whole process can be
explained by Fig. 6.2 Buon and Koutchouk [3].

The first row of Fig. 6.2 represents the initial state of the particle in the phase
space just before the photon emission: the particle is at the origin of the coordinates
(i.e. the closed orbit) and the spin S is along an axis n to be vertical.

The second row of Fig. 6.2 presents the particle state just after the photon
emission. The energy coordinate suddenly become negative due to the energy
loss. The position of the particle does not change during the short time of photon
emission. However, the closed orbit changes due to the change of particle’s energy.
This results in the changes of dispersion orbit and betatron amplitude if the
dispersion function does not vanish. Particle starts oscillating in the three phase
spaces. Along with the new trajectories, the spin S is precessing about a new spin
axis n, generally tilted with respect to the initial spin direction.

Fig. 6.2 Evolution of the phase space and spin coordinates of a reference particle that emits a
photon. The first row represents the initial state of the particle in the phase space just before the
photon emission. The second row represents the particle state just after the photon emission. The
third row represents the evolution of the coordinates in three phase space over several damping
times
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The third row of Fig. 6.2 shows the evolution of the coordinates in three phase
spaces over several damping times. The spatial and momentum coordinates damp
and reach to the equilibrium conditions. During this process, the spin axis n is
gradually restored to its initial vertical position. However, the spin S precesses very
rapidly and follows adiabatically the spin axis n, and finds itself tilted at an angle
when the orbital coordinates are restored. Averaging over all particles in a beam,
the horizontal component of polarization vanishes since the spin precesses in a
stochastic way as photons are emitted. The remaining polarization is the projection
of the initial polarization vector onto the spin axis after it has been tilted by the
photon emission. This rather simple picture of depolarization due to the quantum
excitation arises because of the very large difference among the time constants of
three relevant phenomena: micro-second time scale for one spin precession, milli-
second time scale for the damping of orbital motions and the gradual change of the
n, minutes to hour time scale for the polarization build-up mechanism.

6.5.2 Spin-Orbit Coupling Function

To clarify the definition of d introduced by Derbenev and Kondratenko to describe
the depolarizing influence of quantized synchrotron radiation in terms of the
resulting random fluctuations of the precession axis, we use a simple model of the
spin diffusion process: a single electron moving on the normal closed orbit with the
design momentum and having its spin aligned along the nominal precession axis
n0 corresponding to this orbit, i.e., n0 is the invariant spin field for a particle on
the closed orbit. After the emission of photons, the orbit parameters change and so
does the precession axis, n0 −→ n. Let us assume that the tilt of spin precession
direction �n = n − n0 is proportional to the relative energy loss �E, then the
spin-orbit coupling function d is defined as

d = ∂n
∂δ

. (6.29)

Here δ = �E
E

. d ≡ d(u; s) is a vectorial quantity which depends on the azimuth s

along the trajectory and summarizes the contributions from the betatron oscillations
as well as the synchrotron oscillation u ≡ (x, px, y, py, z, δ).

The BKS equation describes the evolution of the polarization on the assumption
that n0 is constant at any specified azimuth, and is not subject to quantum
fluctuations or oscillatory perturbations. In order to introduce the depolarizing effect
of the spin-orbit coupling function, we supplement P3 in Eq. (6.24) by an additional
contribution �P3 arising from the perturbation of n, with �n is the change due to
the emission of photons. Following the conclusion drawn from the solution of the
BKS equation, this model can also constitute the generalization to the case of an
ensemble of electrons with an average projection P3 =< P · n0 >.
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Since n is a unit vector and |�n| � 1, the change �P3 in the projection P3
arising from �n is

�P3 ≈ −P3
|�n|2

2
= −P3

2
|d|2δ2. (6.30)

The rate of change of the energy fluctuation due to the quantum emission can be
expressed in terms of the azimuthal variable θ from Eq. (6.21):

dδ2

dθ
= 55

24
√

3

Rh̄reγ
5

mecρ3 = 11

9

1

τip

. (6.31)

Using Eq. (6.31) in Eq. (6.30), the fluctuation term can be obtained

d�P3

dθ
= −11

18

|d|2
τip

P3, (6.32)

which can be introduced into the BKS equation Eq. (6.24) to obtain

dP3

dθ
= − 1

τip

[P3{1− 2

9
(n · s)2 + 11

18
|∂n
∂δ
|2} + 8

5
√

3
(n · b)]. (6.33)

The solution is similar to the BKS equation but now with

A = 5
√

3

8

Rh̄reγ
5

mec

∮
ds

〈
1− 2

9 (n · s)2 + 11
18 | ∂n

∂δ
|2

|ρ(s)|3
〉

s

,

B = Rh̄reγ
5

mec

∮
ds

〈
n · b
|ρ(s)|3

〉

s

.

(6.34)

A and B are expressed as averages over the machine circumference, as well as
phase space at every azimuth s. The asymptotic polarization level is reduced to

Pdk = P3(∞) = −B

A
= − 8

5
√

3

∮
ds
〈

n·b
|ρ(s)|3

〉

s

∮
ds

〈
1− 2

9 (n·s)2+ 11
18 | ∂n

∂δ |2
|ρ(s)|3

〉

s

. (6.35)

Note that, a value of |d| around unity results in a substantial reduction of the
asymptotic polarization level.
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The corresponding effective polarization rate becomes [8]

τ−1
dk =

5
√

3

8

h̄reγ
5

meC

∮
ds

〈
1− 2

9 (n · s)2 + 11
18 | ∂n

∂δ
|2

|ρ(s)|3
〉

s

. (6.36)

It can be written as

τ−1
dk = τ−1

bks + τ−1
dep, (6.37)

where τ−1
bks is given Eq. (6.28) and

τ−1
dep =

5
√

3

8

h̄reγ
5

meC

∮
ds

〈
11
18 | ∂n

∂δ
|2

|ρ(s)|3
〉

s

. (6.38)

The time dependence of build-up of polarization from an initial polarization P0
to equilibrium is [8]

P(t) = Pdk[1− e−t/τdk ] + P0e
−t/τdk (6.39)

Figure 6.3 shows the time scales for an electron storage ring of 25 GeV: ranging
from 10−10 s for the duration of the quantum emission process to over 104 s
for a desired depolarization time that exceeds the polarization build-up time by a
factor of ten. Note that, the large separation between times for (de)polarization,

Fig. 6.3 Characteristic time scales in a typical 25 GeV electron storage ring
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radiation damping and orbital oscillation modes help to simplify calculations by the
use of average methods. The separations between the oscillation-mode time scales,
the interval between quanta emitted by a single electron and the duration of the
quantum-emission permit the latter to be considered as an abrupt random process
with no correction between successive photons.

6.6 Kinetic Polarization

In addition to the spin flip, Eq. (6.9) also describes the polarizing effect involving
photon emission without the spin flip. This process combines two aspects, the
dependence of synchrotron radiation intensity on the spin state and the energy
dependence of the invariance spin field n. The principle can be explained using
a simple model as shown in Fig. 6.4. We assume S1 and S2 initially have equal
projections on n0. After the photon emission, the precession axis abruptly changes
by δn. The projection of spin vector S1 on n is thereby increased, while the
projection of spin vector S2 is reduced evidently. If the probability of the photon
emission, for the case of no spin flip, were the same for both two spin vectors, the
net effect would be zero on average. However, The photon emission probability is
higher for an electron with state S1 than S2, since S1 has a larger projection on the
magnetic field direction b than S2. Averaging over all spin states, it results in an
increase in the polarization along n.

The polarizing contribution δP3 arising from ∂n
∂δ

can be introduced to Eqs. (6.27)
and (6.35). The general equation for the asymptotic polarization is obtained by the
Derbenev-Kondratenko formula: [8]

P3(∞) = −B

A
= − 8

5
√

3

∮
ds

〈
b·(n− ∂n

∂delta )

|ρ(s)|3
〉

s

∮
ds

〈
1− 2

9 (n·s)2+ 11
18 | ∂n

∂δ |2
|ρ(s)|3

〉

s

. (6.40)

Fig. 6.4 Kinetic polarization
arising from the change of
precession axis due to the
photon emission
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Comments on the kinetic polarization are given as follows.

1. The kinetic polarization effect is more favorable in rings where n0 is horizontal,
i.e. n0 · b = 0. In such rings, ∂n

∂δ
has a vertical component in the dipole fields.

This leads to a build-up of polarization, even though the pure Sokolov-Ternov
effect vanishes. The rate is still τ−1

dk .
2. The maximum kinetic polarization in an idealized model with certain constraints

theoretically can reach to about 95%, comparing to 92.4% from the normal
Sokolov-Ternov polarization. However, in practice, other constraints are likely
to dominate the polarization.

3. In most typical electron storage rings, the n0 is very closely parallel to b to avoid
depolarizing effects arising from the | ∂n

∂δ
|2. Usually, the kinetic polarization effect

is very small, unless there exist certain special conditions.
4. One needs pay attention to the kinetic polarizing mechanism in some special

configurations of bending magnets where a substantial contribution to b · ∂n
∂δ

occurs locally, such as spin rotators and Siberian snakes. Strong magnetic fields
in these regions could usefully enhance or destructively reduce the asymptotic
polarization, especially if b · n contribution from other parts of the rings was
insufficient.

6.7 Resonances

Analogous to the orbital motion, the behavior of the spin precession axis in the
presence of an arbitrary perturbation can be expressed in terms of components with
frequencies νi from the Fourier transform. This representation can be applied to the
spin-orbit coupling function d by interpreting the perturbation as arising from the
emission of a phonton. We start with the effective perturbation �n of the precession
axis immediately after the photon emission, i.e.,

�n =
∑

j

εj e
−iνj θ0

νspin − νj

f+ + h.c. (6.41)

where εj is the magnitude of the perturbation, f+ is the unit complex vector
perpendicular to the third axis, and h.c. represents hermitian conjugate. Let us define
εj = cj δ, then the spin-orbit coupling function becomes

d =
∑

j

cj e
−iνj θ0

νspin − νj

f+ + h.c. (6.42)

In a case where the perturbations arise from the closed orbit errors, with the
harmonics of amplitude zk . Since the orbit harmonics are integer, we put νj = k
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and Eq. (6.41) becomes

�n =
∑

k

εke
−ikθ0

νspin − k
f+ + h.c., (6.43)

and Eq. (6.42) becomes

d = ∂n
∂δ
=
∑

k

e−ikθ0

νspin − k
{∂ck

∂δ
− ck

νspin − k

∂νspin

∂δ
} + h.c. (6.44)

The strength ck of an integer spin resonance driven by an orbit harmonic of
amplitude zk is approximately given as

ck = νspink
2zk

R
, (6.45)

where R is the accelerator radius and zk is related to the harmonic Bk of the magnetic
field error, and νspin = γ a. In a real machine with errors, the variation of ck

with energy comes from both νspin = γ a of the spin tune and z from the vertical
dispersion Dy . Therefore,

∂ck

∂δ
= νspink

2

R
(zk +Dk), (6.46)

where Dk = ∂zk

∂δ
is the kth harmonic of vertical dispersion, and γ

∂νspin

∂δ
= νspin.

Then, Eq. (6.44) becomes

d =
∑

k

e−ikθ0

νspin − k
{ck[1− νspin

νspin − k
] + νspink

2 Dk

R
}f+ + h.c.

=
∑

k

νspink
2

R
e−ikθ0{ Dk

νspin − k
− kzk

(νspin − k)2 }f+ + h.c.

(6.47)

The strongest contribution to d obviously comes from the harmonic k close to
the spin tune νspin. Also, because of the different powers of the resonant dominator
in Eq. (6.47), the influence of the dispersion harmonic Dk extends further than that
of the orbit harmonics zk . If we assume νspin to be mid-way between two integers,
i.e. νspin − k = 1

2 and the relative importance of dispersion and orbit errors can
be assessed by comparing Dk with 2kzk . For example [7], in LEP at 50 GeV,
k ≈ νspin ≈ 100 and zk (before the orbit correction) might be typically around
5 × 10−2 mm, then 2kzk ≈ 10 mm. The rough estimates suggest that Dk should
be approximately 5 mm, then the two terms are likely to be of similar orders of
magnitude. With R ≈ 4×103m, one obtains |d| ≈ 7 in the worse case, which would
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give a large degree of depolarization. There is an obvious need for compensating the
critical harmonics of both orbit and dispersion errors.

6.8 Synchrotron Sideband Resonances

The energy variation arising from synchrotron oscillations modulates the spin tune,
leading to synchrotron sideband resonances in the vicinity of some orbit spin
resonances. The synchrotron sideband resonances are more troublesome for high-
energy electron storage rings than for proton rings. There are two main reasons:

1. the relatively large of synchrotron tune: The large value of synchrotron tune in
electron rings results from a combination of the large RF voltage required to
restore the energy loss from the synchrotron radiation and high frequency needed
to minimize the overall cost of the RF system.

2. the large energy spread: The large energy spread of the electron beam is a
consequence of the strong quantum excitation of orbit oscillations at high
energies and the need to take account of particles far out in the tails of the
Gaussian distribution. The spread of the spin tune is correspondingly large
and tends to extend into the region where synchrotron sideband resonances of
relatively low orders are present.

Figure 6.5 shows an example of measurements of the equilibrium polarization
of the positron beam in the storage ring SPEAR, where Pmax = 92.4%. Around
the parent resonance ν − νx = 3, there are four synchrotron sideband resonances:

Fig. 6.5 Polarization measurements at SPEAR [9, 10]. The curve is a guide for the eye, not a
theoretical calculation. The spin tune is ν, and the orbital tunes are νx,y,s
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ν − νx + νs = 3, ν − νx − νs = 3, ν − νx + 2νs = 3, ν − νx − 2νs = 3.
These synchrotron sideband resonances narrow down the available working points
in the machine operation and may be a troublesome to achieve a high polarization
practically.

6.9 Maximization of the Polarization

6.9.1 Minimization of the Depolarization

The general mechanisms to increase the electron polarization are similar to the ones
applied to increase the proton polarization, such as [3]

1. minimizing the machine imperfections. The mere correction of the orbit with
respect to the beam monitors generally aligned on the near-by quadrupoles
does not guarantee a good compensation of spin rotation. Figure 6.6 shows
the calculated polarization in the LEP for given misalignments and residual
orbits after the correction. The results are averaged over a sample of random
imperfections. Aligning the LEP vertical orbit with the tightest tolerance has
indeed increased the polarization.

2. optimizing the correction. The correction of the vertical orbit is essential. In LEP,
the adjustment of the lattice, together with improved beam monitors, reduced the
rms residual orbit deviation from 1 mm to 0.3 mm. The correction of the orbit
with a large number of orbit correctors reduced the vertical dispersion function

Fig. 6.6 Dependence of the polarization on the machine alignment in LEP [11]. As it is shown
that the correction of the orbit with respect to the quadrupoles is the key to compensate the spin
rotation and improve the polarization
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significantly. This consequently reduced the excitation of the synchrotron spin
resonances.

3. carefully choosing machine parameters. The natural polarization level can be
maximized through a careful choice of beam tunes to avoid all or major strong
systematic resonances.

6.9.2 Minimization of the Tilt of the n -Axis

In the high energy electron storage rings, the global minimization of depolarization
sources is not sufficient to reach a high polarization. A mechanism, called spin
matching procedure aiming at make the orbital motion transparent to the spin
motion, is necessary to improve the asymptotic polarization.

The first step is to minimize the deviation of the invariant spin field n from the
vertical in the dipoles that is mainly produced by vertical closed orbit distortions.
This deviation is large on integer spin tune resonances. The depolarization effect
can be associated with the tilt of n decreased with the 4th power of the distance
between the spin tune and the integer. To avoid any significant depolarization, n
is normally at most a few milli-radians away from the vertical. This method is
known as harmonic synchrobeta spin matching, which minimizes the strengths
of depolarizing resonances by generating horizontal fields that are stationary in a
(l0, m0, n0) frame and adjusting their amplitudes and phases so as to compensate the
driving term of each integer resonance. Here (l0, m0, n0) are right hand orthonormal.

The generated harmonics usually do not affect the closed orbit significantly as
they are far from the betatron tunes, and such compensation can be very empirical or
computed from the measured orbit. However, it was successfully applied at PETRA,
which increased the polarization from 40% to 80%. Generation of horizontal field
harmonics could be achieved by a few short vertical closed orbit bumps rather than
by an orbit perturbation all around the ring, as shown in Fig. 6.7. Figure 6.8 shows
the rapid change of the build-up polarization in the LEP after the harmonic spin
matching method was applied.

6.9.3 Minimization of the Spin-Orbit Coupling Function

Harmonic spin matching can improve the electron polarization. However, the
depolarization in the electron rings is dominated by the betatron and synchrotron
spin resonances and not the integer resonances. At high electron energies, due to
the large beam energy spread, the synchrotron spin resonances are overwhelm-
ing. The horizontal and vertical betatron resonances are also somewhat excited
by the synchrotron-betatron coupling. Spin rotators that are introduced for spin
manipulations may also significantly enhance the resonances related with horizontal
betatron and synchrotron motions. The major transverse depolarization resonances
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Fig. 6.7 In HERA, LEP and Tristan, a pattern of vertical π-bumps in the arcs is used to generate
sine and cosine magnetic field harmonics to compensate the near-by integer spin resonances

Fig. 6.8 Improvement of the polarization build-up in LEP following a calculated harmonic
correction of the vertical orbit [12]

are directly dependent on the tilt of the n axis. When the orbit is well corrected
and controlled, the synchrotron spin resonances become dominant. It becomes more
incentive to compensate more exactly the spin-coupling integrals at high energies.
This method is known as strong synchrobeta spin matching that will be discussed in
detail in the chapter of Spin Matching.

6.10 Polarized Electron Beams in Rings

Collisions of highly polarized electrons and protons at high energies enable a
comprehensive study to understand the structure of the proton and neutron directly
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from the dynamics of their quarks and gluons. The electron serves as a probe
to bear the unmatched precision of the electromagnetic interaction, while the
proton determine the correlations of quark and gluon distributions. High values
of polarization significantly reduce the uncertainties in determination of these
correlations and provide the possibility of finding new physics with experimental
evidences for the parity violation and weak interaction. Two accelerator facilities are
utilized here to present the generation, manipulation and preservation of a polarized
electron beam in a collider.

6.10.1 Polarized Electrons in HERA (1992–2007)

HERA, as shown in Fig. 6.9, was a 6.3 km long electron(positron)/proton collider
located at Deutsches Elektronen Synchrotron, DESY, in Hamburg, Germany. The
machine was routinely operated with collision energies of 27.5 GeV for electrons
(positrons) and 920 GeV for protons at a center of mass energy of 318 GeV [13].
It was the only lepton-proton collider in the world while operating, and still the
only one while this book is edited. Although the HERA experiments ended in
2007, the data analysis continues to study the proton inner structure and point the
way for future particle physics experiments. The following is the major history of
electron/positron polarization at HERA [14].

• 1981: first ideas on designing the HERA
• 1988–1991: transverse polarimeter designed and installed.

Fig. 6.9 The HERA complex
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• 1991: first polarization measurement,≈ 8% vertical polarization.
• 1992: better ring alignment and implemented harmonic bumps, >60% polariza-

tion.
• 1993–1994: first pair of spin rotators installed.
• 1994: successful operation with spin rotators.
• 1994–2000: routinely operation with polarization >50%
• 1997: longitudinal polarimeter installed.
• September 2000–Summer 2001: upgrade.
• March 2003–June 2007: 3 pairs of spin rotators.
• 2004–2007: “Fabry–Perot” cavity polarimeter for longitudinal polarization.

Figure 6.10 shows the invariant spin field n0 on the closed orbit at HERA. As
discussed in the early sections of this chapter, n0 is designed to be vertical in arcs
to provide an optimum asymptotic polarization and minimize the depolarization.
The longitudinal polarization at the collision point is obtained by the spin rotators
installed in the up- and downstream of the collision point. Figure 6.11 shows the
electron orbital and spin motions in the HERA spin rotator. Such spin rotator is
composed of interleaved horizontal and vertical dipole magnets, with a configu-
ration of antisymmetric vertical magnetic field and symmetric radial field. With
proper magnet placements and beam energy, the designed orbit is intact outside
of the rotator. Spin matching was carried out in HERA successfully and it improved
the polarization, as discussed in early sections. Figure 6.12 shows the electron
polarization as a function of time at 26.7 GeV in HERA. The fifth power of the
polarization build-up versus energy is observed when the beam energy is raised in
the storage ring.

Fig. 6.10 The invariant spin field n0 on the closed orbit in HERA
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Fig. 6.11 HERA spin rotator [14]

Fig. 6.12 The electron polarization as a function of the time in the HERA [3]

6.10.2 Polarized Electrons in EIC

The Electron Ion Collider (EIC) [15] will be a 3.8 km long particle accelerator,
shown in Fig. 6.13, built at the Brookhaven National Laboratory (BNL) in the United
States of America. With the collisions of electrons and various ion species, the EIC
will enable the physicists to understand the nature of matter at its most fundamental
level, providing the clearest picture of how the elemental quarks and gluons interact
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Fig. 6.13 EIC layout [15]. The ion and electron collider rings and electron injector, i.e. Rapid
Cycling Synchrotron (RCS), share the same present RHIC tunnel. EIC can accommodate two
collision points for experiments

to form the basic structure of atoms and nuclei. EIC has the following unique
features:

• large center of mass energy range of 20–140 GeV, with ion beam energy from 20
to 275 GeV/u and electron beam energy from 5 to 18 GeV,

• highly polarized ≥ 70% electron, proton and light ion beams, and
• high collision luminosity 1033 to 1034.

Both polarized electron and light ion beams are desired in the EIC. In particular,
the electron polarization requirements are:

• high polarization≥ 70% in the energy range of 5–18 GeV,
• longitudinal polarization orientation at the IP,
• opposite polarization helicities within the same store, and
• long polarization lifetime.

It is extremely challenging to reach all design goals. The experience on providing a
highly polarized electron beam in the HERA is valuable, however, brainstorming on
designing, preserving and manipulating the electron polarization are highly desired
in order to meet all the stringent requirements in the EIC. In a summary, the
strategies on the design of electron polarization in the EIC Electron Storage Ring
(ESR) are:

• highly polarized electrons with two opposite polarization directions are injected
in to the ESR,

• polarization is vertical in arcs to avoid spin diffusion and longitudinal at IP for
physics experiments,
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• spin rotators rotate the spin from the vertical in arcs to longitudinal at IP,
• spin matching is implemented to preserve high asymptotic (equilibrium) polar-

ization and extend the polarization relaxation time, and
• electron bunches regular replacement down to a few minutes at highest beam

energy 18 GeV is needed to obtain a high average polarization.

Figure 6.14 shows the Sokolov-Ternov times in the ESR at several EIC interested
electron beam energies. Note that, it is not practical to build up the electron
polarization in the EIC ESR due to its long Sokolov-Ternov time, up to more than
10 hours, in this relatively low electron beam energy range.

Figure 6.15 shows the electron spin rotator design in the EIC ESR. It is composed
of interleaved solenoid and dipole fields. Such a spin rotator can rotate the electron
spin from vertical to longitudinal, and vice versa, in the whole beam energy region
from 5 to 18 GeV. Besides, the designed orbit is also constant in the whole energy
region.

Figures 6.16 and 6.17 show the asymptotic polarizations of the electron beam in
the 10 and 18 GeV areas in the perfectly aligned EIC ESR, respectively. Note that
Pbks ≈ 83%, less than 92.4%, is due to the (n0 · s)2 term in Eq. (6.27) in the spin
rotator regions. The spin matching is performed at 18 GeV electron beam energy to
minimize the depolarization resulting in the asymptotic polarization of 68%, while
the longitudinal spin matching can not be carried out perfectly at 10 GeV resulting
in the asymptotic polarization of 50%. However, the depolarization in the 10 GeV
area is ≈ 16 times slower than that in the 18 GeV area. With the proposed regular
replacement of the electron beam, a high average polarization can be achieved in
the whole interested electron energy region in the EIC.

Fig. 6.14 Sokolov-Ternov time as a function of electron beam energy in the EIC ESR. The time
has a strong dependence on the dipole bending radius (|ρ|3) and beam energy ( 1

γ 5 ). The change

of the slope in the low energies is due to the enhanced radiation by splitting the dipole structure
at energies below 10 GeV. Overall, building up the electron polarization in the EIC ESR is not
practical, especially in the low energies. EIC adopts a design of a full-energy injection of polarized
electron bunches into the ESR with the desired spin direction from the polarized electron source



6 Electron Polarization 179

Fig. 6.15 Electron spin rotator in the EIC ESR to rotate the spin between the vertical and
longitudinal directions. Spin rotation angles ϕ1,2 from the solenoids are determined by the spin
rotation angles ψ1,2 from the dipole magnets. Note that dipole bending angles θ1,2 are fixed in the
whole energy range, while ψ1,2 are scaled with the electron beam energy

Fig. 6.16 Asymptotic polarization for the 10 GeV polarized electron beams in the perfectly
aligned EIC ESR

Figure 6.18 shows that the asymptotic polarization decreases from 68% in the
perfectly aligned machine shown in Fig. 6.17 down to 40% when quadrupole mis-
alignments and orbital coupling introduced and corrected. Spin tracking simulations
show many high-order spin resonances when the spin resonance condition meets.
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Fig. 6.17 Asymptotic polarization for the 18 GeV polarized electron beams in the perfectly
aligned EIC ESR

Fig. 6.18 Asymptotic polarization from spin tracking simulations in the18 GeV area in the EIC
ESR with misalignments and roll errors included and corrected [15]
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Chapter 7
Spin Matching

Vadim Ptitsyn

Abstract When spin rotating devices are used in an electron accelerator ring the
stochastic depolarization caused by synchrotron radiation becomes an issue. Special
design of the ring optics is required in order to minimize harmful effect of stochastic
depolarization. Ring optics adjustments which help to minimize the depolarization
are called spin matching. In this lecture the formalism for deriving spin matching
conditions is presented. Then, spin matching conditions are derived for examples of
a spin rotator based on solenoidal magnets and a spin rotator based on vertical and
horizontal bending magnets.

7.1 Introduction

Consider designing two spin rotators, one for a proton ring, another for an electron
ring. Let’s assume that the energies of proton and electron rings are similar, say
5 GeV. At this energy we decide to use a spin rotator design based on interleaved
solenoidal and bending magnets since it does not create excessive beam orbit
excursions. During the design work in both electron and proton cases we have
found spin rotation angles of all rotator magnets required to transform the vertical
polarization at the rotator entrance into the longitudinal one at the rotator exit point.
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Therefore requirements on the field strengths of the solenoidal and dipole magnets
become known. At this point the design for proton rotator is well defined. But the
electron rotator requires some more work: the spin matching is needed to minimize
the effect of stochastic depolarization (spin diffusion).

7.2 Electron Polarization Parameters

Synchrotron radiation determines the polarization evolution through Sokolov-
Ternov spin-flip emission and spin diffusion caused by quantum emission of SR
photons. Both processes combined define the equilibrium polarization Peq and
polarization relaxation time τ , according to

P(t) = (P0 − Peq) e−t/τ + Peq (7.1)

where P0 is the initial polarization (at t = 0). Consideration of polarizing
and depolarizing effects caused by synchrotron radiation was done in [1] where
following expressions for Peq and τ were obtained:

Peq = − 8

5
√

3

α−
α+

(7.2)

τ−1 = 5
√

3

8

h̄ r0

m
γ 5 α+ (7.3)

where

α− =
〈 b̂
ρ3 (n̂− d)

〉
(7.4)

α+ =
〈 1

ρ3

[
1− 2

9
(n̂v̂)2 + 11

18
|d|2]〉 (7.5)

and following notation is used:

• m is electron mass
• r0 is electron classic radius
• ρ is a bending radius of horizontal and vertical bending magnets
• unit vector b̂ in direction of magnetic field
• unit vector v̂ along the electron velocity,
• unit vector n̂ describes so-called invariant spin field, composed of spin solutions

in the orbital phase space which are periodical with the ring azimuth and with
phases of orbital motion

Averaging in formulas (7.4), (7.5) is done over accelerator ring circumference and
over the orbital motion phase space. But away from spin resonances one can use
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n̂0 instead of n̂ and skip averaging over the phase space to get sufficiently accurate
evaluation of the polarization characteristics. Minus sign in formula (7.2) shows that
the build-up of the electron polarization over time happens in the direction opposite
to the magnetic field.

Depolarization caused by spin diffusion is defined by a derivative of invariant
spin field over δ = �E/E:

d =
(

∂ n̂
∂δ

)

x,x ′,y,y ′
(7.6)

This derivative must be taken at constant values of x, x ′, y, y ′, and in terms of
complex betatron amplitudes can be rewritten as:

d =
(

∂ n̂
∂δ

)

Ax,Ay

+
(

∂ n̂
∂Ax

)

δ,Ay

·
(

∂Ax

∂δ

)

+
(

∂ n̂
∂Ay

)

δ,Ax

·
(

∂Ay

∂δ

)

+ c.c. (7.7)

First term in the equation above come from direct electron energy change when
the photon is emitted, which happens in all bends. Second term contribute in the
horizontal bends where there is non-zero horizontal dispersion. And third term is
due to radiation in places with non-zero vertical dispersion that can appear due to
errors or betatron coupling or in spin rotators with vertical bends.

In order to minimize depolarization one needs to minimize the amplitude of
the vector d in elements where the synchrotron radiation happens, that is in
bending magnets. Let’s consider an ideal circular accelerator (Fig. 7.1). Such ideal
accelerator ring does not contain any spin rotators or snakes, thus, there is no
horizontal dipole or longitudinal fields on the design beam orbit. Also there is no
betatron coupling and no misalignment and magnet errors. The spin invariant field
n̂ in this ideal accelerator ring is only coupled with the vertical betatron motion of
particle. Indeed, the stable spin direction n̂ remains vertical for any particles having
Ay = 0 even if they have some energy offset or performing horizontal betatron

oscillations. Thus,
(

∂n̂
∂δ

)
= 0 and

(
∂n

∂Ax

)
= 0 on the beam orbit. The vertical

betatron oscillations lead to the deviation of n̂ from vertical due to horizontal field
of the quadrupole magnets experienced by particles with non-zero Ay . Thus the

derivative of the invariant field over the vertical betatron amplitude Ay ,
(

∂n̂
∂Ay

)
,

Fig. 7.1 The ideal
accelerators has stable spin
direction vertical everywhere B-field

n0

d = 0
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is non-zero. But, since the ideal ring has no betatron coupling and no vertical

dispersion, the
(

∂Ay

∂δ

)
is equal to 0 everywhere, including bending magnets. Which

means that the vertical betatron motion is not affected by the synchrotron radiation
in this case. Since all terms contributing to the vector d in formula (7.7) are equal to
zero, the vector d is also zero all around ring in the ideal accelerator ring.

As soon as one adds a spin rotator or a Snake into the accelerator ring the vector
d is excited. Then a question arises on how to design the ring optics to minimize the
vector d and, hence, minimize the stochastic depolarization. We will go through a
technique of deriving the spin matching conditions on the optics in next sections.

Magnet misalignments and rolls can also excite d and enhance the stochastic
depolarization. For the errors we can not really design spin matching, unless
these errors are very localized. The standard way would be to establish tolerances
on misalignments and rolls during accelerator design stage in order to achieve
acceptable depolarization level. This studies are done by using spin simulation
codes.

7.3 Spin Matching Formalism

For calculation in this lecture the transverse orbital motion will be described by
using its presentation through components of betatron motion eigen-vectors fI ,fII

and horizontal and vertical dispersion functions Dx , Dy :

x = fIxAx + f ∗IxA
∗
x + fIIxAy + f ∗IIxA∗y +Dxδ

y = fIyAx + f ∗IyA∗x + fIIyAy + f ∗IIyA∗y +Dyδ (7.8)

where Ax and Ay are complex amplitudes of horizontal and vertical betatron
motion, δ = dp/p presents a particle momentum offset.

Without betatron coupling the transverse motion expressions are simplified to:

x = fIxAx + f ∗IxA
∗
x +Dxδ

y = fIIyAy + f ∗IIyA∗y +Dyδ (7.9)

where

fIx = fx =
√

βxe
i�x (7.10)

fIIy = fy =
√

βye
i�y (7.11)

�x,y =
∫ s

0

1

βx,y

ds (7.12)
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Let’s consider an accelerator ring which can include, besides the vertical guiding
fields of horizontal bending magnets, also solenoidal and vertical field in locations
where spin rotating devices are used. The spin motion on the design beam orbit
can be resolved and the periodical spin solution n̂0 can be found all along the
ring circumference. One can also define two spin solutions on the design orbit
orthogonal to the vector n̂0 and to each other, the vectors l̂0 and m̂0. The vector
set (l̂0, m̂0, n̂0) form right-handed orthonormal triad, which is convenient for
considering spin motion perturbations. To simplify mathematical description one
can combine vectors l̂0 and m̂0 into the complex vector k̂0 = l̂0−im̂0. Together with
n̂0, the vectors k̂0 and k̂∗0 are the eigenvectors of the one-turn spin transformation.

One turn transformation of k̂0 at any accelerator azimuth s is written as:

k̂0(s + C) = ei2πνsp k̂0(s) (7.13)

Arbitrary spin can be presented by a complex variable α:

S =
√

1− |α|2n̂0 + Re(iαk̂∗0) (7.14)

Far from spin resonances the spin deviation from the n̂0 due to momentum
deviation or betatron motion is expected to be small, therefore |α| � 1. In the
first order the spin deviation α is described by the following equation:

dα

ds
= −iw · k̂0. (7.15)

The components of perturbation spin precession vector w can be derived from
the BMT equation:

wx = (1+ ν0)y
′′ + (ν0 + a

γ
)Kxδ + (1+ a)Ksx

′

ws = (1+ a)(K ′
xx +K ′

yy −Ksδ)− (ν0 − a)(Kxx
′ +Kyy ′) (7.16)

wy = −(1+ ν0)x
′′ + (ν0 + a

γ
)Kyδ + (1+ a)Ksy

′

where the magnet anomaly a = 0.00116 for electrons, ν0 = γ a and the fields of
bending and solenoidal magnets are presented by the normalized fields Kx,y,s =
Bx,s,y/(Bρ).

One can find a solution αinv of the Eq. (7.15) which is periodical not only with
ring azimuth, but also with betatron motion phases. This solution corresponds to the
invariant spin field n̂, and thus defines also the derivatives o f the invariant spin field
over δ, Ax and Ay which is of interest when calculating the vector d (7.7).

Now let’s consider an accelerator ring with spin rotators (Fig. 7.2). Usually,
two spin rotators are installed around the collision point in order transform the
polarization direction from vertical to longitudinal, and then back to vertical. We



188 V. Ptitsyn

Fig. 7.2 The ring with spin rotator insertion has the stable spin direction non-vertical inside the
insertion

Fig. 7.3 The EIC spin rotator utilizes a sequence of solenoidal magnets and horizontal bends in
order to create longitudinal stable spin direction in the experimental detector

call the spin rotator system to be spin matched if the spin invariant field (αinv)
dependence on horizontal betatron amplitude Ax and energy deviation δ is cancelled
outside the rotator system. The following integral over the whole spin rotator system
must be made 0 (or at least minimized) for terms proportional to Ax and δ:

∫ sout

sin

[wxk̂0x + wsk̂0s +wyk̂oy]ds (7.17)

We will demonstrate how the spin matching conditions are derived using two
examples of spin rotators systems:

1. Combination of solenoidal and horizontal bends, as in the spin rotator for EIC,
2. Combination of horizontal and vertical bends, as in the spin rotator for HERA.

7.4 Spin Matching for Solenoidal Spin Rotators

The EIC spin rotator [2] includes solenoidal magnets (spin rotation angle ϕj ) and
horizontal bends (spin rotation angle ψj ), as shown in Fig. 7.3.



7 Spin Matching 189

From spin matrix analysis of this rotator system one can derive conditions for
achieving the longitudinal polarization at the experimental point:

tan ϕ1 = ± cos ψ2√− cos(ψ1 + ψ2) cos(ψ1 − ψ2)
(7.18)

cos ϕ2 = cot ψ1 cot ψ2 (7.19)

From here the required solenoidal fields on all energy range can be found.
For spin-matching of this rotator system the spin-orbital integral (Eq. (7.17))

needs to be evaluated and made equal 0 if possible. For evaluating this integral one
can assume following reasonable optics conditions which are accommodated by the
rotator optics design:

1. betatron coupling is fully compensated individually for each solenoidal insertion,
2. the vertical dispersion function Dy does not leak into the horizontal bends.

When evaluating the integral the integration by parts can be used to get a simpler
form of spin matching condition:

y ′′k0x = (y ′k̂0x)
′ − y ′k̂′0x

x ′′k0y = (x ′k̂0y)
′ − x ′k̂′0y (7.20)

Applying this one can find that the spin-orbit integral needs to be taken only over
bending and solenoidal magnets:

∫ se
sb
{−(1+ ν0)y

′(Ksk̂0y − ν0Kyk̂0s)+Ksx
′k̂0x + (K ′

yy −Ksδ − ν0Kyy
′)k̂0s −

−(1+ ν0)x
′Ksk̂0x + (ν0Kyδ +Ksy

′)k̂0y}ds =
∫
sol
{−ν0Ks(x

′k̂0x + y ′k̂0y)−Ksδk̂0s}ds + (7.21)

+ ∫
bends

{ν2
0Kyy ′k̂0s +K ′

yyk̂0s + ν0Kyδk̂0y}ds = 0

Thus the integration has two terms. One includes integration over solenoids and
another over horizontal bending magnets.

Selecting terms proportional to Ax , A∗x and δ one comes to the following form of
the spin matching conditions. The solenoids are assumed divided in two halves with
compensation quadrupoles between:

4∑

i=1

H(fI )i = 0 (7.22)
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where H(fI )i is:

H(fI ) = φi

2 [
(
(f ′Ix + Ks

2 fIy)k̂0x + (f ′Iy − Ks

2 fIx)k̂0y

)

entr
+

(
(f ′Ix + Ks

2 fIy)k̂0x + (f ′Iy − Ks

2 fIx)k̂0y

)

exit
] (7.23)

where the entrance and the exit denote points just before the first solenoid of the
solenoidal insertion and right after the second solenoid.

A condition for the terms proportional to A∗I is derived the same way to get:

4∑

i=1

H(f ∗I )i = 0 (7.24)

Next the terms in the integral proportional to δ should be considered. The
integration in solenoid of the term with (D′x k̂0x + D′y k̂0y) is done the same way
as for horizontal betatron motion. Other terms are trivially integrated. As result one
gets the following spin-matching condition related electron energy deviation:

− ν0

4∑

i=1

H(D)i −
4∑

i=1

(φi(k̂0s)i)+
4∑

j=1

(ψj (k̂0y)j ) = 0 (7.25)

Note that each of three conditions is complex. Thus, in fact there are total of six
conditions that needs to be satisfied by proper rotator layout and optics.

Spin matching conditions related with betatron motion can be satisfied for
each individual solenoidal insertion, using two solenoid halves and (at least) 6
quadrupoles between them (Fig. 7.4). In this case one can find a solution which
nullifies H(fI )i and H(f ∗I )i for each individual solenoid insertion. This solution
can be presented in optics matrix form: The configuration of solenoidal and bending
magnets in the EIC spin rotator has been chosen to satisfy the spin-matching

Fig. 7.4 The EIC rotator solenoidal insertion uses quadrupoles between two solenoid halves to
compensate for the betatron coupling and satisfy the spin matching condition
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condition for off-momentum motion at 18 GeV energy. For operation at lower
energies it is not fully satisfied.

Tx =
(
− cos φ − 2

Ks
sin φ

Ks

2 sin φ − cos φ

)

; Ty = −Tx (7.26)

where

Ks = Bs

Bρ
; φ = (1+ a)Ks (7.27)

Figures 7.5 and 7.6 demonstrate how the absolute value of the vector d looks like
without and with spin matching. In first case, shown in Fig. 7.5, large oscillation

0
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|

s, m

d function before spin matching at 17.843 GeV

Fig. 7.5 The vector d along the EIC electron storage ring azimuth before the spin matching done

Fig. 7.6 The vector d along the EIC electron storage ring azimuth after the spin matching done
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Fig. 7.7 The effect of spin
matching on the
depolarization time in the
EIC electron storage ring

Fig. 7.8 The schematics of
HERA rotator based on a
sequence of horizontal and
vertical bending magnets

of d-function propagates all over the ring circumference. After spin matching
realized (Fig. 7.6) the vector d is only present in the area between rotators. Thus,
no stochastic depolarization comes from the machine arcs. The depolarization is
limited only to the area between rotators where non-zero d vector still exists. Spin
matched optics considerably reduces depolarization, making the spin resonances
narrower. An example demonstrating improvement from spin matching for the EIC
is shown in Fig. 7.7.

7.5 Spin Matching for Dipole Rotators

Let’s now consider the Steffen-Buon rotator based on dipole magnets [3] described
in the lecture on spin rotators and shown in Fig. 7.8. A variant of this rotator scheme
was used the electron ring of electron-proton collider HERA .

According to our recipe for calculations of spin matching conditions one needs
to know the spin eigenvectors. For instance in the interval between rotators the
eigenvectors are found to be:

n̂0 = (− sin(γ aKy), cos(γ aKy), 0);
k̂0 = (cos(γ aKy), sin(γ aKy), i); (7.28)



7 Spin Matching 193

where Ky =
∫ 0
s

Kyds.
Using (7.16) the precession vector components can be written as:

wx = ν0y
′′ + ν0Kxδ

ws = 0 (7.29)

wy = −ν0x
′′ + ν0Kyδ

where only terms dominant at large energy are left for brevity.
Spin matching conditions can be separated into horizontal and vertical betatron

contributions, proportional to Ax and Ay correspondingly, and longitudinal con-
tribution, proportional to δ. From term proportional to Ax one gets the following
condition:

∫ sr

−sr

ν0f
′′
x k̂0yds =

∫ sr

−sr

−ν0gx(s)k̂0y

√
βx exp(i�x)ds = 0 (7.30)

And from term proportional to A∗x :

∫ sr

−sr

ν0f
∗′′
xk̂0yds =

∫ sr

−sr

−ν0gx(s)k̂0y

√
βx exp(−i�x)ds (7.31)

Condition derived from term proportional to δ is:

∫ sr

−sr

[ν0(D
′′
y k̂0x −D′′x k̂0y)+ ν0(Kxk̂0x +Kyk̂0y)]ds =

=
∫ sr

−sr

[ν0(gx(s)Dxk̂0y − gy(s)Dyk̂0x]ds (7.32)

At the derivation of the condition above the well-known equation for the orbital
motion functions fx , Dx and Dy were used:

f ′′x,y + gx,y(s)fx,y = 0

D′′x + gx(s)Dx = Ky. (7.33)

D′′y + gy(s)Dy = −Kx

In spin rotators which include vertical bends the synchrotron radiation happening
in the vertical bends couples with vertical betatron amplitude. Thus, in this case an
additional spin matching needs to be realized: minimizing the spin-orbital integral
terms proportional to Ay and A∗y . Since any quadrupole in the ring arc contributes to
the spin coupling with the vertical orbital motion the integration has to be done over
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the whole ring circumference. Thus, following integrals have to be minimized to
suppress depolarization effect coming from the synchrotron radiation in the rotator:

∫ sr

−sr

ν0f
′′
y k̂0xds =

∫ sr

−sr

−ν0gy(s)k̂0x

√
βy exp(i�y)ds

∫ sr

−sr

ν0f
∗
y
′′
k̂0xds =

∫ sr

−sr

−ν0gy(s)k̂0x

√
βy exp(−i�y)ds (7.34)

These integrals should be considered for both rotators on left and right sides from
the experimental point.

7.6 Calculating Vector d in Computer Programs

A popular algorithm for calculating the vector d in a spin program is SLIM.
Originated in the first-order SLIM code [4], it presently can be found in several
other accelerator codes (for instance, BMAD [5]).

In the SLIM algorithm the 8-D spin-orbital vector consisting of 6 orbit variables
(x, px, y, py, τ, δ) and 2 spin variables (α, β) is used to represent motion of a
particle and its spin. The spin-orbital vector transport is described by extending
standard 6-D matrices M6×6 for orbital transport to 8-D case:

M̃(s1, s2) =
(

M6×6 06×2

G2×6 D2×2

)

(7.35)

Vector d is calculated using components v and w of one-turn 8-D transformation
eigenvectors qj:

qj =
(

vj

wj

)

j = 1, . . . , 6

qj =
(

06

wj

)

j = 7, 8

∂ n̂
∂δ
= i

6∑

j=1

v∗j5wj (7.36)

Another algorithm, ASPIRRIN [6], calculates vector d unified in one set with
other spin-orbital functions, called response functions, using standard transport
matrices of the orbital motion and special vectors for dipole and solenoidal magnets.

Calculations using SLIM and ASPIRRIN is done in first-order of orbital and
spin dynamics. On the basis of this first-order vector d the equilibrium polarization
as well as polarization relaxation time is calculated in both codes.
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When designing the spin rotators the first-order calculations are important to
realize the spin matching and confirm that it works as intended. But then further
spin studies has to be done using a spin tracking code and including different kind
of machine errors. These spin tracking studies will reveal also higher-order spin
resonances, not seen by the first-order codes, giving more complete evaluation of
the equilibrium polarization and the polarization relaxation time.

7.7 Summary

In order to minimize stochastic depolarization spin rotators in electron rings
require satisfying special lattice conditions, called spin matching. Main idea of spin
matching is to minimize or totally nullify the absolute value of vector d = ∂ n̂/∂δ

in the accelerator arcs where synchrotron radiation happens. Analytically spin
matching conditions can be derived using spin-orbit integrals. In spin programs the
SLIM algorithm is often used for evaluating the d-vector.
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Chapter 8
Polarization in a GeV RLA

Yves Roblin

Abstract Polarized beam dynamics in a Recirculated Linear Accelerator (RLA)
differ markedly from their behavior in circular machines. After giving a brief
overview of the topology of a RLA we discuss the unique requirements for polarized
beam physics experiments carried at these types of machines and their implications
on the spin transport. The Thomas BMT equation will be rewritten to emphasize the
relevant features and the relationship between spin transport and global accelerator
parameters such as the accelerating profiles. We will consider scenarios for which
one or more experimental hall has to be provided with longitudinal polarization
and discuss how this is achieved. Finally, a review of possible depolarization and
spin precession effects occurring in these machines will be presented. In order to
illustrate this, we will examine the case of the Stanford Linear Collider (SLC) where
such effects were first observed.

8.1 Topology of a Recirculated Linear Accelerator

Recirculated super conducting linear accelerators are used when high duty factor
continuous beams for nuclear physics experiments are desired. Many such exper-
iments require polarized electron sources yielding up to 90% of longitudinally or
transversally polarized beams.
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Fig. 8.1 CEBAF recirculator. The beam is generated in the injector where spin manipulations are
performed. It is accelerated through two linacs connected by return arcs. By convention we call
the return arcs near the extraction region (left of the figure) the west arcs, whereas the arcs on the
opposite side are called east arcs

The beam is generated in the injector, usually with a low emittance, and
accelerated in the first linac. It is then transported to the front of the next linac
arranged in a 180◦ configuration from the first one. Appropriate transport ensures
that it is on crest for acceleration in the next linac. Each linac has independent cavity
phasing controls and accelerating gains. The beam transport system is comprised
of multi-pass spreaders and recombiners combined with standard transport arcs
optimized for low emittance growth.

CEBAF [1] is one such machine where experiments demanding a high degree of
polarization are carried out. Figure 8.1 shows the general layout. The beam can be
accelerated through the linacs and recirculated up to five times. It can be extracted
and sent to experimental halls at any given pass. Recent upgrades to CEBAF added
another half pass and Hall D. We will not discuss this in the remainder of this
document as this hall does not necessitate the use of polarized beams.

8.2 Helicity, Spin and Polarization

Experiments making use of polarized electron beams are studying physics processes
for which the cross-section depends on the helicity of the incoming electron beam.
As a reminder, helicity is defined as the projection of the spin component along the
momentum. The spin of a particle is a quantum degree of freedom. For a massless
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photon, it can take two different values which corresponds to +1 and −1 helicities,
electrons carry 1/2 and −1/2 helicities. Polarization is the weighted average of the
spin states over the particle distribution. This is the quantity that is accessible via
polarimetry measurements and is what we will be referring to in the rest of this
document.

Polarized electrons are produced by exploiting the conservation of helicity during
photo emission. A laser is passed through a linear polarizer to yield linearly
polarized photons which are an equal superposition of −1 and +1 helicities. This
light is then polarized circularly via a birefringent electro-optic crystal (called
Pockels cells) allowing for one helicity state or the other to be dominant (typically
>99.9% of circular polarization).

This light when illuminating a strained GaAs cathode will predominantly excite
electrons from specific conduction bands with quantum numbers such that the
helicity is conserved.

Progress in strained semiconductor superlattice photocathodes has allowed for
producing polarized electrons of specific helicities with polarization of about 90%
and quantum efficiency greater than 1% capable of readily producing currents of
several hundreds of microamperes.

8.3 Typical Tolerances on Spin Transport for Parity
Experiments

Experiments probing the conservation of parity are extremely demanding on the
beam parameters. They rely upon measuring cross-section differences (asymme-
tries) for the two incoming electron helicity states. In order to resolve the very
small parity-violating physics asymmetries, it is necessary to measure and/or
suppress other helicity correlated systematic asymmetries. This includes any helicity
correlated position and angle differences, beam intensity and beam envelope at the
experimental target. Table 8.1 list typical beam tolerances that were achieved and
those that will be required for new experiments.

Note that the units are nanometers and part per billion (ppb). This refers to the
time averaged value of the helicity correlated differences over the duration of the
experiment. Even though the beam position monitors are only accurate to a few
tens of μm, the helicity averaged difference over months of data taking reaches
nanometers by virtue of accumulating enough statistics. All these experiments hinge
on that critical factor.

They employ a number of methods to eliminate or reduce the systematic errors.
Some have a direct bearing on the lattice design of the accelerator, others are
implemented via optical manipulations on the laser table. One of the essential
method is to regularly reverse the helicity of the electron beam at the experimental
target in order to measure both helicity correlated beam asymmetries. This is
typically implemented as a fast reversal (of the order of a few tens of Hz to kHz)
and a slow reversal (once a day). The Pockels cells provide fast reversal whereas a
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remotely insertable optical half-wave plate (on the laser table) or a Wien filter and/or
solenoidal lenses on the electron beam allow for the slow reversal.

Most experiments are only interested in receiving longitudinally polarized
electrons. Nevertheless, the spin manipulations should also allow for out of plane
polarization since it is sometimes requested to measure transverse spin physics
asymmetries, which are of interest themselves, or must be quantified as a back-
ground to the longitudinal physics asymmetry.

Recalling the topology of a typical RLA machine such as the CEBAF accelerator,
one sees that the majority of the lattice dipoles are bending in the horizontal
direction.

If one neglects the synchrotron radiation effects, the spreader and recombiner
sections both account for zero net vertical bending and hence do not induce any
precession of the vertical spin component. Orienting the spin vertically at the start
of the machine would render the transport transparent to the spin. However it is
challenging to then rotate it into a longitudinal orientation at the physics target in
the experimental halls at high energy. For this reason, it is injected horizontally at
the start of the machine accounting for the precession across the entire lattice.

8.4 Spin Propagation in an Ideal RLA with No Synchrotron
Radiation

The spin precession along an accelerator lattice is described by the Thomas BMT
equation, which reads:

dS
dt
= q

mγ
S×� (8.1)

The angular velocity � at which the spin precesses is governed by the momentum
of the beam and the magnetic and electric fields it encounters. Ignoring the
transverse electric fields which are only present in the early injector in the Wien
filters, we have:

� = (1+ aγ )B⊥ + (1+ a)B‖ (8.2)

This equation can be modified for the case of a RLA machine to emphasize the
relevant features.

Firstly, since we are sending electrons for which the spin is oriented longitu-
dinally, we only consider transverse magnetic field. We will treat the longitudinal
magnetic fields as perturbations.

Longitudinal fields such as those arising in solenoids are only present in the
injector and part of the Wien filter system. The rest of the injector solenoids are
designed to be counter wound (two alternating reversed loops) to still provide
focusing but result in a net zero spin precession.
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Each recirculating arc bends for a total of 180◦. A single arc will induce a
precession of φ = πaγ . During each circulation, the beam will encounter arcs
on the west and east side and accumulate more precession.

We thus write the angular rotation that the longitudinal spin component under-
goes as it traverses the entire machine as [2]

φn = a

me

[(nθ1 + (n− 1)θ2)E0

+ n

2
((n+ 1)θ1 + (n− 1)θ2)E1 + n(n− 1)

2
(θ1 + θ2)E2

+ (E0 + n(E1 + E2)θh)] (8.3)

where n denotes the pass at which we extract the beam, θ1, θ2 and θh are the total
bend angles on the west and east recirculation arcs and hall arc, E0,E1 and E2 are
the energy gains of the injector, north and south linacs respectively. For an ideal
machine, the bending angles are exactly defined.

In the rest of this chapter, unless otherwise specified, we will use the Zgoubi [3]
notation for spin components where Sx is the longitudinal, Sy is the transverse and
Sz the vertical component.

Parameterization of spin rotation with pass number is the object of Exercise 1,
Sect. 8.7.

8.4.1 Single Hall Case

With only one experimental hall requiring polarization, one would adjust the Wien
filter to yield an integer number of π precession from the injector to the physics
target. This is verified by measuring the longitudinal polarization in the halls
with polarimeters (Compton, Møller). Corrections are made as necessary until the
measured longitudinal polarization in the hall is maximized. Shown in Figs. 8.2
and 8.3 is the longitudinal spin component tracked through the CEBAF lattice
(using Zgoubi) from the injector to the experimental halls at first pass prior and
after Wien filter adjustments respectively. This was calculated for an injector gain
of Einj = 78.79 MeV and linac gains of E1 = E2 = 700 MeV.

8.4.2 Using the Wien Filter to Orient the Spin

A Wien filter is a device with static and electric magnetic fields orthogonal to each
other and arranged in such a way as to provide a net spin rotation without deflecting
the beam. Wien filters have astigmatism since they focus the beam in the plane of
the electric field. That is usually compensated via external quadrupoles or a tilted
pole design.
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Fig. 8.2 Prior to adjusting Wien filter, note the injected spin is longitudinal when the Wien filter
is turned off

Fig. 8.3 After adjusting Wien filter for Hall A, note the final longitudinal polarization in Hall A is
Sx = 1

A span of±π
2 for the spin rotation is easily achieved for incoming electron beam

kinetic energies of around 130 KeV (CEBAF).
The Wien filter condition can only be achieved for a monochromatic and point-

like beam. Real beams have energy spread and transverse sizes, both of which will
produce transverse focusing in the plane of the electric field and energy spread
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Fig. 8.4 CEBAF double Wien filter setup. The first Wien filter (vertical) downstream of the photo-
guns rotates the polarization from longitudinal to vertical. The second Wien filter (horizontal)
rotates the polarization in-plane to compensate precession of CEBAF transport magnets. Solenoids
in-between ensure additional polarization rotation requirements

variations in the longitudinal plane. Proper re-matching of the transverse beam
envelope is necessary in order to minimize emittance growth during subsequent
acceleration.

8.4.3 Spin Flipping to Reduce Uncertainties

Many of the systematic errors caused by beam induced helicity asymmetries can be
canceled by polarization reversal. As mentioned earlier, this can be done on the laser
table during the generation of the circular light or by slow reversal on the electron
beam.

This slow reversal is accomplished by means of a 4π spin rotator, namely a set of
two Wien filters associated with a pair of solenoids [4]. The electron beam generated
at the gun is longitudinally polarized. The first Wien filter is powered to produce an
out of plane vertical polarization. A pair of solenoids provide a rotation of the spin
back in the horizontal plane along the beam direction or 180◦ from it providing a
mean to produce a slow helicity flip. A second Wien filter is used to generate the
horizontal rotation needed for compensating for the precession around the machine.
Figure 8.4 shows a schematic of the system employed at CEBAF.

8.5 Spin Propagation to Multiple Experimental Halls

8.5.1 Concept of Magic Energies

In order to be able to maximize the longitudinal polarization in more than one hall,
one has to constrain the choice of energy gains in the linacs to certain values. Writing
Eq. 8.3 for two different experimental halls, we want to find the energy gains for
which the difference �h1

n − �h2
m between hall h1 and hall h2 extracted at passes n

and m is an integer multiple of π .
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Fig. 8.5 Magic energies for longitudinal spin in two halls. Green lines depict the final energy in
Hall D. Purple lines are the energy combinations between Hall A and Hall B yielding an integer
number of π precession

This results in a set of available energies (so-called magic energies) as shown in
Fig. 8.5. Note that this figure was produced by also imposing the constraints that
the two halls have to be at different passes unless both are at pass 5 (because of the
particular topology and design of the extraction system for CEBAF).

The difference in spin precession between two experimental halls is the object of
Exercise 2, Sect. 8.7.

8.5.2 Optimizing for Multiple Halls, Figure of Merit

Looking at Eq. (8.3), one can see that it is possible to use the linac gains as a
spin rotation knob. If one configures the RLA with asymmetric acceleration for a
given total accelerating gain E (E1 + E2 = E, E1 �= E2) then one can generate
a differential spin precession between the east and west side of the machine. This
method provides for an additional reach of possible configurations.

During the preparation of experimental schedules, a figure of merit taken as the
square of the polarization in each hall is maximized to allow for the optimal running.
Note that we assume that the halls are not current limited (the actual statistical
figure of merit includes multiplying by the beam current). Typically, one hall is
chosen to receive maximum polarization and energies are selected to maximize
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Table 8.2 P 2 table with no
Wien filter adjustment

Hall Pass 1 Pass 2 Pass 3 Pass 4 Pass 5

A 0.2004 0.8444 0.0305 0.2191 0.0105

B 0.1258 0.8283 0.0131 0.1089 0.1237

C 0.0666 0.8115 0.0029 0.0340 0.3340

Table 8.3 P 2 table with
Wien filter set to maximize
polarization in Hall A at first
pass

Hall Pass 1 Pass 2 Pass 3 Pass 4 Pass 5

A 1.0000 0.5838 0.6436 0.3371 0.8749

B 0.9897 0.6053 0.7005 0.4849 0.9890

C 0.9593 0.6265 0.7544 0.6340 0.9770

the polarization in other halls while fulfilling other experimental requirements. The
calculations are arranged in a matrix (called the P 2 matrix) with the columns being
the passes and the rows the experimental halls.

Under most circumstances, one cannot maximize the polarization in all three
halls, so this figure of merit matrix allows for comparison between different scenar-
ios. For example, the Wien filter angle necessary for maximizing the polarization
in one hall can be selected and the effect on the other halls and passes is shown in
the P 2 matrix. Various algorithms are employed to arrive at a configuration that is
satisfactory for the multiple hall running and the programmatic choices made.

At this stage of planning, a simple analytical model making use of the formulas
developed above and taking into account the synchrotron radiation loss in the arcs is
utilized. The final determination is obtained by tracking through the lattice to map
out the beam energy along the line and the resulting spin precession.

Shown in Tables 8.2 and 8.3 are the P 2 matrices for the planning that took part
in 2019. This corresponded to Einj = 121.5 MeV, E1 = E2 = 1031 MeV. As seen
in these tables, maximizing the spin for Hall A at first pass also provided for a good
figure of merit for B and C at pass 5 (close to 1).

Spin precession along CEBAF and P 2 matrix are the object of Exercise 3,
Sect. 8.7.

8.6 Depolarization and Spin Precession Effects

8.6.1 Orbit Errors due to Lattice Imperfections

Lattice imperfections lead to imperfection resonances and affect the performance of
a ring negatively. This is not the case for a RLA. One only goes through each arc
once so there is no closed orbit to be perturbed by quadrupole kicks which would
generate spin-orbit resonance coupling.

Consequently, misalignment errors will simply lead to extraneous dipole kicks
which will affect the spin precession but not depolarize the beam.
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What about intrinsic resonances arising from the interaction between the spin
tune aγ and the vertical betatron oscillations in the periodic arc structures?

In theory this could produce a decoherence of the spin if one ends up on a
resonance condition. The strength of such spin resonances is proportional to the
Fourier spectrum of the perturbing field accumulated when the beam oscillates
through the vertical plane of the quadrupoles times aγ .

Recalling the definition of polarization, one sees that depolarization can occur
when particles in the beam see a different perturbing field at different phase
advances leading to spin states no longer oriented in a prevailing direction. This
would occur since a vertical betatron oscillation within the bunch will produce kicks
that will add up coherently if on resonance with the spin tune gradually resulting in
the spin of these particles spiraling away from the initial polarization direction.

The vertical betatron oscillation within the bunch is proportional to the conserved
quantity which is the square root of the emittance. Fortunately, RLA machines such
as CEBAF have exceedingly small emittances. At 12 GeV, the vertical emittance in
CEBAF is about 1 nm.rad (geometric) for the last pass and considerably smaller on
lower passes. Consequently, most RLA machines do not have to worry about spin
resonances due to the beam envelope extent.

A related situation is when one has an orbit oscillation (instead of just the
beam envelope) in a periodic structure. It turns out that in some cases, this
can be a significant effect which will induce extraneous precession. There is no
depolarization since it does not affect the spin distribution of individual particles in
the bunch but instead alters the spin precession of the entire bunch.

It was observed first at the Stanford Linear Accelerator Center (SLAC) during
the commissioning of the detectors for the Stanford Linear Collider (SLC).

This machine was designed to collide polarized electrons and unpolarized
positrons in order to produce polarized Z0 bosons. Figure 8.6 shows its layout. After
being produced, beams are stored in damping rings where their emittance is reduced.
They are then accelerated in a linac to around 50 GeV and brought into collision at
the interaction point (IP) by means of collider arcs.

The polarization needs to be longitudinal at the IP, so super-conducting solenoids
located in the electron damping ring and in front of the linac allow for rotating the
spin in order to accommodate the total precession. Polarimeters are located at the IP
and can be used to measure the longitudinal spin component.

During commissioning, it was observed that the longitudinal polarization was
very sensitive to the vertical orbit fluctuations in the arc. It had not been anticipated
and prompted a number of theoretical and experimental studies which led to the
realization that this was due to running near an intrinsic spin resonance resulting in
extra precession.

As it turns out the collision arc is a periodic structure for which the vertical
betatron tune happens to be coinciding with the spin tune when running at or near the
Z0 boson center of mass energy (about 45.6 GeV for each beam). We will explore
this in an exercise dedicated to modeling the SLC arc.

In particular, we will calculate the buildup of the vertical spin through one
achromat of the north arc when near the spin resonance condition. Figures 8.7



208 Y. Roblin

Fig. 8.6 Stanford Linear
Collider layout from [5]
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Fig. 8.7 Original SLAC result from [6]. In their notation, Sz is the longitudinal spin, Sy is the
vertical spin

Fig. 8.8 Spin along the orbit, a calculation using Zgoubi. Sx is the longitudinal spin, Sz is the
vertical spin. Also depicted is the vertical orbit deflection referenced on the right vertical axis

and 8.8 show the vertical and longitudinal spin components propagating through
one achromat when the vertical orbit oscillation is 0.5 mm. Figure 8.8 was obtained
using Zgoubi and closely track the SLAC results in their original publications [6, 7]
which was calculated at the time using spinor methods.
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8.6.2 Bump Orbit Spin Rotator

In order to increase the luminosity at the IP, the SLD collaboration at SLAC decided
to start using flat beams [5–7]. Up until then, spin precession in the collider arcs was
corrected by means of the spin rotator in the damping rings and at the entrance of the
linac. Optical matching of this device becomes complicated when using flat beams
and would have required installing supplemental skew quadrupoles and develop a
new tuning protocol. Instead, an alternative method was employed exploiting the
spin orbit resonance condition.

Recall that in order to rotate the spin one needs only a combination of
longitudinal and transverse fields like solenoids and dipoles. If one has a resonant
condition as described above, a vertical orbit deflection will cause the spin vector to
rotate in the vertical plane around an axis perpendicular to the longitudinal direction
as seen in Fig. 8.8. Hence, using two orbit bumps separated by dipole magnets will
act as a spin rotator. SLAC used this to very reliably adjust the spin precession for
SLC even though they could not measure the orbit bumps or the orbit fluctuations
with the required accuracy. Instead, they empirically mapped out the orbit bumps
generated by shifting combined function dipoles from the reference orbit with the
measured longitudinal polarization at the IP [6].

Figure 8.9 shows an orbit bump closed after the first seven achromats and its
effect on the vertical and longitudinal spin when near resonance (45.64 GeV, left) or
away from resonance, Fig. 8.10.

Fig. 8.9 42π orbit bump at 45.64 GeV
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Fig. 8.10 42π orbit bump at 40 GeV

8.6.3 Effect of Energy Spread and Other Off-Momentum
Errors

There are several types of energy effects to consider. The first being that particles
inside the bunch will be off-momentum due to the energy spread relative to
the reference momentum. For such particles, the spin is rotated by an angle δθ

relative to the on-momentum particle. This results in a smearing of the longitudinal
polarization but no net depolarization loss provided that the beam energy is not near
a spin resonance.

Figure 8.11 shows the effect of the energy spread on the longitudinal polarization
distribution at CEBAF for two values of the intrinsic energy spread.

Another possibility is the beam itself being off-momentum because of syn-
chrotron radiation and a particular choice of the magnet powering scheme.

It is effectively the case in CEBAF where the dipoles making up the arcs are
powered in series by one power supply per arc which is usually set to the on-
momentum value corresponding to the energy of the beam in the middle of the
arc after it has been degraded by synchrotron radiation.

Hence, the first half of the dipoles is under powered while the second half is
overpowered. The orbit error is compensated for by corrector magnets.

We estimate this effect by tracking through the lattice and mapping out the energy
profile to use when calculating the precession. When folded in with other errors due
to the calibration of the linac cavities, we typically predict the proper Wien filter
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Fig. 8.11 Effect of intrinsic energy spread on longitudinal spin

setting to within a couple of degrees. The final setting is achieved by performing a
polarization measurement in the halls and adjusting accordingly.

8.7 Homework

•? Exercise 1: Parameterization of Spin Rotation

Express the spin precession along the vertical axis in terms of the accelerating
gradients in the injector, north and south linacs.

Show that it can be parameterized relative to the pass at which the beam is
extracted into an experimental hall by recovering formula 8.3.

What assumptions have to be made to write the precession in this form?

Solution
Recall that the Thomas BMT equation which governs the evolution of the spin
through the machine can be written as

d S
dt
= q

m0γ
S×� (8.4)

� = (1+ aγ )B⊥ + (1+ a)B‖ (8.5)
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Starting from the expression for � in lab coordinates, we ignore the electric field
(no source in CEBAF besides the Wien filters which we will treat separately). The
other assumption we are going to make is to neglect the B‖ component. Since we
are considering transport past the injector, there is no solenoid in the rest of the
machine. Other source besides solenoids would be the fringe fields at the end of the
dipoles and it is a negligible effect.

Integrating Eq. 8.5 over the beam path, we end up with the spin rotation in the
particle reference frame on the left side and

∫
B⊥ds on the right side which, when

combined with the a
mγ

factor gives
∫

B⊥ds

p/e
= θ the rotation in the dipoles. So,

θ1,θ2 and θh for the east and west recirculating arcs and the final bend into the hall.
Finally, generalizing the formula to more than one pass and parameterizing in

terms of the pass n yields formula 8.3.
It can be proven by inference by realizing that for pass n, we go n times through

the east side arc (θ1), n-1 times through the west side (θ2) and once through the bend
towards the hall (θh).

•? Exercise 2: Difference in Precession Between Two Experimental Halls

Show that the difference in precession between two experimental halls can be
written as �h1

n1 − �h2
n2 = a

me
f (h1, n1; h2, n2)π where h1, h2 are the halls A,

B or C and n1, n2 are the passes at which the beam is extracted.
Write a program to find the combinations of energies in Hall A and Hall B

for which the difference in precession between the two halls is exactly an integer
number of π . This should allow to reproduce Fig. 8.5.

Solution
Starting from Eq. 8.3, we introduce the ratio α = E0

E1
of the injector energy to the

linac energy and recast it in this form:

�h
n = E1

(
g − 2

2me

)[

2n2 − n

(

1− 2α − 2θh

π

)

− α

(

1− θh

π

)]

(8.6)

We also assumed that both linacs produce the same acceleration (E1 = E2) to
simplify the formula.

From there, we can write the difference between halls h1 at pass n1 and h2 at
pass n2 and obtain the solution.

When the quantity E1

(
g−2
2me

)
(h1, n1, h2, n2) is an integer multiple of π , both

halls have the maximum polarization, this occurs for specific values of E1, the so-
called magic energies.

One can write a simple python script [8] which generates all these combinations
and plot it to reproduce the figure.
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•? Exercise 3: Spin Precession Along CEBAF; P 2 Matrix

Write a program or a simple spreadsheet to calculate the spin precession along the
CEBAF machine for various passes and energies.

Using Sand’s formula, the loss per arc can be approximated to

�E = 0.08846E4πnd

2ld

with nd the number of dipoles in an arc and ld the length of the trajectory in a
dipole. Calculate the P 2 matrix and Wien filter settings required for each hall. For
scheduling purposes, it is acceptable if the P 2 in a given hall is above 0.8. Besides
Hall B, which other combinations of halls and passes are acceptable when we are
maximizing the polarization for Hall B at pass 5?

Solution
The spreadsheet, spinprecessionCEBAFRLA [9], implements the calculation as
described above. The gains for the North and South linacs are entered in E2 and F2.
The injector gain is automatically calculated in D2. Precession is calculated around
the machine using the simplified expression of the Thomas BMT equation 8.3 and
the resulting P 2 matrix available in cells C23 thru G28. The table labeled wien
required give the necessary Wien angle to maximize the longitudinal polarization
for a particular pass and hall. Finally, the cell C7 provides a mean to turn on (1) or
off (0) the synchrotron radiation.
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Chapter 9
Spin Codes

Vahid Ranjbar

Abstract This chapter reviews the approaches to numerically integrate the spin-
orbit and how they are applied in several spin codes.

9.1 Overview of Codes

Along with theoretical developments and polarized beam studies at the weak
focusing synchrotron ZGS (polarized proton beams were produced from 1973) and
at the strong focusing synchrotron Saturne 2 (proton and light ion beams, from
1981), a number of spin tracking techniques have been devised over the years along
with the design and operation of polarized beam facilities.

Early computer codes were based on matrix transport techniques, two early
instances were lattice design and spin dynamics studies for polarized ion beams
at Saturne 2 and its synchrotron injector Mimas [1], for electron beams accounting
for synchrotron radiation at SPEAR [2]. Numerical integration of the equations of
motion was later resorted to and allowed solving spin motion in arbitrary fields,
and to high order in particle coordinates, so allowing accurate treatment of spin
motion in special devices such as snakes and in field maps [3, 4]. With the increased
interest in polarized beams and the design and construction of accelerator facilities,
a number of analytical methods have been developed and used in spin codes.
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Indications regarding possible spin dynamics capabilities of existing beam optics
codes may be found in accelerator codes repositories [5, 6].

There are several direct spin-orbit tracking codes freely obtainable at the time
of this writing. These can be categorized based on their method of numerical
integration, order of accuracy, and also their inclusion of radiative effects necessary
when considering electron spin tracking.

• Bmad [7] is a Fortran 2008 platform which can make use of several different
spin-orbit tracking algorithms. These include Runge-Kutta style and Symplectic
PTC style orbit integrators. It reads lattices written using MAD like syntax
and can be run exploiting multi-threading with certain restrictions. It is well
documented and maintained. It has recently been used to help model several of
the future Electron-Ion Collider lattices including the Electron Storage Ring and
the Rapid Cycling Synchrotron.

• COSY Infinity [8] uses a differential algebraic method to generate transfer maps
for both orbit and spin. It accomplishes this by generating derivatives to arbitrary
order using automatic differentiation [9]. It includes higher-order nonlinearities,
normal form analysis, and symplectic tracking. It has been used for instance to
support Electric Dipole Moment lattice simulations at COSY [10].

• GPUSPINTRACK: a symplectic drift-kick, bend-kick and matrix-kick integra-
tor [11] (see Sect. 9.5).

• SITROS [12] was used at the HERA e-p collider, it was developed in the
early 1980s by Jorg Kewisch and updated in the 1990s and early 2000s. It
tracks a group of electrons or positrons through the lattice and applies radiative
kicks using a Monte-Carlo style algorithm to simulate the radiative effects on
longitudinal dynamics and spin. It first performs orbital tracking to generate an
equilibrium phase space distribution, later spin tracking is included. To speed
up the tracking time transfer maps are developed for whole sections of the ring
instead of tracking element by element. It is used today to model aspects of the
spin dynamics and compute polarization life-time in the EIC Electron Storage
Ring [13].

• SPINK: a symplectic kick based first order integrator [14] (see Sect. 9.4).
• SPRINT performs multi-turn spin-orbit tracking for linearized orbital motion,

but fully nonlinear spin motion and all orders of resonance [15].
• Zgoubi: Taylor based integrator, handles E and B fields, includes radiative

effects. Degree of non-symplecticity inherent to truncated Taylor series is mostly
controlled by the integration step size [16] (see Sect. 9.3).

Then there are several reduced spin tracking codes which integrate a reduced
form the T-BMT equation. These include the codes SLIM [2, 17] and T-BMT [18].

In addition to direct spin-orbit tracking codes there are codes which calculate
the spin resonances for a given energy range based on the optics for an accelerator
lattice. These include DEPOL [19], ASPIRRIN [20] and SPRINT [21].

To illustrate the general approaches for numerical integration, we explore the
three codes Zgoubi, SPINK and GPUSPINTRACK in more detail in the following
sections. DEPOL and T-BMT are also addressed in dedicated sections.
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9.2 Integration of the Spin and Orbit

As we learned in previous chapters the dynamics of the spin vector of a charged
particle in the laboratory frame is described by the T-BMT equation,

dS
dt
= q

γm
S×

(

(1+Gγ )B⊥ + (1+G)B‖ +
(

1

γ + 1
+G

)

γ
E× β

c

)

(9.1)

S is the spin vector in the rest frame of the particle, E and B are fields in the
laboratory, the magnetic field components B⊥ and B‖ are defined with respect to
the particle’s velocity. G = g−2

2 is the anomalous magnetic moment coefficient
which for protons is 1.7928474, and γmc2 is the energy of the particle. We can
transform this equation by expanding about a reference orbit described by a Frénet-
Serret coordinate system. See Fig. 9.1. Thus we have

dx̂

ds
= ŝ

ρ
,

dŝ

ds
= − x̂

ρ
, and

dẑ

ds
= 0, (9.2)

Particle motion can be parameterized in this coordinate system as

r = r0(s)+ xx̂ + zẑ, (9.3)

where r0(s) is the reference orbit, and ŝ = dr0/ds.
The integration of the T-BMT equation requires the knowledge of the spatial

dependence of the fields, which in turn depend on the trajectory of the charged
particle in the optical elements. A particle traversing a quadrupole magnet off axis
will experience a different magnetic field than one going through the center. We
calculate this trajectory by integrating the Lorentz force equation.

dp
dt
= q (E+ v× B) (9.4)

Fig. 9.1 The curvilinear
coordinate system for particle
motion in a circular
accelerator. The unit vectors
x̂, ŝ and ẑ are the transverse
radial, longitudinal, and
transverse vertical basis
vectors; and r0(s) is the
reference orbit

Reference Orbit

S

ro

x

z

V
Particle Position
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This is the job which all accelerator codes need to accomplish and to do this they
use several standard approaches:

• Non-symplectic approaches. They typically use a Runge-Kutta type algorithm
or a ray tracing method which use the mechanics of a Taylor expansion of the
equations of motion.

• Symplectic Methods. These include both thin lens-kick and thick lens integrators.

9.3 Zgoubi

Step-wise ray-tracing has accompanied accelerator design concurrently with the
emergence of computers and magnetic field simulations in the early 1950s, with
Runge-Kutta being one of the early methods [22]. Step-wise integration of the
orbital motion allows the necessary accuracy for solving the Thomas-BMT dif-
ferential equation. This is especially important in small rings where lattice optics
field perturbations matter, and in beam transport lines which may include special
magnets and fancy spin manipulations; these were the main reasons why step-wise
spin tracking were developed in the late 1980s in Zgoubi (originally a spectrometer
code) in the context of partial snake plans at Saturne [3], and in Raytrace [23] (a
spectrometer code as well) at the AGS for polarized beam transport in AGS and
RHIC facility transfer lines [4]. A serendipity of step-wise integration is its yielding
6D motion ab initio as it handles the three components of the position and velocity
vectors, independently.

Zgoubi has been in use since the early 2000s at RHIC [24] and its injectors [25,
26], and at present for spin simulations in the EIC electron machines [27, 28].
Preservation of motion invariants, in relation with the truncated Taylor series
integration method, is controlled over millions of turns in RHIC size EIC rings,
via step size mostly.

In order to integrate the Lorentz equation (m is the particle mass, q its charge, v
the velocity, e and b the local electric and magnetic fields)

d(γmv)

dt
= q (e+ v× b) (9.5)

we rewrite it by nothing that ()′ = d()

ds
, u = v

v
, ds = v dt , γmv = γmvu = q Bρ u,

and Bρ the rigidity of the particle,

(Bρ)′ u+ Bρ u ′ = e
v
+ u× b, (9.6)
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Fig. 9.2 Position and
velocity of a particle in
Zgoubi reference frame
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Zgoubi uses truncated Taylor developments of the position R and normalized
velocity u vectors, namely,

R(M1) ≈ R(M0)+ u(M0) �s + u ′(M0)
�s2

2! + ...+ u ′′′′′(M0)
�s6

6!
u(M1) ≈ u(M0)+ u ′(M0) �s + u ′′(M0)

�s2

2! + ...+ u ′′′′′(M0)
�s5

5!

(9.7)

In these series R(M0) and u(M0) are the initial conditions, at point M0, R(M1) and
u(M1) are one integration step �s ahead, at point M1 (Fig. 9.2). The rigidity varies
in the presence of electric field, it is calculated the same way using

(Bρ)(M1) ≈ (Bρ)(M0)+ (Bρ)′(M0)�s + ...+ (Bρ) ′′′′′(M0)
�s5

5! (9.8)

The time of flight is expanded in a similar manner

T (M1) ≈ T (M0)+ T ′(M0) �s + T ′′(M0)
�s2

2
+ ... + T ′′′′′(M0)

�s5

5! (9.9)

which simplifies to T (M1) = T (M0)+�s/v in the absence of electric field.

The derivatives u(n) = dnu
dsn

and (Bρ)(n) = dn(Bρ)

dsn
involved in these expressions

are calculated by recursive differentiation of Eq. 9.6, details can be found in the
Users’ Guide [16].

Spin in Zgoubi is evaluated in the same manner as the particle, with the three
spin vector components treated independently. The T-BMT equation is recast as,

dS
dt
= q

mγ
S× ω (9.10)
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with, in the laboratory frame,

ω = (1+ γG)b−G(γ − 1)b‖ + γ (G+ 1

1+ γ
)
e× v
c2

(9.11)

wherein b and e are the fields in the laboratory, b‖ is the component of b parallel
to the velocity v of the particle. Equation (9.10) is normalized by introducing again

v = ||v||, v = vu, ds = vdt the differential path,
γmv

q
= Bρ the rigidity of the

particle, whereas b =‖ b ‖, S ′ = dS
ds

= 1

v

dS
dt

is the derivative of the spin with

respect to the path. This yields

(Bρ) S ′ = S× ω or S ′ = S×� (9.12)

where, noting B = b/Bρ, E = e/Bρ,

� = ω

Bρ
= (1+ γG)B+G(1− γ )B‖ + βγ

c

(

G+ 1

1+ γ

)

E× u (9.13)

From the initial conditions �(M0) and S(M0) of the particle at position M0, the spin
S(M1) at position M1, following a displacement �s (Fig. 9.2), is obtained from the
truncated Taylor expansion

S(M1) ≈ S(M0)+ S′(M0) �s + S′′ (M0)
�s2

2! + ... + S′′′′′ (M0)
�s5

5! (9.14)

The spin vector S and its derivatives S(n) = dnS/dsn are obtained by recursive
differentiation of Eq. 9.12, details in the Users’ Guide [16].

9.4 SPINK

SPINK code was developed in the 1990s by Alfredo Luccio and used to extensively
model the RHIC machine which was being built at the time. It employed the linear
transport matrices from the MAD8 code to track the orbit, estimating the position
of the charged particles inside each magnet and thus deducing the field. Beginning
from the T-BMT equation:

dS
dt
= e

γm
S× F (9.15)

now with F defined as (we now assume no electric field)

F = (1+Gγ )B⊥ + (1+G)B‖ (9.16)
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and with the perpendicular and parallel components of the magnet field expressed
as,

B⊥ = 1

v2 (v× B)× v, B‖ = 1

v2 (v · B)v, (9.17)

F can be expressed as,

F = (1+Gγ )B−G(γ − 1)
1

v2 (·B)v (9.18)

As discussed in previous sections the velocity vector can be expressed in terms of
the derivative of the spatial coordinates with respect to the longitudinal coordinate
s to obtain:

v = dr
dt
=
[

x ′x̂+ y ′ŷ+ (1+ x

ρ
ẑ
]

ds

dt
(9.19)

One can now rewrite the T-BMT equation as an s derivative,

dS
ds
= S×� (9.20)

with,

� = h

Bρ

[
(1+Gγ )B−G(γ − 1)(r′ · B)r′

]
(9.21)

and,

e

γm
= v

Bρ
(9.22)

h =
√

x ′2 + y ′2 + (1+ x/ρ)2

r′ = v
v
.

Using this the T-BMT equation can be reduced to a third order differential equation,

S′′′ + ω(s)2S′ = 0 (9.23)

where,

ω(s)2 = �x(s)
2 + (�y(s)− 1

ρ(s)
)2 +�z(s)

2 (9.24)
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In the case that both the fields and orbits are constant across a given portion of the
magnet then ω(s) would likewise be constant and solutions in the form of transport
matrices can be developed yielding,

⎛

⎝
1− (B2 + C2)c ABc + Cs ACc − Bs

ABc − Cc 1− (A2 + C2)c BCc + As

ACc + Bs BCc − As 1− (A2 + B2)c

⎞

⎠ (9.25)

with

c = 1− cos ωδs , s = sin ωδs (9.26)

A = �x

ω
,B = �y − 1/ρ

ω
,C = �z

ω

9.4.1 Bends

Applied to the case of the rectangular bend magnet with Bx = Bz = 0 and By =
Bρ/ρ one obtains the matrix,

⎛

⎝
cos δψ 0 sin δψ

0 1 0
− sin δψ 0 cos δψ

⎞

⎠ . (9.27)

This represents a rotation about the vertical axis through an angle of,

δψ = ωδs =
[

Gγ − (1+Gγ )
x

ρ
)

]

δθ (9.28)

with δθ = δs/ρ the bend angle.

9.4.2 Quadrupoles

For the quadrupole with a gradient of k1 the fields become Bx = k1Bρy, By =
k1Bρx and Bz = 0 with 1

ρ
= 0. In this case the transport matrix becomes,

1

r2

⎛

⎝
y2 + x2 cos δψ xy(1− cos δψ) −xr sin δψ

xy(1− cos δψ) y2 + x2 cos δψ yr sin δψ

xr sin δψ −yr sin δψ cos δψ

⎞

⎠ (9.29)

with ω = k1(1+Gγ )r and r = √x2 + y2
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SPINK made use of the MAD8 generated Twiss functions to calculate the
transport matrices and thus coordinates at the beginning and exit of each element.
It takes the average of the position between the beginning and end of each sliced
transport element to estimate the field that acts on the spin. The accuracy of the
solution is controlled by increasing the number of slices in MAD8.

9.5 GPUSPINTRACK

GPUSPINTRACK was developed from a version of SPINK which uses a native
teapot integrator called UAL-SPINK. It reads lattices formatted in the SXF style.
The development of GPUSPINTRACK was motivated by problems with convergence
using the drift and thin kick style teapot orbit integrator. As a result a new orbit
integrator was developed which is detailed in [11]. It was observed that when
crossing strong spin resonance in the presence of snakes, the highly accurate
rendering of the orbital trajectory through the quadrupoles was essential to achieve
convergence with a reasonable number of slices.

9.5.1 How to Integrate the Quadrupole?

The Hamiltonian for quadrupole is given by,

HQ = HD(Pt , Px, Py)+HK(X, Y ) (9.30)

HD(Pt , P ) = −
√

1+ 2

β0
Pt + P 2

t − P 2
x − P 2

y +
1

β0
Pt

HK(X, Y ) = k1

2

(
X2 − Y 2

)
.

Here Pt = γ−γ0
β0γ0

with subscript 0 indicating on-momentum values for the relativistic
gamma and beta and k1 the quadrupole gradient. The usual teapot approach is to
split this Hamiltonian into HD for the drift and HK for the kick. The effect of each
of these pieces can be exactly evaluated yielding a drift transport matrix and a thin
kick part. The drifts are then split in half and sandwiched around the thin kick. An
improved approach which yields higher accuracy is to split the Hamiltonian in a
different way, by adding and subtracting as follows,

HM = 1

2

(
P 2

x + P 2
y

)
+ k1

2

(
X2 − Y 2

)
(9.31)

HK = −
√

1+ 2

β0
Pt + P 2

t − P 2
x − P 2

y +
1

β0
Pt − 1

2

(
P 2

x + P 2
y

)
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Here we add and subtract 1
2

(
P 2

x + P 2
y

)
from each term to create a matrix transport

HM . GPUSPINTRACK additionally divides the momentum term by the energy
contribution to momentum to get the correct tunes for the off energy particles
yielding,

HM = 1

2

P 2
x + P 2

y√
1+ 2

β0
Pt + P 2

t

+ k1

2

(
X2 − Y 2

)
(9.32)

HK = −
√

1+ 2

β0
Pt + P 2

t − P 2
x − P 2

y +
1

β0
Pt − 1

2

P 2
x + P 2

y√
1+ 2

β0
Pt + P 2

t

9.5.2 Spin Precession Calculation

With the orbit the spin transport can be calculated across a given element slice
as was done in the original SPINK code. However GPUSPINTRACK accelerates
computation and the spin convergence by making use of Romberg quadrature with
quaternions to represent the spin transport using SPINK �. The approach is to
calculate the quaternions for q(h�) for different relative step sizes h across a given
magnetic element as follows,

R0,2 = Q(h) = q(
1

2
h�4)q(h�3)q(h�2)q(h�1)q(

1

2
�0) (9.33)

R0,1 = Q(2h) = q(h�4)q(2h�2)q(h�0)

R0,0 = Q(4h) = q(2h�4)q(2h�0).

Here �i represents the calculated spin precession vector at a given slice across
the magnetic element (see Fig. 9.3). With this, one can construct a ‘bootstrapped’

h

Magnet Element

Ω0 Ω1
Ω2 Ω3

Ω4

Orbital Slice

Fig. 9.3 Slicing up magnetic element for Romberg integration
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quaternion across the whole element to arbitrary order using,

Rj+1,k = 4j+1Rj,k − Rj,k−1

4j+1 − 1
(9.34)

9.6 How to Integrate the T-BMT Equation by Hand

Aside from numerical integration, it is possible to integrate certain forms of it
analytically. Beginning with Eq. 9.20 in the absence of solenoid magnets and
vertical bends, the T-BMT equation can, to first order in the coordinates (x, s, z),
be rewritten as (see Exercise 1).

dS
ds
≈ v

(
dt

ds

)

S×� ≈ S×�

�x = −(1+Gγ )z′′

�s = (1+Gγ )z′/ρ − (1+G)

(
z

ρ

)′

�z = x ′′(1+Gγ )− 1+Gγ

ρ

Further, Accounting for the derivatives of the x, s, z basis vectors of S we can obtain,

dSx

ds
= Ss(�z + 1/ρ)−�sSz

dSs

ds
= −Sx(�z + 1/ρ)+�xSz

dSz

ds
= Sx�s −�xSs

If we change to a basis vector which rotates with the beam (ê1, ê2, ê3) we obtain,

dS
ds
= ω × S,

ω1 = (1+Gγ )z′′,

ω2 = −(1+Gγ )z′/ρ + (1+G)

(
z

ρ

)′
,

ω3 = −(1+Gγ )x ′′ + Gγ

ρ
.

(9.35)
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This can be further transformed by defining a two-component spinor � such that
the j -th component of the spin vector is given by

Sj = 〈�|σj |�〉 = �†σj�. (9.36)

Here � denotes a classical vector with components u and d , which are related to the
three components of S by

S1 = u∗d + ud∗

S2 = −i(u∗d − ud∗)

S3 = |u|2 − |d|2.
(9.37)

Using σ = (σx, σs, σz), the vector of the Pauli spin matrices, and ζ(s) = −ω1+iω2,
it is possible to show (see Exercise 2) that Eq. 9.35 can be transformed into,

d�

ds
= − i

2
(σ · ω)� = − i

2
H� = − i

2

(
Gγ
ρ

−ζ(s)

−ζ(s)∗ −Gγ
ρ

)

�, (9.38)

where we have dropped the first term in ω3,−(1+Gγ )x ′′, since it is small compared
to Gγ .

Using the differential relation dθ = ds/ρ, one may transform (9.38) so as to
make θ the independent variable. Then, considering the effects of a single resonance,
wherein ζ(θ) becomes εKe−iKθ , the T-BMT equation becomes

d�

dθ
= − i

2

(
Gγ −εKe−iKθ

−ε∗KeiKθ −Gγ

)

�. (9.39)

If we assume Gγ = constant, and transform the spinor equation (9.39) into the
resonance precessing frame by defining

�K(θ) = e
i
2 Kθσz�(θ). (9.40)

one can obtain (see Exercise 3),

d�K

dθ
= i

2

(
K −Gγ εK

ε∗K Gγ −K

)

�K. (9.41)

Since all the elements of the matrix are constant one can simply exponentiate the
matrix directly to obtain an exact solution to the differential equation. In the case
when Gγ is not constant, but linearly accelerating, a solution is still possible and
ultimately yields the famous Froissart-Stora formula.

In the case when Gγ = Gγ0 + αθ we can transform the spinor equation into the
spin precessing frame by defining,

�(θ) = e−
i
2

∫ θ
o Gγ (x)dxσ3�I(θ) (9.42)
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to obtain,

d�I

dθ
= i

2

(
0 εKei[(Gγ0−K)θ+ 1

2 αθ2]

ε∗Ke−i[(Gγ0−K)θ+ 1
2 αθ2] 0

)

�I . (9.43)

which can be transformed into an ordinary second order homogeneous differential
equation,

d2�±I
dθ2 ∓ iαθ

d�±I
dθ

+ |εK |2
4

�±I = 0 (9.44)

which has confluent hyper-geometric functions as solutions. Using the asymptotic
expressions of these functions it is possible to show that, in the limit of large |θ |,

Sz = 2e−
π |εK |2

2α − 1 (9.45)

which is the famous Froissart-Stora formula.

9.7 Calculating Spin Resonances

One of the first codes to calculate the strength of the intrinsic and imperfection
spin resonance strength was developed by Ruth and Courant in 1980 and is known
as DEPOL [19]. This code calculates the expansion of ζ(s) by making use of the
linear transport matrix to derive an exact solution to the elements of the quasi Fourier
integral,

εK = − 1

2πNT

∫ CNT

0

[

(1+Gγ )(z′′ + iz′

ρ
)− iρ(1+G)(

z

ρ
)′
]

eiKθ(s)ds

(9.46)

Here C is the circumference of the ring. The number of turns NT depends on the
rationality of K . If K is an integer then NT = 1; however if K is an irrational
number then we normally would need an infinite number of turns to approximate
the resonance strength. Decomposing the integral into a sum of integrals over each
element we obtain,

εK =
∑

lat t ice

εKm

NT

(9.47)

εKm = −
1

2π

∫ s2

s1

[

(1+Gγ )(z′′ + iz′

ρ
)− iρ(1+G)(

z

ρ
)′
]

eiKθ(s)ds
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Assuming that 1/ρ is a step function, constant in the element and zero just
outside of the element, partial integration leads to an intermediate form,

εKm =
1

2π

[
(1+K)(χ1 + i)

ρ
z1e

iKθ1 + (1+K)(χ2 − i)

ρ
z2e

iKθ2− (9.48)

(1+K)

∫ s2

s1

z′′eiKθds − K

ρ2 (K −G)

∫ s2

s1

zeiKθds

]

Here χi is the contribution due to edge focusing of the magnet and zi = z(si).
Applying partial integration to the last two terms yields,

εKm
= 1

2π

[
(1+K)(χ1 + i)

ρ
z1e

iKθ1 + (1+K)(χ2 − i)

ρ
z2e

iKθ2− (9.49)

−(1+K)

[

(z′2 −
iK

ρ
z2)e

iKθ2 − (z′1 −
iK

ρ
z1)e

iKθ1

]

+ (
K(K2 +G)

ρ2
)

∫ s2

s1

zeiKθ ds

]

In the uncoupled case the last term can be evaluated exactly using the homogeneous
equation z′′ = −Kzz, where Kz(s) is the focusing function of the guide field.
Substitution and integration by parts yields,

∫ s2

s1

zeiKθds = (z′2 − iK
ρ

z2)e
iKθ2 − (z′1 − iK

ρ
z1)e

iKθ1

Kz −K2/ρ2 . (9.50)

DEPOL uses Courant-Snyder parameters from the MAD output files to construct
the z1,2 and z′1,2 values. In calculating the resonance integral, one can factor out the
phases which change with each period around the lattice. The remaining elements
in the sum remain constant for each pass. This permits the evaluation of the integral
over just one pass.

Later other more general algorithms have been developed to calculate spin res-
onances for arbitrary spin orientation [29]. Currently there exists the SPRINT [21]
code which also can perform these calculations. As well an extension to the DEPOL
algorithm was developed to handle resonance calculations in the case of linear
betatron coupling. More recently the code ASPIRRIN [20] was developed to
calculate spin resonances in the presence of snakes.

9.8 Integration of the Spinor T-BMT Equation for Many
Resonances

In the case that one wants to include the effects of two resonances an analytical
approximation has been derived [30], which makes use of the fact that the spinor
form of the T-BMT equation can be expressed as a parametric oscillator. However
these expressions are long and unwieldy. They do however permit the identification
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of regions in θ where the system can be approximated using only the single
dominant resonance outside of the parametric resonance tongues.

In the case that one has more than two resonances, then numerical methods
should be used. The T-BMT c++ method performs this integration using a 4th
order Magnus Gaussian quadrature. With the spinor T-BMT equation expressed
compactly as,

� ′ = A(θ)�, �(θ0) = �0 (9.51)

it evaluates A(θ) at two orbital locations θ + ( 1
2 ±

√
3

6 )h with step size h:

A1 = A

[

θn +
(

1

2
−
√

3

6

)

h

]

(9.52)

A2 = A

[

θn +
(

1

2
+
√

3

6

)

h

]

.

These are then used to calculate the � used to propagate the spinor:

�[4](h) = h

2
(A1 + A2)− h2

√
3

12
[A1, A2] (9.53)

�n+1 = e�[4](h)�n

Here we use the identity,

eia·σ = cos |a|I + i sin |a|a · σ|a| (9.54)

to generate the two-by-two complex matrix to transport the spinors. To reduce
the number of integration steps necessary, the T-BMT code transforms first to the
interaction frame before performing the 4th order Magnus Gaussian quadrature.

9.9 Initialization of Spinors

For any realistic spin tracking it is necessary to initialize the spinors to the invariant
spin field (ISF) before tracking. For most lower energy machines the ISF trivially
points vertically along the dominant dipole guide field. In these cases initialization
involves setting the spinor to point vertically up or down. However at higher energies
or with machines having more complex guide fields the ISF can assume a very
complex and spread-out structure as shown in Fig. 9.4. If the spinors are not initially
aligned with the ISF then they will execute a precession around the local ISF. This
will make it appear that there is a spin resonance or depolarization mechanism when
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Fig. 9.4 Structure of the
Invariant Spin Field

in fact no polarization would be lost if the spins had be initially aligned with the ISF.
Several approaches using stroboscopic averaging were developed by K. Heinemann
and G.H.Hoffstatter [21]. T-BMT code and GPUSPINTRACK code employs one of
the forward tracking methods detailed in this paper. Here three spin vectors each of
which points along the x̂ (= (1, 0, 0)), ẑ(= (0, 1, 0)), and ŝ (= (0, 0, 1)) directions
are tracked for each orbital phase space point. These are then tracked through one
turn to establish the one turn spin transport matrix (R0), the eigenvector of which is
calculated to give the spin closed orbit vector n̂0. This is then dotted into subsequent
transport matrices Rn each turn and accumulated in a total vector b,

bn+1 = bn + Rn · n̂0. (9.55)

which is then averaged and normalized to yield the ISF for each phase space point
which we want to track. One then needs to select an appropriate number of turns to
achieve convergence to the ISF. The number of turns depends on ones proximity to
a resonance and the overall nature of the ISF. Evidence that one has not converged
can be seen in the turn-by-turn precession of the spin vector for a particle which is
not aligned with the ISF.

9.10 Homework

•? Exercise 1

Show that in the absence of solenoid magnets and vertical bends, the T-BMT
equation can, to first order in the coordinates (x, s, z), be rewritten as

dS
ds
≈ v

(
dt

ds

)

S×� ≈ S×�
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�x = −(1+Gγ )z′′

�s = (1+Gγ )z′/ρ − (1+G)

(
z

ρ

)′

�z = x ′′(1+Gγ )− 1+Gγ

ρ

Here you will use the fact that Bρ = γmv/e and approximate dt
ds
≈ 1/v since the

other terms will introduce orders of x, s, z and 1/ρ beyond our approximation. To
accomplish this you will also need to first express the perpendicular and parallel
magnetic field components in the forms

B⊥ = 1

v2 (v× B)× v, B‖ = 1

v2 (v · B)v. (9.56)

Then use the Lorentz force equation to express v × B, hence also B⊥ in terms of
dv/dt:

dv
dt
= q

mγ
v× B, (9.57)

B⊥ = mγ

qv2

dv
dt
× v. (9.58)

In addition, make use of the fact that

ds

dt
= v
[(

1+ x
ρ

)2 + x ′2 + z′2
]1/2 , (9.59)

where ρ denotes the radius of curvature of the local Frénet-Serret coordinate system.

Solution
The solution involves using 9.2 together with 9.56 through 9.59 in the T-BMT
equation 9.1 to obtain the first-order result 9.56. In the present context, “first-order”
means drop all terms of second order and higher in x, z, 1/ρ and their derivatives.
Also remember to make use of the initial assumption that solenoids and vertical
bends are absent.

You also need to use the fact that the vertical field can be approximated using
the strength of the dipole guide field, Bz ≈ −[Bρ]

ρ
. The longitudinal field can be

approximated using Ampere’s law and assuming that Bs(z = 0) = 0.

∂Bs

∂z
= ∂Bz

∂s
= −Bρ

(
1

ρ

)′
(9.60)
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Accounting for the derivatives of the x, s, z basis vectors of S we can obtain,

dSx

ds
= Ss(�z + 1/ρ)−�sSz

dSs

ds
= −Sx(�z + 1/ρ)+�xSz

dSz

ds
= Sx�s −�xSs

If we change to a basis vector which rotates with the beam (ê1, ê2, ê3) we obtain,

dS
ds
= f× S,

f1 = (1+Gγ )z′′,

f2 = −(1+Gγ )z′/ρ + (1+G)

(
z

ρ

)′
,

f3 = −(1+Gγ )x ′′ + Gγ

ρ
.

(9.61)

More formally, we can use the following derivation steps, neglecting solenoid
magnets and vertical bends.

B⊥ = (v× B)× v
v2 (9.62)

Using the Lorentz force equation we can express v× B as:

dv
dt
= e

γm
v× B (9.63)

B⊥ = 1

v2

mγ

e

dv
dt
× v (9.64)

Now expressing v and its derivative in terms of its coordinates we get,

dv
dt
= d

dt

[
dr
dt

]

(9.65)

dr
dt
= ds

dt

dr
ds

(9.66)

v = ds

dt

(
dr0(s)

ds
+ dx

ds
x̂ + s

dx̂

ds
+ dz

ds
ẑ+ z

dẑ

ds

)

= ds

dt

(
(1+ x/ρ) ŝ + x ′x̂ + z′ẑ

)
(9.67)
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dv
dt
=
(

ds

dt

)2 d

ds

[
(1+ x/ρ) ŝ + x ′x̂ + z′ẑ

]
(9.68)

=
(

ds

dt

)2 [(2x ′

ρ
+ x

(
1

ρ

)′)
ŝ+

(

x ′′ − 1

ρ
− x

ρ2

)

x̂ + z′′ẑ
]

Now calculating the cross product,

dv
dt
× v =

(
ds

dt

)3 [

x̂

[(
2x ′

ρ
− x

(
1

ρ

)′)
z′ −

(

1+ x

ρ

)

z′′
]

−ŝ

[

z′
(

x ′′ − 1

ρ
− x

ρ2

)

− x ′z′′
]

+ẑ

[(

x ′′ − 1

ρ
− x

ρ2

)(

1+ x

ρ

)

−

x ′
(

2
x ′

ρ
+ x

(
1

ρ

)′)]]

≈
(

ds

dt

)3 [

−x̂z′′ + ŝ
z′

ρ
+ ẑ

(

x ′′ − 1

ρ

)]

(9.69)

Where at the last step we drop all terms higher than second order in x, z, s and 1
ρ

and their derivatives. The expression for B⊥ becomes,

B⊥ ≈
mγv

e

[
−x̂z′′ + ŝ z′

ρ
+ ẑ

(
x ′′ − 1

ρ

)]

[(
1+ x

ρ

)2 + x ′2 + z′2
]3/2

≈ mγv

e

[

−x̂z′′ + ŝ
z′

ρ
+ ẑ

(

x ′′ − 1

ρ

)]

. (9.70)

Here the denominator goes to 1 when we drop all the second order terms in x, z, s

and 1/ρ and their derivatives. We also used the fact that,

ds

dt
= v
[(

1+ x
ρ

)2 + x ′2 + z′2
]1/2 . (9.71)
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For the parallel field we get,

B‖ = (v · B) v
v2

=
(

ds
dt

)2

v2

[(

1+ x

ρ

)

Bs + x ′Bx + z′Bz

] [(

1+ x

ρ

)

ŝ

+x ′x̂ + z′ẑ
]

=
[(

1+ x
ρ

)
Bs + x ′Bx + z′Bz

] [(
1+ x

ρ

)
ŝ + x ′x̂ + z′ẑ

]

[(
1+ x

ρ

)2 + x ′2 + z′2
]

≈
(

1− 2
x

ρ

)[

ŝ

(

Bs + 2
x

ρ
Bs + x ′Bx + z′Bz

)

+

x̂x ′Bs + ẑz′Bs

]

≈ (Bs + z′Bz

)
ŝ (9.72)

Here the first approximation involves dropping terms x, z, s and 1/ρ and their
derivatives to second order and above. The second approximation involves assump-
tions of the relative magnitude of Bs and z′Bz to be >> Bsx/ρ, x ′Bx, z′Bs . This
assumes no solenoid type magnets. The vertical field can be approximated using
the strength of the dipole guide field, Bz ≈ −[Bρ]

ρ
. The longitudinal field can be

approximated using Ampere’s law and assuming that Bs(z = 0) = 0.

∂Bs

∂z
= ∂Bz

∂s
= −Bρ

(
1

ρ

)′

Bs = −Bρz

(
1

ρ

)′
ŝ (9.73)

B‖ ≈
(

−Bρz

(
1

ρ

)′
+ z′

ρ
Bρ

)

ŝ = −Bρ

(
z

ρ

)′
ŝ

Putting this into the T-BMT equation we obtain,

dS
ds
≈ v

(
dt

ds

)

S×� ≈ S×�

�x = −(1+Gγ )z′′

�s = (1+Gγ )z′/ρ − (1+G)

(
z

ρ

)′

�z = x ′′(1+Gγ )− 1+Gγ

ρ
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Here we used Bρ = γmv/e and approximate dt
ds
≈ 1/v since the other terms will

introduce orders of x, s, z and 1/ρ beyond our approximation. Accounting for the
derivatives of the x, s, z basis vectors of S we can obtain,

dSx

ds
= Ss(�z + 1/ρ)−�sSz

dSs

ds
= −Sx(�z + 1/ρ)+�xSz

dSz

ds
= Sx�s −�xSs

If we change to a basis vector which rotates with the beam (ê1, ê2, ê3) we obtain,

dS
ds
= f× S

f1 = −�x = (1+Gγ )z′′

f2 = −�s = −(1+Gγ )z′/ρ + (1+G)

(
z

ρ

)′

f3 = −(�z + 1/ρ) = −x ′′(1+Gγ )+ Gγ

ρ
(9.74)

•? Exercise 2

Define a two-component spinor � such that the j -th component of the spin
vector is given by

Sj = 〈�|σj |�〉 = �†σj�. (9.75)

Here � denotes a classical vector with components u and d , which are related to the
three components of S by

S1 = u∗d + ud∗

S2 = −i(u∗d − ud∗)

S3 = |u|2 − |d|2.
(9.76)
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Using σ = (σx, σs, σz), the vector of the Pauli spin matrices, and ζ(s) = −ω1+iω2,
show that Eq. 9.61 can be transformed into,

d�

ds
= − i

2
(σ · f)� = − i

2
H� = − i

2

(
Gγ
ρ

−ζ(s)

−ζ(s)∗ −Gγ
ρ

)

�, (9.77)

where we have dropped the first term in ω3,−(1+Gγ )x ′′, since it is small compared
to Gγ .

Solution

dS
ds
= f× S (9.78)

S = �†σ� (9.79)

S′ = �†′σ� + �†σ� ′

= f× (�†σ�) = �†(f× σ )�

= − i

2
�†[(σ · f)(σ )− (σ )(σ · f)]�

(9.80)

where we used the identity [σ · f, σ ] = 2i(f× σ ). We can then identify that

� ′ = − i

2
(σ · f)� (9.81)

•? Exercise 3

Using the differential relation dθ = ds/ρ, one may transform 9.77 so as to make
θ the independent variable. Then, considering the effects of a single resonance,
wherein ζ(θ) becomes εKe−iKθ , the T-BMT equation becomes

d�

dθ
= − i

2

(
Gγ −εKe−iKθ

−ε∗KeiKθ −Gγ

)

�. (9.82)

At this point, assume Gγ = constant, and transform the spinor equation 9.82 into
the resonance precessing frame by defining

�K(θ) = e
i
2 Kθσz�(θ). (9.83)
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Show that

d�K

dθ
= i

2

(
K −Gγ εK

ε∗K Gγ −K

)

�K. (9.84)

Solution

� =
(

e− iKθ
2 0

0 e
iKθ

2

)

�K (9.85)

�K =
(

e
iKθ

2 0

0 e− iKθ
2

)

� (9.86)

� ′K =
iK

2

(
e

iKθ
2 0

0 −e− iKθ
2

)

� +
(

e
iKθ

2 0

0 e− iKθ
2

)

� ′ (9.87)

� ′K =
iK

2

(
e

iKθ
2 0

0 −e− iKθ
2

)

� − i

2

(
e

iKθ
2 0

0 e− iKθ
2

)(
Gγ −εKe−iKθ

−ε∗KeiKθ −Gγ

)

�.

(9.88)

� ′K = iK
2

(
e

iKθ
2 0

0 −e− iKθ
2

)(
e− iKθ

2 0

0 e
iKθ

2

)

�K

− i
2

(
e

iKθ
2 0

0 e− iKθ
2

)(
Gγ −εKe−iKθ

−ε∗KeiKθ −Gγ

)(
e− iKθ

2 0

0 e
iKθ

2

)

�K. (9.89)

� ′K =
i

2

(
K 0
0 −K

)

�K − i

2

(
Gγ −εK

−ε∗K −Gγ

)

�K. (9.90)

� ′K =
i

2

(
K −Gγ εK

ε∗K Gγ −K

)

�K. (9.91)

•? Exercise 4

The code SpinTrack.cc also known as T-BMT, integrates the single-
resonance T-BMT equation 9.84 with two orthogonal snakes located at θ = 0
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Table 9.1 T-BMT code’s input file Resonance.in
k0: 452
w0R,w0I: 0.0 0.0
k1: 453
w1R,w1I: 0.0 0.0
k2: 393
w2R,w2I: 0.432733 0.112896
k3: 392
w3R,w3I: 0.0 0.0
k4: 394
w4R,w4I: 0.0 0.0
k5: 422
w5R,w5I: 0.0 0.0
k6: 423
w6R,w6I: 0.0 0.0

and θ = π , with an axis of rotation oriented at angle φ = ±π/4, as is the case in
RHIC [31]. The code takes as input the file Resonance.in (Table 9.1 [31]).

In this version of the code, we integrate the single-resonance T-BMT equation
by taking the matrix exponential of Eq. 9.84. In this case, our single resonance is
located at K = k2 = 393 + Qy = 422.67 (Qy = 29.67), with strength εK =
0.432733 + i 0.112896. The code’s default initial value for Gγ0 is 414.8, with an
acceleration rate of dGγ

dθ
= 3.74118×10−6 rad−1 (as in RHIC). The default number

of turns is NT = 670,000.

• With Resonance.in in your directory, run the code using:
mpiexec -n 1 ./SpinTrack.out

This will generate a file called:
TBTAmp1.000Tau5.000Qs8.900CV2.00Q29.670R0.dat

After some header information, it lists the turn number, value of Gγ , vertical
component of the spin vector Sy , and the estimated Envelope of the Spin vector
given by the following equation:

δ = K −Gγ

λ =
√

δ2 + |εk|2

b = |εK |
λ

sin
λπ

2

Senv = 1− 8b2(1− b2)

(9.92)

Identify the locations of the nodes and anti-nodes.
• Now run the same code using the command

mpiexec -n 1 ./SpinTrack.out \
nstrobe= 1 Ggam0= 420.0 NT= 250000
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In this case, you are now starting around an anti-node and turning off
stroboscopic averaging to orient your initial spin vector. What is different about
this tracking? How do you think you could compute the final polarization in this
case?

• Run it again turning back on stroboscopic averaging by using:
mpiexec -n 1 ./SpinTrack.out Ggam0= 420.0 NT=

250000
How does the spin vector behave now?

• Run the code again, now using more particles:
mpiexec -n 20 ./SpinTrack.out Ggam0= 420.0 NT= 250000
Now the code should produce 20 files one for each particle where the complex

phase of the spin resonance is distributed evenly over 0 to 2π . The “R0”, “R1”
indicate the particle number for each file. The python script AvgFiled.py lists all
the TBT*.dat files in the current directory and then reads them in calculating an
average for the vertical Spin component. Run it using:

python AvgFiled.py > YourFileName.dat
It generates a file listing turn number, Gγ , and average vertical Spin. Notice

how the average trajectory converges.
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Chapter 10
Polarized Ion Sources

Anatoli Zelenski

Abstract State-of-the art of polarized proton, H− ion, D+ (D−) and 3He2+ ion
beam sources are presented. Feasibility studies of new techniques are in progress
at BNL and other laboratories. Polarized deuteron beams will be required for the
polarization program at the Dubna NICA collider and at the deuteron Electric Dipole
Moment experiment. Experiments with polarized 3He2+ ion beams are a part of the
experimental program at the future Electron Ion Collider.

10.1 Introduction

Polarization is an intrinsic property of light (photons), electrons, protons, nuclear
beams, and the study of polarization effects provides essential information on
particle structure and their Interactions. Collider experiments with polarized beams
at RHIC [1] and HERA (at HERA, the experimental program with polarized electron
beam and polarized internal target, HERMES, has been completed) provide crucial
tests of QCD and Electroweak interaction. Polarization asymmetries and parity
violation are strong signatures for the identification of the fundamental processes,
which are otherwise inaccessible. Such experiments require the maximum available
luminosity, and therefore polarization must be obtained as an extra beam quality
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without sacrificing intensity. This is already the case for electron accelerators. In
a storage ring, an electron beam is self-polarized by the Sokolov-Ternov effect.
For linear accelerators, a great effort in polarized electron source development was
finally rewarded by achievement of up to 90% polarization and high beam intensity,
which will be sufficient to run high-current accelerators at Jefferson Laboratory or
the future International Linear Collider at maximum intensity with polarized beam.
There were proposals to polarize the high-energy proton beam in a storage ring by
the Stern-Gerlach effect (or antiprotons by the spin-filtering technique). But so far,
the only feasible option is to accelerate the polarized beam produced in the source
and make sure that polarization will survive during acceleration and storage. High
intensity polarized H− ion sources are presently a common choice for high-energy
accelerators due to the advantage of stripping injection into the accelerator ring.
Polarized deuteron beam will be required for the deuteron EDM (Electric Dipole
Moment) experiment and is also planned for NICA collider at JINR, Dubna [2].
Experiments with accelerated polarized 3He2+ ion beams will be a part of the
program at future Electron Ion Collider [3].

10.2 Polarization Techniques

10.2.1 Spin Filtering Techniques

The basic feature of these polarization techniques is an attenuation: scattering
out, adsorption, defocusing, quenching of unwanted part of light, electron, atomic,
proton, or nuclei beams having “unwanted” direction of polarization. The adsorption
of one component of linear polarization of light in some materials is called
dichroism and is widely used in science, technology, and everyday life (polarization
sunglasses, photography). A strong spin dependence of thermal energy neutron
beam capture in a polarized 3He gas cell is often used for neutron beam polarization
and polarization analysis. In Lamb-shift polarized sources the metastable hydrogen
atoms in unwanted spin states are quenched by the “spin-filter” to the ground
states and remaining polarized atoms can be produced by selective ionization from
metastable states.

Selective focusing by sextupole separating magnets is used for hydrogen (deu-
terium) beam polarization by electron spin in Atomic Beam Sources (ABS) of
polarized ions and polarized internal targets. In these sources the atomic hydrogen
is produced by dissociation of hydrogen molecules in RF discharge. Hydrogen
gas flows out the dissociator volume to vacuum forming gaseous jet. The atomic
hydrogen beam is formed then from central part of the jet using skimmers and
diaphragms. A typical velocity of atoms in the beam is about (1 − 2) × 105 cm/s,
which is achieved by cooling of the dissociator nozzle to a temperature of 30–80 K.
The sextupole magnetic field acts on electron magnetic moment axially aligned with
the field gradient towards magnet tips as a focusing lens. The other component
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having opposite electron spin direction is defocused. Then the electron polarization
is transferred to the protons by means of radio-frequency transitions. The atomic
beam of a selected spin-state is directed into an ionizer (or a storage cell). The
polarized proton or H− ion beam can be produced by ionization of atomic beam
in magnetic field of about 1.5 kG, which is sufficient to break electron-proton spin
coupling while preserving proton polarization. The ABS beam can be used as an
internal target in accelerator-collider storage ring (polarized H-jet polarimeter at
RHIC [4]), or for feeding storage cell type of internal targets. There is a proposal
to use polarized atomic hydrogen storage cell for antiproton polarization in the
storage ring by filtering (removing) of unwanted states (PAX proposal for HESR
at FAIR [5]).

10.2.2 Optical Pumping

Electron or nuclear polarized atoms can be obtained in process of absorption of
polarized photons from external source of polarized light and subsequent spon-
taneous emission of un-polarized photon (optical pumping). Angular momentum
of atom electron shell is changed during the process and atom takes on electron
polarization. The electron polarization is transferred to nuclear through spin-
spin interaction if optical pumping takes place in sufficiently low magnetic field.
Population of spin states of atoms is changed during the optical pumping without
filtering process due to absorption of external polarized photons which angular
momentum is transmitted to atoms. For optical pumping of rubidium atoms laser
radiation with wavelength of 795 nm is used to excite transitions: 5S1/2 → 5P1/2.
Polarized 3He atoms are obtained by exciting transitions 23S1/2 → 23P0 (1083
nm). Direct optical pumping of hydrogen atoms cannot be used so far for polarized
proton production due to absence of suitable lasers with wavelength of 121.5 nm
(Lyman alpha radiation). Doppler-shift for counter propagating relativistic atomic
hydrogen and laser beam can shift the transition wavelength to an accessible range.
The relativistic atomic hydrogen beam of a 500–800 MeV energy can be produced
by stripping of accelerated H− ion beam in the carbon stripping foil. For these
energies the 121.5 nm transition wavelength will be shifted to 330–410 nm range,
which can be produced by using the second harmonics of tunable lasers [6].

10.2.3 Polarization-Transfer Technique

In any type of polarized proton (H− ion) source the first step is the generation of
an electron-spin polarized atomic beam (see Fig. 10.1). The polarization is then
transferred to the protons by hyperfine interaction and finally the beam is ionized.
The difference is in the velocity of the atomic beam. It is comparatively easy to
polarize a “slow” (thermal energy) beam by using separating magnets, as discussed
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Fig. 10.1 Ion polarization techniques. Three-step process: first-electron spin polarization; second-
electron to proton polarization transfer; third-ionization to positive or negative ion beam

above. The advantages of using “fast” (a few keV energy) beams are higher intensity
and simple, more efficient ionization. The electron-spin polarization of the “fast”
H− beam is produced either in a charge-exchange process, when primary protons
capture polarized electrons from polarized atoms in a vapor cell, or in spin-exchange
collisions. In this technique optical pumping is used to get polarized alkali atoms.
This technique is called an “Optically-Pumped Polarized Ion Source” (OPPIS),
although polarized electrons can also be captured from a ferromagnetic foil (as in
the original Zavoiski’s proposal), or from hydrogen, or an alkali-metal atomic beam
polarized by separating magnets [7].

There is no space-charge limitation in the spin-exchange collisions between
hydrogen and Rb atoms therefore higher beam intensity can be achieved in this
scheme. But the cross-section of the spin-exchange collisions is smaller than that
of the charge-exchange collisions and higher (about 1015 atoms/cm2) alkali vapor
thickness is required, which can be produced only in a cell 100 cm long (due to
radiation trapping limit on the maximum vapor density). The proposed scheme in
which atomic H collisions in the mixture of He gas and Rb vapor in the same cell,
i.e. combining charge-exchange and spin-exchange collisions allows the Rb vapor
thickness to be reduced to 4 × 1014 atoms/cm2, which can be produced in a cell
40 cm long.
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10.3 Atomic Beam Source with Resonant Plasma Ionizer

A polarized ABS ion source with resonant plasma ionizer has been developed at
INR Moscow [8]. A deuterium plasma injector is used in this source for production
of polarized H− ions. The injector generates plasma consisting mainly from D+
and D− ions. The present version of the plasma injector is shown schematically
in Fig. 10.2. The plasma flux from the arc-discharge plasma source is enriched by
negative ions in a surface-plasma converter. Positive ions are converted into neutral
atoms with eV energy in collisions with a neutralizer internal surface. Polarized
atomic hydrogen beam is injected into the plasma and polarized H− ions are

produced via reaction:
→
H0 +D− →

→
H− +D0.

The plasma flux is guided to the internal surface of the neutralizer by the
magnetic field created by the plasma coil (in longitudinal direction) and by
the converter electromagnet (transversal direction). Plasma ions interact with the
neutralizer surface and most of them are reflected as neutral hot atoms. The reflected
hot atoms hit the converter cylinder internal (molybdenum) surface where the
atoms are converted partially into negative ions and injected into the ionization
region along the fringing solenoid field lines. With this ionizer a polarized H− ion
beam with peak current of 4 mA has been obtained with D− ion beam current of
62 mA. The polarization of the H− ion beam was measured to be 0.91± 0.03. The
Lamb shift polarimeter has been used for the polarization measurements. Figure
of merit of the polarized H− ion beam produced P2I has record value of 3.2 mA.
Efficiency of direct conversion of polarized hydrogen atoms into polarized H−
ions reached of 12.5%. Polarized D− ion beam with peak intensity up to 2 mA
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and polarization up to 90% from nominal of vector polarization ±1 and tensor
polarization of +1,-2 have been obtained from the polarized ion source CIPIOS at
IUCF [9]. The source was developed in a collaboration of IUCF and INR Moscow.
The source had a nearly resonant charge-exchange plasma ionizer and produced
also polarized H− ions (1.8 mA peak) and unpolarized H− and D− ion beams
(40 mA and 30 mA respectively) with pulse duration of 300 μs and repetition rate
of 2 Hz. The emittance was minimized by a carefully designed focusing of an
atomic hydrogen beam by permanent magnet sextupoles with magnetic field up
to 1.4 T and by restriction of magnetic field in a charge-exchange region to value
≤ 1.0 kG. The normalized emittance of the polarized ion beams was measured to be
1.2 πmm mrad.

10.4 Polarized Source for NICA

The program of polarization research at NICA Ion Collider (Joint Institute for
Nuclear Research at Dubna, Russia) is based on the acceleration of polarized proton
beams up to 12 Gev and deuteron beams up to 5.6 GeV/nucleon beam energy in
the NUCLOTRON accelerator and beam injection in the collider rings. A high
intensity pulsed source of polarized protons and deuterons is required to achieve the
number of accelerated deuterons of∼1010 deuterons/cycle (with the present one turn
injection scheme, 10 μs pulse duration, 1 Hz repetition rate). A new polarized ABS
was developed in a collaboration of JINR and INR Moscow. Parts of the CIPIOS
source from IUCF were delivered to JINR and will be used for the Dubna polarized
deuteron source (see Fig. 10.3) [10].
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A project goal is a polarized deuteron beam from the source with a peak
intensity of 10 mA and polarization of 90% from nominal vector polarization ±1
and tensor polarization +1, −2. The polarized current of a 6 mA and polarization
88+/−5% were obtained in Run-2016-17. A nearly resonant charge-exchange
deuteron plasma ionizer with storage cell will be used to increase intensity of the
polarized ion beam from the source, reduce the polarized ion beam emittance and
the unpolarized proton current in the charge-exchange region, in comparison with a
source without the storage cell, and respectively reduce background current of H2+
ions, which will not be separated from polarized deuterons in the bending magnet.
The source development is in progress for further beam intensity and polarization
improvements.

10.5 Polarized Source with Cesium Beam Ionizer at COSY

The principle of the source is an ionization of pulsed polarized hydrogen or
deuterium beams (20 ms pulse duration, 0.5 Hz repetition rate) in collisions with
a pulsed neutral cesium beam having a kinetic energy of about 45 keV [11].
The Cs ion emitter is a porous tungsten button on a molybdenum heater. The
pulsed operation of the Cesium gun is controlled via a high voltage electrode. The
parameter space for the operation of the gun was carefully mapped to find a setting
that delivered a nearly rectangular pulse shape. This was an important prerequisite
for the precise transport of this beam, which is strongly governed by space charge
effects in the initial phase. After the Cs+ beam formation to match the polarized
hydrogen beam in the ionizing region the Cs+ beam is neutralized in the cesium
neutralizer cell. In a charge exchange reaction is taking place in a solenoid field,
negatively charged hydrogen, or deuteron, ions are created and accelerated toward
the extraction elements. Then the ions are bent magnetically by 90◦, passed through
a Wien-filter and enter the transporting source beam line that guides them into the
cyclotron. The new record value of 50 μA and 90% polarization was reached during
routine source operation in 2005. This exceeds the original design value of 30 μA.
It was the result of the optimization of all source components [12].

A breakthrough decision was to develop a pulsed cesium beam matched to the
short injection period of up to 20 ms for COSY, thus virtually eliminating the
severe sputtering damage that had been an obstruction for reliable operation. Beam
diagnostics, like beam scanner, Faraday cups and viewer, for the cesium beam were
added to successfully shape the transverse phase space for optimal overlap with the
atomic hydrogen or deuterium beam.
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10.6 Optically Pumped Polarized H− Ion Source at RHIC

A novel polarization technique successfully implemented for the upgrade of the
RHIC polarized H− ion source to higher intensity and polarization for the first
production Run-2013 [13]. In this technique, a proton beam inside the high magnetic
field solenoid produced by ionization of the atomic hydrogen beam (from an
external source) in the He-gas ionizer cell. Proton polarization is produced by the
process of polarized electron capture from the optically-pumped Rb vapor. Polarized
beam intensity produced in the source exceeds 4.0 mA. Strong space-charge effects
cause significant beam losses in the LEBT (Low Energy Beam Transport, 35.0 keV
beam energy) line. The LEBT was modified to reduce losses. As a result, 1.4 mA
of polarized beam was transported to the RFQ and 0.7 mA was accelerated in linac
to 200 MeV. A maximum polarization of 84% (in the 200 MeV polarimeter) was
measured at 0.3 mA beam intensity and 80% polarization was measured at 0.6 mA.
The upgraded source reliably delivered beam for the 2013 polarized run in RHIC
at
√

S = 510 GeV. This was a major factor contributed to the RHIC polarization
increase to over 60% for colliding beams.

10.6.1 OPPIS with the Atomic Hydrogen Beam Injector

The polarized beam for the RHIC spin physics experimental program is produced
in the Optically-Pumped Polarized H− Ion Source (OPPIS) [14]. An Electron
Cyclotron Resonance (ECR) ion source was used as the primary proton source in the
old operational polarized source. The ECR source was operated in a high magnetic
field. The proton beam produced in the ECR source had a comparatively low
emission current density and high beam divergence. In pulsed operation, suitable
for application at high-energy accelerators and colliders, the ECR source limitations
can be overcome by using a high brightness proton source outside the magnetic
field instead of the ECR source. In this technique (which was implemented for
the first time at INR, Moscow [15]), the proton beam is focused and neutralized
in a hydrogen cell producing the high brightness 6.0–8.0 keV atomic H0 beam.
The atomic H0 beam is injected into the superconducting solenoid, where both
the He ionizer cell and the optically-pumped Rb cell are situated in the 25–30 kG
solenoid field. The solenoid field is produced by a new superconducting solenoid
with a re-condensing cooling system. The injected H atoms are ionized in the He
cell with 60–80% efficiency to form a low emittance intense proton beam and then
enter the polarized Rb vapor cell (see Fig. 10.4). The protons pick up polarized
electrons from the Rb atoms to become a beam of electron-spin polarized H atoms
(similar to the ECR based OPPIS). A negative bias of about 3.0–5.0 kV applied
to the He cell decelerate the proton beam produced in the cell to the 2.0–3.0 keV
beam energy, optimal for the charge-exchange collisions in the rubidium and sodium
cells. This allows energy separation of the polarized hydrogen atoms produced after
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Fig. 10.4 A new polarized source layout: (1) atomic hydrogen injector; (2) pulsed He—gaseous
ionizer cell; (3) optically-pumped Rb-vapor cell; (4) Sona-transition; (5) Na-jet ionizer cell

lower energy proton neutralization in Rb-vapor and residual hydrogen atoms of the
primary beam.

10.6.2 Fast Atomic Beam Source Development

In the atomic hydrogen beam source, the primary proton beam is produced by a
four-grid multi-aperture ion extraction optical system and neutralized in the H2
gas cell downstream from the grids. A high-brightness atomic hydrogen beam
was obtained in this injector by using a plasma emitter with a low transverse ion
temperature (of about 0.2 eV), which is formed by plasma jet expansion from the
arc plasma generator [16]. The multi-hole grids are spherically shaped to produce
“geometrical” beam focusing. The grids are made of 0.4 mm thick molybdenum
plates. Holes (0.8 mm diameter) in the plates were produced by photo-etching
techniques. The hole array forms a hexagonal structure with a step of 1.1 mm and
outer diameter of 5.0 cm. The grids were shaped by re-crystallization under pressure
at high temperature and were welded to stainless steel holders by a pulsed CO2
laser. At an emission current density of 470 mA/cm2, the angular divergence of the
produced beam was measured to be ≈10–12 mrad.

The focal length of the spherical ion extraction system was optimized for the
OPPIS application, which is characterized by a long polarizing structure of the
charge-exchange cells and small (2.0 cm diameter) Na-jet ionizer cell, which is
located 240 cm from the source (see Fig. 10.4). An optimal drift-space length of
about 140 cm is required for convergence of the 5 cm (initial diameter) beam to
2.5 cm diameter He-ionizer cell. About 20% of the total beam intensity (≈3.5 A) can
be transported through the Na-jet cell acceptance by using the optimal extraction
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grid system with a focal length: F≈200 cm. Three spherical IOS were tested on
the test-bench at BNL. The focusing lengths of IOS #1 and #3 were 150 cm and
for IOS#3 F≈250 cm, which allowed study of optimal beam formation. IOS#2
produced about 500 mA equivalent atomic H beam within the 2.0 cm diameter Na-
jet ionizer acceptance (at the distance 240 cm from the source) and 16 mA H− ion
beam current.

10.6.3 Helium Ionizer Cell: Beam Energy Separation

The He-ionizer cell is a 40 cm long stainless-steel tube with an inside diameter
25.4 mm (see Fig. 10.5). A new fast “electro-magnetic” valve for He-gas injection
to the cell was developed for operation in the 30 kG solenoid field. In this valve, a
pulsed current of about 100 A is passed through the flexible springing plate (made
of beryllium bronze foil with a thickness of 0.5 mm). The Lorentz force: F = eL
[I×B] = 15 N for a L=5 cm long plate. The plate is fixed at one end and this force
bends the plate and opens the small (0.5 mm diameter) hole which is sealed with a
Viton O-ring. The pulsed current rise-time is ≈50 μs and gas pressure rise time is
about 100 μs.

The proton beam produced in the He-cell is decelerated from 6.5 keV to 2.5 keV
by a negative potential of 4.0 keV applied to the cell. At the 2.5 keV beam energy,
the H− ion yield in the sodium ionizer cell is near maximum (≈8.4%) and the
polarized electron capture cross-section from Rb atoms is also near the maximum of
≈0.8×10–14 cm2. The deceleration was produced by a precisely aligned (to reduce
beam losses) three wire-grid system. A negative bias applied to the first grid at the
cell entrance and second grid at the cell exit to trap electrons in the cell for space-
charge compensation. Fine tuning of the grids voltages is required for the polarized
beam current optimization and total current reduction of the He-cell pulsed power
supply.

Fig. 10.5 A schematic layout of the He-ionizer cell and deceleration system for the polarized
beam energy separation
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About 40% residual (which passed the He-cell without ionization) atomic beam
component at 6.5 keV energy will pass through the deceleration system and Rb cell
and be ionized in Na-cell producing H− ion beam. The H− ion yield at 6.5 keV is
about 4%. This is a significant suppression in comparison with the main 2.5 keV
beam, but it would be a strong polarization dilution unless further suppression
is applied. The H− ion beam acceleration produces polarized H− ion beam with
35 keV beam energy and un-polarized beam with 39.5 keV energy. The un-polarized
39.5 keV beam component is well separated after the 23.7 degree bending magnet
in the LEBT. In measurements of beam separation, the beam energy was varied
by the accelerating voltage applied to the Na-jet ionizer cell. The residual 6.5 keV
un-polarized beam component is strongly suppressed (to less than 2% of polarized
beam component).

10.7 RHIC Polarized Source Performance

The new source with atomic beam hydrogen injector and He-ionizer cell was
developed in 2010–2012 and commissioned for operation in Run-2013. The use
of the high brightness primary proton source resulted in higher polarized beam
intensity and polarization delivered for injection to Linac-Booster-AGS-RHIC
accelerator complex. Very reliable operation and reduced maintenance time were
demonstrated. The new OPPIS intensity and polarization exceeded the old ECR-
based source parameters and the source performances were improved in Runs
2014–2015. Further beam intensity and polarization increase were achieved in Run-
2017 with; the new IOS for the primary proton beam production, He-ionizer cell
operation optimization, and improved LEBT tune efficiency. As a result, of these
upgrades, the polarized source delivered 0.5–1.0 mA H− ion beam intensity at 82–
85% polarization as measured after the Linac at 200 MeV beam energy. The source
current is significantly higher (in excess of 4.0 mA). The largest beam losses occur
during 35 keV beam transport in the long LEBT line and energy separation process.
These losses can be reduced by continued optimization of the energy separation
system in the He-ionizer cell, optimization of beam acceleration system after the
Na-jet ionizer cell, and LEBT line optics improvements.

The beam polarization was measured in the absolute polarimeter at 200 MeV
beam energy after the Linac. Polarization losses in AGS depend on beam emittance
and corresponding bunch intensity. When extrapolated to zero intensity (small emit-
tance) polarization numbers are consistent with the absolute 200 MeV polarimeter
measurements. The AGS bunch intensity for injection to RHIC was about 2.0×1011

protons/bunch and polarization 70–72% optimized for best RHIC operation. The
beam polarization in RHIC was measured with an absolute H-jet polarimeter. As a
result, of recent H-jet intensity, detectors, DAQ upgrades and ongoing systematic
errors analysis, the statistical accuracy for the single RHIC fill measurement
reduced to less than ±3% and systematic error for absolute polarization value to
< 0.5% [13]. The steady source and AGS performances resulted in production of
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high (55–60%) average beam polarization in RHIC. The polarization for colliding
beams is higher than average polarization and exceeded 60% for a good fraction of
fills.

10.8 Polarized 3He2+ Source for EIC

The nuclear polarization in polarized 3He nuclei is mostly ( 88.6%) carried by
neutrons. The 3He2+ beam polarization produced in the source can be preserved
during acceleration in high-energy synchrotron accelerators like AGS and RHIC
by using the “Siberian snake” technique [17]. In effect, in electron-3He nuclei
collisions at EIC we can study the fundamental interactions of polarized electron
beam with high-energy polarized neutron beam, complementary to the studies of the
polarized electrons with polarized proton beam collisions. The proposed polarized
3He2+ acceleration in RHIC will require about 2×1011 ions in the source pulse and
1011 ions in the RHIC bunch. To deliver this intensity in a 20 μs pulse duration for
the injection to the Booster, the source peak current must be about 2000 μA, which
is 1000 higher than ever achieved in existed 3He2+ ion sources. We proposed a new
polarization technique for production of high intensity 3He2+ ion beam, which is
based on ionization of 3He gas (polarized by metastability exchange technique) in
the Electron Beam Ion Source (EBIS) [18]. The development of the source for EIC
is now in progress in collaboration between BNL and MIT.

The EBIS currently produces high charge state ions for injection to the RHIC
and will remain the primary source of charged ions from P to U for the eRHIC. In
the EBIS, the high intensity (10 A) electron beam is produced by the electron gun
with cathode diameter 9.2 mm and injected into the 5.0 T solenoid magnetic field.
The electron beam is radially compressed by the magnetic field to the diameter of
about 1.5 mm in the ionization region and then expanded before dumping into the
electron collector at the other end. Ions are radially confined by the space charge
of the electron beam and longitudinally trapped by electrostatic barriers at the ends
of the trap region. The ions are extracted by raising the potential of the trap and
lowering the barrier [19]. A second 5.0 T solenoid has been constructed as the part
of the extended EBIS upgrade. The polarized 3He gas will be injected and ionized
in the upstream solenoid, and 3He+ ions will be trapped and further ionized to the
3He2+ state in the downstream solenoid (see Fig. 10.6).

The 3He gaseous cell will be placed inside the EBIS “injector” solenoid and the
pulsed gas valve (similar to OPPIS valve) will be used for the gas injection into
the center of the EBIS drift tube system to minimize depolarization and increase
ionization efficiency. The second “injector” EBIS section allows using differential
pumping between the “gas injector” and the main EBIS. This is especially beneficial
for gas species production (including the 3He gas). An isolation valve between the
two EBIS sections will simplify the 3He polarizing apparatus maintenance. The
ionization in the EBIS is produced in a 5.0 T magnetic field, which preserves the
nuclear 3He polarization while in the intermediate single-charged 3He+ state. The
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Fig. 10.6 Schematic diagram of the extended EBIS. The polarized 3He gas is injected into the
drift tube of the new “injector” EBIS part

number of ions is limited to the maximum charge, which can be confined in the
EBIS. From experiments with Au32 ion production, one expects more than 2.0×1011

3He2+ ions/pulse to be produced and extracted for the subsequent acceleration
and the injection in the RHIC. After the 3He2+ beam acceleration to the energy
6 MeV/nucleon the absolute nuclear polarimeter based 3He-4He collisions will be
used for the polarization measurements.

The high 3He nuclear polarization more than 80% was achieved by the
metastability-exchange technique in the sealed glass cell in the high 2.0–4.0 T
magnetic field [20]. In these measurements, the 3He gas at 1.0–3.0 torr pressure
was contained in the glass cell and the weak RF discharge was introduced to
populate the meta-stable states. Meta-stable atoms in the 23S1 state was polarized
by optical pumping with circularly polarized (23S1 - 23P0) 1083 nm laser light.
Any contamination in the helium gas cell (hydrogen, water vapor etc.) reduces
the 3He polarization due to meta-stable states quenching. In the polarized source,
the optically pumped cell must be connected to the valve for gas injection to
the drift tube and the line for the gas refill. To eliminate the contaminations and
maintain the necessary gas purity we developed the system for 3He gas purification
and filling based on the cryo-pump, which pumps all gases except for helium.
We installed inside the conventional CTI-8 cryo-pump the additional cold vessel
(attached to the cold head of the cryo-pump) filled with charcoal granules. It was
connected to the 3He filling system by the thin wall tube. At a temperature of 46
K the pump continuously absorbing and reducing partial pressures of hydrogen,
water, hydrocarbons, and argon to the level below 10−7 torr. This pump absorbs
also quite a significant amount of 3He gas (of about 100 sccm). The absorbed
gas is released by the pump vessel heating. This provides gas storage and supply
for 3He-cell operation at the optimal pressure value. The optically pumped 3He
glass cell was attached to the gas filling system with a 200 cm long stainless tube.
The cell and filling system were mounted on a movable support and inserted
inside superconducting solenoid. To prevent 3He atoms depolarization due to travel
through the solenoid gradient field we installed an additional isolation valve close to
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Fig. 10.7 The
optically-pumped 3He cell is
attached to 300 mm long drift
tube (storage cell) inside the
5 T solenoid. The 3He cell is
at ground potential and
connected to the drift tube by
ceramic insulator

the cell in the homogeneous field region. We use a remotely controlled (pneumatic)
pumping-filling valve between the filling system and glass cell (see Fig. 10.7).

For the polarization measurements, we used the technique of the probe laser
absorption [21]. The best results on optical pumping of 3He gas in the “open”
cell were 73% with the closed isolation valve and 20% with the open isolation
valve at 3.0 torr pressure. We have studied a new EBIS drift-tube configuration to
increase the gas efficiency (minimize amount of injected 3He gas for the EBIS trap
saturation). The 3He gas will be injected into the small diameter (10–20 mm ID) drift
tube by the pulsed valve. The estimations show that a very small amount of 3He gas
of about (5–10) ×1012 atoms will be required to be injected into the drift tube for
50% EBIS trap neutralization. We are developing the pulsed valve for the 3He-gas
injection into the EBIS drift tube, which operates in the 2.0–5.0 T solenoid field.
In this valve, the pulsed current of 10–20 A passes through the flexible springing
plate (made of phosphorus bronze with a thickness of 0.12 mm). The sealing silicon
circular pad (5 mm in diameter 1.0 mm thick) was attached to the plate. The induced
Lorentz (Laplace) force: F = eL[I × B] = 2-5 N (for L=5 cm long plate) bends
the plate and opens the small (0.1 mm in diameter) hole for the gas injection into
the drift-tube. The valve prototype was tested in the 2.0 T solenoid field. The gas
flow as low as 2×1012 atoms /pulse was measured at 12 A current through the
plate. The valve was also operated with the four consecutive pulses 4 ms apart,
producing up to 1013 atoms/per cycle. This might be an optimal mode for the gas
injection distributed over 20 ms for the effective ionization by the EBIS electron
beam, while limiting the injection gas cell pressure to ≈ 10−6 mbar. After 3He2+
acceleration to a few MeV/nucleon He-D or He-Carbon collisions can be used for
polarization measurements. The Lamb-shift polarimeter at the source energy of 10-
20 keV can be used in the feasibility studies (similar to the OPPIS polarimeter).
In this technique 3He2+ ions are partially converted to He+ (2S)-metastable ions
in the alkali vapor cell. Then the hyperfine sublevel populations can be analyzed
in the spin-filter device to extract the primary 3He2+ nuclear polarization. A study
of limitation on the maximum attainable nuclear polarization in the metastability
exchange technique (at the very low polarized 3He gas consumption rate) will be
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required to define the maximum attainable polarization. Possible depolarization
effects during polarized 3He gas injection to existing EBIS prototype and multi-step
ionization process should be also studied. The expected 3He2+ ion beam intensity
is ≈2×1011 ions/pulse with polarization ≥ 70%.

10.9 Summary

Polarization studies with polarized ion beams at new and existing accelerators and
colliders will require high-intensity, high polarization proton, deuteron and 3He2+
ion beams. State-of-the-art atomic beam sources with resonant plasma ionizer and
optically pumped polarized proton sources produce sufficient beam intensity (of a
few mA H− ion beam) for charging the high-energy accelerators to full capacity
(for colliders the intensity is limited by the beam-beam interaction). The proton
polarization of about 90% has been achieved for the high intensity beams. The
further increase to over 10 mA pulsed beam intensity has also been demonstrated
and will be used at future Electron Ion Colliders. The polarized 3He2+ ion source
based on EBIS injector is under development at BNL for future EIC collider.
The extended EBIS operation for the Au32 ion beam production is planned for
the Run-2023. The next step will be integration of polarizing 3He apparatus. The
development of the 3He polarizing apparatuses, the spin-rotator, and the nuclear
polarimeter at the 3He2+ ion beam energy 6.0 MeV (in the high-energy beam
transport line after the EBIS drift-tube Linac) is under development.
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Chapter 11
Polarized Electron Sources

Joe Grames and Matt Poelker

Abstract Highly spin polarized electron beams produced from GaAs photocath-
odes within DC high voltage photoguns have been critical to many accelerator-based
nuclear and particle physics experiments. This chapter describes polarized photoe-
mission from GaAs, the main requirements for constructing a DC high voltage
electron source, and techniques to control and measure the polarization of the
electron beam.

11.1 Introduction

Many accelerator-based nuclear and particle physics experiments require a spin-
polarized electron beam [1]. This describes a beam where the electrons within each
accelerated bunch have their spin axes aligned in a preferential direction. Electron
spin can be thought of as another “tool” in the physicist’s tool bag, one that enables
enhanced study of nuclear structure, the dynamics of strong interactions, electro-
weak nuclear physics including parity-violation, physics beyond the Standard
Model and more [2]. Electron beams at accelerator storage rings “self-polarize” via
Sokolov-Ternov spin-flip radiation, however at other types of accelerators a direct
source of polarized electrons is required.
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The first polarized electron source for an accelerator, based on photo-ionization
of state selected 6Li atoms, was developed at Yale University in the early 1970s for
use at the Stanford Linear Accelerator (SLAC) [3]. Somewhat later, a polarized
electron source based on the Fano effect in Rb was developed for the Bonn
synchrotron [4]. Other polarized sources were developed or proposed during the
1970s, including an improved version of the Li photo-ionization source [5], a
source based on the chemi-ionization of metastable He atoms [6], and sources using
the Fano effect in Cs [7]. Despite some technical demonstrations, none of these
latter sources were ever developed to the point of being operational at accelerators.
Following the 1974 demonstration of polarized photoemission from GaAs [8] at low
voltage, a high voltage source was constructed at SLAC [9] to conduct the seminal
parity violation experiment E122 [10] that verified predictions by Wienberg and
Salam and thereby helped to establish the Standard Model of electro-weak physics.
Since then, DC high voltage polarized electron sources based on GaAs photocath-
odes were developed and operated at a number of laboratories, including Nagoya
University [11], the Mainz Microtron [12, 13], the MIT-Bates Laboratory [14],
NIKHEF [15], Bonn University [16], and CEBAF/Jefferson Lab [17].

There are four basic requirements for constructing a DC high voltage spin-
polarized electron source using GaAs photocathodes: (1) atomically clean GaAs
photocathode material, (2) an appropriate high voltage cathode/anode accelerating
structure free of field emission, (3) ultrahigh vacuum, and (4) a suitable drive
laser. Proper attention paid to these subjects will enable the reader to build a good
spin-polarized electron source where “good” describes a source that is capable of
delivering highly polarized beam at the desired current, for long periods of time.

11.2 GaAs: A Source of Polarized Electrons

GaAs is a direct-transition III-V semiconductor with zincblende crystal struc-
ture [18, 19]. It can absorb laser light across the broad visible spectrum but only
illumination with near-IR wavelengths provides polarized photoemission. This can
be understood by looking at the energy level diagram of GaAs in Fig. 11.1 with
both detailed [18, 19] and simplified representations [20] of the band structure,
as described in the figure caption. Electron spin-orbit coupling splits the P1/2
and P3/2 energy levels of the valence band into two states separated by 0.34 eV,
which is large enough to avoid optical pumping from the lower energy P1/2 state.
Polarized photoemission takes advantage of the quantum mechanical selection rules,
noting that for circularly polarized laser light, conservation of angular momentum
requires an electron’s spin-angular momentum quantum number to change by one
unit, �mj = ±1. Furthermore, some transitions are more favorable than others as
indicated by the transition probabilities in Fig. 11.1. So by using circularly polarized
laser light with near-bandgap energy, the conduction band can be preferentially
populated with a particular spin state.
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Fig. 11.1 Energy level diagrams of GaAs: (a) detailed bandstructure of GaAs [19], (b) “close-
up" view near valance band maxima/conduction band minima, and (c) simplified view showing
individual spin-angular momentum states and transition probabilities, circled [20]

Polarization is defined as

P = N↑ −N↓

N↑ +N↓
, (11.1)

where N refers to the number of electrons in the conduction band of each spin state,
“up” or “down”. For bulk GaAs, the theoretical maximum polarization is 50%,
corresponding to three electrons of the desired spin state and one electron with
opposite spin. In practice however, maximum polarization from bulk is typically
35%, owing to various proposed depolarization mechanisms such as the Bir-
Aronov-Pikus process [21], the D’Yankonov-Perel process [22], the Elliot-Yafet
process [23], and radiation trapping [24]. A less academic description simply
attributes depolarization to imperfections within the photocathode material that
result in reduced diffusion length which serves to prevent electrons from efficiently
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reaching the surface of the photocathode, thereby providing more opportunity for
the electrons to depolarize on the way out.

The figure of merit of most polarized electron beam experiments scales as P 2I ,
where I refers to beam current. As such, there is great incentive to increase beam
polarization, particularly for experiments that cannot accommodate high current, for
example, due to concern over target window failure or target boiling. Significant
breakthroughs in polarized electron source development occurred in the 1990s
when Nakanishi et al. [25] developed a means to eliminate the heavy-hole/light-
hole degeneracy at the valence band maxima by introducing an axial strain within
the GaAs crystal. This was accomplished by growing GaAs atop GaAsP which
introduces a strain due to the lattice mismatch between the GaAs and GaAsP crystal
structures. Polarization as high as ∼75% can be obtained from such a structure
however photocathode yield, or quantum efficiency QE, is typically very low, just
0.1% (more on QE below). The GaAs surface layer is typically 50 to 100 nm
thick. Thicker layers can provide higher QE, but this causes the strain to relax and
polarization is reduced.

Today’s state-of-the-art high polarization photocathode is the GaAs/GaAsP
strained-superlattice structure [26] which consists of a very thin GaAs surface layer
(∼5 nm) grown atop 10–20 pairs of thin, alternating layers of GaAsP and GaAs.
By growing very thin GaAs layers, the strain can be maintained which improves
polarization and electrons in sub-surface layers efficiently tunnel through the GaAsP
layers. And by using many thin layers of GaAs/GaAsP, the QE can be considerably
higher than obtained from a single (thicker) layer of strained GaAs. The net
result is polarization ∼85% and QE ∼1%. Schematic representations of each high
polarization photocathode are shown in Fig. 11.2 with plots of polarization versus
laser wavelength [27].

Both of the photocathode structures described above were developed [28, 29]
thanks to collaborative R&D programs initiated by SLAC via the DOE small
business initiative research program. Similar photocathodes have been manufac-
tured by university groups in Japan and Russia [30], with different stoichiometric
combinations of Ga, As and P as well as In and Al, that serve to modify the band-gap
and correspondingly, the appropriate drive laser wavelength.

The emission of electrons from GaAs is often described as a three-step pro-
cess [31] involving absorption of light, diffusion of electrons to the surface of
the photocathode, and emission of the electrons into the gun vacuum chamber.
As described above, absorption of circularly polarized light with near-band gap
energy preferentially populates the conduction band with spin polarized electrons.
GaAs is a strong absorber with most of the light absorbed within a few hundred
nanometers. These electrons diffuse in all directions and those that move toward
the surface encounter a potential barrier known as the electron affinity (Fig. 11.3a).
A requirement for efficient photoemission is that the GaAs be p-doped [8], which
serves to lower the Fermi level throughout the material. The p-doping also serves to
lower the conduction band at the surface of the photocathode, which in turn lowers
the electron affinity (Fig. 11.3b). Still, no significant photoemission is obtained until
the potential barrier is reduced further and this is accomplished by adding a mono-
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Fig. 11.2 Two types of GaAs photocathode structures that provide high polarization: (left)
strained-superlattice GaAs and, (right) strained-layer GaAs

layer of cesium and oxidant (Fig. 11.3c). The process of adding cesium and an
oxidant to the photocathode is called “activation”.

All of this sounds relatively simple, however in practice, obtaining the expected
amount of photoemission can be difficult because the GaAs surface must be
extremely clean and free of contamination on an atomic scale. Unfortunately, there
are a number of steps that must be taken to insert a GaAs photocathode into a DC
high voltage photogun which means there are many opportunities to contaminate the
wafer. And once the photocathode is installed within the photogun, it must remain
clean, which means the photogun must function properly while delivering beam.
Mostly this means the static vacuum inside the photogun must be extremely low
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Fig. 11.3 Energy level diagram of GaAs at the vacuum interface. (a) Undoped GaAs, (b) p-doped
GaAs, (c) with Cs and oxidant applied to the surface

and must remain low while delivering beam. The sections below describe typical
photoguns and the steps required to install clean photocathodes.

11.3 Description of Typical Polarized Photogun

DC high voltage GaAs-based polarized photoguns can be categorized as vent/bake
or load-locked. In general, vent/bake guns are considered easier to build but require
frequent maintenance whereas load locked photoguns offer more accelerator up-
time, at least once reliable sample manipulation has been demonstrated. A brief
description of each type is presented below.

11.3.1 Vent/Bake Photoguns

Vent/bake photoguns must be vented to atmospheric pressure each time the photo-
cathode is replaced, and then baked for an extended period of time to recover the
necessary vacuum level (more below). A typical vent/bake photogun is shown in
Fig. 11.4 and was successfully used at CEBAF/Jefferson Lab for over ten years [17].
All of the features that are needed to activate the photocathode to NEA, bias
the photocathode at high voltage, and generate high-quality beam in an ultrahigh
vacuum environment are housed in a common vacuum chamber.

The photocathode is attached to the end of a long stalk extending into the
gun vacuum chamber through the bore of the large cylindrical insulator. Prior to



11 Polarized Electron Sources 267

NEG PUMP ARRAY
MESH-ELECTROSTATIC SHIELD

CATHODE

107 m

CERAMIC

Fig. 11.4 The CEBAF/Jefferson Lab vent/bake −100 kV DC high voltage spin polarized GaAs
photogun. It rests in the horizontal plane with the drive laser light introduced through a vacuum
window to the right (not shown)

activating the photocathode to NEA, the photocathode must be heated to ∼500 ◦C
to liberate loosely bound adsorbed gas. Higher temperatures can “boil off” some
of the surface contamination (oxides, in particular) but not carbon. Temperature
>630 ◦C must be avoided as this causes the GaAs to decompose due to preferential
evaporation of arsenic. To heat the photocathode, the stalk is retracted ∼5 cm
to avoid heating other parts of the gun and a resistive heater is inserted into the
atmospheric side of the stalk in close mechanical contact. When the heat treatment
has concluded, the photocathode is allowed to cool to room temperature and then
moved back into position within the cathode electrode for activation and beam
generation. The cathode electrode has a 25 degree focusing angle and the anode is
approximately 6 cm away. This geometry provides optimized transport for CEBAF
beam with a maximum field gradient of ∼5 MV/m when the cathode electrode is
biased at−100 kV. Note that the cathode/anode geometry of each photogun depends
heavily on the accelerator’s beam specifications (e.g., bunch charge) and is typically
determined by performing computer simulations (i.e., field mapping and particle
tracking).

Non-evaporable getter (NEG) modules surround the cathode/anode gap pro-
viding thousands of liters/sec pumping for hydrogen. A small diode ion pump
(not shown) is used to pump inert gases such as helium and methane that are
not efficiently pumped by NEGs. The photocathode is activated to NEA using
cesium and fluorine (or oxygen) sources located downstream of the anode. During
activation, the drive laser can be directed onto the photocathode, or a white light
source can illuminate the photocathode from the side using a metallic mirror
inside the vacuum chamber. The two chemicals, Cs and NF3, are applied to the
photocathode and metered while monitoring photocurrent, which varies in a “yo-
yo” manner with photocurrent begin successively increased and decreased, although
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other groups follow different but acceptable protocols. The yo-yo activation process
is described below. The chemical application is terminated once photocurrent ceases
to increase appreciably, typically after ten yo-yo’s, with the net result corresponding
to approximately one monolayer of chemical deposition. Cesium originates from a
alkali-metal dispenser from SAES Getters and is controlled by applying electrical
current through a vacuum feedthrough. The NH3 is applied using a vacuum leak
valve.

As mentioned above, the entire gun structure must be baked each time the
photocathode is replaced. Bakeout temperature is typically ∼250 ◦C and bakeout
duration is ∼30 hours, although the bakeout can last longer if there is significant
water vapor inside the vacuum chamber, for example due to extensive vacuum
chamber modification. High temperature bakeouts necessitate some precautions. For
example, bare copper gaskets will oxidize during a bakeout. This is problematic
because the oxide layer can “flake off” when flanges are disassembled which
sometimes leads to a flange leak during a subsequent bakeout. To prevent this from
happening, copper gaskets should be nickel-flashed and silver-plated because these
gaskets will not oxidize. Silver-plated bolts are also recommended for the same
reason, they do not oxidize. This ensures that nuts and bolts turn freely post-bakeout
when gun disassembly is warranted. The NEG pumps can be electrically activated
or passively activated to about 60% of their rated pump speed during the bakeout.

Besides the burden of vacuum chamber bakeouts, which take days to complete,
the most significant drawback of the vent/bake photogun design is the inadvertent
application of cesium on the cathode electrode, which eventually leads to catas-
trophic field emission, necessitating cathode electrode cleaning or replacement. The
design shown in Fig. 11.4 provides about seven full photocathode activations before
succumbing to field emission. Other gun designs at other laboratories faired better
or worse and in hindsight, results likely depended on the size of the anode hole
and location of the cesium dispenser relative to the anode, which define the solid
angle of cesium deposition at the photocathode and cathode electrode. Gun designs
with small solid angle faired better than those that introduced more cesium on the
cathode electrode.

11.3.2 Load/Lock Photoguns

Load-locked photoguns are comprised of multiple vacuum chambers separated by
valves, with vacuum improving from one chamber to the next and the best vacuum
obtained inside the gun high voltage chamber. Reiterating on comments above,
one of the benefits of a load-lock design is that new photocathode samples can be
installed without lengthy vacuum bake-outs of the entire gun. Another benefit of
the load lock approach is that cesium is not inadvertently applied to the cathode
electrode since activation takes place inside another chamber. In this way, the
cathode electrode is maintained pristine, and it exhibits no field emission when
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Fig. 11.5 (Top) Plan view shows the complete gun assembly with four vacuum chambers: gun
High Voltage Chamber (large bore ceramic insulator design), Preparation Chamber, intermediary
chamber and “Suitcase”. (Bottom) Side view shows some of the components inside the preparation
chamber including a heater that also serves to move the puck toward a mask used to selectively
activate only the center portion of the photocathode

biased at high voltage. Historically, most gun groups move to a load lock design
for this reason to eliminate field emission.

The CEBAF/Jefferson Lab load lock gun is shown in Fig. 11.5 [32]. It consists
of four vacuum chambers: the high voltage chamber, the photocathode preparation
chamber, a “suitcase”’chamber used for replacing photocathode samples, and an
intermediary chamber that must be evacuated and baked each time the suitcase is
attached. The suitcase is normally detached from the photogun and stored elsewhere.
This approach helps to reduce the overall footprint of the photogun when in
operation. Numerous alternative designs are used at laboratories worldwide [12,
13, 15, 16, 33, 34]. Desirable features incorporated into most designs include the
ability to store multiple photocathode samples, to reliably transport a sample from
one chamber to the next without dropping, and rapid heating and cooling of samples
for fast turn-around at activation.
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The high voltage chamber is similar to that of the vent/bake photogun described
above, but without the components associated with photocathode activation. NEG
pump modules surround the cathode/anode gap and a small ion pump is used to
pump inert gas species.

Key features of the preparation chamber include: storage for up to four pucks
(each puck supports one photocathode), a mask for selective activation of a portion
of the photocathode surface, puck heating to at least 600 ◦C and good vacuum
obtained using NEG and ion pumps. Photocathode activation takes place inside
the preparation chamber using cesium and NF3 similar to those described for
the vent/bake photogun. The preparation chamber has four magnetically-coupled
sample manipulators: one long manipulator with translation and rotation capability
for moving pucks into or out of the gun high voltage chamber cathode electrode,
one short manipulator with translation and rotation capability for moving pucks
from/onto the heater assembly as well as to transferring pucks to/from the long
manipulator, and two short manipulators with translation capability that serve to
hold pucks with additional photocathode samples. Care must be taken during the
initial commissioning bake of the preparation chamber—the magnetic manipulators
can develop excessive friction that limits functionality when heated above∼200 ◦C.
Each magnetic manipulator is attached to a bellows assembly with adjustment
screws for proper alignment to the electrode, heater and other manipulators.
Pumping inside the prep chamber was provided by 40 L/s ion pump and 1.5 WP-
1250 NEG modules from SAES Getters with support rods removed, and coiled
into the bottom of the vacuum chamber. Pressure inside the preparation chamber is
∼1×10−10 Torr, which is adequate for making photocathode with high QE, however
improved vacuum would provide a longer dark lifetime.

11.4 Operating a DC High Voltage Spin-Polarized GaAs
Photogun

Photocathode lifetime of modern DC high voltage GaAs photoguns is limited
primarily by ion bombardment [35], the mechanism where residual gas is ionized
by the extracted electron beam and transported backward to the photocathode where
the ions adversely affect photocathode QE. Consequently, the best GaAs photogun
lifetime is obtained by minimizing ion bombardment and this means operating the
photogun with exceptionally good vacuum.

11.4.1 Ion Bombardment

Exactly how the ions degrade QE is the subject of much speculation. While it has
been determined that ions with sufficient kinetic energy penetrate the surface of the
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photocathode [36], it is not known what these ions do to the photocathode. They
might damage the GaAs crystal structure or serve as trapped interstitial defects
that reduce the electron diffusion length or serve as unwanted dopant species,
adversely altering the photocathode energy band structure. Impinging ions might
also sputter away the chemicals used to reduce the work function at the surface
of the photocathode. Predicting which ions are the most problematic (gas species
and energy) awaits a detailed modeling study that considers many parameters
including: relevant ion species with appropriate ionization cross sections, accurate
trajectories of both ions and electrons, sputtering yield of alkali (cesium) and
oxidant (fluorine) used to create the negative electron affinity (NEA) condition at
the photocathode surface required for photoemission, and stopping depths of ions
within the photocathode. Parameters such as optical absorption length, electron
diffusion length and active layer thickness are likely to be important factors, too.

The ions produced by the electron beam are delivered to the photocathode in a
manner determined by the electrostatic field of the cathode/anode structure. When
the drive laser beam is positioned at the center of the photocathode, all of the ions
are delivered to the same location. When the laser beam is moved radially outward,
ions are produced at the location of the laser beam and along a “trench” connecting
the point of origin to the electrostatic center of the photocathode. Furthermore, ions
produced downstream from the anode can be delivered to the photocathode and
these ions hit the electrostatic center. A typical “QE scan” of a GaAs photocathode
is shown in Fig. 11.6 illustrating QE reduction due to ion bombardment.

The best strategy for minimizing QE decay associated with ion back bom-
bardment is to operate the photogun under excellent vacuum. This includes static
vacuum (no beam) and dynamic vacuum (while delivering beam). A small cath-
ode/anode gap is desired, to limit the number of ions created. However, small gaps
produce large gradient, and large gradient enhances field emission from the cathode
electrode which can significantly degrade gun performance via chemical poisoning
of the photocathode surface and enhanced ion bombardment. A comprehensive
study [32] showed that the best operating lifetime can be obtained by operating with
a laser beam positioned away from the electrostatic center, and with an active area
that minimizes the creation of “halo” beam that might not be efficiently transported
away from the photogun. Most recently experiments [37] were performed to
quantify the improvement in photocathode charge lifetime by biasing the photogun
anode with a positive voltage, which repels ions generated downstream of the anode,
improving the charge lifetime by almost a factor of two when the anode was biased
compared to the usual grounded configuration.
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Fig. 11.6 QE measured across the surface of a photocathode that has been damaged by ions.
The electron beam was extracted from three different radial locations. Note QE “trenches” that
terminate at a common “electrostatic center”

11.4.2 Vacuum

The simple equation below provides remarkably useful insight toward appreciating
the vacuum aspects of the photogun:

Pult = GasLoad

PumpSpeed
, (11.2)

where Pult is the ultimate pressure inside the gun. Obviously, it is beneficial to make
the gas load inside the photogun small and the pump speed large.

To ensure a small gas load inside the photogun, a number of steps must be taken.
First, proper UHV techniques must be practiced [38]. This includes constructing
the photogun free of contamination. Manufactured parts are typically fabricated
without oil or silicone lubricants and all components are cleaned in an ultrasonic
bath of alkaline cleaner followed by acetone and hot de-ionized water. It is also very
important to ensure that there are no virtual leaks inside the gun (i.e., small spaces
with trapped gas). For this reason, internal components are assembled with vented,
silver-plated stainless steel screws.
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After the photogun has been constructed, it must be evacuated and baked to
remove water vapor. Typically, this is accomplished by baking the gun at 250 ◦C
for 30 hours or longer. To assist this process, all CEBAF photoguns are built on
tables with an insulating top and large enough to accommodate oven panels that
completely surround the gun. For many years heated air was directed into the
enclosure using a 4 kW commercial heater system with flowing hot air to assure that
the gun structure is heated uniformly without developing significant temperature
differentials, however, an occasional failed heater element would lead to cooling and
a possible leak due to a thermal shock. Today, very reliable commercial heater bars
are routinely used, placed at the bottom of the bakeout oven enclosure, they have
sufficient output to raise the oven temperature and if failed they provide for a slow
cooling rate of a well insulated enclosure. As mentioned previously, nickel-flashed
and silver-plated gaskets are recommended, to avoid oxidation that can lead to flange
leaks. Silver-plated high-strength stainless steel bolts and stainless steel nuts can be
easily disassembled post-bake. And belleville washers are used on flanges larger
than 70 mm to assure reliable sealing during the expansion and contraction cycles
of high temperature bakeouts.

When constructed properly, the gas load within the baked photogun originates
from hydrogen outgassing from the walls and internal components of the photogun.
The typical outgassing rate of 304 stainless steel is 1×10−12 Torr-L/sec-cm2 and
with the vacuum pumping from NEGs and ion pump described below, it is not
difficult to obtain pressure in the low 10−12 Torr range. Hotter bakeouts [38] provide
lower outgassing rates and proportionally lower pressure. High current applications
benefit from the extra effort to reduce the outgassing rate of photogun components.

Ideally, when the valve to the beamline is opened, the gun vacuum should not
degrade appreciably. This means the beamline must be baked and it is a good idea
to incorporate a differential pump station near the gun, to isolate gun vacuum from
the rest of the accelerator, if space allows it.

As for pumping, all modern DC high voltage spin-polarized GaAs photoguns
rely on NEG pumps and a small diode ion pump for inert gases not pumped
by NEGs, like He and methane. NEG pumps provide thousands of liters/s pump
speed for hydrogen gas, the dominant gas species inside a UHV chamber. NEG
pumps are commercial items purchased from SAES Getters and the pumps that
rely on ST707 material can be activated at relatively low temperature (∼400 ◦C).
Typically, a photogun design incorporates many NEG modules connected in series
and electrically isolated inside the gun. The pumps are activated (i.e., heated) by
passing current through them.

11.5 Photocathode Preparation

As mentioned previously, there are a number of steps that must be taken to insert a
GaAs photocathode into a DC high voltage photogun, which means there are many
opportunities to contaminate the wafer. These steps include:
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1. Cut a photocathode sample from a large wafer supplied by the vendor.
2. Anodize the edge of the photocathode to eliminate unwanted photoemission from

region not supported by proper electrostatic field. This step can be eliminated if
using a mask at activation.

3. Mount the photocathode sample to a support structure that will eventually be
positioned within the cathode electrode.

4. Bake the photocathode and support structure to achieve required vacuum level.
5. Heat the photocathode to >500 ◦C to liberate loosely bound gas prior to

activation to negative electron affinity.

The exact details of these steps vary somewhat depending on the specific
photogun design, for example whether a photogun is vented and baked each time the
photocathode is replaced, or installed via a load-locked vacuum apparatus where the
photocathode is mounted to a small support structure and moved between different
vacuum chambers. The text below describes features common to both gun designs
and highlights some of the relevant differences.

11.5.1 Cutting GaAs to Shape and Size

GaAs material is typically sold in large circular discs, ∼600 μm thick and 50–
75 mm diameter, with a flat at one edge to indicate the direction of the cleave
plane. This large wafer must be cut into smaller samples for installation into
photoguns. Originally, at CEBAF/Jefferson Lab, samples were cut from large wafers
using a circular-shaped cutting jig and diamond-paste slurry. The large wafer was
sandwiched between glass slides using an acetone-soluble adhesive in an attempt
to protect the surface of the photocathode during cutting. This process was time
consuming and invariably introduced a significant amount of contamination on the
surface of the photocathode, which needed to be removed using strong acids/bases
or via hydrogen cleaning. Years ago, this cutting technique was replaced with
a far simpler cleaving technique. A diamond-tip scribe is now used to cleave
square samples from large wafers. Aside from the diamond-tip scribe, nothing
touches the surface of the photocathode material during cleaving and as a result,
the photocathode surface is not contaminated.

11.5.2 Anodizing Edge to Limit QE

It is very important to eliminate unwanted and inadvertent photoemission from the
edge of the photocathode—photoemission that does not get properly transported
away from the gun. Photoemission from the edge of the photocathode follows
extreme trajectories, striking the vacuum chamber wall downstream of the gun,
and even hitting the anode plate. This degrades vacuum in the gun hastening
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photocathode QE decay. One way to eliminate photoemission from the edge, is to
anodize edge of the photocathode in an electrolytic bath.

A fixture was devised that holds the photocathode sandwiched between two Viton
o-rings. One o-ring prevents electrolytic fluid from contacting the center portion of
the front face, and the other o-ring merely provides a surface to securely hold the
wafer without breaking it. Clean distilled water with a few drops of phosphoric acid
provides adequate pH for anodizing. In just a few seconds, a thick oxide layer is
formed on the photocathode edge, that provides no measurable photoemission, and
does not evaporate during bakeouts or photocathode heating. For load locked guns,
an activation mask can be used to selectively activate only the center portion of
the photocathode. This mask eliminates the anodizing step and saves a considerable
amount of time.

11.5.3 Mounting a Photocathode

Next, the small photocathode samples are indium soldered to a molybdenum support
structure (i.e., the stalk or puck), at ∼200 ◦C, inside a nitrogen-filled glove box.
Molybdenum is a good material for supporting the photocathode sample because it
has a small coefficient of thermal expansion and is UHV compatible. The indium
provides mechanical stability and good heat conduction (the GaAs must be heated
to ∼500 ◦C to remove weakly bound gas before activation). A tantalum retaining
ring is then placed over the GaAs wafer and crimped in place, to ensure that the
GaAs wafer is never inadvertently dislodged from the support structure.

11.5.4 Heating and Activating a Photocathode

The GaAs wafer, mounted to its support structure, is then loaded into the gun
vacuum chamber using a nitrogen-filled glove bag. The gun is pumped down
using a clean, oil-free rough pump. Once the pressure has dropped sufficiently
low as to energize the ion pump on the gun vacuum chamber, the valve to the
rough pump is closed. The entire photogun chamber is then baked, as described
above. It is important that the GaAs photocathode stay clean during the bakeout.
This is accomplished by minimizing the time it takes to vent and pump down the
vacuum chamber, and by venting the vacuum chamber with clean, dry nitrogen
gas pressurized to assure minimal back diffusion during photocathode exchange.
When these precautions are taken, pump down from atmospheric pressure is rapid—
the pressure typically falls below 1×10−8 Torr within 20 minutes after starting
pumping. As further testament to good vacuum practice, the pressure rises no higher
than ∼5×10−8 Torr during bakeout.

Once the bakeout is complete, the photocathode can be activated to NEA. This
is accomplished by first heating the photocathode to ∼500 ◦C to liberate loosely
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Table 11.1 Typical QE and polarization for common GaAs photocathodes

Material Wavelength QE Polarization

“Bulk” GaAs 780 nm ∼10% ∼35%

Strained layer GaAs/GaAsP 850 nm ∼0.1% ∼75%

Strained superlattice GaAs/GaAsP 780 nm ∼1% ∼90%

bound adsorbed gas from the surface of the photocathode. Two hours at temperature
is sufficient. Once the photocathode has cooled to ∼30 ◦C, activation begins with
successive application of cesium and NF3 (or oxygen), beginning with cesium.
During activation the cathode is biased at ∼ −200 V and illuminated with light. On
the initial cesium exposure the photoemission current reaches a maximum and then
decreases. A typical approach (called the “yo-yo” process) allows the photocurrent
to decrease to about half of its maximum value before stopping the cesium exposure.
On subsequent exposure to NF3, the photocurrent rapidly increases to a new
maximum, saturates and then slowly decreases. Further exposure to cesium quickly
produces a rapid decrease in the photocurrent. Again, the photocurrent falls to about
half followed by another nitrogen trifluoride exposure. Typically, ten cycles of Cs-
NF3 are required to reach the final quantum efficiency.

To assess how well the photocathode installation was performed, it is customary
to evaluate QE, which is defined as the number of photo-emitted electrons per
number of incident photons. It can be written in terms of easily measured quantities:

QE = Nelectrons

Nphotons

= 124
i

λP
, (11.3)

where i is photocurrent in μA, λ is laser wavelength in nm, and P is incident laser
power in mW. Typical QE values from clean photocathode material illuminated with
near-band gap light appropriate for high polarization, are listed in Table 11.1.

11.5.5 Hydrogen Cleaning GaAs

Edge-anodizing is a step that most often introduces contaminants onto the surface
of the photocathode. Baking of the photocathode within the gun at high pressure
(for example, due to lots of water within the gun) is another opportunity for con-
tamination. There are many recipes for cleaning semiconductor surfaces with wet
chemical solutions of strong acids and/or bases, however, experience at Jefferson
Lab with wet chemical cleaning techniques was mixed. Moreover, wet chemical
cleaning techniques involve significant removal of the surface layer, a situation that
is not acceptable when using high polarization photocathodes. So an alternative
cleaning procedure using atomic hydrogen was adopted. Atomic hydrogen exposure
has been shown to remove surface contaminants such as carbon and oxygen from a
wide variety of semiconductors [39–43] . Furthermore, as noted in [44] , hydrogen
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Fig. 11.7 The RF-dissociator, atomic hydrogen cleaning apparatus used at CEBAF/Jefferson Lab

atoms passivate the dangling bonds at the GaAs surface, leaving a relatively inert
surface, ideal for gun bakeouts.

RF-dissociators and thermal crackers are common sources of atomic hydrogen.
At CEBAF/Jefferson Lab, the RF-dissociator approach is used although there is
some concern that this method roughens the photocathode surface. Molecular
hydrogen from a small research-grade bottle is fed through a pyrex cylinder at
about 20 mTorr (Fig. 11.7). A 12 turn coil surrounds the pyrex tube and a plasma
is formed when the applied RF (∼50 W) is resonant with the circuit. Atomic
hydrogen exits the chamber through a ∼1 mm diameter hole and is guided to
the photocathode sample about 15 cm away by an aluminum tube (aluminum
has a low recombination rate). The photocathode sample is maintained at 300◦C
during hydrogen cleaning [41, 42]. A small turbo-molecular pump and an ion pump
maintain pressure near the photocathode sample at ∼10−5 mTorr during cleaning,
to provide a long mean free path for the atoms and ensure the atoms hit the
photocathode before recombining into molecules. Monte Carlo simulations predict
that ∼2.5% of the total atom flux reaches the photocathode. Under these conditions
the atom flux at the cathode is estimated to be∼1017 atoms/cm2-sec, assuming 50%
dissociation [45].
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After hydrogen cleaning, the stalk and photocathode are installed within the
photogun using a nitrogen-filled glove bag. Hydrogen cleaning also provides an
added benefit, serving to produce a chemically inert surface that helps to keep the
photocathode clean during photogun bakeout. Hydrogen cleaning has also been
adopted on load locked gun systems, for in situ cleaning.

11.6 Drive Lasers for Polarized Beam

A DC laser light source can be used to make an electron beam at an accelerator
but something must be done to create the appropriate RF-time structure necessary
for acceleration. Typically this means using RF bunching cavities or RF choppers
but bunching introduces energy spread and chopping is very inefficient, with a
significant amount of the beam simply thrown away. At CEBAF, these ill-effects
were overcome by implementing synchronous photoinjection, a process whereby
RF structure is created directly at the photocathode using an RF-pulsed drive laser.
In the 1990s, synchronous photoinjection with a GaAs photocathode had not yet
been demonstrated. In fact, some thought it would not be possible, suggesting that
GaAs would not respond quickly enough to the short-pulse light [46]. However,
this concern proved unwarranted and synchronous photoinjection with GaAs is now
widely used at many accelerators [47–49].

Modelocked lasers are often used for synchronous photoinjection but gain-
switching [50] is the preferred pulse forming technique employed at CEBAF.
Gain-switching is a purely-electrical technique that relies on diode lasers. By simply
applying∼1 W RF sine wave to the diode laser, ∼30 to 50 ps optical pulses can be
obtained at repetition rates between 100 to 3000 MHz. This pulse train can be easily
locked to the accelerator RF frequency and laser cavity length feedback loops are
not required. A gain-switched diode however can only produce a few milliwatts
average power and so for most accelerators, a laser amplifier is required to boost
power to an acceptable level. At wavelengths between 780 and 850 nm, diode lasers
are readily available and single-pass traveling wave tapered stripe diode amplifiers
can be used to generate∼100 mW. For higher power applications, fiber-based laser
components from the telecom industry are now the best choice. Light at 1560 nm
from a fiber-coupled gain switched seed laser can be sent to a fiber amplifier and
then frequency doubled to produce Watts of useful light at 780 nm [51] (Fig. 11.8).
Similar fiber-based systems are used to generate high power at 532 nm [49].
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Fig. 11.8 Schematic of the fiber-based laser system with gain-switched diode master oscillator.
DFB, distributed feedback Bragg reflector diode laser; ISO, fiber isolator; L, lens; PPLN,
periodically poled lithium niobate frequency doubling crystal; DM, dichroic mirror

11.7 Spin Manipulation

Polarized-beam experiments require a specific orientation of the electron spin
direction at the target, typically parallel to the direction of beam motion. Moreover,
the spin direction must flip sign at some specified frequency. Spin flipping is
accomplished by reversing the polarity of voltage applied to an electro-optical
element called a Pockels cell, which is located on the drive laser table at the
photoinjector. Typically, the polarization direction of the electron beam flips at 30
Hz, and more recently a technique has been developed to flip polarization at a much
faster rate up to 1000 Hz [52].

Electrons leave the photocathode with spin direction pointing paral-
lel/antiparallel to the direction of beam motion, depending on the helicity of the
laser circular polarization (right or left circular) created by the Pockels cell. But
the spin direction precesses in the horizontal plane as the beam passes through the
arcs and transport lines to the halls, and this net spin precession must be “cancelled
out” by orienting the spin direction at the injector by the opposite amount using
a spin manipulator. At CEBAF, a Wien filter is used for spin manipulation [17].
It is a device with static electric and magnetic fields perpendicular to each other
and to the velocity of charged particles passing through it, as shown in Fig. 11.9.
Unit charged particles with a velocity of βc = E/B are undeflected in passing
through the Wien filter, while the spin is rotated in the plane of the electric field. A
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Fig. 11.9 The Wien filter spin manipulator used with CEBAF’s second and third polarized
electron sources. The magnet is not shown in the cutaway view

window-frame dipole magnet provides the magnetic field. The magnet is terminated
at each end with a nickel plate having a 20 mm diameter beam aperture. The full
magnet, assembled on the Wien filter vacuum chamber, is carefully mapped with
a precision Hall probe. The profile of the electric field plates is calculated, using
the code POISSON [53], to produce an electric field profile closely matching the
magnetic field profile. The Wien filter is capable of ±110◦ spin rotation at 100
keV. The calibration and performance of this Wien filter is described in Grames et
al. [54].

11.8 Polarimetry

After going through the trouble of making a spin-polarized electron beam, one then
needs to measure the magnitude of the polarization. Typically, this is done using
Mott polarimetry [55] which can accommodate electron beam energies between a
few keV and a few MeV. A Mott polarimeter relies on the scattering asymmetry
observed when spin-polarized electrons, with spin vector oriented perpendicular
to the scattering plane, scatter from the nuclei of an unpolarized target. To make
a polarization measurement, a scattering asymmetry is measured using detectors
that count the number of electrons that scatter to the right/left (or up/down) as the
direction of the electron spin is flipped by changing the helicity of the photogun
drive laser light (via the laser-table electro-optic Pockels cell, described above). The
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measured scattering asymmetry is related to beam polarization, P , and the effective
Sherman function, Seff as given below:

A = Nr −Nl

Nr +Nl

= P × Seff . (11.4)

The Sherman function, or analyzing power, is a term associated with the physics
of the scattering process, and the effective Sherman function describes the same
process but modified to account for both single and double elastic scattering into the
detector acceptance. The most desirable characteristic of any polarimeter is a large
and well-known effective Sherman function however, in practice, this value must
be determined by computer simulation and/or detailed experimental measurements,
e.g., target thickness extrapolation, or retarding field scans.

The subject of Mott polarimetry is broad enough to be the focus of another book,
see e.g. [1, 56]. Suffice to say there are different types of Mott polarimeters that
can be loosely categorized according to their electron beam energies: low-voltage
retarding field Mott polarimeters, conventional gun-voltage Mott polarimeters and
MeV Mott polarimeters. Of these, the MeV Mott polarimeters are the most
suited for accelerators; allowing good resolution scintillators and time-of-flight or
spectrometer discrimination to isolate the elastically scattered electrons, and lead
shielding and veto detectors to suppress the photon background. Plural scattering is
significantly reduced and target thickness extrapolation can lead to both precise and
accurate( <1%) knowledge of the electron beam polarization [57]. For conventional
Mott polarimetry at gun voltage (∼100 kV), the effective Sherman function is
empirically determined by performing a foil thickness extrapolation to deduce the
asymmetry associated with single-scattering events [20]. For retarding field Mott
polarimetry [58], a low voltage beam (-200V) is accelerated toward a thick target
biased at ∼20 kV. Electrons with a broad energy spectrum arrive at the detectors
but the single scattering events can be discerned by biasing the detectors at the
photocathode voltage.
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Chapter 12
Ion Polarimetry

William Schmidke

Abstract The degree of polarization of the beams must be precisely measured, both
to enable development and optimization of the beams, and to normalize the spin
dependent effects observed in experiments. Ion beam polarimetry is particularly
challenging since the physics processes available for polarimetry are themselves
the subject of active physics research. This chapter describes ion polarimetry as
implemented at the Relativistic Heavy Ion Collider (RHIC), the only high energy
polarized proton collider.

12.1 Polarimetry Requirements

Polarimetry is based on asymmetries measured in scattering of beam particles
with target particles. For transverse polarization, spin effects are manifested as an
azimuthal asymmetry of scattered particles. This results in an imbalance of particles
scattered left and right in the plane perpendicular to the polarization vector. A
diagram of such a scattering process is shown in Fig. 12.1.
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Fig. 12.1 Diagram of
scattering of a polarized beam
particle scattering on an
unpolarized target

Polarimetry of transversely polarized ion beams makes use of the Single Spin
Asymmetry (SSA), where either the beam or target is polarized and the other
unpolarized. If NL and NR are the numbers of particles scattered left and right,
respectively, then for a beam or target with polarization P the left/right asymmetry
ε is written as

ε = NR − NL

NR + NL

= P ·AN. (12.1)

The proportionality constant AN , referred to as the analyzing power, is the SSA
for the process. It is a physics quantity depending on the particles involved, their
energies and their scatting angles.

A polarimeter requires detectors sensitive to the azimuthal asymmetry. At min-
imum detectors must be placed left and right in the scattering plane perpendicular
to the polarization vector as shown in Fig. 12.1. A more fine-grained azimuthal
spacing of detectors will provide more information, such at the precise direction of
the polarization vector.

12.1.1 Absolute Polarimetry

Unlike for electron polarimetry (Chap. 13), the analyzing power AN for ion
polarimetry is not known from established physics. In fact, it is the subject of
spin physics studies. A procedure independent of AN is required for measuring the
absolute value of the polarization.

Such a procedure is possible if the target and beam are available in both
spin states, up and down. By averaging over beam spin states the beam is
effectively unpolarized, and the asymmetry with respect to target polarization may
be measured. Similarly, averaging over target spin states allows measurement of
the asymmetry with respect to the beam polarization. This principle is illustrated in
Fig. 12.2 for a proton beam and target.
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Fig. 12.2 Left: Polarized proton target with proton beam unpolarized by averaging over spin
states. Right: Polarized proton beam with proton target unpolarized by averaging over spin states

In practice the ion beam typically has a mixture of bunches with both spin states;
the data collected by the polarimeter can be sorted according to spin state. The target
may also be operated in both spin states and the data similarly sorted. Then by
averaging over beam spin states the asymmetry with respect to the target spin εtarget
is measured, and averaging over of target spin states the asymmetry with respect to
the beam spin εbeam is measured. In terms of target and beam polarizations Ptarget
and Pbeam the asymmetries are

εtarget = Ptarget · AN, εbeam = Pbeam ·AN. (12.2)

Furthermore, the target particles are at rest or almost at rest, and the target
polarization Ptarget may be measured by conventional laboratory methods. Then
from Eq. 12.2:

Pbeam = εbeam

εtarget
Ptarget. (12.3)

The absolute beam polarization is thus determined in terms of measured quantities,
independent of the analyzing power AN .

12.1.2 Beam Details

Besides the absolute value other aspects of the beam polarization also need to be
measured, both for beam optimization and use by experiments. An obvious example
is the polarization lifetime, since the degree of beam polarization will inevitably
decrease with time:

P(t) = Pt=0 e−t/τ . (12.4)

The lifetime measurement requires several accurate polarimeter measurements
throughout the life of a beam.
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Fig. 12.3 Example of Gaussian profiles for beam intensity I (x) and polarization P (x)

Polarization loss in stored beams occurs primarily through development of
polarization profiles, with loss at the edges of the 6-dimensional beam bunch phase
space. The bunch intensity and polarization may be parameterized by Gaussian
distributions. For example, for the transverse position x intensity and polarization
distributions are

I (x) = I0 e
− x2

2σ2
I , P (x) = P0 e

− x2

2σ2
P , (12.5)

as illustrated in Fig. 12.3.
The polarimeters are sensitive to convolutions of the intensity and polarization

profiles of single beams, and colliding beam experiments are sensitive to the profiles
of both beams. The results of such convolutions are conveniently expressed in terms
of the profile parameter R [1]:

R = σ 2
I

σ 2
P

. (12.6)

For no depolarization the polarization profile is flat, σP → ∞ and R = 0; R > 0
for a partially depolarized beam.

In general R may be different for the transverse dimensions x = (x, y); here

for illustrative purposes we take Rx = Ry = R, with P(x) = P0 e
− x2+y2

2σ2
P . A

polarimeter averaging over x measures:

Pavg =
∫

d2xI (x)P (x)
∫

d2xI (x)
= P0

1+ R
. (12.7)
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For collisions consider two beams with the same profile parameter R and Gaussian
normalizations P0,1, P0,2. Then the polarization for the Single Spin Asymmetry
(SSA) with respect to beam 1 is:

PSSA =
∫

d2xI1(x)I2(x)P1(x)
∫

d2xI1(x)I2(x)
= P0,1

1+ 1
2R

, (12.8)

and similarly for the SSA with respect to beam 2. For Double Spin Asymmetry
(DSA) measurements with both beams, the product of beam polarizations in
collision is:

P 2
DSA =

∫
d2xI1(x)I2(x)P1(x)P2(x)
∫

d2xI1(x)I2(x)
= P0,1P0,2

1+ R
. (12.9)

For R > 0 the polarimeter measurement Pavg needs to be corrected to the
polarizations PSSA and P 2

DSA required by collider experiments. The correction
depends on R, and the polarimeter must be capable of measuring the relative widths
of the intensity and polarization profiles as expressed in Eqs. 12.5.

12.2 Implementation at RHIC

The Relativistic Heavy Ion Collider (RHIC) is the only high energy polarized
proton collider. It incorporates an ion polarimetry system meeting the needs of
beam development and physics experiments. To meet the requirements outlined
in Sect. 12.1 a two-pronged approach has been followed. Absolute polarimetry is
provided by the hydrogen jet (Hjet) polarimeter. It is based on the process pp → pp,
with a polarized atomic hydrogen jet target. The jet target is diffuse with a low data
rate, requiring a long measurement period. Thus it is incapable of a statistically
significant measurement of the time dependence of the polarization. Also, the
target has transverse size large compared to beam bunches and can not resolve
the transverse polarization structure. The fine grained time and spatial details are
provided by the proton-carbon (pC) relative polarimeter. It is based on the process
pC → pC, with an ultra-thin carbon ribbon target. The solid target produces
a high data rate, allowing rapid measurements following the time dependence of
polarization. The targets are also smaller than the beam bunch allowing resolution
of transverse polarization structure. Ensembles of pC measurements are normalized
to concurrent Hjet measurements, setting the absolute polarization scale.
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Fig. 12.4 Left: Side view of the Hjet polarimeter. The apparatus is approximately 3.5 m in height.
Right: Diagram of the scattering chamber interior

12.2.1 Hjet Absolute Polarimeter

A side view of the Hjet is shown in the left of Fig. 12.4. The polarized atomic
hydrogen target beam produced in the source at the top passes through the collider
proton beams in the scattering chamber. The target beam polarization is measured
in a Breit-Rabi polarimeter at the bottom, with typical values Ptarget ≈ 96%. In
operation the polarization of the target is reversed every 5 minutes, providing both
spin states as required for absolute polarimetry.

The interior of the scattering chamber is shown in the right of Fig. 12.4. The
collider beams cross but do not collide in the chamber, passing through the polarized
target. Silicon strip detectors left and right of the target detect scattered protons,
allowing an azimuthal asymmetry measurement. The detector segmentation into
strips provides measurement of the polar angle of the scattered protons.

The silicon detector signals are read out in wave form digitizers (WFDs). The
amplitude of the signal is a measure of Ekin, the kinetic energy of particles; the
energy scale is calibrated with americium α particle sources. The time of the
digitized signal provides the time of flight (TOF) of particles from the target
to the detector. A two-dimensional histogram of TOF versus Ekin from the Hjet
detectors is shown in Fig. 12.5. For non-relativistic protons in the MeV energy range
TOF ∝ 1/

√
Ekin. This relation is shown by the curve in the figure. The accumulation

of events near the curve are the signal protons and selected for event counting,
rejecting the backgrounds apparent in the histogram. Protons in the energy range
1.6–6 MeV are used for the asymmetry measurement.

Absolute polarimetry requires elastic scattering, which for the Hjet polarimeter
is the process pp → pp. The relation between kinetic energy and polar angle for
an elastically scattered proton is unique, shown by the blue curve in the left of
Fig. 12.6. For inelastic scattering pp → pX the energy-angle relation is different,
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Fig. 12.5 TOF versus Ekin from the Hjet detectors

Fig. 12.6 Left: Ekin versus polar scattering angle for elastic and inelastic pp scattering. Right:
Ekin versus Hjet detector strip number for selected protons

with examples shown in the other curves in the figure. The strip number of the
Hjet detectors is proportional to the scattering angle. The right of Fig. 12.6 shows
a two-dimensional histogram of Ekin versus strip number for selected protons. The
prominent accumulation of events similar to the blue curve in the left of the figure
are elastic events. The events in each strip at lower energy are inelastic events and
rejected for the asymmetry measurement.
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The selected events are counted according to detector side, left L or right R, and
spin state of the beam or target, up + or down −. The asymmetry is measured with
the relation [2]:

ε =
√

NR+NL− −√NL+NR−√
NR+NL− +√NL+NR−

. (12.10)

This relation is independent of the efficiencies of the left and right detectors and
of the numbers of up and down spin state collisions. The asymmetry is measured
separately for the beam and target spin states, averaged over the other, as described
in Sect. 12.1.1, and the beam polarization is determined according to Eq. 12.3. The
Hjet target is larger than the size of the beam and measures the transverse averaged
polarization Pavg in Eq. 12.7. The low event rate of the Hjet, due to the diffuse target,
allows only one statistically significant polarization measurement each RHIC fill of
≈ 4− 8 hours.

12.2.2 pC Relative Polarimeter

A cross section of a pC polarimeter scattering chamber is shown in Fig. 12.7. A
carbon ribbon target (vertical green line) is swept horizontally across the proton
beam (red dot) at the center of the chamber. Six silicon strip detectors (red bars)
are arranged azimuthally around the beam-target collision point, perpendicular to
the beam direction. There are two such polarimeters in each RHIC beam, one with
targets swept horizontally to measure horizontal polarization profiles, and one with
targets swept vertically to measure vertical profiles.

The carbon ribbon targets are approximately 2.5 cm long, 10 μm wide, and 50
nm thick; the latter dimension is just a few hundred carbon atoms thick. The target
width is significantly smaller than the transverse size of the beam, typically a few
hundred μm, enabling the measurement of the transverse polarization profile. A
photograph of a target is in the left of Fig. 12.8. The targets are mounted on a frame
which rotates, sweeping the targets across the beam; a horizontally sweeping frame
is shown in the center of Fig. 12.8. The frame holds six targets; when a target breaks,
another can be positioned for beam sweeps, avoiding the need to break the chamber

Fig. 12.7 Cross section of a
pC polarimeter scattering
chamber. The beam direction
is into the plane of the figure
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Fig. 12.8 Left: A carbon ribbon target. Center: Frame in scattering chamber holding six target.
The frame rotates as shown by the arrow, sweeping the targets across the beam. Right:A target in
the beam

Fig. 12.9 TOF versus Ekin from the pC detectors

vacuum to replace individual targets. A photograph of a target in the beam is in the
right of Fig. 12.8.

The pC readout and particle selection are similar to the Hjet. The silicon detectors
signals are read out in WFDs, and the energy scale is calibrated with americium
and gadolinium α sources. The Ekin versus TOF relation is used to select scattered
carbon nuclei; an example is shown in Fig. 12.9. Carbon nuclei in the energy range
400–900 keV are used for the asymmetry measurement.

A generalization of Eq. 12.10 is used to measure the asymmetry. For each pC
detector an asymmetry with respect to the beam spin state is determined for a free
parameter λ, the imbalance of beam spin up and down states. The asymmetries for
each detector at azimuthal angle φ are fit to the form:

ε(φ) = ε0 · sin(φ − φ0) , (12.11)

The sinusoidal form is motivated by fundamental spin physics. The parameter ε0
is the magnitude of the asymmetry, related to the polarization by the usual relation
ε0 = P ·AN . The parameter φ0 is the azimuthal tilt of the spin vector from vertical;
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Fig. 12.10 Fit to pC detector asymmetries. Results are asymmetry magnitude ε0, spin tilt φ0, and
beam state asymmetry λ

for a 255 GeV proton beam in RHIC it is observed to deviate significantly from
zero. An example fit is shown in Fig. 12.10.

The targets are not rigid and their positions relative to the beam are not known
from the position of the frame on which they are mounted. Thus, the transverse
polarization profile can not be directly measured from the x dependence of P(x) =
P0 e

− x2

2σ2
P . Instead, the relations in Eqs. 12.5 may be rewritten in terms of the profile

parameter R in Eq. 12.6:

P(x)/P0 = (I (x)/I0)
R , (12.12)

which relates polarization P as a function of intensity of I , independent of x. In
practice the asymmetry is measured in bins of intensity, or event rate, and the results
fit to the power law Eq. 12.12, determining R. An example of such a fit is shown in
Fig. 12.11.

The high event rate afforded by a solid target allows several statistically
significant pC measurements during a RHIC fill, and the determination of the
polarization lifetime. During a typical RHIC store of 6 hours, measurements are
made at the beginning before and after beams are ramped to full energy, in the
middle and at the end of the fill before beams are dumped. Results from a RHIC fill
are shown in Fig. 12.12; they are fit to a linear time dependence:

P(t) = Pt=0 · (1− t/τ ), R(t) = Rt=0 + R‘ · t . (12.13)
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Fig. 12.11 Fit to asymmetry versus intensity (event rate) determining the profile parameter R

Fig. 12.12 pC polarization (top) and profile (bottom) measurements during a RHIC fill. The
results are fit to linear time dependences. The first polarization measurement (marked by a cross)
is at injection energy before ramping and not included in the fit
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Typical polarization lifetimes at RHIC are τ = 200 − 400 hours. The polarization
is averaged over the target sweep across the beam and is the transverse averaged
polarization Pavg in Eq. 12.7. The decline of P and growth of R with time
demonstrates polarization loss through the development of profiles.

12.2.3 pC/Hjet Normalization

The pC analyzing power is not well known, and the measured asymmetries must be
normalized to the Hjet results to determine the absolute polarization scale. The Hjet
measures the average polarization over a RHIC fill weighted by the beam current
I (t):

PH−−jet =
∫

dtI (t)P (t)
∫

dtI (t)
. (12.14)

I (t) decreases with time as the beam decays, as shown for an example RHIC fill in
Fig. 12.13. The Hjet measurement is clearly weighted toward the early part of the
fill where polarization and beam current are highest.

To compare to the Hjet, the pC results for each fill must be averaged weighted by
the same I (t). In terms of the parameters from a fit to pC results in Eq. 12.13, the
pC average is:

PpC = Pt=0 ·
(

1− 1

τ
·
∫

dt tI (t)
∫

dtI (t)

)

. (12.15)

The scale of the pC polarization is then adjusted so that an average over fills of the

pC to Hjet ratio is unity:

〈
PpC

PH−−jet

〉

fills
= 1. Typically the average is done for each

of the four pC polarimeters over an entire year of RHIC fills. An example of these
ratios after normalization is shown in Fig. 12.14.

Fig. 12.13 Beam current versus time for a RHIC fill
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Fig. 12.14 Ratio of current averaged pC and Hjet fill results after normalization versus fill number

12.3 Polarimetry Results

The polarimetry results are required by physics experiments to normalize observed
spin dependent effects. Polarimeter measurements are also important for devel-
opment and optimization of polarized beams, and to improve understanding of
beam-spin physics. An example is the measurement of the spin tune.

12.3.1 Results for Experiments

The polarimeters measure the transverse averaged polarization, Pavg in Eq. 12.7.
For Single Spin Asymmetry measurements with colliding beams PSSA in Eq. 12.8
is required; it is related to Pavg by a function of the profile parameter R. From the
fill results for Pavg(t) and R(t) in Eq. 12.13, PSSA(t) is expressed to first order in
the time t . Example results are shown in Fig. 12.15. Polarization is provided for
the two RHIC beams BLUE and YELLOW. Included is a Unix time stamp for the
start of the fill, t = 0, when the polarization is P0. Along with dP/dt, this allows
determination of the polarization throughout the fill, for application when different
data sets are collected by the experiments.

The profile parameter typically has small values R = 0.1 − 0.2. From
Eqs. 12.8,12.9, to lowest order in R:

P 2
DSA = PSSA,1 · PSSA,2 , (12.16)

provides the product of beam polarizations for Double Spin Asymmetry measure-
ments.
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Fig. 12.15 Polarization results for spin physics experiments

AC dipole #1

spin rotator spin rotator spin rotator spin rotator

AC dipole #2 AC dipole #3 AC dipole #4 AC dipole #5

Fig. 12.16 RHIC spin flipper. It consists of five AC dipoles and four DC dipoles

12.3.2 Spin Tune Measurement

The RHIC spin flipper is a system of AC and DC dipole magnets allowing
manipulation of the proton spin. A schematic is shown in Fig. 12.16. When operated
in pulsed mode, it can flip the spin orientation. This feature has been demonstrated,
observed as a sign change in the usual polarimeter measurements [3]. However, such
operation often results in the loss of polarization, requiring time consuming refills
of freshly polarized beams for detailed measurements.

When the spin flipper is operated in continuous mode, it can induce a coherent
spin precession about the stable spin direction [4]. Expressed as a fraction of the
RHIC revolution frequency, the frequency of the precession is that of the spin flipper
AC dipoles, νosc. The opening angle of the precession cone θ0 is related to νosc and
the spin tune νs by:

tan(θ0) = |ε|
νs − νosc

. (12.17)

ε is the strength of the driven spin resonance and is known from the design of the
spin flipper. Thus, if the flipper is driven with a frequency νosc, measurement of θ0
provides a measurement of the spin tune νs .

The pC polarimeter measures the projection of the spin vector in the plane trans-
verse to the beam direction (see Sect. 12.2.2). Figure 12.17 shows the projection of a
spin precession cone in the transverse plane; the dotted red line is the path traced by
the spin vector. θ0 is the opening angle of the cone, as in Eq. 12.17. θtilt is a possible
tilt from vertical of the un-driven stable spin direction.

The phase of the spin flipper AC dipoles was incorporated into the pC polarimeter
readout, allowing measurements as a function of the dipole phase. The results of
such measurements for one value of νosc are shown in Fig. 12.18, where the dipole
phase is 2πνosci. An oscillation of the measured tilt φ0 as a function of the phase is
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Fig. 12.17 Parameters of spin precession projected into the plane transverse to the beam direction

Fig. 12.18 Results of pC spin tilt measurements as a function of spin flipper driver phase for one
value of νosc

clearly observed. The data are fit to the form:

φ0(2πνosci) = θtilt + tan−1 [tan θ0 · cos(2πνosci− �)] . (12.18)

Here � is an arbitrary shift between the driver phase and pC readout introduced by
cable delay. The resulting θ0 then determines the tune shift via Eq. 12.17.
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A series of such measurements have been performed at both injection and full
RHIC energies [4]. This has established the nondestructive measurement of the spin
tune as a tool for further investigations of beam spin dynamics.

References

1. W. Fischer, A. Bazilevsky, Impact of three-dimensional polarization profiles on spin-dependent
measurements in colliding beam experiments. Phys. Rev. ST Accel. Beams 15, 041001 (2012)

2. G.G. Ohlsen, P.W. Keaton, Techniques for measurement of spin-1/2 and spin-1 polarization
analyzing tensors. Nucl. Instrum. Meth. 109, 41–59 (1973)

3. H. Huang et al., High spin-flip efficiency at 255 GeV for polarized protons in a ring with two
full Siberian snakes. Phys. Rev. Lett. 120, 264804 (2018)

4. H. Huang et al., Measurement of the spin tune using the coherent spin motion of polarized
protons in a storage ring. Phys. Rev. Lett. 122, 204803 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


 506 3432
a 506 3432 a
 
http://creativecommons.org/licenses/by/4.0/


Chapter 13
Electron Polarimetry

Dave Gaskell

Abstract Electron polarimetry benefits from the ability to use processes with well-
known analyzing powers, hence enabling high precision measurements. Several
techniques are employed to measure electron beam polarization, including Mott,
Møller, and Compton polarimetry. Each technique has particular advantages and
disadvantages, depending on the application. This chapter will focus on the
techniques used to measure electron beam polarization, with particular emphasis
on the challenges and requirements for achieving high precision. The development
of a conceptual design of a Compton polarimeter for the future Electron Ion Collider
will also be discussed.

13.1 Introduction

Polarized electron beams have been used to great effect in both fixed target
accelerators as well as colliders and storage rings. The precision of the electron
beam polarization measurement is in general driven by experimental requirements.
While measurements providing uncertainties on the order of dP/P ≈ 2 − 3%
are sufficient in many cases, there is an increasing demand for high precision

This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No.
DE-SC0012704 with the U.S. Department of Energy. The United States Government and the
publisher, by accepting the article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for United States Government purposes.

D. Gaskell (�)
Experimental Nuclear Physics, Thomas Jefferson National Accelerator Facility, Newport News,
VA, USA
e-mail: gaskelld@jlab.org

This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2023
F. Méot et al. (eds.), Polarized Beam Dynamics and Instrumentation
in Particle Accelerators, Particle Acceleration and Detection,
https://doi.org/10.1007/978-3-031-16715-7_13

301

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16715-7_13&domain=pdf

 66 4097 a 66 4097 a
 
mailto:gaskelld@jlab.org

 -151 4612 a -151 4612
a
 
https://doi.org/10.1007/978-3-031-16715-7_13


302 D. Gaskell

measurements of the polarization, with systematic errors of 1% or better (primarily
for experiments employing parity-violating electron scattering such as Q-Weak [1],
PREX [2], and the future MOLLER [3] and SoLID [4] experiments). The future
Electron Ion Collider (EIC), will require high precision polarimetry (1%) for both
electron and hadron beams to fully leverage its expected experimental capabilities.

Typically, three main techniques are used to measure electron beam
polarization:

• Mott Polarimetry involves the spin-orbit coupling of a (transversely) polarized
electron with the Coulomb field of a large Z nucleus. This technique is useful
at keV to MeV scale energies—often employed in polarized electron sources or
injectors.

• Møller Polarimetry makes use of polarized electron-electron scattering. The
useful energy range is MeV to 10’s of GeV, so can be typically employed at the
same beam energy as the experiment. This measurement is usually destructive to
the beam due to the ferromagnetic foils used as targets.

• Compton Polarimetry employs the scattering of high energy electrons from
laser photons. The backscattered photons or scattered electrons (or both) can
be used to measure the asymmetry. This technique has the advantage of being
non-destructive and can be used for energies larger than ≈1 GeV. However, the
significant energy dependence of the analyzing power poses certain challenges.

The above techniques are discussed in great detail in Ref. [5], but will be
briefly summarized in the sections that follow. It is worth noting that there are
additional techniques such as Compton Transmission polarimetry (see for example
Refs. [6] and [7]) and so-called “Spin-light” polarimetry [8–10], but these will not
be discussed here.

13.2 Mott Polarimetry

Mott polarimetry takes advantage of the asymmetry generated when a transversely
polarized electron scatters from an unpolarized large Z nucleus. The asymmetry is
generated by the spin-orbit interaction of the electron with the electrostatic field of
the nucleus.

The cross section for a polarized electron undergoing Mott scattering at an angle
θ is,

σ(θ, φ) = I (θ)[1+ S(θ)
−→
P · n̂], (13.1)

where I (θ) is the unpolarized cross section,
−→
P is the electron polarization, n̂ is the

unit vector normal to the electron scattering plane, and S(θ) is the so-called Sherman
function, or the Mott scattering analyzing power. The Sherman function is large at
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Fig. 13.1 Sherman function for gold vs. Mott scattered electron angle, θ (lab). The Sherman
function is larger at backward angles, and at energies of a few MeV approaches its maximum
at close to 180 degrees. Figure from Refs. [5, 11]

backward scattering angles, the maximum value occurring at angles approaching
180 degrees at beam energies of a few MeV (see Fig. 13.1).

Some aspects of Mott polarimetry have been described in Sect. 11.8. In general,
Mott polarimetry is used in the keV to few MeV range so is typically employed
in conjunction with polarized sources. One key advantage of Mott polarimetry is
the fact that a polarized target is not required, simplifying experimental aspects of
the measurement. On the other hand, the measurement is complicated by the fact
that the effective Sherman function for scattering from targets of finite thickness
is not the same as the single-atom Sherman function. In the past, this has resulted
in systematic uncertainties due to knowledge of the Sherman function estimated to
be on the order of 1%. However, recent theoretical and Monte Carlo studies have
reduced this uncertainty to≈0.5% resulting in an overall uncertainty of 0.61% [12].

Mott polarimeters are in regular use at CEBAF at Jefferson Lab [12] and at
Mainz [13]. While regularly used for checking the performance of the polarized
sources, the precision of these polarimeters is such that they are increasingly
incorporated in final experimental results.

13.3 Møller Polarimetry

Møller polarimetry measures electron beam polarization using the scattering of
polarized electrons from (polarized) atomic electrons in a nucleus. In general, the
polarized electrons are generated by applying a magnetic field to a ferromagnetic
foil.
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Fig. 13.2 Longitudinal and
transverse analyzing powers
for Møller scattering vs.
center-of-mass scattering
angle, θ∗. The analyzing
power is maximized at 90
degrees and is −7/9 for the
longitudinal case, and −1/9
for transverse

At energies above 100 MeV, the longitudinal and transverse analyzing powers
for polarized Møller scattering are essentially independent of beam energy and are
given by,

Along = − sin2 θ∗(7+ cos2 θ∗)
(3+ cos2 θ∗)2 , (13.2)

AT,x = − sin4 θ∗

(3+ cos2 θ∗)2 , (13.3)

where Along is the analyzing power for longitudinally polarized beam and target
electrons, AT,x for horizontally polarized beam and target electrons, and θ∗ is the
center-of-mass scattering angle. Note that the analyzing power is maximized for
θ∗ = 90 degrees. The longitudinal and transverse Møller analyzing powers are
shown in Fig. 13.2.

Møller polarimetry has the advantage of providing rapid and precise beam
polarization measurements, but with the caveat that the measurement is generally
destructive to the electron beam due to the need to use ferromagnetic foil targets. In
addition, Møller measurements are generally limited to rather low beam intensities
(a few μA) since beam heating of the target foils leads to target depolarization.
Before the late 1990s, most Møller polarimeters used targets slightly tilted with
respect to the beam direction with a small applied magnetic field to polarize the
electrons in the plane of the foil. This had the disadvantage that the foils were not
fully magnetically saturated and the electron polarization had to be inferred from in-
situ measurements of the foil magnetization. The group from the University of Basel
had the insight that by driving a pure iron foil into magnetic saturation using a 3–4
T applied field, out of plane and parallel to the beam direction, the uncertainties
associated with the target polarization (typically at least 2%) could be greatly
reduced. A polarimeter using such a target system was built in experimental Hall C
at Jefferson Lab with the resulting systematic uncertainty due to target polarization
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estimated to be 0.25% [14]. This development opened the door to precision Møller
polarimetry, resulting in measurements with systematic uncertainties better than 1%.

Other considerations in the implementation of Møller polarimetry include:

• Backgrounds: The primary background in Møller scattering is electron scatter-
ing from the atomic nucleus (Mott scattering). This process is easily suppressed
by requiring detection of the scattered and recoiling electrons in coincidence.

• Spectrometer: A Møller polarimeter requires some sort of magneto-optical
system to steer the scattered electrons (which are generally at very small angles
in the lab) to the detector system. The spectrometer optics should be designed
such that acceptance defining apertures are present only in well-defined, easily
understood locations, and ideally, provide the same “tune” or distribution of
events at the detectors for a range of beam energies.

• Acceptance and the Levchuk effect: It was shown that the distribution of
events for more deeply bound (unpolarized) electrons in the atom is different
from the outer shell electrons, which carry the majority of the effective target
polarization [15]. The Møller polarimeter should have large enough acceptance
such that outer and inner shell electrons are detected with nearly the same
probability in order to minimize sensitivity to knowledge of the momentum
distributions of these electrons.

Recent applications of Møller polarimetry have made an effort to address the
above issues, and using a saturated iron foil target have reported results with
precision better than 1% [2, 16].

Møller polarimetry is used almost exclusively at fixed-target facilities such as
SLAC, MAMI, and Jefferson Lab. Application in a storage ring would require the
development of a non-destructive target. A target based on atomic hydrogen stored
in a cold magnetic trap is being pursued at Mainz for the P2 experiment. There is
some question as to whether such a target would remain polarized at the high beam
intensities generally used in a storage ring. A jet target would be another potential
alternative, and some initial tests of Møller polarimetry using such a target were
performed at VEPP3 [17], although further work would be required to determine
the ultimate precision that could be achieved.

13.4 Compton Polarimetry

A Compton polarimeter measures electron beam polarization via the collision of
circularly polarized laser light of energy ∼few eV with high energy electrons.
The backscattered photon energy (Eγ ) is significantly larger than the laser photon
energy (Elaser), and is proportional to the relativistic gamma factor (squared) of the
incoming electron:

Eγ = Elaser
4aγ 2

1+ aθ2
γ γ 2

, (13.4)
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Fig. 13.3 Maximum
Compton backscattered
photon energy vs. initial
electron beam energy for a
532 nm (green) laser
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where γ = Ee/me (with Ee and me the electron energy and mass) and a = (1 +
4γElaser/me)

−1. The backscattered photon energy as a function of electron beam
energy at the kinematic endpoint (180-degree scattering) for a green, 532 nm laser
is shown in Fig. 13.3.

The Compton analyzing power for longitudinally polarized electrons depends
only on the backscattered photon energy and is given by,

Along = 2πr2
o a

(dσ/dρ)
(1− ρ(1+ a))

[

1− 1

(1− ρ(1− a))2

]

, (13.5)

where ro is the classical electron radius, ρ is the backscattered photon energy
divided by its kinematic maximum, Eγ /Emax

γ , and dσ/dρ is the unpolarized
Compton cross section. The transverse analyzing power depends both on the
backscattered photon energy and the azimuthal angle (φ) between the electron
polarization direction and the backscattered photon,

AT = 2πr2
oa

(dσ/dρ)
cos φ

[

ρ(1− a)

√
4aρ(1− ρ)

(1− ρ(1− a))

]

. (13.6)

This dependence on the azimuthal angle results in an asymmetry that depends on the
location of the backscattered photon. For example, a vertically polarized electron
beam would result in an “up-down” asymmetry. The longitudinal and transverse
analyzing powers are shown in Fig. 13.4.

A basic Compton polarimeter requires a laser system, a dipole to deflect the
electron beam away from the path of the backscattered photons, and a detector
system for those photons. The scattered electrons are momentum-analyzed in the
same dipole and those electrons are then separated from the beam, which allows the
use of a position sensitive electron detector.
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Fig. 13.4 Compton longitudinal (left) and transverse (right) analyzing power as a function of
relative backscattered photon energy, ρ. The analyzing power is shown for 5,10, and 18 GeV
electrons assuming a 532 nm (green) laser. The transverse asymmetry is evaluated at φ = 0

Some considerations for the application of Compton polarimetry include:

• The beam intensity and duty cycle of the electron beam will impact the choice of
laser system. For example, the relatively low intensity of the beam at Jefferson
lab requires a laser with a resonating Fabry-Perot cavity. The intensity and
duty cycle will also determine the measurement technique. A low duty-cycle
beam may require measurements in so-called multi-photon mode, in which
several backscattered photons (or scattered electrons) are generated from the
laser collision with each beam bunch.

• The beam energy will impact the choice of laser wavelength - a shorter
wavelength is desirable at lower energies, where the analyzing power is smaller.

• The beam polarization direction (longitudinal or transverse) will dictate the
type of detector required. For example, for measurements of the longitudinal
polarization, the photon detector need only measure the total energy of the
backscattered photon, but for the transverse case, one must measure the position
as well.

Most Compton polarimeters constructed in recent years have been used to mea-
sure the longitudinal beam polarization. The highest precision device was used in the
SLD experiment at SLAC and quoted a systematic uncertainty of dP/P=0.52% at
45.6 GeV [18]. The SLD Compton measured the scattered electrons in multi-event
(integrating) mode using a segmented gas Cherenkov detector. Jefferson Lab has
Compton polarimeters in experimental Halls A and C, achieving systematic errors
of 0.59% in Hall C [19] (using a diamond strip electron detector) and 1% in Hall
A [20, 21] (using a silicon strip electron detector operated in single-event mode
and a photon calorimeter operated in integrating mode). Longitudinal Compton
polarimeters have also been implemented at MIT-Bates, NIKHEF, and HERA. In
addition to the longitudinal polarimeter, HERA also deployed a transverse Compton,
one of the few transverse Compton polarimeters intended to provide relatively
precise absolute measurements of the beam polarization. In the end, the final
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systematic uncertainty for this device was 2.9% [22]. It is worth noting that the EIC
will require measurement of the degree of transverse as well as longitudinal electron
polarization and as one of the few examples of transverse Compton polarimetry, the
HERA TPOL provides useful lessons for implementation at EIC.

13.5 Polarimetry for EIC

The Electron Ion Collider will be the first collider with both polarized hadrons and
electrons, and the high luminosity will allow extremely high statistical precision for
a range of processes (DIS, SIDIS, and exclusive reactions) over a large kinematic
range. It is crucial that the experimental systematic uncertainties are also under
control to fully leverage the capabilities of the EIC. Specifically, the systematic
uncertainty goal for polarimetry (for both electrons and hadrons) is dP/P=1%.

The EIC layout is shown in Fig. 13.5. The electrons are generated with full
polarization at the electron source, accelerated to 400 MeV in the Injector Linac, and
then enter the Rapid Cycling Synchrotron (RCS) where they are accelerated to the
full beam energy (5 to 18 GeV). From the RCS, electron bunches enter the Electron
Storage Ring (ESR) where they interact with the hadron bunches at the experimental
area at IR6. Mott polarimetry will be used at the polarized source, measurements of
the polarization are planned just after the RCS (Møller and Compton polarimetry
are both being studied), and a Compton polarimeter will be used in the Electron
Storage Ring. The discussion here will focus on the conceptual design of the ESR
Compton polarimeter. Note that since the design of the EIC is still ongoing, the final
configuration of the EIC Compton polarimeter may differ from what is presented
here.

Fig. 13.5 Layout of the Electron Ion Collider. Electrons start at the polarized source (3 o’clock),
are accelerated to full energy in the RCS (red ring) and then injected into the ESR
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Table 13.1 EIC electron beam properties at 5, 10, and 18 GeV

Beam property 5 GeV 10 GeV 18 GeV

Bunch frequency 99 MHz 99 MHz 24.75 MHz

Pulse width 63.3 ps 63.3 ps 30 ps

Intensity (average) 2.5 A 2.5 A 0.227 A

Bunch lifetime >30 min. >30 min. 6 min

PL at IR6 Compton location 97.6% 90.7% 70.8%

PT at IR6 Compton location 21.6% 42.2% 70.6%

The design of the ESR Compton polarimeter depends on the electron beam
properties as well as the polarimeter requirements. The main requirements of the
EIC Compton in the ESR are:

• Measurement of the electron polarization bunch-by-bunch
• Compton rates sufficient to make a 1% (statistical) measurement in a time shorter

than the bunch lifetime
• The ability to measure all components (longitudinal and transverse) of the

electron beam polarization
• Systematic errors of 1% or better

The EIC electron beam properties are summarized in Table 13.1. The high
bunch frequency (24.75–99 MHz) and the requirement to measure the electron
beam polarization for each bunch pose the first significant challenge. The small
time between bunches (about 10 ns at 5 and 10 GeV) means that the Compton
detectors and laser system must have very fast time response. While the high average
intensity of the beam has benefits for making rapid measurements, it also implies
larger than average backgrounds, especially synchrotron radiation. In addition, due
to lack of space, the polarimeter cannot be placed at the experiment at IR6, so there
will be some spin precession between the Compton location and the experiment.
This means that in order to extract the absolute polarization with high precision, the
polarimeter must be designed to have small systematic errors for both longitudinal
and transverse polarization measurements simultaneously.

The layout of the Compton polarimeter at its proposed location upstream of
IR6 is shown in Fig. 13.6. As seen in the figure, the laser enters the beamline
vacuum downstream of the 3rd dipole in the section shown, and interacts with the
electron beam at the location of the quadrupole between the 2nd and 3rd dipoles.
The backscattered photon detector will be about 20–30 meters downstream of the
Compton interaction point while the electron detector will be closer since the large
dispersion introduced by the dipole results in sufficient spatial separation of the
scattered electrons without as much drift.

The main elements of the ESR Compton polarimeter are described in more detail
in the EIC Yellow Report [23], but are summarized briefly here.
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Fig. 13.6 Layout of the ESR Compton polarimeter, upstream of IR6. The elements labeled
D2EF_5 denote dipoles, while the elements labeled QxEF_5 (where x=5-12) are quadrupoles

Laser System
The ideal laser system for the Compton polarimeter would be a pulsed laser with the
same repetition rate and similar pulse width as the electron bunches. While pulsed
lasers at 100 MHz are readily available using commercial mode-locked systems,
these lasers lack flexibility and multiple systems would be required for operation at
99 and 24.75 MHz. Instead, the planned system for the EIC Compton makes use of
a gain-switched diode laser, operated at a frequency determined by an RF source.
Such diode lasers are readily commercially available and are relatively inexpensive.
The gain-switched diode (providing light at 1064 nm) is then amplified using fiber
amplifiers and subsequently frequency doubled to 532 nm.

Luminosity calculations indicate that an average power of 5–10 W is sufficient
to generate one backscattered photon per laser-electron bunch crossing. Since the
polarimeter will operate in single event counting mode, higher luminosity is not
required.

This system is similar to laser systems that have been used at Jefferson Lab in the
injectors for the CEBAF accelerator and Low Energy Recirculator Facility (LERF)
with much success and have demonstrated great reliability. The fact that the system
is modular (seed laser, fiber amplifier, doubling system) is also a benefit in that it
facilitates easier repair.
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Position Sensitive Detectors
Position sensitive detectors are required for both the scattered electrons and the
backscattered photons. As noted earlier, the scattered electrons are momentum-
analyzed in the 3rd dipole such that electrons of different energy are spread out in the
horizontal direction. A horizontally segmented detector allows the determination of
the electron energy, and the asymmetry vs. energy can be extracted for determination
of the longitudinal polarization. Studies have shown that reliable determination of
the polarization requires at least 30 bins in energy between the asymmetry zero-
crossing and the kinematic endpoint. For the configuration at EIC, this implies a
required segmentation of about 400 μm. Note that the electron detector will not be
sensitive to the degree of transverse polarization since the transverse electron spin
direction will also be in the horizontal plane, resulting in a left-right asymmetry.
This left-right asymmetry cannot be extracted due to energy dispersion of the 3rd
dipole.

The photon detector, on the other hand, has no such issue and will be used to
measure the degree of transverse electron polarization via the left-right asymmetry.
In principle, one must know the horizontal position of the photon detector relative
to the beam-laser collision point to accurately fit the left-right asymmetry. However,
with sufficient detector position resolution, one can allow the asymmetry zero-
crossing position to float in the fit, making extraction of the polarization insensitive
to the detector position. Studies indicate that a segmentation of about 100 μm is
sufficient for a detector placed 20 m from the Compton-electron IP (see Fig. 13.7).

Diamond strip detectors are an excellent candidate for both the electron and
photon position sensitive detectors. The required segmentation is readily achievable
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Fig. 13.7 Simulated transverse electron asymmetry at the position of the photon detector (20 m
from the Compton-electron IP) vs. horizontal position. In this example, the detector has been
deliberately offset by 0.5 mm, but the fit still results in the correct beam polarization (85.0%)
when using bin sizes of 100 μm and including the offset as a parameter in the fit
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and diamond detectors have the advantage of being very radiation hard. In addition,
diamond has been shown to have response times compatible with the 10 ns spacing
of the EIC electron bunches, although some development is likely required for the
amplification and readout electronics.

Photon Calorimeter
A calorimeter is required to measure the energy of the backscattered photon.
Radiation hardness, good energy resolution, and fast time response are desirable.
Although lead-tungstate has good energy resolution and is relatively radiation hard,
there is a mix of fast and slow time components in the detector response that may
make such a detector incompatible with the 10 ns bunch structure. A tungsten-
powder calorimeter is also under consideration, but its energy resolution is worse
than lead-tungstate which may result in larger systematic uncertainties. Detailed
Monte Carlo simulations will be required to determine if the tungsten-powder
response is adequate.

13.6 Summary

In contrast to hadron polarimetry, there are several processes available which
allow the measurement of the absolute polarization of electrons. Mott, Møller,
and Compton polarimetry are the most frequently used techniques and all three
have areas in which they are optimal. Precision measurements in the field of
parity violating electron scattering have been the primary motivation for recent
improvements in electron beam polarimetry. Although not discussed in detail here,
direct comparisons of different devices using different techniques have played an
important role in demonstrating the reliability of polarization measurements and
have helped identify previously unknown systematic uncertainties [24]. Electron
beam polarimetry will also be crucial to the success of the EIC program—achieving
the needed performance of the Compton polarimeter in the EIC electron storage ring
will pose unique challenges that require further developments.
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Chapter 14
Spin Dynamics Tutorial: Numerical
Simulations

Kiel Hock, François Méot, and Vasiliy Morozov

The next two Sections provide the material of a miniworkshop which extended over
the two weeks of the Summer 2021 USPAS Spin Class, and was integral part of the
teachings.

The work proposed to the attendees essentially consisted in the numerical
simulation of polarized beam manipulations in the AGS injector—“AGS Booster”—
starting from basic principles (computation of resonance strengths, resonance
crossing, effect of synchrotron radiation, etc.), and extending to the application
of polarization preservation techniques (harmonic orbit correction or excitation,
ac dipole, snakes, spin matching, etc.). As a matter of fact, for simplicity the
same lattice, the AGS Booster, with magnetic rigidity adapted in consequence,
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was used for simulations concerning indifferently hadron polarization, or electron
polarization and the effect of synchrotron radiation.

The miniworkshop covers many of the theoretical aspects addressed during the
lectures, and the main goal in performing these numerical simulations is to compare
their outcomes and theoretical expectations.

Section 14.1 gives the assignments. A first part addresses hadron (precisely,
helion, Table 14.1) beams (Sects. 14.1.1.1–14.1.1.17 and Tables 14.2, 14.3), a sec-
ond part deals with electrons and synchrotron radiation (Sects. 14.1.2.1–14.1.2.5).

Section 14.2 gives detailed solutions of these numerical simulation exercises.
Finally, everything starts from a single input data file, “superA.inc”, short enough

to be given in its entirety in Table 14.4 and subsidiary Tables 14.5 and 14.6, the latter
two being a series of 6 cells constitutive of the AGS Booster ring. Nothing else is
needed but the code executable, “zgoubi”, downloadble from sourceforge [1]. The
execution for instance of the said input data file is a mere

zgoubi -in superA.inc

All gnuplot [2] and zpop1 graphs in the present assignments and in their solutions
(Sect. 14.2) derive from ancillary files produced (readable during and upon comple-
tion of simulation) by this simple execution instruction. The input data file taken
from these Tables 14.4, 14.5 and 14.6 is developed further when needed, namely
very little, as required in one or the other of these various problems.

However, simulation input and output data files of many of the exercises have
been saved in Zgoubi development repository, where they can be downloaded from:

https://sourceforge.net/p/zgoubi/code/HEAD/tree/trunk/exemples/uspasSpinClass_2021/

Besides, users may want to consider the use of python interfaces to zgoubi,
subject to continuing development and available on web, pyZgoubi [4] and
zgoubidoo [5], or the ad hoc HPC environment interface in Sirepo [6] where as
well AGS Booster input data files may be found.

14.1 Numerical Simulations: Problems

The numerical simulations proposed in this Section address many of the theoretical
aspects of polarized hadron beam acceleration and of electron polarization, intro-
duced in the lectures. They use stepwise ray-tracing techniques (i.e., a step-by-step
integration of the equations of particle and spin motion), the reason for this is that the
method allows detailed inspection of motion across optical elements, whether using
analytical magnetic/electric field models or field maps, and it allows accurate Monte
Carlo simulations such as stochastic emission of photons (synchrotron radiation)
and its effects on particle and spin dynamics.

1 Zgoubi’s plotting and data treatment companion [3].
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Table 14.1 Parameters of helion, 3He2+, the particle considered in the exercises. Proton data are
given for comparison. Note: atomic mass unit: 931.4940954 MeV/c2; μN = eh̄/2m

Units Proton 3He2+

Mass, m MeV/c2 938.27208 2808.39158

amu 1.00727646 3.0149322

Charge |e| +1 +2

Number of nucleons 1 3

Number of protons, Z 1 2

Spin angular momentum, I h̄ 1/2 1/2

Magnetic moment, μ μN 2.7928474 −2.1276253

Gyromagnetic ratio g = μ
μN
× 2 m μN

Zeh̄I
μ/μN 2 −6.368306745

Anomalous magnetic moment G = g−2
2 1.7928474 −4.18415382

Imperfection resonance interval |mc2/G| MeV 523.3 671.2

Three different classes of problems regarding the manipulation of polarized
beams in circular accelerators are addressed:

– excitation of depolarizing resonances, and their effect on bunch polarization,
– preservation of polarization of hadron beams during acceleration,
– maximization of polarization and polarization life-time, in an electron storage

ring.

Both series of simulation problems will use the same lattice, namely the AGS
Booster ring. This means in particular, the same optical sequence input data files,
mutatis mutandis.

Hadron Polarization Simulations
Beam-beam collisions involving polarized helion (3He2+) are part of the physics
programs at the EIC. Polarized helion beams are produced using an EBIS source.
Prior to injection in the EIC HSR (Hadron Storage Ring, an evolution of RHIC
collider rings), helion beams are accelerated in the AGS Booster and in the AGS
(Fig. 14.1).

At low rigidity, the cold snakes in the AGS cause harmful optical distortions,
including linear coupling. A path to overcome this issue is by injecting 3He beams
at a high enough energy that these distortions become negligible. On the other hand,
under the effect of two partial snakes, the stable spin direction n0 in the AGS is
at an angle to the guiding field, with a least magnitude every |Gγ | = 3n + 1.5
(Fig. 14.2). As a result, it is foreseen to extract 3He beams from the Booster at
|Gγ | = 10.5. These will be the conditions considered in these exercises, regarding
hadron polarization.

Electron Polarization Simulations
High polarization of the electron beam at the collision points is required by the
EIC physics program. Relativistic electrons emit photons, and a small fraction of
these radiated photons contribute to spin flip, which builds up beam polarization
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Fig. 14.1 RHIC injector cascade, the future EIC hadron injector system, in 2021 (RHIC itself is
not shown): H− 200 MeV linac, EBIS ion sources, AGS booster (which also accelerates ions for
the NSRL, NASA Space Research Lab), the AGS, and the AGS to RHIC (AtR) injection line

Fig. 14.2 Vertical component of AGS n0 spin eigenvector, in the presence of two partial snakes.
The angle to the vertical guide field is minimal every three units, Gγ = −7.5, −10.5, −13.5, etc
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through the Sokolov-Ternov effect. In the vast majority of cases, photon emission is
associated with noisy orbital motion causing extra spin diffusion, i.e. depolarization.

In the present simulations regarding high energy electrons in a storage ring, rather
than using the EIC electron storage ring (ESR) lattice, the very ring considered for
hadrons, the AGS Booster, is used. There are various reasons for that: the Booster is
a short ring (200 m), whereas the ESR is 3.8 km, this results in quicker tracking; it
allows, quite efficiently, for dealing with a single lattice for studies of both, hadron
and electron spin dynamics; the AGS Booster lattice is much simpler than the ESR
one, input data files are easier to handle; moving from hadron to electron simulations
(or vice versa) reduces to essentially a matter of changing the reference rigidity and
the nature of the particle.

The goals in the electron polarization simulations are to:

– establish stable particle motion in the AGS Booster lattice for an electron beam
energy of 10 GeV, checking the damping parameters;

– calculate the invariant spin field n0;
– understand depolarization through the deviation of n0 from the vertical in arc

dipoles, and
– practice a spin matching mechanism, which maximizes electron polarization.

Practical Aspects Regarding These Numerical Simulations
When developing simulation input data files, or when using existing ones, in order
for what’s computed, and the physics behind it, to be clear to the user, it can not
be avoided to refer to the Users’ Guide [1]. Having it at hand, ready to use, and
consulting it whenever something happens which looks weird, or looks like going
awry, is recommended.

A good thing to do when questions arise—and many will, is to navigate in
the INDEX section of the Users’ Guide. Note the two main parts in the Users’
Guide: PART A which comments on the physics content and capabilities of the
various optical elements and commands, and PART B which details the formatting
of the data in an input data file. Two bold numbers generally appear in the guide
INDEX, for any item; the first points to Part A, and the second to Part B. Additional
considerations that may usefully be given some attention, are documented in the
Appendix.

The computation of spin and orbital motion in this code uses stepwise ray-tracing
techniques. This means that it solves the Lorentz and T-BMT differential equations
proper, with no approximations on particle or spin dynamics, step-by-step. This
allows accurate field modeling (and that does not preclude approximate field models
if desired anyway) and detailed insight regarding their effect on spin motion.

In any event, one should not lose sight of the goal of the present simulation
exercises, which is not especially to learn about a computer code. It is rather to play
with, and learn about, spin dynamics in electric and magnetic fields, snakes, rotators,
synchrotron radiation and spin diffusion, as a complement to the various theoretical
chapters.
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14.1.1 Polarized Helion in AGS Booster

14.1.1.1 AGS Booster Parameters

The ring lattice used for these exercises is a simplified version of the AGS Booster,
composed of 6 superA super cells. Lattice parameters are given in Table 14.2, the
table needs to be completed as part of the exercises.

The superA sequence (Table 14.4) is taken from the MAD8 [7] model used
for Booster operation. The resulting optical functions of superA are displayed in
Fig. 14.3.
Question 14.1.1.1-1: Complete Table 14.2 with the missing numerical values. These
parameters will be used throughout the simulations, in particular in setting proper
data values in the simulation input data files.

0.0 5. 10. 15. 20. 25. 30. 35. 40.
s (m)

δ E/ p 0c = 0 .
Table name = TWISS

Linux version 8.23/08 22/03/21  12.22.17

3.0

4.1

5.2

6.3

7.4

8.5

9.6

10.7

11.8

12.9

14.0

β
(m

)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25
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D
x
(m

)

β x β y Dx

Fig. 14.3 Booster superA cell optical functions, as per MAD8 [7] model used for Booster
operation. A simplified Booster lattice, comprised of 6 such super cells (parameters given in
Table 14.2), is used in the present simulations
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Table 14.2 Booster
parameters. The table is to be
completed in answer to
Question 14.1.1.1-1,
accounting for 3He2+
parameters given in
Table 14.1. The injector DTL
(drift tube linac) determines
the ion velocity at Booster
entrance, namely,
β = v/c = 0.0655 value

Injection β 0.0655

Injection energy MeV/u 2.0146

Injection Gγ

Injection Bρ T m

Extraction energy GeV/u

Extraction Gγ −10.5

Extraction Bρ T m

Lattice

Orbit length m 201.78

Tunes, νx , νy 4.73, 4.82

Chromaticities, ξx , ξy −4.8, −5.2

Momentum compaction α 0.043998

Transition γ

RF system
Revolution frequency, frev MHz to

RF harmonic, h 4

Peak voltage MV 0.4

Frequency, frf MHz to

Spin
dGγ/dθ

Table 14.3 Beam
parameters

Normalized emittances, εx , εy (πμm) 2.5

Longitudinal emittance eV s 0.5

Momentum spread ±3 10−4

14.1.1.2 Cell and Lattice Optics

It is necessary to first check lattice parameters, viz simulation input data files, prior
to engaging in fancy spin tracking simulations.

The Zgoubi input data file superA.inc (Table 14.4) has been translated from
the MAD model (Sect. 14.1.1.1); this and other Zgoubi input data files used in
subsequent exercises can be found in [8].

Question 14.1.1.2-1: Run that file, namely (with [pathTo]/ being the address of the
folder that contains the Zgoubi executable on your computer):

[pathTo]/zgoubi -in superA.inc

This produces the transport matrix of super cell A, and its periodic beam matrix and
tunes (logged in zgoubi.res).

Explain the role of the FIT procedure.

Question 14.1.1.2-2: Check the lattice parameters against Table 14.2 data (they are
logged at the end of the sequence, bottom of zgoubi.res result listing).
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Table 14.4 The superA cell sequence in this superA.inc data file features the markers
MARKER[LABEL1=superA_S] and MARKER[LABEL1=superA_E] at its extremities. These
labeled MARKERs allow that very section of superA.inc, and that section only, to be INCLUDEd
in further job files—INCLUDE has a similar function to CALL in MAD job files. This input
file superA.inc itself INCLUDEs the LA1, LA2, LA3, LA6 subsections (Tables 14.5 and 14.6).
Comments are provided for guidance, consulting the Users’ Guide is unavoidable

superA.inc data file
’OBJET’
1000.000000 ! Reference rigidity (kG.cm).
5 ! An option to generate 11 particles (convenient for MATRIX computation),
.01 .001 .01 .001 0. .001 ! with the sampling specified in this line,
0. 0. 0. 0. 0. 1. ! and centered on these values, Y, T, Z, P, s, D.
’FAISCEAU’ ! Local particle coordinates.

’SCALING’ ! A sort of "power supplies rack", allows tweaking fields
1 5 ! (a field scaling factor), in 7 different families of magnets, here.
BEND
-1
1.
1
MULTIPOL
-1
1.
1
MULTIPOL QHA* ! These two families, QHA* and QVA* (* is a wild card)
-1 ! control the tunes.
1.0864492 ! FIT variable #12.
1
MULTIPOL QVA*
-1
1.0657342 ! FIT variable #16.
1
MULTIPOL DVCA* ! Make sure all vertical kickers are zero-ed.
-1
0.
1

’MARKER’ superA_S
’INCLUDE’
1
LA1.inc[LA1S:LA1E]
’INCLUDE’
1
LA2.inc[LA2S:LA2E]
’INCLUDE’
1
LA3.inc[LA3S:LA3E]
’INCLUDE’
1
LA2.inc[LA2S:LA2E]
’INCLUDE’
1
LA1.inc[LA1S:LA1E]
’INCLUDE’
1
LA6.inc[LA6S:LA6E]
’INCLUDE’
1
LA1.inc[LA1S:LA1E]
’INCLUDE’
1
LA2.inc[LA2S:LA2E]

’MARKER’ superA_E

’FIT’ ! Find the 4D closed orbit (nil, in the present case of perfect cell)
6 nofinal ! and set the (fractional) cell tune values.
1 30 0 [-1,1]
1 31 0 [-10,10]
1 32 0 [-1,1]
1 33 0 [-10,10]
3 12 0 1.
3 16 0 1.
6 1e-15 ! 6 constraints (and penalty = 1e-15):
3.1 1 2 #End 0. 1. 0 ! Y_0= Y(end of sequence),
3.1 1 3 #End 0. 1. 0 ! T_0= T(end of sequence),
3.1 1 4 #End 0. 1. 0 ! Z_0= Z(end of sequence),
3.1 1 5 #End 0. 1. 0 ! P_0= P(end of sequence).
0.1 7 7 #End 0.788333333333 1. 0 ! 6-cell Qy=4.73/6.
0.1 8 8 #End 0.803333333333 1. 0 ! 6-cell Qy=4.82/6.
’FAISCEAU’ ! Local particle coordinates.
’MATRIX’
1 11
’END’
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Table 14.5 LA1.inc and LA2.inc optical sequences. These are two of the 4 different files
(LA1.inc, LA2.inc, LA3.inc, LA6.inc) that make up the LA1.inc-LA2.inc-LA3.inc-LA2.inc-
LA1.inc-LA6.inc-LA1.inc-LA2.inc superA.inc super cell sequence of Booster. These LA*.inc are
subject to INCLUDE in superA.inc data file (Table 14.4)

’MARKER’ LA1S

’DRIFT’ DRIF L057

57.0400

’MULTIPOL’ DVCA1 VKIC

0 .kicker

0.1E-03 10.0000 -0.0E+00 0. 0. 0. 0. 0. 0. 0. 0. 0.

.0 .0 1.00 0.00 0.00 0.00 0.00 0. 0. 0. 0.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

.0 .0 1.00 0.00 0.00 0.00 0.00 0. 0. 0. 0.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

1.570796327 0. 0. 0. 0. 0. 0. 0. 0. 0.

#20|3|20 Kick

1 0. 0. 0.

’DRIFT’ DRIF L007

6.9600

’MULTIPOL’ SVA1 SEXT

0 .Sext

0.1E+02 10. 0. 0. 0.000 0. 0. 0. 0. 0. 0. 0.

0.00 0.00 1.00 0. .0 0. .0 0. .0 0. .0

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0.00 0.00 1.00 0. .0 0. .0 0. .0 0. .0

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

2. ! cm MultSVA1

1 0. 0. 0.

’DRIFT’ DRIF L014

13.8050

’DRIFT’ MONI PUEVA1

0.0000

’DRIFT’ DRIF L011

11.6867

’MULTIPOL’ QVA1 QUAD

0 .Quad

0.493916E+02 10. 0. -0.5472896982 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0. 0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0. 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0. 0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

2. ! cm MultQVA1

1 0. 0. 0.

’DRIFT’ DRIF L029

29.4917

’BEND’ DHA1T SBEN

0 .Bend

1.2096161E+02 0.00E+00 7.2121043E-01

0.00 0.00 0.00000000

4 .2401 1.8639 -.5572 .3904 0. 0. 0.

0.00 0.00 0.00000000

4 .2401 1.8639 -.5572 .3904 0. 0. 0.

1.0000E+00 cm Bend

3 0. 0. 0.

’BEND’ DHA1Z SBEN

0 .Bend

1.2096161E+02 0.00E+00 7.2121043E-01

0.00 0.00 0.00000000

4 .2401 1.8639 -.5572 .3904 0. 0. 0.

0.00 0.00 0.00000000

4 .2401 1.8639 -.5572 .3904 0. 0. 0.

1.0000E+00 cm Bend

3 0. 0. 0.

’MARKER’ LA1E

’END’

’MARKER’ LA2S

’DRIFT’ DRIF L057

57.0400

’MULTIPOL’ DHCA2 HKIC

0 .kicker

0.1E-03 10.0000 -0.0E+00 0. 0. 0. 0. 0. 0. 0. 0. 0.

.0 .0 1. 0. 0. 0. 0. 0. 0. 0. 0.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

.0 .0 1. 0. 0. 0. 0. 0. 0. 0. 0.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

0.00 0. 0. 0. 0. 0. 0. 0. 0. 0.

#20|3|20 Kick

1 0. 0. 0.

’DRIFT’ DRIF L007

6.9600

’MULTIPOL’ SHA2 SEXT

0 .Sext

0.1E+02 10. 0. 0. 0.000 0. 0. 0. 0. 0. 0. 0.

0.00 0.00 1.00 0. .0 0. .0 0. .0 0. .0

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0.00 0.00 1.00 0. .0 0. .0 0. .0 0. .0

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

2. ! cm MultSHA2

1 0. 0. 0.

’DRIFT’ DRIF L014

13.8050

’DRIFT’ MONI PUEHA2

0.0000

’DRIFT’ DRIF L012

12.1317

’MULTIPOL’ QHA2 QUAD

0 .Quad

0.485016E+02 10. 0. 0.5256342158 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0. 0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0. 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0. 0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

2. ! cm MultQHA2

1 0. 0. 0.

’DRIFT’ DRIF L031

29.9367

’BEND’ DHA2T SBEN

0 .Bend

1.2096161E+02 0.00E+00 7.2121043E-01

0.00 0.00 0.00000000

4 .2401 1.8639 -.5572 .3904 0. 0. 0.

0.00 0.00 0.00000000

4 .2401 1.8639 -.5572 .3904 0. 0. 0.

1.0000E+00 cm Bend

3 0. 0. 0.

’BEND’ DHA2Z SBEN

0 .Bend

1.2096161E+02 0.00E+00 7.2121043E-01

0.00 0.00 0.00000000

4 .2401 1.8639 -.5572 .3904 0. 0. 0.

0.00 0.00 0.00000000

4 .2401 1.8639 -.5572 .3904 0. 0. 0.

1.0000E+00 cm Bend

3 0. 0. 0.

’MARKER’ LA2E

’END’
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Table 14.6 LA3.inc and LA6.inc optical sequences. These are two of the 4 different files
(LA1.inc, LA2.inc, LA3.inc, LA6.inc) that make up the LA1.inc-LA2.inc-LA3.inc-LA2.inc-
LA1.inc-LA6.inc-LA1.inc-LA2.inc superA.inc super cell sequence of Booster. These LA*.inc are
subject to INCLUDE in superA.inc data file (Table 14.4)

’MARKER’ LA3S

’DRIFT’ DRIF L057

57.0400

’MULTIPOL’ DVCA3 VKIC

0 .kicker

0.1E-03 10.0000 -0.0E+00 0. 0. 0. 0. 0. 0. 0. 0. 0.

.0 .0 1. 0. 0. 0. 0. 0. 0. 0. 0.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

.0 .0 1. 0. 0. 0. 0. 0. 0. 0. 0.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

1.570796327 0. 0. 0. 0. 0. 0. 0. 0. 0.

#20|3|20 Kick

1 0. 0. 0.

’DRIFT’ DRIF L007

6.9600

’MULTIPOL’ SVA3 SEXT

0 .Sext

0.1E+02 10. 0. 0. 0.000 0. 0. 0. 0. 0. 0. 0.

0.00 0.00 1.00 0. .0 0. .0 0. .0 0. .0

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0.00 0.00 1.00 0. .0 0. .0 0. .0 0. .0

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

2. ! cm MultSVA3

1 0. 0. 0.

’DRIFT’ DRIF L014

13.8050

’DRIFT’ MONI PUEVA3

0.0000

’DRIFT’ DRIF L011

11.6867

’MULTIPOL’ QVA3 QUAD

0 .Quad

0.493916E+02 10. 0. -0.5472896982 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0. 0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0. 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0. 0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

2. ! cm MultQVA3

1 0. 0. 0.

’DRIFT’ DRIF L029

29.4917

’DRIFT’ DRIF LDHH

121.0000

’MARKER’ CAVITY

’DRIFT’ DRIF LDHH

121.0000

’MARKER’ LA3E

’END’

’MARKER’ LA6S

’DRIFT’ DRIF L057

57.0400

’MULTIPOL’ DHCA6 HKIC

0 .kicker

0.1E-03 10.0000 -0.0E+00 0. 0. 0. 0. 0. 0. 0. 0. 0.

.0 .0 1. 0. 0. 0. 0. 0. 0. 0. 0.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

.0 .0 1. 0. 0. 0. 0. 0. 0. 0. 0.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

0.00 0. 0. 0. 0. 0. 0. 0. 0. 0.

#20|3|20 Kick

1 0. 0. 0.

’DRIFT’ DRIF L007

6.9600

’MULTIPOL’ SHA6 SEXT

0 .Sext

0.1E+02 10. 0. 0. 0.000 0. 0. 0. 0. 0. 0. 0.

0.00 0.00 1.00 0. .0 0. .0 0. .0 0. .0

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0.00 0.00 1.00 0. .0 0. .0 0. .0 0. .0

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

2. ! cm MultSHA6

1 0. 0. 0.

’DRIFT’ DRIF L014

13.8050

’DRIFT’ MONI PUEHA6

0.0000

’DRIFT’ DRIF L012

12.1317

’MULTIPOL’ QHA6 QUAD

0 .Quad

0.485016E+02 10. 0. 0.5256342158 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0. 0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0. 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0. 0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

2. ! cm MultQHA6

1 0. 0. 0.

’DRIFT’ DRIF L031

29.9367

’DRIFT’ DRIF LDH

242.0000

’MARKER’ LA6E

’END’

Question 14.1.1.2-3: Check the periodic optical functions (logged in zgoubi.res)
against MAD8 results (logged in MAD8 “print” file).

Question 14.1.1.2-4: Run a TWISS command (replace MATRIX command in
superA.inc) to produce the optical functions along the super cell (TWISS logs these
in the file zgoubi.TWISS.out). Produce a graph of the latter, compare to Fig. 14.3
from MAD8.
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14.1.1.3 Spin Optics

Injection energy (see Table 14.2) is considered in this question. Tracking is needed
in some of the questions, it is performed using the input data file given in Table 14.7,
in which, compared to Table 14.4, OBJET[BORO] and SCALING coefficients have

Table 14.7 Input data file to track 3 helion ions, on-momentum and at δp/p = ±10−4, and
their spins, along Booster. This data file also defines the [SCALING_S:SCALING_E] segment,
for INCLUDE purpose—for shortness—in subsequent exercises

Track 3 particles and their spin vectors, along superA cell.
! Additional non-void lines here require a comment sign ’!’

! Periodic dispersion (from prior lattice parameter computation), for chromatic orbit
! calculation: eta_Y=0.7428, eta’_Y=-0.10475

’OBJET’
0.3074552E3 ! Reference rigidity/kG.cm, for 3He++, at injection beta value 0.0655.
2 ! An option to define initial particle coordinates, one by one.
3 1 ! 3 particles are defined, launched on their closed orbit:
0.742818e-2 -0.10475e-1 0. 0. 0. 1.0001 ’p’ ! +1e-4 off-momentum (chromatic orbit coord.);
0. .0 0. 0. 0. 1. ’o’ ! on-momentum particle (coordinates are zero, D=1);

-0.742818e-2 0.10475e-1 0. 0. 0. 0.9999 ’p’ ! -1e-4 off-momentum (chromatic orbit coord.).
1 1 1

’PARTICUL’ ! Defining the particle species is necessary, in order for the program to solve
HELION ! the T-BMT equation.
’SPNTRK’ ! Define initial spin vector. Switch on spin tracking.
4
0.866025403784 0. 0.5 ! Initial S_X=S_Z=1/sqrt(2), S_Y=0.
0.707106781187 0. 0.707106781187 ! Initial S_X=S_Z=1/sqrt(2), S_Y=0.
0.5 0. 0.866025403784 ! Initial S_X=S_Z=1/sqrt(2), S_Y=0.

’MARKER’ SCALING_S ! A segment, down to "’MARKER’ SCALING_E", defined for further INCLUDE.
’SCALING’ ! This sets the magnet power supplies, now that the rigidity has been changed
1 5 ! from 1 Tm to 0.3074552 (injection value). This ensures unchanged optics.
BEND
-1
0.3074552
1
MULTIPOL ! Default value for any ULTIPOL, unless otherwise specified furtehr down.
-1
0.3074552
1
MULTIPOL QH* ! These two families, QH* and QV* (* stands for whatever),
-1 ! control the tunes.
0.3074552 * 1.0864492 ! FIT variable #12
1
MULTIPOL QV*
-1
0.3074552 * 1.0657342 ! FIT variable #16
1
MULTIPOL DVCA* ! Make sure all vertical kickers are zero-ed.
-1
0.
1
’MARKER’ SCALING_E ! End of [SCALING_S:SCALING_E] segment.

’OPTIONS’
1 1
.plt 2

’INCLUDE’
1
6* superA.inc[superA_S:superA_E] ! INCLUDE superA segment from superA.inc file, 6 times.

’FAISCEAU’ ! Particle coordinates, here!
’SPNPRT’ ! Print out spin data, at his location along the optical sequence.

’SYSTEM’ ! System call.
2 ! 2 successive commands, as follows:
gnuplot <./gnuplot_Zplt_sSpin.gnu ! Produce a graph of spin components versus distance.
okular gnuplot_Zplt_sSpin.eps & ! Display that graph.

’END’
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been set to injection rigidity, leaving the optics unchanged (cell optical functions as
in Fig. 14.3).

Question 14.1.1.3-1: The spin closed orbit in the ideal ring (six superA cells, planar,
no defects) is vertical everywhere.

Tracking shows that this is also the case for off-momentum particles. Is it what’s
expected? Please explain.

Question 14.1.1.3-2: provide the following simulation: track the spin closed orbit
over a turn, for an on-momentum particle, and for off-momentum particles at
dp/p = −10−4 and dp/p = +10−4. Provide a graph of the spin components
for these 3 particles.

Add the computation of the spin matrix to get the 1-turn spin map and the spin
tune.

Explain the value of the 1-turn spin precession angle (as found for instance under
SPNPRT in zgoubi.res).

Question 14.1.1.3-3: What are the spin tune values, on-momentum and at dp/p =
±10−4?

14.1.1.4 Depolarizing Resonances

Question 14.1.1.4-1: Begin filling in Tables 14.8 and 14.9, for the moment with the
respective locations (Gγ values) of

– imperfection resonances,
– systematic intrinsic resonances,

over the energy range of concern (Table 14.2). These data will be used in subsequent
questions.

Table 14.8 Imperfection
resonance locations (Gγ ) and
strengths (εn); table to be
completed. Note: give
resonance strengths
normalized to rms closed
orbit amplitude

Gγ |εn|/yco, rms

Theory Tracking

Stationary Crossing

−5

−6

etc.

Table 14.9 Systematic
intrinsic resonances; table to
be completed. Note: give
resonance strengths
normalized to the square root
of the invariant value

kM ± νy Gγ |εn|/
√

εy/π

Theory Tracking

Stationary Crossing

0− νy

−12+ νy

etc.
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Question 14.1.1.4-2: Illustrate the crossing of intrinsic resonances (the strengths of
which are εy-dependent) with two graphs of Sy(Gγ ), as follows:

– take a few particles evenly distributed in phase on the same vertical invariant εy

(OBJET[KOBJ=8] can be used; or initial coordinates may be generated off-line
and then OBJET[KOBJ=2] used). The horizontal invariant εx can be taken null
(explain why);

– accelerate (use CAVITE, placed for simplicity at either end of the optical
sequence) from injection Gγ to some Gγ � −18 + νy in two different cases:
εy = 2.5 πμm and 10 times less.

Comparing these two graphs, essentially two things are observed: please com-
ment.

Question 14.1.1.4-3: Provide a graph showing the span of the magnetic field
strengths experienced in the vertical quadrupoles by the orbiting particles, depend-
ing on their initial betatron phase.

14.1.1.5 Imperfection Resonance Strengths

Introduce a particular series of random vertical misalignments of the 48 quadrupoles
around Booster. ERRORS could be used for that, to randomly modify MUL-
TIPOL[KPOS=5] alignment data; however, it is suggested instead to use the
misalignment series proposed in Table 14.10, for consistency with the detailed
solution to this and subsequent questions given in Sect. 14.2 (Sects. 14.2.1.5 and
14.2.1.7).

A python script amongst other means can be written to apply this series to the
six, now distinct, superA, superB, superC, . . ., superF super cells. An example script
is shown in Table 14.11 that saves a new include file that contains superA through
superF as zgoubi_misaligned.INC. These modified super*.inc files will be used in
place of the six superA.inc in the previous exercises.
Question 14.1.1.5-1: Calculate the strengths of the imperfection resonances excited
from |Gγ | = 5 to |Gγ | = 10, using the theoretical thin lens model (Eq. 2.29).

Hint: produce a zgoubi.TWISS.out file using TWISS command, accounting for
the now non-zero vertical closed orbit excursion using FIT (preceding TWISS), to
evaluate Eq. 2.29.

Complete the “theory” column of Table 14.8 accordingly.

14.1.1.6 Intrinsic Resonance Strengths

Assume an invariant value equal to the transverse beam emittance (Table 14.3). Use
your input file without quadrupole misalignments.
Question 14.1.1.6-1: Calculate the strengths of the intrinsic resonances, using the
theoretical thin lens model (Eq. 2.35).
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Table 14.10 A possible random vertical misalignments series for the 48 quadrupoles around
Booster (this is the data series used in the solutions, Sects. 14.2 and 14.2.1.5). It is now necessary to
distinguish the 48 quadrupoles of the six, now distinct, super cells: essentially a matter of renaming
each quadrupole, for instance with suffixes A1 to A8 (superA cell), B1 to B8 (superB cell), . . ., F1
to F8 (superF cell)

# superA: # superD:
0.6723850 QVA1 -0.0082470 QVD1
0.7345750 QHA2 0.0172110 QHD2
0.7262320 QVA3 0.0307940 QVD3
0.5887510 QHA4 0.0098080 QHD4
0.4926790 QVA5 -0.0629690 QVD5
0.4026180 QHA6 -0.2462660 QHD6
0.3593190 QVA7 -0.5099270 QVD7
0.3802380 QHA8 -0.7531260 QHD8

# superB: # superE:
0.3218880 QVB1 -0.9371040 QVE1
0.2246450 QHB2 -1.1170480 QHE2
0.1578100 QVB3 -1.1903730 QVE3
0.1243620 QHB4 -1.2219470 QHE4
0.0929490 QVB5 -1.2518560 QVE5
0.0385940 QHB6 -1.2414150 QHE6

-0.0469160 QVB7 -1.2676770 QVE7
-0.0152930 QHB8 -1.2564210 QHE8
# superC: # superF:
-0.0345980 QVC1 -1.2332150 QVF1
-0.0029100 QHC2 -1.1096020 QHF2
0.0949500 QVC3 -0.9485780 QVF3
0.0761360 QHC4 -0.6493420 QHF4
0.0156440 QVC5 -0.4064320 QVF5
0.0002140 QHC6 -0.1635210 QHF6

-0.0111360 QVC7 0.0906590 QVF7
-0.0080890 QHC8 0.3853270 QHF8

Hint: use the optical file zgoubi.TWISS.out produced in Sect. 14.1.1.2 to evaluate
Eq. 2.35.

Complete the “theory” column of Table 14.9 accordingly.

14.1.1.7 Spin Motion Through Imperfection Resonances

It is suggested here to use the input file with misaligned quadrupoles of
Sect. 14.1.1.5 (this is the case for the solutions provided in Sects. 14.2 and 14.2.1.7).
Question 14.1.1.7-1: Stationary case (fixed energy).
Complete Table 14.8, “stationary” column, by tracking at various distances near
resonance, using Eq. 2.49.
Question 14.1.1.7-2: Accelerating through the resonance.

CAVITE[IOPT=3] may be used for acceleration.
Complete Table 14.8, “crossing” column, by tracking through every integer reso-
nance from Gγ = −5 to Gγ = −10.

14.1.1.8 Spin Motion Through Intrinsic Resonances

Question 14.1.1.8-1: Stationary case (fixed energy).
Consider one of the strong resonances found in 14.1.1.5.
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Table 14.11 Example python code to modify given .inc files to allow quadrupole misalignments
using KPOS=5 and allow these alignments to be based off an external file. The code: reads in
existing include files and quadrupole alignment data, parses through them and finds quadrupoles,
modifies the quadrupole KPOS line to use KPOS=5 with alignment data from external file,
compiles all modified include files, saves a new include file for the entire Booster lattice,
zgoubi_misaligned.INC. Commented lines allow modifying vertical corrector strengths in order
to use the harmonic correction method

### Python code to parse existing .inc files and change quadrupole alignment to KPOS=5

# Alignments for quadrupoles provided by external file (alignment.txt)

# alignment.text should contain alignment data with a single column, ’\n’ separated

# To be run in folder with LA1.inc, LA2.inc, LA3.inc, LA6.inc, and alignment.txt

import numpy as np

### Read in lattice files

A1=open(’LA1.inc’).read()

A2=open(’LA2.inc’).read()

A3=open(’LA3.inc’).read()

A6=open(’LA6.inc’).read().replace("’END’","") #Remove ’END’ from cell

### Load in alignment data

Dz=np.loadtxt(’alignment.txt’)

### Process cell files to insert KPOS5 syntax to Quadrupoles

def insert_KPOS5(line,index):

temp=line.split(’\n’) #Split file on new line

for i in range(0,len(temp)): #Loop through file

if ’QUAD’ in temp[i]: #Mark line if keyword QUAD is used

idx=i

temp2=[]

for i in range(0,len(temp)):

if i==idx+9: #From QUAD keyword, 9th line after calling keyword is KPOS parameters

temp2.append("""5 0 0 %.8f 0 0 0 """%(Dz[index]))

else: #Input line as is if it is not QUAD KPOS line

temp2.append(temp[i])

LINE="\n".join(temp2) #Recombine lines into one string

return LINE

### Set harmonic corrector current based off the harmonic and corrector number

def harm_corr(harmonic_number, corrector_number, phase_shift,currents):

[corrcalsO,corrcalcO]=currents

corrector_strength=0.

for i in harmonic_number:

phase=2*i*corrector_number*np.pi*8.40729167/201.8+phase_shift

corrector_strength+=(np.multiply(corrcalsO[i],0.975*1e3*np.sin(phase))+np.multiply(corrcalcO[i],0.975*1e3*np.cos(phase)))

return corrector_strength

### Modify vertical corrector strengths for harmonic orbit correction

def set_VCorr(line,index,currents):

temp=line.split(’\n’)

for i in range(0,len(temp)):

if ’VKIC’ in temp[i]:

idx=i

BCorr=harm_corr(harm_no, index,0,currents)

temp2=[]

for i in range(0,len(temp)):

if i==idx+2:

temp2.append("""0.100000E-03 10.0000 %.8f 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0"""%(BCorr))

else:

temp2.append(temp[i])

LINE="\n".join(temp2)

return LINE

### Function to build each Booster superperiod.

def build_super(sindex,line,currents):

KEY=line.replace(’super’,’’) #Get the super period letter from name

#Set temporary cell with inserting KPOS5

tA1=insert_KPOS5(A1,sindex*8+0)

# tA1=set_VCorr(tA1,sindex*8/2+0,currents) #Modify vertical corrector strengths to desired harmonic correction

#Replace all names to have correct superperiod letter and cell number

L1=tA1.replace("DVCA1",’DVC%s1’%KEY).replace("SVA1",’SV%s1’%KEY).replace("QVA1",’QV%s1’%KEY).replace("DHA1",’DH%s1’%KEY)

#Repeat for each cell

tA2=insert_KPOS5(A2,sindex*8+1);

L2=tA2.replace("DHCA2",’DHC%s2’%KEY).replace("SHA2",’SH%s2’%KEY).replace("QHA2",’QH%s2’%KEY).replace("DHA2",’DH%s2’%KEY)

tA3=insert_KPOS5(A3,sindex*8+2); # tA3=set_VCorr(tA3,sindex*8/2+1,currents)

L3=tA3.replace("DVCA3",’DVC%s3’%KEY).replace("SVA3",’SV%s3’%KEY).replace("QVA3",’QV%s3’%KEY)

tA4=insert_KPOS5(A2,sindex*8+3);

L4=tA4.replace("DHCA2",’DHC%s4’%KEY).replace("SHA2",’SH%s4’%KEY).replace("QHA2",’QH%s4’%KEY).replace("DHA2",’DH%s4’%KEY)

tA5=insert_KPOS5(A1,sindex*8+4); # tA5=set_VCorr(tA5,sindex*8/2+1,currents)

L5=tA5.replace("DVCA1",’DVC%s5’%KEY).replace("SVA1",’SV%s5’%KEY).replace("QVA1",’QV%s5’%KEY).replace("DHA1",’DH%s5’%KEY)

tA6=insert_KPOS5(A6,sindex*8+5);

L6=tA6.replace("DHCA6",’DHC%s6’%KEY).replace("SHA6",’SH%s6’%KEY).replace("QHA6",’QH%s6’%KEY)

tA7=insert_KPOS5(A1,sindex*8+6); # tA7=set_VCorr(tA7,sindex*8/2+1,currents)

L7=tA7.replace("DVCA1",’DVC%s7’%KEY).replace("SVA1",’SV%s7’%KEY).replace("QVA1",’QV%s7’%KEY).replace("DHA1",’DH%s7’%KEY)

tA8=insert_KPOS5(A2,sindex*8+7);

L8=tA8.replace("DHCA2",’DHC%s8’%KEY).replace("SHA2",’SH%s8’%KEY).replace("QHA2",’QH%s8’%KEY).replace("DHA2",’DH%s8’%KEY)

(continued)
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Table 14.11 (continued)
#Add strings together line to build new include files

RETURN="""

%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s"""%(L1,L2,L3,L4,L5,L6,L7,L8)

return RETURN

### Function to execute zgoubi based off desired snake rotation angle, phi

def Generate_INC():

#Build the superperiods

Asuper=build_super(0,"Asuper",’’)

Bsuper=build_super(1,"Bsuper",’’)

Csuper=build_super(2,"Csuper",’’)

Dsuper=build_super(3,"Dsuper",’’)

Esuper=build_super(4,"Esuper",’’)

Fsuper=build_super(5,"Fsuper",’’)

DAT_file=("’MARKER’ START \n%s\n%s\n%s\n%s\n%s\n%s\n’MARKER’ END"%(Asuper,Bsuper,Csuper,Dsuper,Esuper,Fsuper))

DATA=open(’zgoubi_misaligned.INC’,’w’)

DATA.write(’%s’%DAT_file)

DATA.close()

#Build and save new include file using KPOS=5 in quadrupoles

Generate_INC()

For various distances to the resonance (say, �n = N ×|εn|, N is a small integer),
produce a graph of the motion of the spin components Sx,s,y(turn), over a few
hundred turns—assume vertical initial spin vector orientation for simplicity.

Produce a Fourier spectrum of the horizontal components (Fourier amplitude
versus frac(νsp)); explain the frequency components observed in the spectrum.

Produce tables, or graphs, which compare theory with the following results:

(i) average values of the vertical component Sy ; of the horizontal components
Sx, Ss .

(ii) dependence of spin component precession frequencies upon distance to the
resonance.

Question 14.1.1.8-2: Complete Table 14.9, “stationary” column, by tracking at
various distances near the resonance, using Eq. 2.49.
Question 14.1.1.8-3: Accelerating through the resonance.

CAVITE[IOPT=3] may be used for acceleration.
Consider the strong resonance of Question 14.1.1.8-1.
Deduce the resonance strength from the Froissart-Stora formula; check against

the theoretical value obtained in Question 14.1.1.6-1 and against the numerical
value(s) in Question 14.1.1.8-2.
Question 14.1.1.8-4: Complete Table 14.9, “crossing” column, by tracking through
every systematic intrinsic resonance.

14.1.1.9 Spin Motion Through a Weak Resonance

Consider a weak intrinsic resonance (take for instance a random one, or otherwise a
systematic with a small enough invariant value), such that Pf ≈ 0.99 Pi.
Question 14.1.1.9-1: Compute the turn-by-turn spin motion Sy(turn) across that
resonance, produce Sy(turn) graph.

Match that spin motion Sy(turn) with the Fresnel integral model. From this
match, obtain the resonant Gγ value, vertical tune, and resonance strength.
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14.1.1.10 Beam Depolarization Using a Solenoid

Depolarization of the beam while it is still in the accelerator may be a method for
calibrations. A longitudinal field can be introduced locally in the lattice for that.
Depolarization is obtained by crossing an integer resonance. This is the object of
the present simulation.
Question 14.1.1.10-1: Introduce a L = 1 meter solenoid, field Bs (SOLENOID may
be used for that, or a 1-D axial field map using BREVOL), in a straight section in
the defect free Booster lattice.

Determine Bs from theory for proper value of the strength |εn| of an appropriate
integer resonance. Plot Pf (BsL).

Accelerate (using CAVITE[IOPT=3]) a particle with vertical initial spin through
that resonance, check that spin motion ends up in the vicinity of the median plane,
asymptotically.

Repeat the simulation using SPINR, a pure spin rotation, in lieu of SOLENOID.
Question 14.1.1.10-2: Check depolarization of a beam with Gaussian coordinate
distributions in transverse coordinates and momentum spread, with the following
parameters:

εx = εy = 1 π μm, σδp
p
= 10−3

14.1.1.11 Introduce a Partial Snake

A partial Siberian snake makes imperfection resonances strong, so causing complete
adiabatic spin flip at every imperfection resonance crossing (Chap. 1). The forbidden
spin tune band it induces near integer Gγ allows for placing the fractional part of the
vertical betatron tune inside this gap, so forbidding crossing of intrinsic resonances
νsp = n± νy .

The goal in this exercise is to assess the efficiency of a partial snake in overcom-
ing integer resonances, and the necessary partial snake strength for preservation of
polarization during acceleration.
Question 14.1.1.11-1: Create a vertical closed orbit around Booster lattice. This can
use ERRORS to generate random vertical misalignment of lattice quadrupoles (this
is the case for the solutions provided in Sects. 14.2 and 14.2.1.11; another possibility
would be to re-use the input file with misaligned quadrupoles of Sect. 14.1.1.5).
Only one ring optics, meaning a single set of quadrupole misalignments is consid-
ered in the exercise, as it mostly aims at addressing principles (it is not intended to
perform statistics on misalignment samples).

Calculate the strengths of the spin resonances so excited.
Accelerate a particle on the vertical closed orbit, over Gγ : −6.5 → −10.5,

provide a graph of Sy(turn).
Check the location and spacing of the resonances, confirm theoretical expecta-

tions.
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Question 14.1.1.11-2: Install in a drift a longitudinal-axis partial snake (use SPINR
for pure spin rotation, avoiding any orbit and optics perturbation).

Inhibit ERRORS (ERRORS[ONF=0]) and set the snake angle to φsnake =
2π |Jn|, with |Jn| being the strength of the strongest resonance.

Set the lattice rigidity on Gγn = 7 resonance. Find the spin closed orbit for an
on-momentum particle. Plot the spin orbit components around the ring, Sx,y,s(s).
Explain what is observed.
Question 14.1.1.11-3: Still in the case of a perfect ring, planar closed orbit, compute
the Gγ dependence of the spin closed orbit vector, observed at the snake. Produce
a graph of the spin orbit components Sx,s,y(Gγ ).

Produce a graph of the spin tune dependence on Gγ , νsp(Gγ ).
Question 14.1.1.11-4: Add quadrupole misalignments now (ERRORS[ONF=1]).
Thus, spin-wise, both effects now apply, a vertical closed orbit distortion and local
spin rotation by a snake (SPINR[φsnake = 1.224◦]).

Accelerate a particle on the vertical closed orbit, over Gγ : −6.5 → −10.5,
provide a graph of Sy(turn). Explain what is observed.
Question 14.1.1.11-5: Increase the spin precession in the snake in steps, observe
how it affects spin rotation, confirm theoretical expectations.

Justify a minimal spin precession by the snake for spin flip upon resonance
crossing.

14.1.1.12 Introduce Full Snakes

Imperfection resonance strengths increase in proportion to γ , thus full Siberian
snakes are used at high energy, in order to overcome integer resonances (Chap 1). A
full Snake maintains the stable spin precession direction unperturbed as long as the
spin rotation it causes (its strength) is much larger than the spin rotation due to the
resonance driving fields (Chap. 1).

Based on the previous exercises, set lattice and beam input data in the following
way:

• Set the vertical beam emittance to large enough a value to cause polarization
losses at one or more intrinsic resonances.

• Introduce a random closed orbit distortion sufficiently large that some imperfec-
tion resonances create polarization loss during acceleration.

• Set the snake to “full” mode, φsnake = 180◦, longitudinal-axis rotation.
• Gγ : −6.5 → −13.5 acceleration range will be considered, so to include three

systematic intrinsic resonances (as comes out of the studies in Sect. 14.1.1.4).

Question 14.1.1.12-1: Compute spin closed orbit and spin tune. Compute spin
orientation at opposite azimuth (Δθ = 180◦) to the snake.

Repeat for dp/p = 10−4 beam momentum offset.
Which parameters depend on the energy and which do not? Check against

expectation from theory.
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Question 14.1.1.12-2: Accelerate over Gγ : −6.5 → −13.5. Is there any
polarization loss?
Question 14.1.1.12-3: Now use a horizontal emittance as large as the vertical one.
Accelerate over Gγ : −6.5 →−13.5. Is there any polarization loss?
Question 14.1.1.12-4: Add a second snake, at proper location and with proper axis
orientation to obtain a spin tune of 0.5 independent of beam energy.

Compute the spin closed orbit around the ring. How is it different from the single
snake case?

Compute the spin closed orbit and spin tune for dp/p = 10−4 beam momentum
offset. Compare with on-momentum parameters, check against expectation from
theory.

Accelerate a beam over Gγ : −6.5 →−13.5. Is there any polarization loss?

14.1.1.13 High Order Snake Resonances

Set the vertical beam emittance to a value which is large enough to create polar-
ization losses at one or more intrinsic resonances. Introduce a random closed orbit
distortion sufficiently large that some imperfection resonances create polarization
loss during acceleration. Use the lattice with two snakes. Select the snake axes such
that a condition for 2nd order snake resonance with the vertical betatron tune is
satisfied.
Question 14.1.1.13-1: Accelerate over Gγ : −6.5 → −13.5, produce a graph of〈
Sy(turn)

〉
.

Remove the closed orbit distortion, repeat the acceleration cycle, produce a graph
of
〈
Sy(turn)

〉
.

Compare the results, explain the difference in the polarization loss between the
cases with and without the closed orbit distortion.
Question 14.1.1.13-1: Select the snake axes orientation such that a condition for 3rd
order snake resonance with vertical betatron tune is satisfied.

Accelerate over Gγ : −6.5 → −13.5, produce a graph of
〈
Sy(turn)

〉
. Is there

polarization loss? Explain the difference in the polarization loss between 2nd and
3rd order resonances.

14.1.1.14 Harmonic Orbit Correction

Using the quadrupole alignment data, perform a harmonic scan for both a strong and
a weak imperfection resonance found in Question 14.1.1.5-1. Each corrector magnet
is 10 cm long, has an excitation of 9.75 G/A, and a maximum corrector current of
25 A. Power the corrector magnets according to:

Bj,h = ah sin(hθj )+ bh cos(hθj ) (14.1)
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where j is the corrector number, θj is the location in the ring, ah and bh are the
amplitudes for harmonic h. Provide the resulting Pf data and fit it with a Gaussian
to find Ic,0 and Is,0, and the associated σs and σc values.
At each of the resonances, is it more reasonable to correct the harmonics or
exacerbate them?
How accurate must the harmonic corrector currents of the two families be to have a
< 1% polarization loss at each of the resonances?
Track particles through the two imperfection resonances with your desired corrector
current. What is the polarization loss through the two resonances?

14.1.1.15 Preserve Polarization Using Tune-Jump

When particles encounter a resonance, if the crossing speed is fast enough, the spin
will not be disturbed by the resonance and the polarization will be preserved. The
acceleration speed is limited by the RF system and magnet ramping rate, so fast
crossing speed needs to come from another method.

The tune jump technique uses dedicated quadrupoles to cause a swift tune change
dνy

dθ
, so increasing the resonance crossing speed according to

α = dGγ

dθ
± dνy

dθ
, (14.2)

The |Gγ | = 0 + νy resonance is considered in this exercise, to simulate the
fast tune jump method as sketched in Fig. 14.4. Booster simulation input data files
of Sect. 14.1.1.2 (Tables 14.4, 14.5, 14.6, and 14.7) will be used in the following
questions, possibly modified as needed.
Question 14.1.1.15-1: No tune-jump setting of the quadrupoles in this first question,
perfect Booster ring optics is considered.

Take an RF cavity voltage of 100 kV (30◦ synchronous phase) so an appreciable
depolarization can be observed. What is the expected value of dGγ

dθ
with this RF

setting?

Fig. 14.4 Cartoon showing
the fast tune jump method
where νy sweeps across νs

quickly, increasing the
crossing speed (Eq. 14.2) so
minimizing polarization loss
as follows from Eq. 2.44
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Take Bρ = 2.12998742 at the start of the tracking, upstream of the resonance
(i.e., |Gγ | = 4.59646969, 276.7452 MeV kinetic energy). Calculate what turn
N0+νy the resonance is located at.

Consider a particle on εy = 1.864 × 10−7 πm vertical invariant. Assume spin
initially vertically aligned. What is the expected asymptotic polarization value, Pf ,
upon crossing of this resonance?

Run a numerical simulation of this resonance crossing. Note: SCALING in
Table 14.12 can be used by simply changing the data under “MULTIPOL QV” so to
recover constant tunes νx = 4.73, νy = 4.82 all the way (as in earlier exercises).
Question 14.1.1.15-2: Change the SCALING input parameters so the setpoint of
vertical quadrupoles (labeled QV*) begins to change at turn N0+νy -50 and continues
to N0+νy +50 with a total change of -5%. Set the change to return the nominal vertical
quadrupole field value at turn N0+νy +1050. These SCALING settings are detailed
in Table 14.12.
What is the new crossing speed with this tune-jump setting of the vertical
quadrupoles?
Calculate the expected Pf given the resonance strength and the new crossing speed.
Does this agree with the value from the simulation?

Table 14.12 Detailed setting of SCALING for tune jump simulation. Compared to earlier
exercises, the change essentially concerns the vertical quadrupole scaling data, namely under
“MULTIPOL QV*”, with SCALING[NT=5], which indicates that a series of 5 different scaling
coefficient values follow (the data line following NT) at 5 different timings (shown on the next data
line in units of the turn number)

’SCALING’ ! This sets the power supplies for unchenged optics,
1 7 ! given a reference rigidity OBJET[BORO=2.12998742e3].
BEND
-1
2.12998742
1
MULTIPOL
-1
2.12998742
1
MULTIPOL QH* ! These two families, QH* and QV* (* stands for whatever suffix),
-1 ! control the tunes.
2.12998742 * 1.0864492
1
MULTIPOL QV* ! QV* quadrupole family field changes to cause tune jump in the
5 ! vicinity of the resonance.
2.27000043 2.81833569 2.832133844842106 3.51572336 3.81685555
0 1400 1600 3500 4503
MULTIPOL SH* ! Chromaticies may be controlled, via these two sextupoles
-1 ! families.
2.12998742
1
MULTIPOL SV*
-1
2.12998742
1
MULTIPOL DVCA* ! Make sure all vertical kickers are zero-ed.
-1
2.12998742
1
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14.1.1.16 Preserve Polarization Using an AC Dipole

An AC dipole can preserve polarization through intrinsic resonances by driving
large amplitude vertical betatron oscillations of the entire bunch. This is done with
a horizontal magnetic field that oscillates in phase with the vertical motion of the
particles. The amplitude of the driven oscillations, Ycoh, follows (Eq. 5.11)

Ycoh = BmL

4πBρδm

βy

where BmL is the integrated field of the AC dipole magnet, βy is the beta function
at the AC dipole and Bρ is the bunch rigidity.

For simulation purposes, create a copy of superA.inc Booster superperiod
(Table 14.4), which will be called superA2.inc in the following, in which a new half-
cell is used, LA32.inc, a copy of LA3.inc (Table 14.6). In LA32.inc, the long drift
section now includes a 1 kG, 0.5 m vertical dipole, simulated using MULTIPOL,
labeled ’ACD’.

The SCALING command in superA.inc, in addition, uses the option NT=-88 for
that ’MULTIPOL ACD’ element of the optical sequence, so to define it as an AC
dipole. The format for option NT=-88 is:

MULTIPOL ACD
-88
0 0.19 0.19 12.2
100 700 1300 700

The first line following NT=-88 specifies the AC dipole phase offset, the AC
dipole tune Q1 at the start of the sweep, tune Q2 at the end of the sweep, and a
scaling factor to be applied to the magnet field. The next line specifies the duration
of these steps, namely, Nin =hold duration (field held at zero), Nup =ramp up,
Nf lat =plateau, Ndown =ramp down.

Set Q1=Q2=(1-frac(νy+0.01))
Use OBJET[KOBJ=2] to create a set of 32 particles with the following coordinates
to represent a bunch with RMS size [9]:

y = AnC cos(jπ/4) (14.3)

and

y ′ = AnC sin(jπ/4) (14.4)

for j ∈ {0, 1, 2, . . . , 7}, C ∈ {−0.2671,−0.94,−1.9617,−4.1589} and An an
amplitude factor.
Question 14.1.1.16-1: Track particles across the |Gγ | = 0+νy with AC dipole field
scaling factor set to 0.0. Does Pf with the 32 particles equal Pf value obtained with
a single particle at the RMS amplitude?
Question 14.1.1.16-2: Set the scale factor to 10 G and track particles again. What is
the value of Pf ?
Determine what field is needed to get spin-flip from 100% to −99%.
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14.1.1.17 Acceleration of a Polarized 6D Bunch

In this question, a simulation of the acceleration of a 100-particle bunch from Gγ =
−5.5 to Gγ = −13.5 is set up and run.

The lattice is the same as before, lattice and acceleration parameters are taken
from Table 14.2. Bunch parameters are taken from Table 14.3.

Synchrotron motion in the bunch is accounted for in this simulation: use CAVITE
[IOPT=2].

Install selected polarization preservation measures based on the previous ques-
tions, in order to maximize polarization transmission through the resonances present
in that energy range.

In performing the following, comment on the results obtained in regard to
expectations, justify results based on theoretical expectations.

From tracking output data (logged turn-by-turn in zgoubi.fai), produce graphs
of

– horizontal and vertical beam excursions,
– transverse and longitudinal phase spaces,
– a few individual spins,
– average bunch polarization,

over the acceleration range.
Produce histograms of the 6 beam coordinates at the top energy. Produce the

spin component densities at the top energy. Hint: use HISTO; it is possible to plot
from zgoubi.HISTO.out—this requires HISTO[PRINT]. Zpop can be used as well
by reading the data from zgoubi.fai.

14.1.2 Electron Spin Dynamics, Synchrotron Radiation

The AGS Booster ring is utilized for the exploration of electron polarization.
The optical functions of one super cell are displayed in Fig. 14.3, as described in
Sect. 14.1.1.1. The electron beam energy is chosen at a relatively high energy of
10 GeV in order to have the beam reach the equilibrium in a short simulation time.
The polarization is evaluated after a few damping times. There are three assignments
for the electron polarization studies:

• calculation of equilibrium emittances and energy spread,
• study of spin diffusion, and
• exploration of spin matching technique.

In this study, we will be mainly using somewhat modified versions of the input
files [10] that were introduced in Sect. 14.1.1.2 and subsequent sections. Note that,

• moving from helions to electrons simulation is essentially a matter of changing
the reference rigidity (OBJET[BORO] or MCOBJET[BORO]) and the nature of
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Table 14.13 Left: Zgoubi code producing a table of the optical functions zgoubi.TWISS.out.
Right: the scaling_10GeVel.inc INCLUDE file, also used in subsequent exercises. The superA.inc
INCLUDE file, which defines the Booster ring optical sequence is given in Table 14.4, it describes
one of the six booster super-cells
Twiss parameters

’OBJET’

33.3564095089e3 ! 10cGeV E_k+M e- or e+.

5

.01 .001 .01 .001 0. .001

0. 0. 0. 0. 0. 1.

’PARTICUL’ ! e+, not e-, is stated here, as the optics

POSITRON ! was initially set for positive charge (3He2+).

’SPNTRK’

3

’SRLOSS’

0 ! SR loss on or off (1/0).

BEND ! BENDs only are concerned.

1 123456

’INCLUDE’

1

scaling_10GeVel.inc[SCALING_S:SCALING_E]

’INCLUDE’

1

6* superA.inc[superA_S:superA_E]

’TWISS’

2 1. 1.

’SYSTEM’

1

gnuplot <./ gnuplot_TWISS.gnu

’END’

! scaling_10GeVel.inc INCLUDE file.

’MARKER’ SCALING_S

’SCALING’

1 6

BEND

-1

33.3564095089

1

MULTIPOL

-1

33.3564095089* 1.

1

MULTIPOL QH* ! Quadrupoles set for Qx=4.73, Qy=4.82.

-1

33.3564095089* 1.0864799 ! FIT variable #12.

1

MULTIPOL QV*
-1

33.3564095089* 1.0657626 ! FIT variable #16.

1

MULTIPOL SH*
-1

33.3564095089

1

MULTIPOL SV*
-1

33.3564095089

1

’MARKER’ SCALING_E

’END’

the particle (PARTICUL[ELECTRON], from PARTICUL[HELION]). To avoid
having to change the polarities of the magnetic fields in the AGS Booster that are
designed for the positively charged particles and thus simplify the set-up of the
simulation, we use PARTICUL[POSITRON];

• synchrotron radiation from all the dipole magnets is introduced by SRLOSS.
With the OPTIONS[WRITE ON] (default option), one can check the expected
theoretical synchrotron radiation loss after each BEND in zgoubi.res file. Syn-
chrotron radiation statistics can be logged in zgoubi.res using SRPRNT;

• RF voltage and phase need to be set correctly to compensate the energy loss due
to synchrotron radiation.

14.1.2.1 Electron Equilibrium Emittances and Energy Spread

When injected into storage ring, an electron bunch, if unmatched, will eventually
reach equilibrium emittances, under the effect of synchrotron radiation (SR). This
is the effect addressed in these simulation exercises.

The electron equilibrium emittances and damping rates can be calculated ana-
lytically, as discussed in Chap. 6, using the Twiss and dispersion parameters of the
linear optics design. These damping parameters in a circular accelerator or in a
storage ring can also be obtained from a particle tracking simulation.
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Table 14.14 Gnuplot script for plotting the optics and orbit results from zgoubi.TWISS.out

set title "Optical functions, from zgoubi.TWISS.out" font "roman,16"

set xlabel "s [m]" font "roman,16"
set ylabel "{/Symbol b}_x, {/Symbol b}_y [m]" font "roman,13"
set y2label "{/Symbol h}_x, {/Symbol h}_y" font "roman,13"

set xtics font "roman,12" nomirror
set x2tics font "roman,12" mirror
set ytics font "roman,12" nomirror
set y2tics font "roman,12" nomirror

set key t c maxrows 1 width 4
set key font "roman, 14" samplen 1

set xrange []
set x2range []
set yrange []
set y2range []

plot \
"zgoubi.TWISS.out" u ($13):($2) axes x1y1 w l lt 1 lc rgb "red" lw 1. tit "{/Symbol b}_x" ,\
"zgoubi.TWISS.out" u ($13):($4) axes x1y1 w l lt 1 lc rgb "blue" lw 1. tit "{/Symbol b}_y" ,\
"zgoubi.TWISS.out" u ($13):($7) axes x1y2 w l lt 1 lc rgb "black" lw 1. tit "{/Symbol h}_x" ,\
"zgoubi.TWISS.out" u ($13):($9) axes x1y2 w l lt 2 lc rgb "green" lw 1. tit "{/Symbol h}_y"

set samples 10000
set terminal postscript eps blacktext color enh size 8.3cm,5cm "Times-Roman" 12
set output "gnuplot_TWISS_btxy.eps"
replot
set terminal X11
unset output

pause 2

set title "Orbit, from zgoubi.TWISS.out" font "roman,16"

set ylabel "x, y [m]" font "roman,13"
set y2label "x, y [m]" font "roman,13"

unset x2tics
set xtics font "roman,12" mirror
unset y2tics
set ytics font "roman,12" mirror

plot \
"zgoubi.TWISS.out" u ($13):($15) axes x1y1 w l lt 1 lc rgb "red" tit "x" ,\
"zgoubi.TWISS.out" u ($13):($17) axes x1y1 w l lt 1 lc rgb "blue" tit "y"

set samples 10000
set terminal postscript eps blacktext color enh size 9.3cm,6cm "Times-Roman" 12
set output "gnuplot_TWISS_xy.eps"
replot
set terminal X11
unset output

pause 2

exit

Question 14.1.2.1-1: Run the Zgoubi code in Table 14.13 to generate a table of
the optical functions of the entire AGS Booster ring, zgoubi.TWISS.out. Generate
graphs of the optics and orbit using the Gnuplot script in Table 14.14. Apply
the expressions given in Chap. 6 to calculate the damped equilibrium emittances,
energy spread and damping times of 10 GeV electrons for the optics tabulated in
zgoubi.TWISS.out. Fill out Table 14.15 with your results.
Question 14.1.2.1-2: Run the code in Table 14.16. Obtain the energy loss from
zgoubi.res for the electron beam energy at 10 GeV and compare it with the analytical
calculation in Table 14.15. Use the energy loss to obtain the RF voltage for the RF in
Table 14.15. Compare your result with the CAVITE element setting in Table 14.17.
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Table 14.15 Electron beam
parameters. Table to be
completed as part of the
exercises

Parameter Units Value

E [GeV] 10

aγ

Energy loss per turn [MeV]

RF voltage [MV]

RF phase [rad] 2.618

Harmonic number 100

RF frequency [MHz]

Horizontal damping time [s]

Vertical damping time [s]

Longitudinal damping time [s]

Horizontal emittance [m-rad]

Energy spread

Table 14.16 Zgoubi code for calculating the energy loss per turn. Recall: the scaling_10GeVel.inc
file is given in Table 14.13

Energy loss per turn.
’OBJET’
33.3564095089e3 10GeV E_k+M electron.
1
10000 1 1 1 1 1
0.0 0.0 0.0 0.0 0.00 0.0
0.000 0.000 0.000 0.000 0.00 1.

’PARTICUL’
POSITRON

’SPNTRK’
3

’SRLOSS’
1
BEND
1 123456

’FAISTORE’
zgoubi.fai
1

’INCLUDE’
1
scaling_10GeVel.inc[SCALING_S:SCALING_E]

’INCLUDE’
1
6* superA.inc[superA_S:superA_E]

’FAISCEAU’
’SRPRNT’

’END’

Question 14.1.2.1-3: Examine the initial beam setup in Table 14.17. Check whether
the initial beam distribution is matched transversely by comparing the beam setup
parameters with the periodic Twiss functions in zgoubi.TWISS.out you obtained
earlier. Run the code in Table 14.17 with 100 particles up to 1000 turns with
synchrotron radiation enabled. Use the Gnuplot script in Table 14.18 (or a code of
your own) to obtain the rms vertical beam size σy as a function of the turn number
from the Zgoubi output zgoubi.fai file. Using the Gnuplot script in Table 14.19,
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Table 14.17 Zgoubi code for simulating the beam dynamics with synchrotron radiation

Beam dynamics with synchrotron radiation.
’OBJET’
33.3564095089e3 10GeV E_k+M electron.
8
0 100 0
0.0006 -0.00065 0. 0. 0.00 1.00315000
0.98253425 5.4881122 0

-1.5447545 9.6995264 1e-5
1. 1. 0.

’PARTICUL’
POSITRON
’SPNTRK’
3

’SRLOSS’
1
BEND
1 123456

’FAISTORE’
zgoubi.fai
10 ! Log to zgoubi.fai every 10 turn.

’OPTIONS’
1 1 ! Inhibit writes to zgoubi.res:
WRITE OFF ! this saves on CPU time.

’INCLUDE’
1
scaling_10GeVel.inc[SCALING_S:SCALING_E]
’INCLUDE’
1
6* superA.inc[superA_S:superA_E]

’CAVITE’
2
201.780049 100 ! orbit length, h.
122345.25e3 2.61799387799 ! volts, phi_s rad.

’REBELOTE’
999 0.1 99 ! 999 additional passes.

’OPTIONS’
0 1
WRITE ON ! Re-establish writes to zgoubi.res.
’FAISCEAU’ ! Print out particle coordinates.
’SPNPRT’ ! Print out spin coordinates.
’SRPRNT’ ! Print out SR data.
’END’

calculate the vertical rms emittance from the vertical rms beam size and optics
parameters, plot evolution of the vertical emittance, and extract the vertical damping
time by fitting the data to an exponential. Compare the obtained vertical damping
time to the theoretical value in Table 14.15.

14.1.2.2 Spin Diffusion Studies

Synchrotron radiation causes spin-flip through the Sokolov-Ternov effect, and spin
diffusion. These effects determine the evolution of polarization, and polarization
life time (Sects. 6.3 and 6.5). The evaluation of spin diffusion in general requires
numerical simulations, which allow deriving the polarization life-time.

Spin diffusion, i.e. depolarization, of polarized electrons can be suppressed and
mitigated through the design of an accelerator and proper correction schemes.
Alternatively, spin diffusion can also be enhanced if the design or the correction
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Table 14.18 Gnuplot script for calculating the rms beam parameters

set fit logfile ’/dev/null’

fname="zgoubi.fai"

f(x)=ave

set print "ave_sig.txt"

do for [z=10:1000:10] {

FIT_STDFIT=0
fit f(x) fname u 38:(($38==z)?($1==1?$9:1/0):1/0) via ave
d_ave=ave
d_sig=FIT_STDFIT

FIT_STDFIT=0
fit f(x) fname u 38:(($38==z)?($1==1?$10:1/0):1/0) via ave
x_ave=ave
x_sig=FIT_STDFIT

FIT_STDFIT=0
fit f(x) fname u 38:(($38==z)?($1==1?$11:1/0):1/0) via ave
xp_ave=ave
xp_sig=FIT_STDFIT

FIT_STDFIT=0
fit f(x) fname u 38:(($38==z)?($1==1?$12:1/0):1/0) via ave
y_ave=ave
y_sig=FIT_STDFIT

FIT_STDFIT=0
fit f(x) fname u 38:(($38==z)?($1==1?$13:1/0):1/0) via ave
yp_ave=ave
yp_sig=FIT_STDFIT

print z,d_ave,d_sig,x_ave,x_sig,xp_ave,xp_sig,y_ave,y_sig,yp_ave,yp_sig

}

unset print

exit

Table 14.19 Gnuplot script for plotting and fitting the vertical emittance data

set term postscript eps enhanced color size 9.3cm,6cm "Times-Roman" 12
set output "damping_time_y.eps"
set grid
set size 1.0,1.0
set xlabel "Turns [x10^{3}]"
set ylabel "{/Symbol e}_{y} [{/Symbol m}m]"
unset key

A = 1
B = 0.175
C = 0

f(x)=A*exp(-x/B)

fit f(x) "./ave_sig.txt" u ($1/1000):($1>0?($9**2*0.01**2/9.6995264*1e6):1/0) via A,B

plot "./ave_sig.txt" u ($1/1000):($1>0?($9**2*0.01**2/9.6995264*1e6):1/0) w l lc rgb ’red’ lw 1.5,\
f(x) lc rgb ’blue’ lw 1.5

exit
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schemes are not done properly. In this exercise, we explore how and how fast spin
diffusion happens when n0 changes. We will also demonstrate how spin diffusion
can be suppressed by adjustment of the magnet layout and beam optics.

14.1.2.3 Spin Diffusion

Question 14.1.2.2-1: Run the code in Table 14.20 to obtain n0 at the start point of the
ideal lattice. This is done by tracking three electrons with spins aligned along three
orthogonal directions with synchrotron radiation disabled. Find the spin transfer
matrix and precession axis (i.e. n0) in zgoubi.res file.
Question 14.1.2.2-2: Set the initial spins of 100 electrons to be aligned with the n0
axis of the ideal lattice. Enable synchrotron radiation. Track the particles by running
the code in Table 14.21. Calculate the average spin, or polarization, of the electrons
using the script in Table 14.22. Plot the polarization as a function of the turn number
and extract the spin diffusion rate by fitting the data. Refer to Table 14.23.
Question 14.1.2.2-3: Offset the first “QVA1” quadrupole from the start of the lattice
by 0.1 cm as shown in Table 14.24 and find the resulting closed orbit using the
“FIT2” procedure given in Table 14.25. Make sure that SRLOSS is disabled. The

Table 14.20 Zgoubi code for obtaining n0 at the start point of the ideal lattice

$\vecbold{n}_0$ at the start point of the ideal lattice.
’OBJET’
33.3564095089e3 10GeV E_k+M electron.
1
3 1 1 1 1 1
0. 0. 0. 0. 0.00 0.
0.00 0.00 0.00 0.00 0.00 1.

’PARTICUL’
POSITRON

’SPNTRK’
4
1. 0. 0.
0. 1. 0.
0. 0. 1.

’SRLOSS’
0
BEND
1 123456

’OPTIONS’
1 1
WRITE OFF

’INCLUDE’
1
scaling_10GeVel.inc[SCALING_S:SCALING_E]

’INCLUDE’
1
6* superA.inc[superA_S:superA_E]

’OPTIONS’
1 1
WRITE ON

’SPNPRT’ MATRIX

’END’
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Table 14.21 Zgoubi code for tracking electron polarization with synchrotron radiation enabled

Electron polarization with synchrotron radiation
’OBJET’
33.3564095089e3 10GeV E_k+M electron.
1
100 1 1 1 1 1
0. 0. 0. 0. 0.00 0.
0.00 0.00 0.00 0.00 0.00 1.

’PARTICUL’
POSITRON

’SPNTRK’
3 ! All initial spins vertical.

’SRLOSS’
1
BEND
1 123456

’FAISTORE’
zgoubi.fai
10 ! Log to zgoubi.fai every 10 turn.

’OPTIONS’
1 1
WRITE OFF

’INCLUDE’
1
scaling_10GeVel.inc[SCALING_S:SCALING_E]
’INCLUDE’
1
6* superA.inc[superA_S:superA_E]

’OPTIONS’
0 1
WRITE ON

’CAVITE’
2
201.780049 100 ! orbit length, h.
122345.25e3 2.61799387799 ! volts, phi_s rad.

’REBELOTE’
999 0.1 99

’END’

output is saved in the zgoubi.FIT.out.dat. Obtain the n0 axis by specifying the closed
orbit offset at the start of the lattice. Launch 100 electrons along the perturbed
closed orbit following the initial beam setup provided in Table 14.26 and track them
for 1000 turns with synchrotron radiation enabled. Find the average polarization
as a function of the turn number, plot it, and extract the spin diffusion rate as in
Question 14.1.2.2-2.
Question 14.1.2.2-4: Repeat the calculation in Question 14.1.2.2-3 and obtain the
n0 vectors and the spin diffusion rates with the quadrupole “QVA1” offset by 0.2
and 0.5 cm. Explain your results.

14.1.2.4 Suppression of Spin Diffusion

We will next illustrate how the spin diffusion can be mitigated by changing the
polarities of magnetic fields.
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Table 14.22 Gnuplot script for calculating the polarization

set fit logfile ’/dev/null’

fname="zgoubi.fai"

f(x)=ave

set print "ave_pol_align.txt"

do for [z=1:1:1] {

FIT_STDFIT=0
fit f(x) fname u 38:($38==z?($1==1?$20:1/0):1/0) via ave
px_ave=ave
px_sig=FIT_STDFIT

FIT_STDFIT=0
fit f(x) fname u 38:($38==z?($1==1?$21:1/0):1/0) via ave
py_ave=ave
py_sig=FIT_STDFIT

FIT_STDFIT=0
fit f(x) fname u 38:($38==z?($1==1?$22:1/0):1/0) via ave
pz_ave=ave
pz_sig=FIT_STDFIT

print z,px_ave,px_sig,py_ave,py_sig,pz_ave,pz_sig

}

do for [z=10:1000:10] {

FIT_STDFIT=0
fit f(x) fname u 38:($38==z?($1==1?$20:1/0):1/0) via ave
px_ave=ave
px_sig=FIT_STDFIT

FIT_STDFIT=0
fit f(x) fname u 38:($38==z?($1==1?$21:1/0):1/0) via ave
py_ave=ave
py_sig=FIT_STDFIT

FIT_STDFIT=0
fit f(x) fname u 38:($38==z?($1==1?$22:1/0):1/0) via ave
pz_ave=ave
pz_sig=FIT_STDFIT

print z,px_ave,px_sig,py_ave,py_sig,pz_ave,pz_sig

}

unset print

exit

Question 14.1.2.2-5: Compare the magnet layouts in Tables 14.27 and 14.28 and
describe spin rotations in the two layouts assuming vertical initial spin direction.
Question 14.1.2.2-6: Run the codes in Tables 14.27 and 14.28 and plot the magnetic
fields and three spin components along the trajectory using the zgoubi.plt output
file (particle and field data logging to zgoubi.plt results from IL=2 in all optical
elements; the data format of zgoubi.plt is detailed in [1, Sec. 8.3]). See the plotting
examples in Tables 14.29 and 14.30 and use analogous files for the second rotator
design. Compare the results with your description in the previous exercise.
Question 14.1.2.2-7: Track the spins of particles with different relative momentum
offsets (−0.04, −0.03, −0.02, −0.01, 0, 0.01, 0.02, 0.03, 0.04) in the two spin
rotator schematics using the code in Table 14.31 for the first design version and
an analogous code for the second one. Explore how the final spin depends on the
momentum deviation by plotting the final spin versus the momentum offset in the
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Table 14.23 Gnuplot script for plotting the polarization

set term postscript eps enhanced \
color size 9.3cm,6cm "Times-Roman" 12

set output "pol_align.eps"
set grid
set size 1.0,1.0
set xlabel "Turns [x10^{3}]"
set ylabel "P_{z}"
set xtics 0.2
set ytics 0.0005
unset key

A = 1
B = 1000000

f(x)=A*exp(-x/B)

fit f(x) "./ave_pol_align.txt" u ($1/1000):($6) via A,B

plot [][0.999:1.001] "./ave_pol_align.txt" \
u ($1/1000):($6) w l lc rgb ’red’ lw 1.5 ,\
f(x) lc rgb ’blue’ lw 1.5

exit

Table 14.24 Setup of the “QVA1” quadrupole with 1 mm vertical offset

’MULTIPOL’ QVA1 QUAD
0 .Quad
0.493916E+02 10.0000 0.0000 -0.5472896982 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0. 0. 0.
6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723
0. 0. 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0. 0. 0.
6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
2.00 ! cm MultQVA1
4 0. 0. 0. 0.1 0 ! KPOS=4 allows specifying ZS=0.1cm.

Table 14.25 Setup of the “FIT2” procedure for finding the closed orbit

’FIT2’
4 noSYSout ! final (NOT nofinal) is mandatory: causes store of actual c.o. in zgoubi.SVD.out
1 30 0 [-5.9,5.9] ! Vary Y0
1 31 0 [-9.9,9.9] ! Vary T0
1 32 0 [-5.9,5.9] ! Vary Z0
1 33 0 [-9.9,9.9] ! Vary P0
4 1e-10
3.1 1 2 #End 0. 1. 0 ! Yfinal = Y0
3.1 1 3 #End 0. 1. 0 ! Tfinal = T0
3.1 1 4 #End 0. 1. 0 ! Zfinal = Z0
3.1 1 5 #End 0. 1. 0 ! Pfinal = P0

Table 14.26 Setup of the “OBJET” element for launching 100 electrons along the perturbed
closed orbit

’OBJET’ 1
33.3564095089e3 10GeV E_k+M electron.
1
100 1 1 1 1 1
0.E+00 0.E+00 0.E+00 0.E+00 0.00 0.E+00
-5.78398841E-06 -5.02369232E-06 -2.40168827E-01 -5.80016582E-01 0.00 1.
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Table 14.27 Zgoubi file of a spin rotator lattice where the spin is not longitudinally matched

Spin rotator, version 1
’OBJET’
33.3564095089e3 10GeV E_k+M electron.
1
1 1 1 1 1 1
0.E+00 0.E+00 0.E+00 0.E+00 0.00 0.E+00
0. 0. 0. 0. 0. 1.

’PARTICUL’
POSITRON

’SPNTRK’
4.1
0. 0. 1.

’SCALING’
1 1
BEND
-1
1
1

’DRIFT’ DRIF
10.
’SOLENOID’ SOLE
2 .sole
1000.0 2.0 52.3354354
25 25
1. cm
1 0. 0. 0.
’DRIFT’ DRIF
10.
’BEND’ DHA1T
2 .Bend
100. 0.0E+00 23.08831973 ! 69.2 mrad bend
0.00 0.00 0.00
4 .2401 1.8639 -.5572 .3904 0. 0. 0.
0.00 0.00 0.00
4 .2401 1.8639 -.5572 .3904 0. 0. 0.
1.0000E+00 cm Bend
3 0. 0. 0.
’DRIFT’ DRIF
10.
’DRIFT’ DRIF
10.
’BEND’ DHA1T
2 .Bend
100. 0.0E+00 23.08831973
0.00 0.00 0.00
4 .2401 1.8639 -.5572 .3904 0. 0. 0.
0.00 0.00 0.00
4 .2401 1.8639 -.5572 .3904 0. 0. 0.
1.0000E+00 cm Bend
3 0. 0. 0.
’DRIFT’ DRIF
10.
’SOLENOID’ SOLE
2 .sole
1000.0 2.0 52.3354354
25 25
1. cm
1 0. 0. 0.
’DRIFT’ DRIFEND
10.

’END’
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Table 14.28 Zgoubi file of a spin rotator lattice where the spin is longitudinally matched

Spin rotator, version 2
’OBJET’
33.3564095089e3 10GeV E_k+M electron.
1
1 1 1 1 1 1
0.E+00 0.E+00 0.E+00 0.E+00 0.00 0.E+00
0. 0. 0. 0. 0. 1.

’PARTICUL’
POSITRON

’SPNTRK’
4.1
0. 0. 1.

’SCALING’
1 1
BEND
-1
1
1

’DRIFT’ DRIF
10.
’SOLENOID’ SOLE
2 .sole
1000.0 2.0 52.3354354
25 25
1. cm
1 0. 0. 0.
’DRIFT’ DRIF
10.
’BEND’ DHA1T
2 .Bend
100. 0.0E+00 23.08831973
0.00 0.00 0.00
4 .2401 1.8639 -.5572 .3904 0. 0. 0.
0.00 0.00 0.00
4 .2401 1.8639 -.5572 .3904 0. 0. 0.
1.0000E+00 cm Bend
3 0. 0. 0.
’DRIFT’ DRIF
10.
’DRIFT’ DRIF
10.
’BEND’ DHA1T
2 .Bend
100. 0.0E+00 -23.08831973
0.00 0.00 0.00
4 .2401 1.8639 -.5572 .3904 0. 0. 0.
0.00 0.00 0.00
4 .2401 1.8639 -.5572 .3904 0. 0. 0.
1.0000E+00 cm Bend
3 0. 0. 0.
’DRIFT’ DRIF
10.
’SOLENOID’ SOLE
2 .sole
1000.0 2.0 -52.3354354
25 25
1. cm
1 0. 0. 0.
’DRIFT’ DRIFEND
10.

’END’
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Table 14.29 Gnuplot script for plotting the field components

set term postscript eps enhanced color size 9.3cm,6cm "Times-Roman" 12
set output "spin_rotator_fields.eps"
set grid
set size 1.0,1.0
set xlabel "s [m]"
set ylabel "B (T)"
set xtics 5
set ytics 2
set key bottom left

plot [-1:][-0.1:] \
"./zgoubi.plt" u ($14/100):($23/10) w l lc rgb ’red’ lw 1.5 title "B_{x}",\
"./zgoubi.plt" u ($14/100):($24/10) w l lc rgb ’green’ lw 1.5 title "B_{y}",\
"./zgoubi.plt" u ($14/100):($25/10) w l lc rgb ’blue’ lw 1.5 title "B_{z}"

exit

Table 14.30 Gnuplot script for plotting the spin components

set term postscript eps enhanced color size 9.3cm,6cm "Times-Roman" 12
set output "spin_rotator_spin.eps"
set grid
set size 1.0,1.0
set xlabel "s [m]"
set ylabel "S"
set xtics 5
set ytics 0.5
set key bottom left

plot [-1:][-1.1:1.1] \
"./zgoubi.plt" u ($14/100):($33) w l lc rgb ’red’ lw 1.5 title "S_{x}",\
"./zgoubi.plt" u ($14/100):($34) w l lc rgb ’green’ lw 1.5 title "S_{y}",\
"./zgoubi.plt" u ($14/100):($35) w l lc rgb ’blue’ lw 1.5 title "S_{z}"

exit

two cases using the script in Table 14.32. Discuss which case you expect to have a
lower spin diffusion rate and why. Note that this is the first order spin matching in
the longitudinal direction.

14.1.2.5 Spin Matching

This section studies the electron spin dynamics at 5 GeV in the AGS Booster in
the presence of a solenoidal snake. We consider the cases of spin-matched and
spin-mismatched snake configurations. The spin-matched snake lattice is given by
the include file listed in Table 14.33. The snake consists of two solenoids with
six quadrupoles between them. The quadrupoles are used to compensate betatron
coupling from the solenoids and to satisfy the spin matching conditions.

Question 14.1.2.5-1: Use the snake include file in Table 14.33 to insert the snake at
the end of the AGS Booster lattice as shown in Table 14.34. Examine the resulting
periodic optics using the Gnuplot script in Table 14.14.
Question 14.1.2.5-2: Obtain the n0 axis at the start point of the lattice by running
the code in Table 14.35 and examining its output “zgoubi.res” file.
Question 14.1.2.5-3: Determine the spin diffusion rate of this lattice. Track 100
electrons for 104 turns with synchrotron radiation enabled. Start the electrons
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Table 14.31 Zgoubi code for studying the momentum dependence of the spin rotation using the
unmatched lattice

Momentum dependence of spin rotation - unmatched lattice
’OBJET’
33.3564095089e3 10GeV E_k+M electron.
1
1 1 1 1 1 9
0.E+00 0.E+00 0.E+00 0.E+00 0.00 0.010000E+00
0. 0. 0. 0. 0. 1. ’o’

’PARTICUL’
POSITRON

’SPNTRK’
4.1
0. 0. 1.

’FAISTORE’ ! Hint: use zgoubi_matched.fai for 2nd case.
zgoubi_unmatched.fai DRIFEND
1

’SCALING’
1 1
BEND
-1
1
1

’DRIFT’ DRIF
10.
’SOLENOID’ SOLE
0 .sole
1000.0 2.0 52.3354354
25 25
1. cm
1 0. 0. 0.
’DRIFT’ DRIF
10.
’BEND’ DHA1T
0 .Bend
100. 0.0E+00 23.08831973
0.00 0.00 0.00
4 .2401 1.8639 -.5572 .3904 0. 0. 0.
0.00 0.00 0.00
4 .2401 1.8639 -.5572 .3904 0. 0. 0.
1.0000E+00 cm Bend
3 0. 0. 0.
’DRIFT’ DRIF
10.
’DRIFT’ DRIF
10.
’BEND’ DHA1T
0 .Bend
100. 0.0E+00 23.08831973
0.00 0.00 0.00
4 .2401 1.8639 -.5572 .3904 0. 0. 0.
0.00 0.00 0.00
4 .2401 1.8639 -.5572 .3904 0. 0. 0.
1.0000E+00 cm Bend
3 0. 0. 0.
’DRIFT’ DRIF
10.
’SOLENOID’ SOLE
0 .sole
1000.0 2.0 52.3354354
25 25
1. cm
1 0. 0. 0.
’DRIFT’ DRIFEND
10.

’FAISCEAU’

’END’
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Table 14.32 Gnuplot script for plotting the final vertical spin component as a function of the
particle’s momentum offset for the two rotator schemes

set term postscript eps enhanced color size 9.3cm,6cm "Times-Roman" 12
set output "final_spin.eps"
set grid
set size 1.0,1.0
set xlabel "{/Symbol D}p/p"
set ylabel "S_{z}"
set xtics 0.02
set ytics 0.002
set key bottom left

plot [][] \
"< sort -nk2 zgoubi_1.fai" u 2:22 w l lc rgb ’red’ lw 1.5 title "Scheme 1",\
"< sort -nk2 zgoubi_2.fai" u 2:22 w l lc rgb ’blue’ lw 1.5 title "Scheme 2"

exit

on the design trajectory with their initial spins aligned with the n0 axis. Refer
to Table 14.36 for the corresponding Zgoubi code. Calculate the polarization
components using a Gnuplot script similar to that in Table 14.22 and plot the total
transverse polarization as a function of the turn number following the example of
Table 14.23.
Question 14.1.2.5-4: Reverse the polarity of all quadrupoles (“HQ1” through
“HQ6”) between the snake solenoids in Table 14.33. This change keeps betatron
coupling compensated but results in violation of the spin matching conditions.
Complete tracking through the AGS Booster with the modified snake lattice and
analyze the results as in Question 14.1.2.5-3. Compare the spin diffusion rates
obtained in the spin matched and unmatched cases.

14.2 Numerical Simulations: Solutions

This Section details the solutions of the simulation exercises proposed in Sect. 14.1.
Understanding these simulations requires having the code manual at hand, ready

to consult, Zgoubi Users’ Guide [1] in the present case, or whatever other code the
reader my be willing to use otherwise.

In order to reproduce these numerical simulations, the code executable is
required. Zgoubi package can be downloaded from its repository in sourceforge:

https://sourceforge.net/p/zgoubi/code/HEAD/tree/trunk/
A README file therein explains how the source code is compiled to generate

the executable, zgoubi. Running an optical sequence (say, Booster_Twiss.dat) is
then just a matter of executing such command as

[pathTo]/zgoubi -in Booster_Twiss.dat
and the results are listed, a minima, in zgoubi.res file, by default.

All necessary optical sequences for the simulation exercises have been provided
as part of the assignments in Sect. 14.1, however most of the simulation material
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Table 14.33 Contents of the “snake_matched.inc” include file providing the lattice of a spin-
matched solenoidal snake

’MARKER’ snake_sol_s
’DRIFT’ DRIF LDH1SN
11.0
’SOLENOID’ SOLE SN_SOL
0 .sole
40.0 2.0 39.26987500004383
40. 40.
0.1 cm
1 0.0 0.0 0.0
’DRIFT’ DRIF LSN1
19.5
’MULTIPOL’ HQ1 QUAD
0 .Quad
1.0 10.0 0.0 -9.012691897 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0.
6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723
0.0 0.0 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0.
6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1. cm
1 0.0 0.0 0.0
’DRIFT’ DRIF LSN2
19.0
’MULTIPOL’ HQ2 QUAD
0 .Quad
1.0 10.0 0.0 503.4519374 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0.
6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723
0.0 0.0 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0.
6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1. cm
1 0.0 0.0 0.0
’DRIFT’ DRIF LSN2
19.0
’MULTIPOL’ HQ3 QUAD
0 .Quad
1.0 10.0 0.0 -535.3938472 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0.
6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723
0.0 0.0 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0.
6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1. cm
1 0.0 0.0 0.0
’DRIFT’ DRIF LSN2
19.0
’MULTIPOL’ HQ4 QUAD
0 .Quad
1.0 10.0 0.0 775.4968481 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0.
6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723
0.0 0.0 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0.
6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1. cm
1 0.0 0.0 0.0
’DRIFT’ DRIF LSN2
19.0
’MULTIPOL’ HQ5 QUAD
0 .Quad
1.0 10.0 0.0 -437.5504952 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0.
6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723
0.0 0.0 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0.
6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1. cm
1 0.0 0.0 0.0
’DRIFT’ DRIF LSN2
19.0
’MULTIPOL’ HQ6 QUAD
0 .Quad
1.0 10.0 0.0 406.0280703 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0.
6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723
0.0 0.0 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0.
6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1. cm
1 0.0 0.0 0.0
’DRIFT’ DRIF LSN1
19.5
’SOLENOID’ SOLE SN_SOL
0 .sole
40.0 2.0 39.26987500004383
40. 40.
0.1 cm
1 0.0 0.0 0.0
’DRIFT’ DRIF LDH4SN
11.0
’MARKER’ snake_sol_e
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Table 14.34 Left: Zgoubi file of the AGS Booster lattice with the spin-matched snake for Twiss
calculation. Right: the scaling_5GeVel.inc INCLUDE file, also used in subsequent exercises

AGS Booster lattice with the spin-matched snake.

’OBJET’

16.67820475445e3 ! reference rigidity -> p = 5 GeV/c

5

.001 .0001 .001 .0001 0. .0001

0. 0. 0. 0. 0. 1.

’PARTICUL’

0.51099892 1.60217653e-19 1.15965218076e-3 0. 0.

’SRLOSS’

0 ! .srloss

BEND

1 123456

’SPNTRK’

3

’INCLUDE’

1

scaling_5GeVel.inc[SCALING_S:SCALING_E]

’INCLUDE’

1

6* superA.inc[superA_S:superA_E]

’INCLUDE’

1

snake_matched.inc[snake_sol_s:snake_sol_e]

’TWISS’

2 1. 1.

’END’

! scaling_5GeVel.inc INCLUDE file.

’MARKER’ SCALING_S

’SCALING’

1 7

BEND

-1

16.67820475445

1

MULTIPOL

-1

16.67820475445* 1.

1

SOLENOID

-1

16.67820475445

1

MULTIPOL QH* ! Quadrupoles set for Qx=4.73, Qy=4.82.

-1

16.67820475445* 1.0864799 ! FIT variable #12.

1

MULTIPOL QV*
-1

16.67820475445* 1.0657626 ! FIT variable #16.

1

MULTIPOL SH*
-1

16.67820475445

1

MULTIPOL SV*
-1

16.67820475445

1

’MARKER’ SCALING_E

’END’

Table 14.35 Zgoubi file of the AGS Booster lattice with the spin-matched snake for n0 calculation

AGS Booster lattice with spin-matched snake for n_0 calculation
’OBJET’
16.67820475445e3 ! reference rigidity -> p = 5 GeV/c
1
3 1 1 1 1 1
0.E+00 0.E+00 0.E+00 0.E+00 0.00 0.E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00 1.

’PARTICUL’
0.51099892 1.60217653e-19 1.15965218076e-3 0. 0.

’SRLOSS’
0 ! .srloss
BEND
1 123456

’SPNTRK’
4
1. 0. 0.
0. 1. 0.
0. 0. 1.

’INCLUDE’
1
scaling_5GeVel.inc[SCALING_S:SCALING_E]

’INCLUDE’
1
6* superA.inc[superA_S:superA_E]

’INCLUDE’
1
snake_mismatched.inc[snake_sol_s:snake_sol_e]

’SPNPRT’ MATRIX

’END’
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Table 14.36 Zgoubi file for tracking 100 electrons for 104 turns through the AGS Booster lattice
with the spin-matched snake

Tracking 100 electrons for 10^4 turns through Booster
’OBJET’
16.67820475445e3 ! reference rigidity -> p = 5 GeV/c
1
100 1 1 1 1 1
0.E+00 0.E+00 0.E+00 0.E+00 0.00 0.E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00 1.

’PARTICUL’
0.51099892 1.60217653e-19 1.15965218076e-3 0. 0.

’SRLOSS’
1 ! .srloss
BEND
1 123456

’SPNTRK’
4.1
0.4626 0.8866 0.0

’FAISTORE’
zgoubi.fai
100

’INCLUDE’
1
scaling_5GeVel.inc[SCALING_S:SCALING_E]

’INCLUDE’
1
6* superA.inc[superA_S:superA_E]

’INCLUDE’
1
snake_mismatched.inc[snake_sol_s:snake_sol_e]

’CAVITE’
2
204.2000486 100 ! orbit length, h
7974784.27279453 2.61799387799 ! volts, phi_s rad, 5 GeV

’REBELOTE’
9999 0.1 99

’END’

further discussed and used here (input data files, gnuplot scripts, etc.) is also
available in the sourceforge repository, at

https://sourceforge.net/p/zgoubi/code/HEAD/tree/trunk/exemples/uspasSpinClass_2021/

Brief additional introductory guidance to using the code can be found in the
Appendix, page 405.

14.2.1 Polarized Helion in AGS Booster

14.2.1.1 AGS Booster Parameters

Table 14.2 has been completed, yielding Table 14.37. Some derivations are detailed
hereafter.


 -19 2992 a -19 2992 a
 
https://sourceforge.net/p/zgoubi/code/HEAD/tree/trunk/exemples/uspasSpinClass_2021/
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Table 14.37 AGS Booster
parameters, table completed

Injection β 0.0655

Injection energy, kin. MeV/u 2.0146

Injection Gγ −4.19316

Injection Bρ T m 0.30745

Extraction energy, kin. GeV/u 1.413059

Extraction Gγ −10.5

Extraction Bρ T m 10.780516

Lattice

Length m 201.78

Tunes, νx , νy 4.73, 4.82

Chromaticities, ξx , ξy −4.8, −5.2

Momentum compaction α 0.043998

Transition γ 4.7674

RF system
Revolution frequency, frev MHz 0.09738 to 1.36362

RF harmonic 4

RF frequency MHz 0.38953 to 5.45449

Peak voltage kV 400

Synchronous phase deg 30

Spin

Crossing speed dGγ/dθ −9.4848 × 10−5

With M = 2808.39 MeV, |G| = 4.18415, and dE/dN = qV̂ sin(φs) =
0.4 MeV/turn (q=2, V̂ = 0.4 MV, φs = 30 deg), the crossing speed comes out to
be

dGγ

dθ
= 1

2π

G

M

dE

dN
= −9.4848× 10−5.

The following excerpt from the “print” file generated by a MAD8 computation
of the Booster optical functions is aimed at allowing a comparison with Zgoubi
outcomes in the next question:
----------------------------------------------------------------------------------------------------------------------------------

Linear lattice functions. TWISS line: ASUPL6 range: #S/#E

Delta(p)/p: 0.000000 symm: F super: 1 page 20

----------------------------------------------------------------------------------------------------------------------------------

ELEMENT SEQUENCE I H O R I Z O N T A L I V E R T I C A L

pos. element occ. dist I betax alfax mux x(co) px(co) Dx Dpx I betay alfay muy y(co) py(co) Dy Dpy

no. name no. [m] I [m] [1] [2pi] [mm] [.001] [m] [1] I [m] [1] [2pi] [mm] [.001] [m] [1]

----------------------------------------------------------------------------------------------------------------------------------

end LA8 6 201.780 5.485 0.982 4.730 0.0000 0.000 0.739-0.104 9.704 -1.546 4.820 0.0000 0.000 0.000 0.000

end ASUPL 6 201.780 5.485 0.982 4.730 0.0000 0.000 0.739-0.104 9.704 -1.546 4.820 0.0000 0.000 0.000 0.000

end ASUPL6 1 201.780 5.485 0.982 4.730 0.0000 0.000 0.739-0.104 9.704 -1.546 4.820 0.0000 0.000 0.000 0.000

----------------------------------------------------------------------------------------------------------------------------------

total length = 201.780000 Qx = 4.730145 Qy = 4.820140

delta(s) = 0.000000 mm Qx’ = -7.313316 Qy’ = -2.883899

alfa = 0.439414E-01 betax(max) = 13.545393 betay(max) = 13.149980

gamma(tr) = 4.770492 Dx(max) = 2.909356 Dy(max) = 0.000000

Dx(r.m.s.) = 1.757448 Dy(r.m.s.) = 0.000000

xco(max) = 0.000000 yco(max) = 0.000000

xco(r.m.s.) = 0.000000 yco(r.m.s.) = 0.000000

----------------------------------------------------------------------------------------------------------------------------------
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14.2.1.2 Cell and Lattice Optics

Questions 14.1.1.2.1–14.1.1.2.3—Running superA.inc, due to the MATRIX com-
mand at the downstream end of the optical sequence, produces the first order
transport matrix of the super cell, say Tcell, and the corresponding beam matrix,
i.e. the periodic optical functions at cell ends (using the relation Tcell = I cos μ +
J sin μ).

These two matrices are found at the bottom of the computation listing, zgoubi.res.
Checking against the data in MAD8 ’print’ output file (Sect. 14.2.1.1) shows a

very good agreement.
Question 14.1.1.2.4—Running superA.inc with a TWISS command instead, pro-
duces, on the one hand, the following lattice parameter computation outcomes
(similar to MATRIX outcomes), found down zgoubi.res listing (an excerpt):

******************************************************************************************************************************
112 Keyword, label(s) : TWISS IPASS= 4

*********************************************************

************** End of TWISS procedure **************
There has been 4 pass through the optical structure

Reference, before change of frame (particle # 1 - D-1,Y,T,Z,s,time) :

0.00000000E+00 -7.65859598E-13 2.62290190E-12 0.00000000E+00 0.00000000E+00 3.36300081E+03 3.68572492E-01

Frame for MATRIX calculation moved by :

XC = 0.000 cm , YC = -0.000 cm , A = 0.00000 deg ( = 0.000000 rad )

Reference, after change of frame (particle # 1 - D-1,Y,T,Z,s,time) :

0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 3.36300081E+03 3.68572492E-01

Reference particle (# 1), path length : 3363.0008 cm relative momentum : 1.00000

TRANSFER MATRIX ORDRE 1 (MKSA units)

-0.716001 -5.32491 0.00000 0.00000 0.00000 0.716859

0.348220 1.19307 0.00000 0.00000 0.00000 -0.238490

0.00000 0.00000 1.78816 -9.15235 0.00000 0.00000

0.00000 0.00000 0.330121 -1.13043 0.00000 0.00000

-7.886126E-02 0.414707 0.00000 0.00000 1.00000 1.58173

0.00000 0.00000 0.00000 0.00000 0.00000 1.00000

DetY-1 = -0.0000004260, DetZ-1 = -0.0000004317

R12=0 at 4.463 m, R34=0 at -8.096 m

First order symplectic conditions (expected values = 0) :

-4.2604E-07 -4.3171E-07 0.000 0.000 0.000 0.000

TWISS parameters, periodicity of 1 is assumed

- COUPLED -

Beam matrix (beta/-alpha/-alpha/gamma) and periodic dispersion (MKSA units)

5.483186 -0.982907 0.000000 0.000000 0.000000 0.742996

-0.982907 0.358570 0.000000 0.000000 0.000000 -0.104814

0.000000 0.000000 9.691428 1.545246 0.000000 -0.000000

0.000000 0.000000 1.545246 0.349565 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Betatron tunes (Q1 Q2 modes)

NU_Y = 0.78833338 NU_Z = 0.80333330

Momentum compaction :

dL/L / dp/p = 4.39982231E-02

Transition gamma = 4.76740921E+00

Chromaticities :

dNu_y / dp/p = -0.80312438 dNu_z / dp/p = -0.86404335

*******************************************************************************************************************************



14 Spin Dynamics Tutorial: Numerical Simulations 357

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 0  5  10  15  20  25  30
 0

 0.5

 1

 1.5

 2

 2.5

 3
 0  5  10  15  20  25  30  35

β x
,
 

β y
 
[
m
]

η x
,
 

η y

s [m]

Optical functions, from zgoubi.TWISS.out

βx βy ηx ηy

-4.5x10-14

-4x10-14

-3.5x10-14

-3x10-14

-2.5x10-14

-2x10-14

-1.5x10-14

-1x10-14

-5x10-15

 0

 0  5  10  15  20  25  30

x
,
 
y
 
[
m
]

x
,
 
y
 
[
m
]

s [m]

Orbit, from zgoubi.TWISS.out

x y

Fig. 14.5 Left: booster super cell optical functions, from a TWISS computation. Right: it is not a
bad idea to check what the horizontal and vertical orbits are, zero as expected in the present case

The TWISS command causes in addition the transport of the periodic optical
functions throughout the sequence, logged in zgoubi.TWISS.out. These optical
functions are displayed in Fig. 14.5.

Note: to produce this set of outputs, the TWISS command performs 4 consecutive
passes through the optical sequence, see Users’ Guide for details.

14.2.1.3 Spin Optics

The rigidity specified in the provided input data files and used in the previous
question (superA.inc, etc.) is 1 T m. However, proper spin motion requires proper
Gγ value! Thus, the rigidity in this exercise has to be changed to the injection value,
namely (Table 14.37),

Bρ = 0.30745 T m

Question 14.1.1.3.1—The spin motion of a helion is tracked along Booster for
the case of an ideal ring (six superA cells, planar, no defects) using the input
data file given in Table 14.7. One particle is taken on-momentum, the other two
at δp/p = ±10−4 and launched on their respective chromatic closed orbits, given
the dispersion and its derivative (Sect. 14.2.1.2)

ηx = 0.743 m, η′x = −0.1048 rad

Tracking shows that the spin precession direction is vertical around the ring, for
both on- and off-momentum particles (Fig. 14.6). This is what’s expected as the
chromatic closed orbits also lie in the median plane: the field is everywhere vertical
along a chromatic closed orbit as well, particles do not experience any horizontal
field component, no field may kick spins away from vertical.
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Fig. 14.6 Spins of 3 ions, respectively on- and ±10−4 off-momentum, along their respective
closed orbits around Booster. The vertical component SZ is constant all along, thus the precession
direction is vertical. SX and SY are circling around the Z axis, in the bend plane

Questions 14.1.1.3.2, 14.1.1.3.3—Tracking the spin closed orbit over a turn for
particles at dp/p = 0 and dp/p = ±10−4 off-momentum, yields spin motions
displayed in Fig. 14.6.

Adding SPNPRT[MATRIX] allows for producing the spin matrices, however
that also requires changing OBJET and SPNTRK data in Table 14.7, so to create
3 groups (as many as there are different momenta) of 3 particles each, as follows:

’OBJET’
0.3074552E3 ! Reference rigidity/kG.cm, for 3He++, at injection beta value 0.0655.
2 ! An option to define initial particle coordinates, one by one; here, 3 different
9 3 ! momenta, 9 particles; this is ordered to allow spin matrix computation by SPNPRT.
7.43281000E-03 -1.04862116E-02 0. 0. 0. 1.0001 ’p’ ! Group 1. Orbit coordinates for a
7.43281000E-03 -1.04862116E-02 0. 0. 0. 1.0001 ’p’ ! momentum offset of D=+1e-4.
7.43281000E-03 -1.04862116E-02 0. 0. 0. 1.0001 ’p’
0. .0 0. 0. 0. 1. ’o’ ! Group 2. On-momentum 3-particle set.
0. .0 0. 0. 0. 1. ’o’
0. .0 0. 0. 0. 1. ’o’
-7.42569731E-03 1.04862063E-02 0. 0. 0. .9999 ’m’ ! Group 3.
-7.42569731E-03 1.04862063E-02 0. 0. 0. .9999 ’m’ ! Momentum offset of D=-1e-4.
-7.42569731E-03 1.04862063E-02 0. 0. 0. .9999 ’m’
1 1 1 1 1 1 1 1 1

’PARTICUL’ ! Defining the particle species is necessary, in order for the program to solve
HELION ! the T-BMT equation.
’SPNTRK’ ! The 9 initial spins are organized so to allow spin matrix
4 ! computation by SPNPRT, for each of the 3 different momenta concerned.
1. 0. 0. ! S_X, particle 1,
0. 1. 0. ! S_Y, particle 1,
0. 0. 1. ! S_Z, particle 1,
1. 0. 0. ! S_X/ particle 2,
0. 1. 0. ! etc.
0. 0. 1.
1. 0. 0.
0. 1. 0.
0. 0. 1.
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This yields the following, including the spin transport matrix, fractional spin tune
and precession axis, for each of the 3 momenta (an excerpt):

***********************************************************************************************************************************

641 Keyword, label(s) : SPNPRT MATRIX IPASS= 1

-- 3 GROUPS OF MOMENTA FOLLOW --

--------------------------------------------------------------

Momentum group #1 ; average over 3 particles at this pass :

INITIAL FINAL

<SX> <SY> <SZ> <|S|> <SX> <SY> <SZ> <|S|> <G.gma> <(SI,SF)> sigma_(SI,SF)

(deg) (deg)

0.333333 0.333333 0.333333 0.577350 -0.195770 0.428831 0.333333 0.577350 -4.193160 46.358429 32.780359

Spin components of each of the 3 particles, and rotation angle :

INITIAL FINAL

SX SY SZ |S| SX SY SZ |S| GAMMA |Si,Sf| (Z,Sf_yz) (Z,Sf)

(deg.) (deg.) (deg.)

(Sf_yz : projection of Sf on YZ plane)

p 1 1.000000 0.000000 0.000000 1.000000 0.349592 0.936902 0.000000 1.000000 1.0022 69.538 90.000 90.000 1

p 1 0.000000 1.000000 0.000000 1.000000 -0.936902 0.349592 0.000000 1.000000 1.0022 69.538 90.000 90.000 2

p 1 0.000000 0.000000 1.000000 1.000000 0.000000 0.000000 1.000000 1.000000 1.0022 0.000 45.000 0.000 3

Min/Max components of each of the 3 particles :

SX_mi SX_ma SY_mi SY_ma SZ_mi SZ_ma |S|_mi |S|_ma p/p_0 GAMMA I IEX

3.4959E-01 3.4959E-01 9.3690E-01 9.3690E-01 0.0000E+00 0.0000E+00 1.0000E+00 1.0000E+00 1.00010E+00 1.00215E+00 1 1

-9.3690E-01 -9.3690E-01 3.4959E-01 3.4959E-01 0.0000E+00 0.0000E+00 1.0000E+00 1.0000E+00 1.00010E+00 1.00215E+00 2 1

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.00010E+00 1.00215E+00 3 1

Spin transfer matrix, momentum group # 1 :

0.349592 -0.936902 0.00000

0.936902 0.349592 0.00000

0.00000 0.00000 1.00000

Trace = 1.6991838357, ; spin precession acos((trace-1)/2) = 69.5376429739 deg

Precession axis : ( 0.0000, 0.0000, 1.0000) -> angle to (X,Y) plane, angle to X axis : 90.0000, 90.0000 degree

Spin tune Qs (fractional) : 1.9316E-01

--------------------------------------------------------------

Momentum group #2 ; average over 3 particles at this pass :

INITIAL FINAL

<SX> <SY> <SZ> <|S|> <SX> <SY> <SZ> <|S|> <G.gma> <(SI,SF)> sigma_(SI,SF)

(deg) (deg)

0.333333 0.333333 0.333333 0.577350 -0.195765 0.428834 0.333333 0.577350 -4.193158 46.357996 32.780053

Spin components of each of the 3 particles, and rotation angle :

INITIAL FINAL

SX SY SZ |S| SX SY SZ |S| GAMMA |Si,Sf| (Z,Sf_yz) (Z,Sf)

(deg.) (deg.) (deg.)

(Sf_yz : projection of Sf on YZ plane)

o 1 1.000000 0.000000 0.000000 1.000000 0.349603 0.936898 0.000000 1.000000 1.0022 69.537 90.000 90.000 4

o 1 0.000000 1.000000 0.000000 1.000000 -0.936898 0.349603 0.000000 1.000000 1.0022 69.537 90.000 90.000 5

o 1 0.000000 0.000000 1.000000 1.000000 0.000000 0.000000 1.000000 1.000000 1.0022 0.000 45.000 0.000 6

Min/Max components of each of the 3 particles :

SX_mi SX_ma SY_mi SY_ma SZ_mi SZ_ma |S|_mi |S|_ma p/p_0 GAMMA I IEX

3.4960E-01 3.4960E-01 9.3690E-01 9.3690E-01 0.0000E+00 0.0000E+00 1.0000E+00 1.0000E+00 1.00000E+00 1.00215E+00 4 1

-9.3690E-01 -9.3690E-01 3.4960E-01 3.4960E-01 0.0000E+00 0.0000E+00 1.0000E+00 1.0000E+00 1.00000E+00 1.00215E+00 5 1

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.00000E+00 1.00215E+00 6 1

Spin transfer matrix, momentum group # 2 :

0.349603 -0.936898 0.00000

0.936898 0.349603 0.00000

0.00000 0.00000 1.00000

Trace = 1.6992050586, ; spin precession acos((trace-1)/2) = 69.5369940370 deg

Precession axis : ( 0.0000, 0.0000, 1.0000) -> angle to (X,Y) plane, angle to X axis : 90.0000, 90.0000 degree

Spin tune Qs (fractional) : 1.9316E-01

--------------------------------------------------------------

Momentum group #3 ; average over 3 particles at this pass :

INITIAL FINAL

<SX> <SY> <SZ> <|S|> <SX> <SY> <SZ> <|S|> <G.gma> <(SI,SF)> sigma_(SI,SF)

(deg) (deg)

0.333333 0.333333 0.333333 0.577350 -0.195760 0.428836 0.333333 0.577350 -4.193157 46.357564 32.779748

Spin components of each of the 3 particles, and rotation angle :

INITIAL FINAL

SX SY SZ |S| SX SY SZ |S| GAMMA |Si,Sf| (Z,Sf_yz) (Z,Sf)

(deg.) (deg.) (deg.)

(Sf_yz : projection of Sf on YZ plane)

m 1 1.000000 0.000000 0.000000 1.000000 0.349613 0.936894 0.000000 1.000000 1.0022 69.536 90.000 90.000 7

m 1 0.000000 1.000000 0.000000 1.000000 -0.936894 0.349613 0.000000 1.000000 1.0022 69.536 90.000 90.000 8

m 1 0.000000 0.000000 1.000000 1.000000 0.000000 0.000000 1.000000 1.000000 1.0022 0.000 45.000 0.000 9

Min/Max components of each of the 3 particles :

SX_mi SX_ma SY_mi SY_ma SZ_mi SZ_ma |S|_mi |S|_ma p/p_0 GAMMA I IEX

3.4961E-01 3.4961E-01 9.3689E-01 9.3689E-01 0.0000E+00 0.0000E+00 1.0000E+00 1.0000E+00 9.99900E-01 1.00215E+00 7 1
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-9.3689E-01 -9.3689E-01 3.4961E-01 3.4961E-01 0.0000E+00 0.0000E+00 1.0000E+00 1.0000E+00 9.99900E-01 1.00215E+00 8 1

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 9.99900E-01 1.00215E+00 9 1

Spin transfer matrix, momentum group # 3 :

0.349613 -0.936894 0.00000

0.936894 0.349613 0.00000

0.00000 0.00000 1.00000

Trace = 1.6992262279, ; spin precession acos((trace-1)/2) = 69.5363467325 deg

Precession axis : ( 0.0000, 0.0000, 1.0000) -> angle to (X,Y) plane, angle to X axis : 90.0000, 90.0000 degree

Spin tune Qs (fractional) : 1.9316E-01

************************************************************************************************************************************

This simulation confirms the answer to Question 14.1.1.3.1.
The value of the spin precession angle is θsp = Gγα modulo 360◦. The

on-momentum value of Gγα can be found under PARTICUL in zgoubi.res (an
excerpt):

******************************************************************************************************************************

2 Keyword, label(s) : PARTICUL IPASS= 1

Particle properties :

HELION

Mass = 2808.39 MeV/c2

Charge = 3.204353E-19 C

G factor = -4.18415

COM life-time = 1.000000E+99 s

Reference data :

mag. rigidity (kG.cm) : 307.45520 =p/q, such that dev.=B*L/rigidity

mass (MeV/c2) : 2808.3916

momentum (MeV/c) : 184.34550

energy, total (MeV) : 2814.4354

energy, kinetic (MeV) : 6.0438039

beta = v/c : 6.5499993689E-02

gamma : 1.002152052

beta*gamma : 6.5640953062E-02

G*gamma : -4.193158315

electric rigidity (MeV) : 24.14925821 =T[eV]*(gamma+1)/gamma, such that dev.=E*L/rigidity

******************************************************************************************************************************

which yields a theoretical spin rotation of

|Gγ | × 360◦ = 4.193158315× 360◦ = 69.5369934 [360◦]

(the on-momentum “group 2” above indicates 69.5369940370deg) or equivalently
a fractional spin tune value of

νsp = 4.193158315/360= 0.193158315

also in accord with the on-momentum “group 2” above which indicates 1.9316E-01.
From theory (after Eq. 3.11, transposed to 3D space)

frac(νsp) = 1

2π
acos

Trace(spin matrix)− 1

2

whereas the spin matrix from tracking says (momentum “group 2” above)

Trace
[
spin matrix

] = 1.6992050586

in accord with the above spin tune value νsp = 0.193158.
Off-momentum (groups 1 and 3):
γ needs to be corrected for the dp/p = ±10−4 particles. The corresponding

numerical results can be found under “group 1” and “group 3” above, respectively,
and can be checked to agree with the theory.
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14.2.1.4 Depolarizing Resonances

Question 14.1.1.4.1—Locations (Gγ values) of the depolarizing resonances in the
range

−10.5 ≤ Gγ ≤ −4.19316

have been added to Table 14.8, yielding Table 14.38 (integer/imperfection res-
onances of the form Gγ = integer), and to Table 14.9, yielding Table 14.39
(systematic intrinsic resonances of the form Gγ = 6× integer±Qy ).
Question 14.1.1.4.2—Figure14.7 illustrates intrinsic resonance crossings with two
graphs of Sy(Gγ ), as follows:

– a few particles are taken evenly distributed in phase with the same vertical
invariant εy ; εx value does not matter, it is taken null here, as horizontal motion
results in this perfect ring in only vertical perturbing field components—in
quadrupoles—and these do not depolarize;

– they are tracked from injection Gγ = −4.19316 (Table 14.37) to Gγ = −16, so
crossing in particular the four strong resonances Gγ ± νy = 6n, |n| = 0 − 3.
Two different cases of the vertical invariant values are tracked: εy = 2.5 πμm
and 10 times less.

Table 14.38 Imperfection
resonances, location and
strengths. Strengths are
normalized to the rms closed
orbit value, yco, rms (the
closed orbit is shown in
Fig. 14.10). The “theory”
column is filled-out using the
thin lens model series

Gγ (Q. 14.1.1.4) |εn|/yco, rms

Theory Tracking

(Q. 14.1.1.5) Station. Crossing

−5 14.8696 13.8520 13.5490

−6 1.1779 1.0839 1.1917

−7 12.5802 11.5867 11.6697

−8 3.0465 2.9006 2.8585

−9 0.2637 0.2196 0.2373

−10 2.5296 2.7105 2.6408

Table 14.39 Systematic intrinsic resonances (M=6 super-periods, νy = 4.82), location and
strengths. The latter are normalized to

√
εy/π , with εy/π being the particle invariant value. The

“theory” column is filled-out using the thin lens model series. The “station.” (stationary) column
is filled-out using |εn| ≡ ω(δn = 0), Question 14.1.1.6. Completion of the “crossing” column is
addressed in Question 14.1.1.8 and Table 14.43

kM ± νy Gγ (Q. 14.1.1.4) |εn|/
√

εy/π

Theory Tracking

(Q. 14.1.1.6) Station. Crossing

0− νy −4.82 3.3989 3.63 5.2

−12+ νy −7.18 3.1523 3.18 4.0

−6− νy −10.82 7.9235 8.52 9.13

−18+ νy −13.18 11.072 11.8 12.5
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Fig. 14.7 Evolution of the vertical spin component of a few particles launched on the same
invariant, with different initial betatron phases. The dark red curve is the average over 23 particles.
Left: εy = 2.5 πμm; right: εy = 0.25 πμm

Figure 14.7 is obtained with the following combined awk (left hand side) [11]
and gnuplot (right) scripts:

! Average over particles of SZ values read in zgoubi.fai

function analyze(x, data){

n = 0;mean = 0; val_min = 0;val_max = 0;

NBturns = 20000;

Gg1 =4.193158; Gg2 =16; dGg = (Gg2-Gg1)/(NBturns-1);

for(val in data){

n += 1;

delta = val - mean;

mean += delta/n;

val_min = (n == 1)?val:((val < val_min)?val:val_min);

val_max = (n == 1)?val:((val > val_max)?val:val_max);

}

if(n > 0){

print x, mean, val_min, val_max;

}

}

{

curr = $38*dGg + Gg1; yval = $(col_num);

if(NR==1 || prev != curr){

analyze(prev, data);

delete data;

prev = curr;

}

data[yval] = 1;

}

END{

analyze(curr, data);

}

set title "SZ(turn) and <SZ(turn)>_particles"

nbtrj=100; evryNtrj = 5; evryNpass=9

NBturns = 20000

Gg1 =4.193158 ; Gg2 =16 ; dGg = (Gg2-Gg1)/(NBturns-1)

set xlab "turns"; set ylab "Average S_y over particles"

unset colorbox

fName = ’zgoubi.fai’

plotCmd(col_num)=sprintf(’< gawk -f analyze.awk -v col_num=%d %s’, col_num, fName)

set format y ’%0.2f’

set xr [:20e3]; set xr [Gg1:Gg2]; set yr [-1.01:1.01]

plot for [it=1:nbtrj:evryNtrj] "zgoubi.fai" \

u ($26==it && evryNpass*int($38/evryNpass)==$38? $38*dGg + Gg1 :1/0):($22):($26) \

w p pt 7 ps .1 lc palette notit ,\

plotCmd(22) u 1:2 w p pt 5 ps .4 lc rgb ’dark-red’ t ’<S_y>’

When comparing these two graphs, essentially two things are observed: the spin
kick across a resonance and the spin kick spread are smaller, when the invariant is
smaller:

(i) a smaller invariant means smaller values of the perturbing Bx = Gy radial field
components in quadrupoles, hence smaller spin kicks;

(ii) spread in betatron motion around the ring results from the spread in the initial
betatron phase of the particles for a given invariant. Smaller invariant value
results in a smaller span of the field values experienced by the different particles
in the vertical quadrupoles (Fig. 14.8).

For the record: the resonance strength is ∝ √εy/π (Eq. 2.35).
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Fig. 14.8 A sensible question at this point is whether these results converge. The present figure
is obtained using 200 particles. Comparison with the 23 trajectory case of Fig. 14.7 does not show
much difference. The final polarizations is very similar, the problem converges
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Fig. 14.9 Fields experienced in vertical quadrupoles during vertical betatron motion: 3 different
particles are displayed here, over 3 turns around the ring. They are taken on the same invariant but
with different initial betatron phases

Question 14.1.1.4.3—A graph showing the span in magnetic field strengths experi-
enced in the vertical quadrupoles by the 3 orbiting particles with the same invariant
value, as an effect of their different initial betatron phases, is given in Fig. 14.9. The
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three vastly different torque series experienced by these particles’ spins result in
largely different spin states upon crossing the resonances (Fig. 14.7).

14.2.1.5 Imperfection Resonance Strengths

An excerpt of the input data file used is given in Table 14.40. It shows in particular

– sample vertical quadrupole misalignments accounted for by means of KPOS=5,
which implement Table 14.10 random vertical offset data;

– the use of FIT, preceding TWISS, which allows accounting for the non-
zero vertical closed orbit excited by the quadrupole misalignments given in
Table 14.10.

The vertical closed orbit so obtained is shown in Fig. 14.10.
The resonance strengths to be computed here, as a function of energy, all assume

that very closed orbit (and obviously, the same optical functions).
Resonance strength calculation uses (Eq. 2.29)

{
Re(ε

imp
n )

Im(ε
imp
n )

}

= 1+Gγ

2π

∑

Qpoles

{
cos Gγαi

sin Gγαi

}

(KL)i yco(θi)

which can be evaluated numerically. In this formula, the following data are read
from zgoubi.TWISS.out at the locations of the quadrupoles (i index):

– θi : orbital angle, from the origin of the sequence,
– αi : cumulative orbit deviation, from the origin of the sequence,
– (KL)i : integrated quadrupole strength,
– yco, i: orbit excursion.

These quantities do not depend on Gγ (magnet fields are ramped to follow the value
of the reference rigidity OBJET[BORO]).

Table 14.8 has been updated with the imperfection resonance strengths obtained
this way yielding the “theory” column of Table 14.38.

14.2.1.6 Intrinsic Resonance Strengths

The optical functions and periodic vertical orbit are needed here, which means use
of the output file zgoubi.TWISS.out. This file is produced using the input data file
of the complete ring, equipped with a TWISS command, as in Sect. 14.2.1.2.

Resonance strength is obtained by summing the series (Eq. 2.35)

{
Re(εintr

n

±
)

Im(εintr
n

±
)

}

= 1+Gγ

4π

∑

Qpoles

{
cos(Gγαi ± ϕi)

sin(Gγαi ± ϕi)

}

(KL)i

√

βy,i

εy

π
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Table 14.40 Head, intermediate quadrupoles, and tail of the Booster sequence, including vertical
quadrupole misalignments, as well as a FIT-TWISS sequence which computes vertical orbit and
optical functions (logged in zgoubi.TWISS.out), accounting for non-zero closed orbit (FIT first
finds the orbit, prior to passing on to TWISS). The reference rigidity for this zgoubi.TWISS.out
computation is arbitrary as the vertical orbit (and optical functions obviously) are maintained
unchanged regardless of Gγ in these exercises (the fields are ramped to follow the value of
the reference rigidity OBJET[BORO]). The final SYSTEM command causes execution of an
external file, which plots the closed orbits and optical functions, reading the latter data from
zgoubi.TWISS.out

Booster ring, complete, with vertical orbit.

’OBJET’

3.0428810404e+03

5

.001 .01 .001 .01 .001 .0001

0. 0. 0.84273180 1.5602297 0. 1. ’ ’

’PARTICUL’

HELION

’SCALING’

1 3

BEND

-1

3.04288104

1

MULTIPOL QH* ! QH family is set for Qx=4.73 & Qy=4.82 tunes.

-1

3.30602909

1

MULTIPOL QV* ! QV family is set for Qx=4.73 & Qy=4.82 tunes.

-1

3.24298881

1

’MARKER’ LA1S

’DRIFT’ DRIF L057

57.0400

................................................

’MULTIPOL’ QVA1 QUAD

0 .Quad

0.493916E+02 10.0000 0. -0.5472896982 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0. 0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0. 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0. 0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

2. ! cm MultQVA1

5 0.0 0.0 0.67238500 0 0 0

................................................

’MULTIPOL’ QHA2 QUAD

0 .Quad

0.485016E+02 10.0000 0. 0.5256342158 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0. 0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0. 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0. 0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

2. ! cm MultQHA2

5 0.0 0.0 0.73457500 0 0 0

................................................

’MULTIPOL’ QHF8 QUAD

0 .Quad

0.485016E+02 10. 0. 0.5256342158 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0. 0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0. 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0. 0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

2. ! cm MultQHF8

5 0.0 0.0 0.38532700 0 0 0

’DRIFT’ DRIF L031

29.9367

’BEND’ DHF8T SBEN

0 .Bend

1.2096161E+02 0. 7.2121043E-01

0.00 0.00 0.00000000

4 .2401 1.8639 -.5572 .3904 0. 0. 0.

0.00 0.00 0.00000000

4 .2401 1.8639 -.5572 .3904 0. 0. 0.

1.0000E+00 cm Bend

3 0. 0. 0.

’BEND’ DHF8Z SBEN

0 .Bend

1.2096161E+02 0. 7.2121043E-01

0.00 0.00 0.00000000

4 .2401 1.8639 -.5572 .3904 0. 0. 0.

0.00 0.00 0.00000000

4 .2401 1.8639 -.5572 .3904 0. 0. 0.

1.0000E+00 cm Bend

3 0. 0. 0.

’MARKER’ LA2E

’FIT’

2 ! 2 variables, as follows.

1 32 0 [-1.,1.] ! Allow +/-1cm variation of Z_0.

1 33 0 [-10.,10.] ! Allow +/-10mrad variation of P_0.

2 1e-10 ! 2 constraints; requested penalty is 1e-10.

3.1 1 4 #End 0. 1. 0 ! Request final posit. Z=initial Z_0.

3.1 1 5 #End 0. 1. 0 ! Request final angle P=initial P_0.

’TWISS’

2 1. 1.

’FAISCEAU’ ! Allows quick check of initial=final Z, P.

’SYSTEM’ ! Plot closed orbits and optical functions.

1

gnuplot < ./gnuplot_TWISS.gnu

’END’

which can be calculated numerically. In this formula, the following data are read
from zgoubi.TWISS.out at the locations of the quadrupoles (i index):

– αi : cumulative orbit deviation, from the origin of the sequence,
– (KL)i : integrated quadrupole strength,
– ϕi : betatron phase advance,
– βi : betatron function,
– εy/π : invariant value.
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Fig. 14.10 Vertical closed orbit excited by the quadrupole misalignments of Table 14.10

These quantities do not depend on Gγ (magnet fields are ramped to follow the value
of the reference rigidity OBJET[BORO]).

For a reference, the upper and lower parts of zgoubi.TWISS.out data file (as
produced by the TWISS command), showing the optical function values along the
sequence needed to compute the series above are as follows (excerpts):

@ LENGTH %le 33.63000810

@ ALFA %le 0.5271462897E-01

@ ORBIT5 %le -0

@ GAMMATR %le 4.355463945

@ Q1 %le 0.7299999804 [fractional]

@ Q2 %le 0.8199999584 [fractional]

@ DQ1 %le -0.7429052400

@ DQ2 %le -0.8355856969

@ DXMAX %le 3.01663095E+00 @ DXMIN %le 9.49130311E-01

@ DYMAX %le 0.00000000E+00 @ DYMIN %le 0.00000000E+00

@ XCOMAX %le 0.00000000E+00 @ XCOMIN %le -5.12842866E-14

@ YCOMAX %le 0.00000000E+00 @ YCOMIN %le 0.00000000E+00

@ BETXMAX %le 1.41491375E+01 @ BETXMIN %le 4.22123922E+00

@ BETYMAX %le 1.27947203E+01 @ BETYMIN %le 3.81920290E+00

@ XCORMS %le 1.50372304E-14

@ YCORMS %le 0. not computed

@ DXRMS %le 5.94727589E-01

@ DYRMS %le 0.00000000E+00

@ DELTAP %le 0.00000000E+00

@ |C| %le 0.000000000

@ Q1* %le 0.000000000

@ Q2* %le 0.000000000

@ TITLE %12s "Zgoubi model"

@ ORIGIN %12s "twiss.f"

@ DATE %08s " "

@ TIME %08s " "

# From TWISS keyword

# alfx btx alfy bty alfl btl Dx etc.

# 1 2 3 4 5 6 7

1.0086402E+000 5.8955920E+000 -1.5005233E+000 9.4500882E+000 0.0000000E+000 0.0000000E+000 1.1034842E+000 etc.

1.0086402E+000 5.8955920E+000 -1.5005233E+000 9.4500882E+000 0.0000000E+000 0.0000000E+000 1.1034842E+000

1.0086402E+000 5.8955920E+000 -1.5005233E+000 9.4500882E+000 0.0000000E+000 0.0000000E+000 1.1034842E+000

8.1346059E-001 4.8562657E+000 -1.6967856E+000 1.1273833E+001 0.0000000E+000 0.0000000E+000 1.0186499E+000

8.1346025E-001 4.8562641E+000 -1.6967859E+000 1.1273837E+001 0.0000000E+000 0.0000000E+000 1.0186498E+000

7.8964451E-001 4.7446880E+000 -1.7207337E+000 1.1511696E+001 0.0000000E+000 0.0000000E+000 1.0082983E+000

.............................................
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1.6898235E+000 1.2487484E+001 -6.6866811E-001 4.1920085E+000 0.0000000E+000 0.0000000E+000 1.6554672E+000 etc.

1.3706530E+000 8.7748783E+000 -1.0863704E+000 6.3156052E+000 0.0000000E+000 0.0000000E+000 1.3317807E+000

1.0098358E+000 5.8871527E+000 -1.5040727E+000 9.4500414E+000 0.0000000E+000 0.0000000E+000 1.1034842E+000

1.0098358E+000 5.8871527E+000 -1.5040727E+000 9.4500414E+000 0.0000000E+000 0.0000000E+000 1.1034842E+000

1.0098358E+000 5.8871527E+000 -1.5040727E+000 9.4500414E+000 0.0000000E+000 0.0000000E+000 1.1034842E+000

1.0098358E+000 5.8871527E+000 -1.5040727E+000 9.4500414E+000 0.0000000E+000 0.0000000E+000 1.1034842E+000

A detailed description of zgoubi.TWISS.out data column format can be found in
the Users’ Guide, Section 8.4.

Table 14.9 has been updated with the intrinsic resonance strengths obtained here,
yielding the “theory” column of Table 14.39.

14.2.1.7 Spin Motion Through Imperfection Resonances

Input data files similar to those in the answer to Question 14.1.1.5 (Sect. 14.2.1.5
and Table 14.40) are used here. They only differ by

– the reference rigidity (OBJET[BORO]) and, accordingly, field coefficients under
SCALING so to maintain unchanged orbit and optics,

– use of CAVITE for acceleration through the resonance, in the second question.

An interface has been developed in python (an evolution, by the present co-
authors, of pyZgoubi [4]), which takes care of repeating the tracking at various
distances ΔGγ = Gγ − Gγn from the resonance, in Question 14.1.1.8.1, or
at various resonant frequencies Gγn in Question 14.1.1.8.2 thus automating the
procedure.

Question 14.1.1.8.1—The following shows the head and tail of the tracking input
data file, in the stationary case, on the resonance Gγn = −6. Note the INCLUDE of
the SCALING segment [SCALING_S:SCALING_E] as defined in Table 14.7, with
the field coefficient updated to present BORO/1000 value, namely, 4.8139470584

Booster
’OBJET’
4.8139470584e+03 ! Rigidity at G.gamma=-6.
2
1 1
0. 0. 0.84273180 1.5602297 0. 1. ’ ’ ! Track a single 3He, launched on closed orbit.
1
’PARTICUL’
HELION
’SPNTRK’ ! Start with spin vertical.
3
’FAISTORE’
zgoubi.fai
1

! Scaling coefficients in scaling_Gg6.inc are updated to present BORO/1000 value.
’INCLUDE’
1
scaling_Gg6.inc[SCALING_S,*:SCALING_E,*]

’DRIFT’ DRIF L057
57.0400
...............
’BEND’ DHF8Z SBEN
0 .Bend
1.2096161E+02 0.0000000E+00 7.2121043E-01
0.00 0.00 0.00000000
4 .2401 1.8639 -.5572 .3904 0. 0. 0.
0.00 0.00 0.00000000
4 .2401 1.8639 -.5572 .3904 0. 0. 0.
1.0000E+00 cm Bend
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Fig. 14.11 Spin oscillation Sy(turn) for different distances to the resonance Gγn = −6. A greater
distance δn results in a higher oscillation frequency ω = √|εn|2 + δ2

n (Sect. 3.6). On the resonance,
the precession axis lies in the median plane, Sy oscillation covers [−1, 1] and

〈
Sy

〉 = 0

3 0. 0. 0.
’MARKER’ LA2E ! Booster lattice ends here.
’REBELOTE’ ! 2000 turns are sufficient to see a complete S_y oscillaiton when on resonance,
1999 0.1 99 ! from what <S_y> is deduced - greater distance to resonance

! results in greater frequency.
’END’

Sample tracking results for Sy(θ) oscillation at various distances to the res-
onance, are given in Fig. 14.11. The average value

〈
Sy

〉
is computed from these

tracking data.
The exercise is repeated for the different −10 ≤ Gγn ≤ −5 values, resulting

in Fig. 14.12 which shows
〈
Sy

〉
dependence on the distance to the resonance so

obtained, and fit to Eq. 2.49

〈
Sy

〉 = δn√
ε2
n + δ2

n

(14.5)

The “stationary” column of Table 14.8 has been completed accordingly
(Table 14.38).
Question 14.1.1.8.2—A 400 keV/turn acceleration rate is taken for the crossing
(V̂ = 400 kV, synchronous phase 30◦). The following shows the head and tail of
the tracking input data file in the case of Gγn = −6 crossing:

Booster
’OBJET’
3.77645661e+03 ! Initial rigidity is taken at Ggamma=-5.374744660,
2 ! upstream enough not to feel the resonance at G.gamma=-6.
1 1
0. 0. 0.84273180 1.5602297 0. 1. ’ ’ ! Track a single 3He, launched on closed orbit.
1
’PARTICUL’
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Fig. 14.12 Average value of the vertical spin component Sy , depending on the distance to the
resonance for the cases of three different resonances Gγn = −6, −8 and −10. The symbols
are from tracking, the solid curves are from the theory (Eq. 2.49).

〈
Sy

〉 = 0 corresponds to Sy

oscillating over [−1, 1], thus the precession axis lies in the median plane, Gγ is on resonance

HELION
’SPNTRK’ ! Start with spin vertical.
3
’FAISTORE’
zgoubi.fai
1

! Scaling coefficients in scaling_GgXXX.inc are updated to present BORO/1000 value.
’INCLUDE’
1
scaling_Gg5.374.inc[SCALING_S,*:SCALING_E,*]

’MARKER’ LA1S ! Booster lattice starts here.
’DRIFT’ DRIF L057
57.0400
...............
’BEND’ DHF8Z SBEN
0 .Bend
1.2096161E+02 0.0000000E+00 7.2121043E-01
0.00 0.00 0.00000000
4 .2401 1.8639 -.5572 .3904 0. 0. 0.
0.00 0.00 0.00000000
4 .2401 1.8639 -.5572 .3904 0. 0. 0.
1.0000E+00 cm Bend
3 0. 0. 0.
’MARKER’ LA2E ! Booster lattice ends here.
’CAVITE’
2
201.78 1.
4.e+05 0.5235987756 ! 400 kV acceleration peak voltage.
’REBELOTE’ ! 2000 turns are sufficient to cross the resonance, leaving from away enough
1999 0.1 99 ! ending on the asymtotic region.
’END’

The initial Gγ is taken at −5.374744660, upstream enough not to feel the
resonance at Gγn = −6.

Sample results for Sy(θ) during resonance crossing are given in Fig. 14.13, for
various Gγn = n values. The resonance strengths are deduced from the respective
values of Pf /Pi , using (after Eq. 2.44)

|εn| =
(

2α

π
ln

2

1+ Pf /Pi

)1/2

(14.6)

with α = dGγ

dθ
= 9.484× 10−5 being the resonance crossing speed.



370 K. Hock et al.

Fig. 14.13 Evolution of the vertical spin component Sy during integer resonance crossing, for the
cases of Gγ = −6, −8 and −10

The “crossing” column of Table 14.8 has been completed accordingly
(Table 14.38).

14.2.1.8 Spin Motion Through Intrinsic Resonances

Questions 14.1.1.8.1, 2—The systematic resonance at Gγn = 0 − νy = −4.82 is
first considered, Bρ = 2.67875735816T m.

In the stationary case, the spin precession data are obtained by tracking a single
particle with a particular vertical invariant value (use OBJET[KOBJ=8]) for many
turns (use REBELOTE[NPASS=2000]) at a fixed energy.

The input data file is given in Table 14.41. It is similar to the input data file
of Table 14.7, apart from the few necessary changes: modification the setup under
OBJET (KOBJ=8 for a single particle with a certain invariant, on-momentum),
SPNTRK, and addition of REBELOTE for multi-turn tracking. Note that the
SCALING command and its data list, a segment defined in and included as a part
of the input data file in Table 14.7, have been saved in the scaling_GgXXX.inc file,
which is subject to an INCLUDE here. This is for the mere purpose of shortness.
The values of the scaling coefficients in scaling_GgXXX.inc have to be updated to
the present BORO value, for instance, in this case, from BORO/1000=0.3074552
(Table 14.7) to BORO/1000=2.678757358169758 (Table 14.41).

The turn-by-turn spin motion obtained this way is displayed in Fig. 14.14. The
slow oscillation in that graph is that of the vertical component Sy (SZ in Zgoubi
notation). The oscillation frequency is ω = √|εn|2 + δ2

n = |εn|. The amplitude
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Table 14.41 Input data file for a 2000-turn tracking of spin motion, at fixed energy in the vicinity
of the intrinsic resonance Gγn = 0−νy = −4.82. Note that the SCALING command of Table 14.7
and its data list are subject to an INCLUDE (the scaling_GgXXX.inc file) for shortness

’OBJET’
2.6787573581697584e3

8
1 1 1
0. 0. 0. 0. 0. 1.
0.982907 5.483186 0.

-1.54525 9.69143 1.3196407949223E-07
0. 1. 0.
’PARTICUL’
HELION

’SPNTRK’
4.1
0. 0. 1.
’FAISCEAU’
’PICKUPS’
1
#Start
’FAISTORE’
zgoubi.fai
1
’MARKER’ #Start

! Scaling coefficients in scaling_GgXXX.inc are updated to present BORO/1000 value.
’INCLUDE’
1
scaling_Gg4.82.inc[SCALING_S,*:SCALING_E,*]

’INCLUDE’
1
6* superA.inc[superA_S,*:superA_E,*]

’REBELOTE’
2000 0.2 99

’END’
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Fig. 14.14 Turn-by-turn motion of the three components of a spin, initially vertical. On-resonance
here, Gγ = Gγn = −νy , distance to the resonance δn = 0. The slow oscillation (the solid
curve with a 754 turn period) is that of the vertical component. The high frequency horizontal
components (the high frequency dots, featuring the ω = |εn| modulation) both average to zero,
since sπ precesses about n, which itself precesses about the vertical axis
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averages to zero (
〈
Sy

〉 = 0) in this case of being on resonance, since n is in the
horizontal plane, namely (Eq. 2.48)

δn = 0 thus |sπ |2 = 1

1+
(

δn

|εn|
)2 = 1 ⇒ 〈

Sy

〉 =
√

1− |sπ |2 = 0

The horizontal components Sx and Ss (SY and SX in Zgoubi notations) are also
displayed (fast oscillatory motion appearing as scattered dots). They oscillate at a
much greater frequency Gγn � ω. They average to zero, since the eigenvector
n precesses about the vertical axis with a constant projected ny component
independent of the turn number. Figure 14.15 shows the Fourier spectrum of the
motion. On-resonance (δn = 0), the oscillation frequency (in units of revolution
frequency) is (see Sect. 3.6)

ω ≡
√
|εn|2 + δ2

n

δn=0= |εn| = 1/754 = 0.00133

Given that the period of the slow motion in Fig. 14.15 is about 754 turns, the
value of 0.00133 is in a good accord with the distance of the peaks in Fig. 14.15
to frac(Gγn) = 0.82. Two additional distances to the resonance, δn = |εn| and
δn = 2|εn|, are displayed in Fig. 14.16.
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Fig. 14.15 Fourier spectrum of the spin motion (horizontal components). The two peaks at 0.82±
0.00135 are the result of combining the Gγn = 4.82 frequency of n precession about the vertical
axis and the

√|εn|2 + δ2
n = |εn| = 0.00135 frequency of the spin precession about n
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Fig. 14.16 Helion spin precession at Gγ = −νy in the AGS Booster. Sy oscillates slowly (the
solid sine waves), frequency ω � 1. Three different distances to the resonance are plotted: δn = 0
(the slow wave with a ±1 amplitude), δn = |εn| and δn = 2|εn| (the fast wave with the smallest
amplitude). Sx and Ss exhibit fast oscillations (dots) at a frequency Gγn = 4.82 � ω modulated
by the frequency ω

Stationary tracking can be repeated for the other three systematic intrinsic
resonances. The “stationary” column of Table 14.9 has been completed accordingly
(Table 14.39).
Questions 14.1.1.8.3, 4—A 100 keV/turn acceleration rate is taken for crossing
(V̂ = 100 kV, synchronous phase 30 deg). However, this is an arbitrary choice. The
resonance strength does not depend on the crossing speed, so V̂ is a free parameter.

The four systematic resonance cases, namely, Gγn = integer × M ± νy (M=6
cells), are tracked to fill out Table 14.39. The resonance strengths are deduced from
the respective values of Pf /Pi , using (after Eq. 2.44)

|εn| =
(

2α

π
ln

2

1+ Pf /Pi

)1/2

(14.7)

with the resonance crossing speed of α = dGγ

dθ
= 2.371× 10−5.

The particle invariant is chosen to ensure Pf /Pi ≈ 0.5, for convenience. For each
Gγn value, three particles are tracked. They are launched with 2π/3 (normalized)
betatron phase spacing. It can be observed, however, (Fig. 14.18) that these four
different spin motions Sy(turn) essentially superimpose (this would not be the
case above a sufficiently large εy value causing substantially different betatron
excursions along the ring), which implies, in particular, that the asymptotic Pf is
independent of the initial φy for a given invariant εy .
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Fig. 14.17 Particle motion in the vertical phase space over the 2000-turn acceleration range (dots)
in the case of |Gγn| = νy . The particle invariant is damped, from an initial εy,i/π to a final εy,f /π

value. The solid ellipse is the rms ellipse matched to the 2000-turn damped motion
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Fig. 14.18 Crossing of each of the four systematic resonances is displayed here. In each case,
three particles are tracked. They are launched with 2π/3 (normalized) betatron phase spacing.
These three different curves essentially superimpose (they cannot be distinguished on this graph),
i.e., Pf is independent of the initial φy . The starting Gγ value is 100 × |εn| upstream of the
resonance. The particle invariant is chosen to ensure Pf /Pi ≈ 0.5

Particle motion in the vertical phase space is displayed in Fig. 14.17. The motion
is damped due to acceleration. The spin motion is displayed in Fig. 14.18. The
starting Gγ value is taken 100×|εn| upstream of the resonance, so that the n vector
is essentially vertical (for a reference: 7×|εn| corresponds to cos φ = 〈Sy

〉 = 0.99).
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Table 14.42 Input data file for a 4504-turn helion ion acceleration across Gγn = 0−νy = −4.82
at a rate of 100 keV/turn. Note that the value of the scaling coefficient in scaling_GgXXX.inc has
to be updated to the present value of BORO/1000=2.12998742

4504-turn helion ion acceleration
’OBJET’ 1

2.12998742d3
8

1 3 1
0. 0. 0. 0. 0. 1.
0.982907 5.483186 0.

-1.54525 9.69143 1.864270E-07
0. 1. 0.
’PARTICUL’
2.808391586E+03 3.204352974E-19 4.184153800E+00 0. 0.

’SPNTRK’
3
’FAISCEAU’
’PICKUPS’
1
#Start
’FAISTORE’
b_zgoubi.fai #End
1
’MARKER’ #Start

! Scaling coefficients in scaling_GgXXX.inc are updated to present BORO/1000 value.
’INCLUDE’
1
scaling_Gg4.596.inc[SCALING_S,*:SCALING_E,*]

’INCLUDE’
1
6* superA.inc[superA_S,*:superA_E,*]

’CAVITE’
3

201.78004860000 1.00
1.00000000E+05 5.235987755983E-01

’MARKER’ #End
’REBELOTE’

4503 0.2 99

’END’

Table 14.43 Asymptotic final polarization Pf , starting from Pi = 1. The particle invariant is
damped over the 2000-turn acceleration range, from εy,i/π to εy,f /π .

〈
εy/π

〉
is twice the final

rms εy/π value (i.e., the area enclosed by the rms ellipse matched to the damped motion in the
phase space)

|Gγn| Pf εy,i [μm] εy,f [μm]
|εn|√〈
εy/π

〉

0+ νy 0.584 0.162 0.099 5.2

12− νy 0.565 0.25 0.218 4.1

6+ νy 0.554 0.0476 0.0442 9.13

18− νy 0.545 0.0261 0.0246 12.5

The input data file for the case Gγn = 0 + νy is given in Table 14.42. The
same file is used for the other three resonances. The only changes are the updated
values of BORO under OBJET and of the scaling coefficients in the INCLUDEd file
scaling_GgXXX.inc (namely, the latter are updated to BORO/1000).

Table 14.43 summarizes the asymptotic Pf values obtained this way for the
four systematic intrinsic resonances, and the resulting resonance strengths |εn|
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obtained using Eq. 14.6 with Pi = 1. The “crossing” column of Table 14.9 has been
completed accordingly (Table 14.39).

14.2.1.9 Spin Motion Through a Weak Resonance

The systematic intrinsic resonance

Gγn = −νy = −4.8201

is considered, under fast crossing,

V̂ = 400 kV

The tune value νy = −4.8201 above results from the lattice settings (Sect. 14.2.1.2).
Fourier analysis of the multiturn phase space motion displayed in Fig. 14.17
confirms that value.

Compared to the previous simulations, the four times greater acceleration rate
here weakens the depolarizing effect. The resonance is made weaker in addition by
using a smaller invariant, namely

εy/π ≈ 1.03× 10−8

at the resonance (the invariant damps during acceleration, the starting value is
εy/π ≈ 1.3 × 10−8 m, Table 14.44). The input data file for this tracking is given
in Table 14.44, a copy of Table 14.42, mutatis mutandis, namely: with the initial
invariant changed to εy/π ≈ 1.3×10−8 under OBJET, the peak voltage changed to
V̂ = 400 kV under CAVITE, and NPASS=2000 under REBELOTE. This results in

Pf ≈ 0.9906 Pi

as can been seen from Fig. 14.19 showing a graph of the turn-by-turn Sy(turn)

motion across the resonance.
Fitting that spin motion Sy(turn) to the Fresnel integral model (Eq. 2.47)

For y > 0 i.e., θ > 0 →
downstream of the resonance

︷ ︸︸ ︷

sin2 ϕ = π

a
|εn|2

[
(0.5+ C(y))2 + (0.5+ S(y))2

]

For y < 0 i.e., θ < 0
pose y = −x with x > 0

→ sin2 ϕ = π

a
|εn|2

[
(0.5− C(x))2 + (0.5− S(x))2

]

︸ ︷︷ ︸
upstream of the resonance
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Table 14.44 Input data file for 2001-turn helion ion acceleration across Gγn = −νy = −4.82
at a rate of 400 keV/turn. Note that the value of the scaling coefficient in scaling_GgXXX.inc has
been updated to the present value of BORO/1000=2.12998742

Crossing a weak resonance
’OBJET’

2.12998742d3
8

1 3 1
0. 0. 0. 0. 0. 1.
0.982907 5.483186 0.

-1.54525 9.69143 1.31964E-08
0. 1. 0.
’PARTICUL’
2.808391586E+03 3.204352974E-19 4.184153800E+00 0. 0.

’SPNTRK’
3
’FAISCEAU’
’PICKUPS’
1
#Start
’FAISTORE’
zgoubi.fai #End
1
’MARKER’ #Start

! Scaling coefficients in scaling_GgXXX.inc are updated to present BORO/1000 value.
’INCLUDE’
1
scaling_Gg4.596.inc[SCALING_S,*:SCALING_E,*]

’INCLUDE’
1
6* superA.inc[superA_S:superA_E]

’CAVITE’
3

201.78004860000 4.00
4.00000000E+05 5.235987755983E-01

’MARKER’ #End

’REBELOTE’
2000 0.2 99

’END’

yields the respective resonant Gγ and normalized resonance strength values (with
εy/π = 1.03× 10−8 m) of

|Gγn| = 4.8202, |εn|/
√

εy/π = 5.3

The former quantity is in a good agreement with νy = 4.8201 from the Fourier
analysis of the phase space motion. The latter is in a good accord with the
result obtained from the strong resonance simulation crossing, namely (Table 14.39,
rightmost column), |εn|/

√
εy/π = 5.2. The Fresnel integral model and the tracking

results in the region of the resonance are superimposed in Fig. 14.19.
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Fig. 14.19 A graph of Sy(turn = θ/2π). The symbols show the tracking results. The solid curve
represents the Fresnel integral model

14.2.1.10 Beam Depolarization Using a Solenoid

A perfect Booster lattice is considered here. The integer resonance Gγ = −6 is used
to move initially vertical spins into the horizontal plane. Spin rotation is performed
using either

– SOLENOID, in which case the magnetic field has to be provided; in addition, the
solenoid is ramped from the initial to final energy in order to maintain a constant
strength, which also means a constant spin tilt angle;

– SPINR, in which case the spin tilt angle, constant over the acceleration range, has
to be specified; one advantage of SPINR is that it is a pure spin rotation, avoiding
any possible orbit or betatron motion side effects.

Question 14.1.1.10-1—The input data file for this simulation is given in Table 14.45.
Note that the location of the rotator does not make a difference as the modulus of the
depolarizing strength, |εn|, comes in the Froissart-Stora formula. So, for simplicity,
the rotator is placed at the beginning of the optical sequence. The solenoidal field,
spin tilt angle and energy range have been determined as follows.

Full depolarization after crossing Gγ = −6 requires a resonance strength
(Eq. 14.6 with Pf = 0) of

|εn| =
(

2α

π
ln 2

)1/2

= 0.0064694573

with the crossing speed α = 9.484842× 10−5 (V̂ = 400 kV, Table 14.45).
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Table 14.45 Input data file for beam depolarization through Gγ = −6 using a longitudinal-axis
spin rotation (SOLENOID or SPINR). Note that the value of the SCALING coefficients is updated
to the present initial BORO/1000=3.7764566118. SCALING ensures that power supply ramping
follows the rigidity boost by CAVITE. The latter accelerates from Bρ = 3.7764566118 T m
(Gγ = −5.374744555), up to Bρ = 5.92283102938 T m (Gγ = −6.7454301) in the asymptotic
spin rotation region. The INCLUDE file here, scaling_SOLENOIDadded_Gg5.374.inc is a copy
of scaling_Gg5.374.inc used in earlier exercises, with SOLENOID added

Depolarization by G.gamma=-6, using a longitudinal-axis rotation.
’OBJET’
3.7764566118E3 ! reference rigidity (kG.cm) at start of acceleration (G.gamma=-5.374744555).
2 ! Option for initial coordinates introduced individually.
1 1 ! Track a single particle.
0.01 0. 0. 0.01 0. 1. ’o’ ! Small motion to check tunes (closed orbit is nul here).
1
’PARTICUL’
HELION
’SPNTRK’
3 ! Any particle is attributed vertical initial spin vector.
’FAISTORE’
zgoubi.fai ! Log particle data in zgoubi.fai,
1 ! at every pass.

! Scaling coefficients in scaling_GgXXX.inc are updated to present BORO/1000 value,
’INCLUDE’ ! SOLENOID has to be added to the list if used.
1
scaling_SOLENOIDadded_Gg5.374.inc[SCALING_S,*:SCALING_E,*]

! Two possibilities to simulate spin rotation (uncomment/comment one or the other:
! SOLENOID (give field value) or SPINR (give rotation angle).

! ’DRIFT’ ! Compensation for added length.
! -100.
! ’SOLENOID’
! 0
! 100. 1. 0.129 ! This field yields Bs=0.0621T at G.gamma=-6, vs. theoretical 0.0615 T
! 10. 10. ! for beam depolarization.
! 1.
! 1 0. 0. 0.

’SPINR’
1
0 2.36 ! Theoretical angle for depolarization is 2.3290 deg.
’INCLUDE’
1
6* superA.inc[superA_S:superA_E]
’CAVITE’ accelerating cavity
2
201.780048 4.00 circumf., H
400e3 0.523598775598 ! Aceleration rate is 400kV*Q*sin(30deg), Q=2.
’REBELOTE’ ! ~19800 passes from beta=0.0655 (Ek=6.043805MeV) to
2300 0.3 99 ! Ggamma=-16 (Ek=7.93076082GeV).
’END’

The theoretical solenoid field integral needed to achieve that is obtained from
Eq. 2.38 with |εn| = 0.0064694573 and Bρ = Bρn = 4.8139470584T m (Gγ =
−6), namely

BsL = 2π Bρn |εn|
1+G

= 0.061454684 T m

The dependence of the final polarization on the field integral BsL can be
expressed as (the Froissart-Stora formula)

Pf = 2 exp

(

−π

2

| 1+G
2πBρn

BsL|2
α

)

− 1 (14.8)

This dependence is plotted in Fig. 14.20.
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Fig. 14.20 A graph of the dependence of the final polarization on BsL =
∫

Bs(s) ds field integral
(Eq. 14.8), upon crossing of the integer resonance Gγ = −6

The spin rotation angle is maintained constant over the acceleration range, by
ramping the SOLENOID field using SCALING (Table 14.45). Its value is

φsp(1+G)
BsL

Bρn

= −0.040648 rad = 2.239◦

The starting Gγ = −5.374744555 is at a distance of about 100 × |εn| from the
resonance, which is well away so ensuring absence of depolarizing effects. The
spins stay vertical as particles circle around the ring. The final Gγ = −6.74543 is
about 100× |εn| downstream of the resonance, in the asymptotic region.

In order for the spins to end up precessing about nearly longitudinal axes with the
turn-average

〈
Sy

〉
turn ≈ 0, the respective practical SOLENOID and SPINR settings

have to be (these are the settings in the input data file given in Table 14.45),

BsL = 0.0621 T m, at Gγ = Gγn, φsp = 2.36◦

which is reasonably close to the theoretical expectations. The longitudinal field
experienced by the particles across the solenoid, when they reached the resonant
energy region, is shown in Fig. 14.21.

At this point it is a good idea to ensure that coupling introduced by the solenoid is
only a marginal optical perturbation (otherwise, it would have to be compensated).
This can be checked with a MATRIX computation, based on the input data file
of Table 14.45 (uncomment DRIFT and SOLENOID, comment SPINR, remove
or comment CAVITE and REBELOTE, instead add MATRIX[IORD=1,IFOC=11],
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Fig. 14.21 A graph of the SOLENOID longitudinal field Bs(s) (BX(X) in Zgoubi notations) as
experienced by particles in the Gγ ≈ Gγn = −6 energy region of the acceleration ramp. The
plotted data are read from zgoubi.plt. The plateau is at B̂s = 0.0621 T

use OBJET[KOBJ=5], make sure SOLENOID is added to the SCALING list),
yielding the following 1-turn 6× 6 matrix:

-1.09944 -5.44039 -6.570868E-03 -3.815489E-02 0.00000 0.985749
0.355748 0.850847 2.126139E-03 6.053993E-03 0.00000 -0.271888

-1.090396E-02 5.977518E-02 1.82449 -8.76526 0.00000 0.00000
-1.889785E-03 6.568228E-03 0.316205 -0.971045 0.00000 0.00000
-4.427688E-02 0.680976 -2.645957E-04 4.689973E-03 1.00000 8.97276

0.00000 0.00000 0.00000 0.00000 0.00000 1.00000

It can be seen that coupling is weak. No compensation is needed in the current
simulations.

The spin tracking results for the cases of both SOLENOID and SPINR are
displayed in Fig. 14.22. Note that if a more accurate BsL value giving precisely〈
Sy

〉
turn = 0 is desired, as indicated in Fig. 14.20, this can be readily achieved by a

linear interpolation between a couple of tracking points near Bρ ≈ 0.61 ∼ 0.62.
Question 14.1.1.10-2—The data file for this simulation is the same as for the
previous question (Table 14.45) with one change: MCOBJET is used to create a
1000-particle bunch. This requires substitution of OBJET and its data list by the
following:

’MCOBJET’
3.7764566118E3 reference rigidity (kG.cm).
3 ! Option to create a 6D bunch with random coordinates.
1000 ! A 1000-particle bunch.
2 2 2 2 2 2
0.0 0. 0. 0.0 0. 1. ! Mean values of the densities.
0.982907 5.483186 1e-6 2 ! Horizontal density parameters.

-1.545246 9.691428 1e-6 2 ! Vertical density parameters.
0. 1. 1.e-6 2 ! Longitudinal density parameters.
123456 234567 345678

SPINR is used to be closer to the theoretical assumptions addressed in the previ-
ous question (by avoiding possible orbital effects associated with SOLENOID). Two
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zgoubi.fai. The Outcomes of both the SOLENOID and SPINR simulation cases are superimposed
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Fig. 14.23 Graphs of
〈
Sy(turn)

〉
, an average over a 1000-particle set (dark curve), together with a

few individual Sy(turn) taken from that random set with various εx, εy values, for the two cases
(as indicated on the respective graph) of δp/p = 0 (no momentum spread) and non-zero random
δp/p. Spread of the final spin vectors together with a negative offset of

〈
Sy

〉
is apparent in the latter

case

different 1000-particle sets have been tracked for comparison, one with δp/p = 0
which ends up with the expected

〈
Sy

〉 ≈ 0, and one with a rms Gaussian momentum
spread of σδp/p = 10−3 which ends up with

〈
Sy

〉
being slightly negative. The results

are presented in Fig. 14.23.
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14.2.1.11 Introduce a Partial Snake

Question 14.1.1.11-1—The input data file to simulate the Booster lattice including
vertical misalignment of the lattice quadrupoles (using ERRORS) and a longitudinal
axis snake is given in Table 14.46. The snake simulation uses SPINR (a pure spin
precession, no orbital effect) with the spin axis set to longitudinal and the spin
precession angle φsnake to be determined—see next question.

Integer resonances are excited by a non-zero vertical orbit. Their strengths are
displayed in Fig. 14.25 over −12 ≤ Gγ ≤ −7, as obtained using the thin lens
model series (Eq. 2.29). Strong resonances are at Gγn = pM ± [νy ] = 6 + 5 =
11, 2 × 6 ± 5 = 7, 17, etc. (with [νy] = 5 being the nearest integer to the actual
νy = 4.82). Thus, Gγn = 7 is the strongest in the acceleration interval of Gγ :
−6.5 → −10.5 considered in this exercise. Its theoretical strength (using Eq. 2.29)
is |εimp

n | = 0.0034.

Table 14.46 Input data file for a simulation of an acceleration cycle in Booster in the presence
of a partial snake. The latter uses SPINR. An orbit distortion is created using ERRORS, which
causes a random vertical displacement of quadrupoles with an rms value of 0.25 mm and a 3-
σ cut-off. Note that the values of the SCALING coefficients are updated to the present initial
BORO/1000=5.56832079 (Gγ = −6.5). SCALING ensures that power supply ramps follow the
rigidity boost by CAVITE. The latter accelerates from Gγ = −6.5 to Gγ = −10.5 in 6500 turns

Partial snake to preserve polarization thru integer resonances.
’OBJET’
5.5683207908096621E3 Reference rigidity (kG.cm) (G.gamma=-6.5, here).
2 ! Launch a single
1 1 ! particle, on
0. 0. 2.81903105E-01 4.05298102E-01 0.00 1. ’o’ ! closed orbit.
1
’PARTICUL’
HELION

’ERRORS’
1 1 123456 PRINT ! sig_ZS/cm ! PRINT logs error inofs to zgoubi.ERRORS.out.
MULTIPOL{Q*,QUAD} 1 ZS A U 0. .025 3 ! LensFamiliy{LABEL1, LABEL2}.

’SPNTRK’
4.1 ! Particle spin is along stable spin axis, which is,
0. 0. 1. ! vertical as starting G.gamma=-6.5, away from resonance.
’FAISTORE’
zgoubi.fai ! Log particle data in zgoubi.fai,
1 ! at every pass.

! Scaling coefficients in scaling_GgXXX.inc are updated to present BORO/1000 value.
’INCLUDE’
1
scaling_Gg6.5.inc[SCALING_S:SCALING_E] ! SCALING keyword, set for G.gamma=-6.5.

’SPINR’ ! Snake, pur spin precession, no orbital effect.
1
0. 1.224 ! Snake axis longitudinal. Change, here, snake angle to 0, 1.224, 2.45 or 12.24.

’INCLUDE’
1
6* superA.inc[superA_S:superA_E]

’CAVITE’ accelerating cavity
2
201.780048 4.00 circumf., H
400e3 0.523598775598 ! Aceleration rate is 400kV*Q*sin(30deg), Q=2.
’REBELOTE’ ! ~19800 passes from beta=0.0655 (Ek=6.043805MeV) to
6500 0.3 99 ! Ggamma=-16 (Ek=7.93076082GeV).
’END’
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Fig. 14.25 Strengths of integer resonances excited by the orbit distortion displayed in Fig. 14.24

Acceleration through Gγ : −6.5 → −10.5 produces Sy(turn) displayed in
Fig. 14.29 (the case of φsnake = 0). The resonances are located at integer Gγ

values distant by GΔγ = 1. Thus, in units of energy (using the particle data from
Table 14.1),

ΔE = M

|G|GΔγ = M

|G| =
2808.3916

4.18415
= 671.2MeV
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Question 14.1.1.11-2—The snake angle is set (under SPINR) to φsnake =
2π |εimp

n | = 2π × 0.0034 rad = 1.224◦, ERRORS is inhibited, the particle data
are logged in zgoubi.fai at each optical element along the ring, the reference rigidity
is set for Gγ = 7 under OBJET and SCALING. The initial spin coordinates are set
(to arbitrary values) under SPNTRK, and FIT is used to change them so to reach
Sx,s,y(s = 0) = Sx,s,y(s = send ). This yields the input data file of Table 14.47.

Table 14.47 Input data file to find the spin closed orbit at the Gγn = 7 resonance (using
FIT). It is similar to that of Table 14.46, with the following changes: the reference rigidity is
BORO=6.2821070918945 (Gγ = 7); ERRORS[ONF=0] inhibits the error generator; ALL is
added under FAISTORE, this logs the particle data at the exits of all optical elements along the
sequence in zgoubi.fai for further plotting of SX,Y,Z(s); scaling_Gg7.inc is INCLUDEd with its
scaling coefficients set for |Gγ | = 7; FIT finds the periodic orbit (expected null) and the periodic
spin orbit, expected to lie in the median plane due to the snake

Partial snake to preserve polarization thru integer resonances.
’OBJET’
6.2821070918945E3 reference rigidity (kG.cm).
2 ! Option for initial coordinates introduced individually.
1 1 ! Track a single particle.
0.0 0. 0. 0.0 0. 1. ’o’ ! Small motion to check tunes (closed orbit is nul here).
1
’PARTICUL’
HELION
’SPNTRK’
4.1 ! Particle spin is along stable spin axis, which is,
0. 1. 0. ! arbitrarily, along the Y axis, here - FIT will move it to // X-axis.

’ERRORS’ ! Inhibited, due to ONF=0.
0 1 123456 PRINT ! sig_ZS/cm ! PRINT logs error inofs to zgoubi.ERRORS.out.
MULTIPOL{Q*,QUAD} 1 ZS A U 0. .025 3 ! LensFamiliy{LABEL1, LABEL2}.

’FAISTORE’
zgoubi.fai ALL ! Log particle data in zgoubi.fai,
1 ! at every pass.

! Scaling coefficients in scaling_GgXXX.inc are updated to present BORO/1000 value.
’INCLUDE’
1
scaling_Gg7.inc[SCALING_S:SCALING_E] ! SCALING keyword, set for G.gamma=-7.

’SPINR’ ! Snake, pur spin precession, no orbital effect.
1
0. 1.224 ! Snake axis longitudinal. Change, here, snake angle to 0, 1.224, 2.45 or 12.24.

’INCLUDE’
1
6* superA.inc[superA_S:superA_E]

’FIT2’
7
1 30 0 [-5,5] ! First 4 lines: vary initial particle coordinates, Y, T, Z, P, iOBJET.
1 31 0 [-5,5]
1 32 0 [-5,5]
1 33 0 [-5,5]
3 10 0 [-1.01,1.01] ! These 3 lines: vary initial spin coordinates, SX, SY, SZ.
3 11 0 [-1.01,1.01]
3 12 0 [-1.01,1.01]
8 1e-10
3.1 1 2 #End 0. 1. 0 ! First 4 lines: request equal particle coordinates at sart and end.
3.1 1 3 #End 0. 1. 0
3.1 1 4 #End 0. 1. 0
3.1 1 5 #End 0. 1. 0
10.1 1 1 #End 0. 1. 0 ! These 3 lines: request equal spin coordinates at sart and end.
10.1 1 2 #End 0. 1. 0
10.1 1 3 #End 0. 1. 0
10 1 4 #End 1. .0001 0 ! Request spin vector modulus =1, with a great weight (0.0001).
’END’
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Fig. 14.26 Spin closed orbit along Booster in terms of its azimuthal angle at the Gγ = 7 integer
resonance. The snake is located at θ = 0. The n0 vector lies in the median plane, and undergoes
rotation about the Z-axis at a frequency of νsp = Gγ : SX (the thick red curve) and SY (blue)
oscillate while SZ=0. The theoretical n0 vector components (Eq. 14.9) are superimposed (the
dashed curves). At the azimuthal angle of θ = π rad, which is the location opposite to the snake,
the stable spin direction vector is parallel to the longitudinal axis (ns ≡ SX = 1 and nx ≡ SY = 0)

The presence of the snake produces the spin closed orbit displayed in Fig. 14.26.
Plotted data are read from zgoubi.fai, generated using FAISTORE[LABEL=ALL],
which logs the particle data at the exits of ALL optical elements around the ring
(FAISTORE[LABEL=DRIF] would probably be sufficient). The spinor methods
(Chap. 3) allow for deriving the eigenvectors

n =
⎛

⎝
nx

ns

ny

⎞

⎠ = (±)

sin πνsp

⎛

⎜
⎜
⎜
⎜
⎝

− sin(Gγ (π − θ)) sin
φsnake

2
cos(Gγ (π − θ)) sin

φsnake

2
sin(Gγπ) cos

φsnake

2

⎞

⎟
⎟
⎟
⎟
⎠

(14.9)

and the spin tune

cos πνsp = cos(πGγ ) cos(πεn) = cos(πGγ ) cos
φsnake

2
(14.10)

On the Gγ = 7 resonance, ny = 0, the spin closed orbit lies in the median
plane. Figure 14.26 shows its theoretical ns(θ) and nx(θ) components (Eq. 14.9)
superimposed on the numerical tracking results (this graph uses the gnuplot script
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Table 14.48 A gnuplot script to produce the graph of the numerical and theoretical spin closed
orbit vectors around the ring in Fig. 14.26. This script specifies the positions (the column numbers)
of the data read from zgoubi.plt

set xlabel "{/Symbol q} [rad]" ; set ylabel "n_X, n_Y, n_Z"

set key t r maxrow 5 width -3

pi = 4.*atan(1.) ; deg = 180./pi ; cm = 1e2 ; am = 2808.391585; G = 4.1841538; q = 2.

R = 201.78/ (2.*pi) *cm ; qsi= 1.224/deg ; Gg = 7.

# n_0 components, theory:

SY(x) = -1./sin(acos(cos(pi*Gg)*cos(qsi/2.))) * sin( Gg* (pi -x)) * sin(qsi/2.) # x/e1

SX(x) = 1./sin(acos(cos(pi*Gg)*cos(qsi/2.))) * cos( Gg* (pi -x)) * sin(qsi/2.) # s/e2

SZ(x) = 1./sin(acos(cos(pi*Gg)*cos(qsi/2.))) * sin( Gg* pi) * cos(qsi/2.) # z/e3

set sample 1000

print " Qs = ",acos(cos(pi*Gg)*cos(qsi/2.))/pi,"; 1-Qs = ",1-acos(cos(pi*Gg)*cos(qsi/2.))/pi

plot [] [-1:1] \

"zgoubi.plt" u ($14/R):($33) w p pt 4 ps .4 lc rgb "red" tit "S_X" , SX(x) lw 2. dt 2 lc rgb "red" notit ,\

"zgoubi.plt" u ($14/R):($34) w p pt 4 ps .2 lc rgb "blue" tit "S_Y" , SY(x) lw 2. dt 3 lc rgb "blue" notit ,\

"zgoubi.plt" u ($14/R):($35) w p pt 4 ps .1 lc rgb "black" tit "S_Z" , SZ(x) lw 2. dt 4 lc rgb "black" notit

given in Table 14.48). The oscillation frequency (Eq. 14.10 with φsnake = 1.224◦) is

frac(νsp) = φsnake

2
= 0.0034

Question 14.1.1.11-3—An input data file to compute the spin closed orbit for
Gγ = 7, using FIT, is given in Table 14.49. A script (as in Table 14.50) changes
the reference rigidity (OBJET[BORO]) and the corresponding SCALING factors in
the ancillary file scaling.inc, and the repeats the computation for the sampled −Gγ

values over [−6.5,−7.5] (Figs. 14.27 and 14.28).
Question 14.1.1.11-4—Quadrupolemisalignments are enabled (ERRORS[ONF=1]),
the snake angle is set to φsnake = 1.224◦.

Acceleration through Gγ : −6.5 → −10.5 produces Sy(turn) displayed in
Fig. 14.29 (the case of φsnake = 1.224◦). The spin appears to be tilted after crossing
the integer resonances. However, the snake rotation is too weak to overcome the
effect of the vertical orbit distortion.
Question 14.1.1.11-5—In order to determine the minimum angle of the snake spin
rotation, it is necessary to know the strengths of the resonances to be crossed.

A partial snake generates a spin resonance strength

|εsnake| = φsnake

2π

Upon crossing of the resonance, the ratio of the final and initial polarizations
satisfies (the Froissart and Stora formula, Eq. 2.44)

Pf

Pi

= 2e
− π

2α
|εsnake + ε

imp
n |2 − 1
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Table 14.49 Input data file to find the spin closed orbit at a Gγn resonance (Gγn = 7, here)
using FIT. FIT finds the spin closed orbit for particle 4, which is Gγ dependent (Eq. 14.9). A
trick is used here: the first three particles are left out of the fit, they are used to compute the spin
matrix (SPNPRT[MATRIX], logged in zgoubi.SPNPRT.Out by SPNPRT[PRINT]) for comparison
with the spin closed orbit of particle 4 found by FIT. Additional particles 5 and 6 are dummies
and unused. They are only needed for proper operation of SPNPRT[MATRIX], which requires
3-particle subsets

spinN0_FIT_template.dat tmeplate input data file
’OBJET’
6.2821070918945E3 ! Reference rigidity (kG.cm) - G.gamma=7, here.
2 ! Option for initial coordinates introduced individually.
6 2 ! Spin MATRIX computation requires 3 times the same particle, with spin SX, SY or SZ.
0. 0. 0. 0. 0. 1. ’o’ ! First 3 particles used to compute spin matrix.
0. 0. 0. 0. 0. 1. ’o’
0. 0. 0. 0. 0. 1. ’o’
0. 0. 0. 0. 0. 1. ’o’ ! 4th particle used to get spin closed orbit, using FIT.
0. 0. 0. 0. 0. 1. ’o’ ! 2 additional particles unused, only needed for proper operation of
0. 0. 0. 0. 0. 1. ’o’ ! SPNPRT[MATRIX] as it requires 3-particle subsets.
1 1 1 1 1 1 1
’PARTICUL’
HELION
’FAISCEAU’
’SPNTRK’
4
1. 0. 0. ! Initial spins of first 3 particles are left untouched, used to
0. 1. 0. ! compute spin matrix.
0. 0. 1.
1. 0. 0. ! Spin of prtcl 4 varied by FIT, to find spin orbit.
1. 0. 0. ! unused.
1. 0. 0. ! unused.

’INCLUDE’
1 ! scaling.inc is a cpy of scaling_Gg7.inc, scaling factors therein suited to present
scaling.inc[SCALING_S:SCALING_E] ! OBJET[BORO] (they are changed by the repeat scrit).

’SPINR’ ! Snake, pur spin precession, no orbital effect.
1
0. 1.224 ! Snake axis longitudinal. Change, here, snake angle to 0, 1.224, 2.45 or 12.24.
’INCLUDE’
1
6* superA.inc[superA_S:superA_E]

’FIT2’
3
4 40 0 [-2.0,2.0] ! These 3 lines: vary initial spin coordinates SX, SY, SZ of prtcl 4.
4 41 0 [-2.0,2.0]
4 42 0 [-2.0,2.0]
4 1e-20
10.1 4 1 #End 0. 1. 0 ! These 3 lines: request equal spin coordinates at sart and end.
10.1 4 2 #End 0. 1. 0
10.1 4 3 #End 0. 1. 0
10 4 4 #End 1. .0001 0 ! Request spin vector modulus =1, with a great weight (0.0001).

’FAISCEAU’ ! Allows to check final particle coordinates (perfect ring: should all be zero).

! In the following: spin closed orbit from spin MATRIX (computed using particles 1-3) is
! stored in zgoubi.SPNPRT.Out. It is expected to confirm spin closed orbit for particle 4,
! computed using FIT.
’SPNPRT’ MATRIX PRINT
’END’

Note: the overall strength εsnake + ε
imp
n results from a combination of the

longitudinal and radial perturbative terms λs
Bs

By0
and λx

Bx

By0
in Eq. 2.26, with the

Bs contribution coming from the snake and Bx arising from the vertical orbit in the
quadrupoles.

Thus, for the snake to dominate the spin resonance dynamics, one needs

|εsnake| � |εimp
n |
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Table 14.50 A Fortran script to repeat the orbit finding of Table 14.49, for sampled values Gγ :
−6.5 → −7.5. When the scan is completed, gnuplot_SPNPRT_N0-Qs-fromFIT.gnu (Table 14.51)
is executed

character(300) cmnd; character(12) txt12
parameter (c = 2.99792458e8)
G = 4.1841538; am = 2808.391585; q = 2.

Gg0=6.5; N = 60

dGg = 1./float(N-1); Gg0=Gg0 -dGg
do i = 1, N

Gg = Gg0 + dGg*float(i); gma = Gg/G
p = sqrt((gma*am)**2 - am**2); brho = p/c/q *1e6
cmnd=’cp -f spinN0_FIT_template.dat spinN0_FIT.dat’
call system(cmnd)
cmnd=’cp -f spinN0_FIT_template.dat spinN0_FIT.dat’//

> " ; sed -i ’s@6.2821070918945@"//txt12//"@g’ spinN0_FIT.dat"
call system(cmnd)
cmnd=’cp -f scaling_Gg7.inc scaling.inc’//

> "; sed -i ’s@6.2821070918945@"//txt12//"@g’ scaling.inc"
call system(cmnd)
cmnd = ’/home/meot/zgoubi/SVN/current/zgoubi/zgoubi’

> //’ -in spinN0_FIT.dat ; ’
> //’/home/meot/zgoubi/current/toolbox/rzgRevision ; ’
> //’cat zgoubi.SPNPRT.Out >> zgoubi.SPNPRT.Out_cat’

call system(cmnd)
enddo

call system(’gnuplot <./gnuplot_SPNPRT_N0-Qs-fromFIT.gnu’)

stop
end

Table 14.51 Typical gnuplot commands to obtain graphs of spin tune and spin closed orbit
components from particle 4 data logged in zgoubi.SPNPRT.Out during tracking

# Spin tune vs. G.gamma:

am = 938.27203; G = 1.79284735

plot "zgoubi.SPNPRT.Out_cat" u ($21==1 ? abs($18)/G*am/1e3 : 1/0):($51) axes x2y1 w lp ps 0.6 lw 0.

pause 3

# Spin closed orbit components vs. G.gamma:

Nprtcl = 4

plot \

"zgoubi.SPNPRT.Out_cat" every 1 u ($21==Nprtcl? abs($18): 1/0):( $13) w p pt 4 ps .6 lc rgb "red" tit "n_Y" ,\

"zgoubi.SPNPRT.Out_cat" every 1 u ($21==Nprtcl? abs($18): 1/0):(-10*$14) w p pt 5 ps .6 lc rgb "blue" tit "10 n_Y" ,\

"zgoubi.SPNPRT.Out_cat" every 1 u ($21==Nprtcl? abs($18): 1/0):( $15) w p pt 6 ps .6 lc rgb "black" tit "n_Z"

pause 3

This is qualitatively verified in Fig. 14.29, which displays motion of the spin of a
particle traveling along the vertical closed orbit, while it is accelerated over Gγ :
−6.5 → −10.5: a snake precession of 10 × 2π |εimp

n | = 12.2◦ allows overcoming
the resonances by causing a full flip at each integer Gγ value. The lower values of
φsnake = 2π |εimp

n | = 1.22◦ and φsnake = 2 × 2π |εimp
n | = 2.45◦ are too weak for

spin flipping.
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Fig. 14.27 Gγ dependence of the spin closed orbit, over 6.5 < |Gγ | < 7.5 (left), and a zoomed-
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Fig. 14.28 Gγ dependence of the spin tune, over 6.5 < |Gγ | < 7.5, and a zoom-in of the central
region. The symbols are from spin tracking, the solid lines are from the theory (Eq. 14.10). The
width of the forbidden spin tune region, or “spin tune gap”, is the resonance strength, or resonance
width, εn = φsnake/2π = 0.0034

14.2.1.12 Introduce Full Snakes

A non-zero vertical invariant is accounted for. It causes betatron motion through the
lattice fields exciting systematic intrinsic spin resonances, which, given νy = 4.82,
are located at Gγ = −12+ νy = −7.18,−6− νy = −10.82,−18+ νy = −13.18.

The same vertical closed orbit distortion as in exercise 14.2.1.11 is introduced,
using ERRORS with the same data.
Question 14.1.1.12-1—The methods here are very similar to what is done
in 14.2.1.11. The spin closed orbit is found using the same input data file
(Table 14.47). The FIT procedure in that file simultaneously finds the particle closed
obit (x0, x

′
0, y0, y

′
0) ((Y0, T0, Z0, p0) in Zgoubi notation), and the spin closed orbit

(which by definition is that of the particle on closed orbit). Thus, that FIT procedure
holds for chromatic closed orbits. All that needs be changed is the particle D value
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Fig. 14.29 Spin motion over Gγ : −6.5 → −10.5, for the cases of 4 different snake precession
angles: null, φsnake = 2π |εimp

n | = 1.22◦ , 2× 2π |εimp
n | = 2.45◦, and 10 × 2π |εimp

n | = 12.2◦, with
|εimp

n | = 0.0034 being the strength of the imperfection resonance excited by vertical quadrupole
misalignments. The initial spin is along the vertical stable spin direction at Gγ = −6.5

(relative momentum) under OBJET. The closed orbits of interest here are detailed
below.

The one-turn spin matrix, and thus the spin tune, the local spin precession
axis at the start of the sequence, etc., can be computed using SPNPRT[MATRIX].
Computation of the spin matrix at different momenta requires defining groups of
momenta, using OBJET[KOBJ=2,IDMAX=3]. The input data file used is given in
Table 14.52. It defines 3 respective groups of D − 1 = dp/p0 = 0, 10−4, 10−3.
SPNPRT[MATRIX] manages that information and produces the corresponding 3
one-turn spin matrices. Excerpts from zgoubi.res given in Table 14.53 detail the
momentum dependence of the numerical parameter values. At Gγ = −6.5, the spin
closed orbit at the snake is along the transverse horizontal axis, and is longitudinal
at the azimuthal angle opposite to the snake, as seen in the following excerpts from
zgoubi.res:

– at the snake (s=0.57 m, the end of the first drift, element number 12 in the optical
sequence):

12 Keyword, label(s) : DRIFT DRIF L057

Drift, length = 57.04000 cm

TRAJ #1 IEX,D,Y,T,Z,P,S,time : 1 0. 0. 0. 3.050213E-01 4.052981E-01 5.7040005E+01 2.48626E-03

TRAJ #1 SX, SY, SZ, |S| : 1 1.962212E-05 -9.999958E-01 2.897616E-03 1.000000E+00

Cumulative length of optical axis = 0.5704 m ; Time (for reference rigidity & particle) = 2.486264E-09 s
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Table 14.52 Input data file to compute the one-turn spin matrices for 3 different momenta,
D = p/p0 = 1, 1.0001, 1.001. In order to produce the respective matrices, SPNPRT[MATRIX]
requires defining 3 groups of momenta in the proper order. This can be achieved using
OBJET[KOBJ=2,IDMAX=3]. The same particle coordinates are repeated three times in each
group. Then SPNTRK sets the three initial spin vectors to (1,0,0), (0,1,0), and (0,0,1), respectively

Full snake to preserve polarization thru integer resonances.
’OBJET’
5.5683207908096621E3 Reference rigidity (kG.cm) (G.gamma=-6.5, here).
2
9 3 ! 9 particles, 3 different momenta.
0. 0. 2.81903105E-01 4.05298102E-01 0. 1. ’o’ ! On-momentum closed orbit, dp/p=0.
0. 0. 2.81903105E-01 4.05298102E-01 0. 1. ’o’
0. 0. 2.81903105E-01 4.05298102E-01 0. 1. ’o’
7.4360716E-03 -1.0564233E-02 0.2809611 0.4040692 0. 1.0001 ’d’ ! closed orbit, dp/p=1e4.
7.4360716E-03 -1.0564233E-02 0.2809611 0.4040692 0. 1.0001 ’d’
7.4360716E-03 -1.0564233E-02 0.2809611 0.4040692 0. 1.0001 ’d’
7.4744578E-02 -0.1053352 0.2727098 0.3932872 0. 1.001 ’d’ ! closed orbit, dp/p=1e3.
7.4744578E-02 -0.1053352 0.2727098 0.3932872 0. 1.001 ’d’
7.4744578E-02 -0.1053352 0.2727098 0.3932872 0. 1.001 ’d’
1 1 1 1 1 1 1 1 1
’PARTICUL’
HELION
’ERRORS’
1 1 123456 PRINT ! sig_ZS/cm ! Vertical alignment random error, uniform.
MULTIPOL{Q*,QUAD} 1 ZS A U 0. .025 3 ! LensFamiliy{LABEL1, LABEL2}.
’SPNTRK’
4 ! SX, SY, SZ spin values of the 3*3 particles.
1. 0. 0.
0. 1. 0.
0. 0. 1.
1. 0. 0.
0. 1. 0.
0. 0. 1.
1. 0. 0.
0. 1. 0.
0. 0. 1.

’FAISTORE’
zgoubi.fai ! Log particle data in zgoubi.fai,
1 ! at every pass.

! Scaling coefficients in scaling_GgXXX.inc are updated to present BORO/1000 value.
’INCLUDE’
1
scaling_Gg6.5.inc[SCALING_S:SCALING_E] ! SCALING keyword, set for G.gamma=-6.5.

’SPINR’
1
0. 180. ! Snake axis longitudinal. Full snake.

’INCLUDE’ ! Include Booster ring.
1
6* superA.inc[superA_S:superA_E]

’FAISCEAU’
’SPNPRT’ MATRIX

’END’

– at the azimuthal location opposite to the snake (s=100.9 m away, element number
330 in the optical sequence):

330 Keyword, label(s) : DRIFT DRIF L057

Drift, length = 57.04000 cm

TRAJ #1 IEX,D,Y,T,Z,P,S,time : 1 0. 2.708E-05 -5.847E-05 -3.839713E-01 -3.940313E-01 1.0146044E+04 4.42247E-01

TRAJ #1 SX, SY, SZ, |S| : 1 9.999388E-01 -1.416886E-05 1.106666E-02 1.000000E+00

Cumulative length of optical axis = 101.460424 m ; Time (for reference rigidity & particle) = 4.422465E-07 s

Question 14.1.1.12-2—Acceleration over Gγ : −6.5 → −13.5 uses the input
data file given in Table 14.54. It is similar to that of Table 14.46 but with
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Table 14.53 SPNPRT[MATRIX] listing in zgoubi.res (excerpts): one-turn spin matrices and other
information, at relative momenta D − 1 = dp/p0 = 0, 10−4, 10−3, 10−2

----------------------------------------------------------------------------------

Momentum group #1 (D= 1.000000E+00) ; average over 3 particles at this pass :

Spin transfer matrix, momentum group # 1 :

-0.999945 8.562650E-06 -1.050193E-02

6.942346E-05 0.999983 -5.794851E-03

1.050171E-02 -5.795260E-03 -0.999928

Trace = -0.9998897078, ; spin precession acos((trace-1)/2) = 179.3982765528 deg

Precession axis : (-0.0000, -1.0000, 0.0029) -> angle to (X,Y) plane, angle to X axis : 0.1660, 90.3855 degree

Spin tune Qs (fractional) : 0.49833

----------------------------------------------------------------------------------

Momentum group #2 (D= 1.000100E+00) ; average over 3 particles at this pass :

Spin transfer matrix, momentum group # 2 :

-0.999943 -2.383130E-03 -1.045329E-02

-2.322598E-03 0.999980 -5.799063E-03

1.046690E-02 -5.774451E-03 -0.999929

Trace = -0.9998905823, ; spin precession acos((trace-1)/2) = 179.4006668061 deg

Precession axis : ( 0.0012, -1.0000, 0.0029) -> angle to (X,Y) plane, angle to X axis : 0.1658, 67.8736 degree

Spin tune Qs (fractional) : 0.49834

----------------------------------------------------------------------------------

Momentum group #3 (D= 1.001000E+00) ; average over 3 particles at this pass :

Spin transfer matrix, momentum group # 3 :

-0.999664 -2.391167E-02 -1.002755E-02

-2.385398E-02 0.999698 -5.834018E-03

1.016403E-02 -5.592859E-03 -0.999933

Trace = -0.9998980571, ; spin precession acos((trace-1)/2) = 179.4215005685 deg

Precession axis : ( 0.0119, -0.9999, 0.0029) -> angle to (X,Y) plane, angle to X axis : 0.1637, 13.4539 degree

Spin tune Qs (fractional) : 0.49839

----------------------------------------------------------------------------------

Momentum group #4 (D= 1.010000E+00) ; average over 3 particles at this pass :

Spin transfer matrix, momentum group # 4 :

-0.971396 -0.237373 -6.677918E-03

-0.237335 0.971409 -5.970173E-03

7.904151E-03 -4.214493E-03 -0.999960

Trace = -0.9999460691, ; spin precession acos((trace-1)/2) = 179.5792323606 deg

Precession axis : ( 0.1195, -0.9928, 0.0026) -> angle to (X,Y) plane, angle to X axis : 0.1469, 1.2291 degree

Spin tune Qs (fractional) : 0.49883

OBJET[KOBJ=8] to generate a few particles on a matched ellipse with a given
invariant (to study the dependence of the spin motion on the betatron motion),
and with the number of turns increased to 11750 under REBELOTE so to reach
Gγ = −13.5.

The results are displayed in Fig. 14.30. The initial spins are along the transverse
horizontal axis (Y, in Zgoubi notation), which is the orientation of the local spin
closed orbit. No polarization loss is observed the stable spin direction exhibits
rotation about the vertical axis.
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Table 14.54 Input data file for a simulation of an acceleration cycle in Booster in the presence
of a single full snake. The latter implemented using SPINR. An orbit distortion is created using
ERRORS, which causes random vertical displacements of the quadrupoles with an rms value
0.25 mm and a 3-σ cut-off. Note that the values of the SCALING coefficients are updated
to the present initial BORO/1000=5.56832079 (Gγ = −6.5). SCALING ensures that power
supply ramps follow the rigidity boost by CAVITE. The latter accelerates from Gγ = −6.5
to Gγ = −13.5 in 11700 turns. The initial coordinates are taken on a matched ellipse with a
normalized εy = 2.5 πμm

Full snake to preserve polarization thru integer resonances.
’OBJET’
5.5683207908096621E3 Reference rigidity (kG.cm) (G.gamma=-6.5, here).
8
1 3 1
0. 0. 2.81903105E-03 4.05298102E-04 0.00 1. ’o’ ! closed orbit.
0.982907 5.483186 0.

-1.545246 9.691428 3.e-6 ! Vertical invariant value is 2.5 pi.mu_m, normalized.
0. 1. 0.

’PARTICUL’
HELION
’ERRORS’
1 1 123456 PRINT ! sig_ZS/cm ! Vertical alignment random error, uniform.
MULTIPOL{Q*,QUAD} 1 ZS A U 0. .025 3 ! LensFamiliy{LABEL1, LABEL2}.
’SPNTRK’
4.1
0. 1. 0. ! Initial particle spins.

’FAISTORE’
zgoubi.fai ! Log particle data in zgoubi.fai,
1 ! at every pass.

! Scaling coefficients in scaling_GgXXX.inc are updated to present BORO/1000 value.
’INCLUDE’
1
scaling_Gg6.5.inc[SCALING_S:SCALING_E] ! SCALING keyword, set for G.gamma=-6.5.
’SPINR’
1
0. 180. ! Snake axis longitudinal. Full snake.

’INCLUDE’ ! Booster lattice.
1
6* superA.inc[superA_S:superA_E]

’CAVITE’ accelerating cavity
2
201.780048 4.00 circumf., H
400e3 0.523598775598 ! Aceleration rate is 400kV*Q*sin(30deg), Q=2.
’REBELOTE’ ! ~19800 passes from beta=0.0655 (Ek=6.043805MeV) to
11750 0.3 99 ! Ggamma=-16 (Ek=7.93076082GeV).

’FAISCEAU’ ! Log local particle data to zgoubi.res.
’SPNPRT’ ! Log local spin data to zgoubi.res.
’END’

Question 14.1.1.12-3—Horizontal motion is added: 9 particles are launched with
normalized εx = εy = 2.5 πμm and 9 combinations of the initial betatron phases,
by ad hoc modification of OBJET[KOBJ=8]:

’OBJET’
5.5683207908096621E3 Reference rigidity (kG.cm) (G.gamma=-6.5, here).
8
3 3 1
0. 0. 2.81903105E-03 4.05298102E-04 0.00 1. ’o’ ! closed orbit.
0.982907 5.483186 3.e-6

-1.545246 9.691428 3.e-6 ! Vertical invariant value is 2.5 pi.mu_m, normalized.
0. 1. 0.

The results are essentially unchanged. Motion of the spins is similar to that in
Fig. 14.30 found earlier.
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Fig. 14.30 Evolution of the stable spin direction adiabatically followed by the spins, as observed
at the snake (the mid-plane components SX and SY versus Gγ ) (left), and the (marginal) vertical
component (SZ versus Gγ ) (right), during acceleration over Gγ : −6.5 →−13.5, in the presence
of a single full snake. Three particles are tracked, with different initial betatron phases on the same
matched phase-space ellipse with a normalized invariant εY = 2.5 πμm. Their spin trajectories
overlap. The initial spins are along the Y axis corresponding to the local spin closed orbit at Gγ =
−6.5

14.2.1.13 Preserve Polarization Using Tune Jump

Question 14.1.1.15-1—For a 100 kV RF voltage the crossing speed is

dGγ

dθ
= 2.37121051717× 10−5

Given the tune νZ = 0.82, the acceleration rate and the energy at the start of the
tracking, the resonance |Gγ | = 0+ νZ occurs at a turn number

N0+νy ≈ 1530

The resonance strength εn is in question. It can be determined from the particle
invariant using Table 14.39. Given εn and the crossing speed α = dGγ

dθ
, the Froissart-

Stora formula (Eq. 2.44) yields the expected asymptotic polarization after crossing
of

Pf ≈ 0.53

A numerical simulation of this resonance crossing yields the result displayed in
Fig. 14.31 and confirms the expected Pf ≈ 0.53.
Question 14.1.1.15-2—The new crossing speed, including the effect of the tune
jump, is (Eq. 14.2)

α = 2.60504500631× 10−4
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Fig. 14.31 Evolution of the
polarization component
Sz(Gγ ) of helions when
crossing the |Gγ | = 0+ νZ

resonance, with and without
use of the tune jump
quadrupoles. The plotted
turn-by-turn data are read
from zgoubi.fai

Fig. 14.32 Helions crossing
the |Gγ | = 0+ νZ

resonance, with an AC dipole
operating at Bm = 5 and
12.2 G. Crossing without the
AC dipole (the Bm = 0 case)
is shown for comparison. The
plotted turn-by-turn data are
read from zgoubi.fai

With this increased crossing speed, the Froissart-Stora formula yields an expected
final polarization of

Pf = 0.9234742

This theoretical value agrees with the value obtained from a crossing simulation
within 0.03%. The result of the latter is displayed in Fig. 14.31.

14.2.1.14 Preserve Polarization Using an AC Dipole

With the scale_factor set to 0.0, tracking a 32 particle set yields an average Pf =
41.5%, compared to the expectation of Pf = 40.0%.
With the scale factor set to 5 G, tracking the 32 particle set yields Pf = −50%.
An AC dipole field of Bm = 12.2 G allows a full spin-flip.

The tracking results are displayed in Fig. 14.32.



14 Spin Dynamics Tutorial: Numerical Simulations 397

14.2.2 Electron Spin Dynamics, Synchrotron Radiation

14.2.2.1 Electron Equilibrium Emittances and Energy Spread

Question 14.1.2.1-1—Figure14.33 shows the optical functions and the orbit of
a perfectly aligned AGS Booster ring. It was generated by a Gnuplot script
(Table 14.14) using the Zgoubi Twiss output following the question’s instructions
in Sect. 14.1.2.1. The Twiss output file contains a table of the Twiss functions
specified at the end of each element in the lattice. An easy way to find the damped
equilibrium emittances, energy spread and damping times of 10 GeV electrons in
this lattice is to open the output text file in a spreadsheet and then evaluate the
integrals in the expressions for the equilibrium parameters given in Chap. 6. We can
calculate approximate integral values by summing the integrand expressions over all
elements. This is an accurate approximation in our case, since the Twiss functions do
not change significantly over a single element. The resulting equilibrium parameters
are summarized in Table 14.55.

Fig. 14.33 Left: twiss optical functions of the entire AGS Booster ring. Right: orbit in the AGS
Booster ring with perfect element alignment

Table 14.55 Electron beam
parameters

Parameter Units Value

E, total [GeV] 10

aγ 22.6938

Energy loss per turn [MeV] 63.8

RF voltage [MV] 127.6

RF phase [rad] 2.618

Harmonic number 100

RF frequency [MHz] 1.487

Horizontal damping time [ms] 0.235

Vertical damping time [ms] 0.211

Longitudinal damping time [ms] 0.100

Horizontal emittance [μrad] 4.53

Energy spread ×10−3 2.24
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Question 14.1.2.1-2—The SRPRNT keyword at the end of the code in Table 14.16
activates printout of the SR loss statistics in zgoubi.res output file. An excerpt of
zgoubi.res file showing the SR information is:

* Monte Carlo S.R. statistics, from beginning of structure,

10000 particles, a total of 87840762 integration steps :

Average energy loss per particle per pass : 63968.01 keV. Relative to initial energy : 6.3968014E-03

Critical energy of photons (average) : 158.9614 keV

Average energy of radiated photon : 49.30345 keV

rms energy of radiated photons : 92.27650 keV

Smallest, BIGEST photon : 0.0000E+00 9.9915E+03 keV

Number of photons radiated - Total : 1.2974348E+07

- per particle per pass : 1297.435

- per particle, per step : 0.1477030

As one can see, the average particle energy loss per turn obtained in the
Monte-Carlo simulation is in a good agreement with the theoretical prediction
in Table 14.55. One must restore this energy loss at a synchronous phase neces-
sary for longitudinal stability. Therefore, the cavity voltage amplitude is |V̂ | =
ΔE/q/ sin φs = 127.6 MV. This number is consistent with the rf cavity setting
under CAVITE in Table 14.17, namely V̂ = 122.345 MV. The cavity setting is
slightly lower than the theoretical prediction because it accounts for the change in
the particle energy as it moves around the ring.
Question 14.1.2.1-3—The initial beam distribution in Table 14.17 is generated
on a matched vertical phase-space ellipse, using OBJET[KOBJ=8]. The ellipse
parameters are specified by the appropriate option of the OBJET element using
the Twiss functions at the start point and the beam emittances. The matched Twiss
function values were taken from the Twiss table that was generated as a result of
Question 14.1.2.1-1. For simplicity, the horizontal emittance was set to zero while
the vertical emittance was set to a relatively large value of 10 μrad for synchrotron
damping demonstration. After running the simulation and analyzing, plotting and
fitting the resulting data as described in the question’s statement in Sect. 14.1.2.1,
we obtain evolution of the vertical beam emittance as a function of the turn number
shown in Fig. 14.34. The vertical emittance εy is obtained from the rms beam size
σy as εy = σ 2

y /βy .
An exponential fit to the simulation data in Fig. 14.34 gives a vertical emittance

damping time of 155.3 turns. Note that the equations of Chap. 6 and the values
listed in Table 14.55 are for the amplitude damping times rather than the emittance
ones. Since the emittance is proportional to the second power of the betatron
amplitude, the vertical betatron amplitude damping time is a factor of two longer
than the vertical emittance one and equals 310.6 turns. Given the electron circulation
frequency in the AGS Booster listed in Table 14.55, this number corresponds to
0.209 ms, which is in a good agreement with the theoretical prediction of 0.211 ms
in Table 14.55.
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Fig. 14.34 Damping of the vertical emittance of a 10 GeV electron beam in the AGS Booster
lattice. Note a good agreement of the exponential fit with the Monte-Carlo data for only 100
electrons

14.2.2.2 Spin Diffusion Studies

14.2.2.3 Spin Diffusion

Question 14.1.2.2-1—Here is an excerpt of zgoubi.res file showing the spin transfer
matrix, n0 and spin tune:

Spin transfer matrix, momentum group # 1 :

-0.345661 -0.938359 0.00000

0.938359 -0.345661 0.00000

0.00000 0.00000 1.00000

Trace = 0.3086770996, ; spin precession acos((trace-1)/2) = 110.2221783671 deg

Precession axis : ( 0.0000, 0.0000, 1.0000) -> angle to (X,Y) plane, angle to X axis : 90.000, 90.000 degree

Spin tune Qs (fractional) : 3.0617E-01

As one can see, in a perfectly aligned lattice, n0 is exactly vertical.
Question 14.1.2.2-2—The electron polarization is plotted against the turn number
in Fig. 14.35. It was obtained by tracking 100 electrons through a perfectly aligned
AGS Booster lattice with synchrotron radiation enabled. At the start, the electron
spins were set along the n0 axis. Figure 14.35 illustrates that in a perfectly aligned
ring, there is no detectable polarization degradation on this time scale even when
synchrotron radiation is present, i.e. the spin diffusion rate is zero within our
numerical precision. This case presents interest primarily as a sanity check of
the spin tracking code. It confirms that at this level, the code does not introduce
unphysical spin effects.
Question 14.1.2.2-3—The 4D transverse closed orbit offset (Y T Z P) caused by a
1 mm vertical misalignment of the “QVA1” quadrupole is

-5.78398841E-06 -5.02369232E-06 -2.40168827E-01 -5.80016582E-01
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Fig. 14.35 Polarization of 100 electrons as a function of the turn number in a perfectly aligned
AGS Booster ring with synchrotron radiation enabled. The electron spins are initially aligned with
the n0 axis

The n0 axis at the beginning of this perturbed lattice is

(0.0137, -0.0568, 0.9983)

Time evolution of the polarization in this case is compared to that of the perfectly
aligned case of Question 14.1.2.2-2 in Fig. 14.36. An exponential fit to the data gives
a spin diffusion time of 17.9 · 103 turns corresponding to 12 ms. Note the rapid spin
diffusion caused by misalignment of even a single element.
Question 14.1.2.2-4—Similarly to the solution of Question 14.1.2.2-3, we find that
vertical misalignments of “QVA1” by 2 and 5 mm result in transverse closed orbit
shifts of

-2.41767056E-05 3.83288439E-05 -4.80358495E-01 -1.16006824E+00

and

-1.49937996E-04 1.83685654E-04 -1.20099981E+00 -2.90035565E+00 ,

respectively. The corresponding n0 axes are

(0.0273, -0.1132, 0.9932)

and

(0.0660, -0.2769, 0.9586) .

Note that the closed orbit offset and the x and y components of n0 scale linearly
with the size of the misalignment as expected. The polarization behavior in these
two cases is plotted as a function of the turn number in Fig. 14.36. Exponential fits
to these data give spin diffusion times of 6.4 ·103 and 800 turns, or 4.3 and 0.54 ms,
for the 2 and 5 mm misalignment scenarios, respectively.
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Fig. 14.36 Polarization of 100 electrons as a function of the turn number in the AGS Booster
lattice for 0, 1, 2, and 5 mm vertical offsets of the first “QVA1” quadrupole. Synchrotron radiation
is enabled. The electron spins in each case are initially aligned with the corresponding n0 axis

In a perfectly aligned lattice without transverse coupling, particles with different
momentum offsets δ experience only vertical bending and focusing magnetic fields.
Therefore, the precession axes of all particles n(δ) are aligned with the same vertical
n0 axis. Change in momentum of a particle due to emission of a synchrotron
radiation photon does not change the direction of its n(δ) and causes no polarization
loss as illustrated by Question 14.1.2.2-2. In case when the closed orbit experiences
vertical excursion, the radial fields of the focusing quadrupoles tilt n0 from the
vertical. The amount of this tilt is momentum dependent thus resulting in a spread
of the n(δ) directions for different δ. Emission of a synchrotron radiation photon
changes the direction of n(δ) and only the component of the original spin direction
along the new n(δ) is preserved. The greater the change in n(δ), the smaller the
fraction of the spin that is preserved and thus the higher the spin diffusion rate.
Greater misalignments lead to greater closed orbit distortion and subsequently
greater deviation of n0 from the vertical, greater n(δ) spread and finally greater
spin diffusion rate as demonstrated in Question 14.1.2.2-4.

14.2.2.4 Suppression of Spin Diffusion

Question 14.1.2.2-5—Both lattices considered in this exercise consist of a solenoid
followed by two dipoles and then another solenoid. Both schemes are simplified
versions of an electron spin rotator, a device rotating the electron polarization
from vertical to longitudinal and then back. Such an insertion is needed to provide
longitudinal polarization in the experimental section without causing fast spin
diffusion in the arcs. The first solenoid rotates the polarization about the longitudinal
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axis from positive vertical to positive radial. The subsequent dipole rotates the
polarization about the vertical axis from positive radial to positive longitudinal. The
difference between the two schemes is in how the polarization is returned back to
positive vertical. In the first scenario, the second dipole bends the beam in the same
direction as the first one and continues polarization rotation in the same direction
from positive longitudinal to negative radial. The second solenoid has the same field
polarity as the first one. It rotates the polarization from negative radial to positive
vertical. This dynamics can be graphically summarized as

↑ Solenoid � Dipole → Dipole ⊗ Solenoid ↑ . (14.11)

In the second scenario, the polarities of the second dipole and solenoid are
reversed resulting in the following rotation sequence

↑ Solenoid � Dipole → Anti− Dipole � Anti− Solenoid ↑ . (14.12)

In both cases, the polarization is positive vertical at the entrance and exit. From
geometrical point of view, the first arrangement causes 138.4 mrad net orbital bend
while the second configuration has zero net bend.
Question 14.1.2.2-6—The field and spin components along the reference trajec-
tories of the two spin rotator configurations are shown in Figs. 14.37 and 14.38,
respectively. These graphs demonstrate implementation of the design philosophy
described in the solution to Question 14.1.2.2-5.

Question 14.1.2.2-7—Figure14.39 shows the electron vertical spin component at
the end of the spin rotator as a function of the particle’s relative momentum offset.
The momentum dependencies are compared for the two spin rotator configurations.
In this study, different-momentum electrons with initially vertical spins were
launched on the design orbit at the beginning of the spin rotator and tracked to its
end. As we can see, the spin effects of the two rotator designs are equivalent for the
on-momentum particles resulting in a perfect restoration of the vertical spin at the
end. However, there are significant differences for the off-momentum particles. The

Fig. 14.37 Left: field components along the reference trajectory in the same-field-polarity design.
Right: field components along the reference trajectory in the reversed-field-polarity design
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Fig. 14.38 Left: spin components along the reference trajectory in the same-field-polarity design.
Right: spin components along the reference trajectory in the reversed-field-polarity design
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Fig. 14.39 Final vertical spin component as a function of the particle’s relative momentum offset
for the same-field- (Scheme 1) and reversed-field-polarity (Scheme 2) spin rotator configurations

reversed-field-polarity design demonstrates a much weaker momentum dependence
of the final spin. The remaining dependence is due to dispersion that has not been
accounted for in this simplified scheme.

The spin precession in each of the spin rotator elements is of course momentum
dependent. The spin rotation of an off-momentum electron deviates from that
of the reference particle. In the same-field-polarity configuration, this deviation
accumulates from magnet to magnet resulting in a relatively large tilt of the spin at
the end. In the opposite-field-polarity configuration, the spin deviation accumulated
in the first half of the spin rotator is precisely compensated by the matching
opposite-field magnets in the second half causing equal-size opposite-direction
spin rotations. As we demonstrated in the solution to Question 14.1.2.2-4, greater
deviation of the spin from vertical in the arcs results in a higher spin diffusion
rate. Therefore, the same-field-polarity configuration is expected to generate a much
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higher spin diffusion rate than the opposite-field-polarity one. The opposite-field-
polarity design is an illustration of the concept of first-order longitudinal spin
matching.

14.2.2.5 Spin Matching

Question 14.1.2.5-1—The snake lattice in Table 14.33 is close to an identity
transformation in the horizontal plane and a −I transformation in the vertical
plane. Therefore, its insertion into the AGS Booster lattice results in a reasonable
periodic solution not requiring any rematch. For simplicity, we ignore the fact that
the ring is no longer geometrically closed, since this does not alter the below general
conclusions about the spin dynamics. The optics of the entire ring and an expanded
view of the snake section are shown in Fig. 14.40 (left) and (right), respectively.
Question 14.1.2.5-2: The n0 axis at the start of the AGS Booster lattice with the
solenoidal snake (Table 14.35) can be found in the following excerpt of zgoubi.res:

Spin transfer matrix, momentum group # 1 :

-0.571992 0.820259 8.558277E-14

0.820258 0.571991 -1.676874E-03

-1.375471E-03 -9.591582E-04 -0.999999

Trace = -0.9999993982, ; spin precession acos((trace-1)/2) = 179.9555530060 deg

Precession axis : ( 0.4626, 0.8866, -0.0007) -> angle to (X,Y) plane, angle to X axis : -0.0426, -0.0921 degree

Spin tune Qs (fractional) : 4.9988E-01

As expected for a ring with one snake, n0 lies in the horizontal plane and the spin
tune is 0.5.

Question 14.1.2.5-3 and 4: Figure 14.41 compares the polarization behavior in
the AGS Booster lattice with a solenoidal snake for the spin-matched and spin-
mismatched snake configurations. From the beam dynamics point of view, the two
configurations are similar. They only differ by rotation of the snake section by
90◦ about the longitudinal axis. However, in the spin-mismatched case, the spin
diffusion rate is several times greater than in the spin-matched situation. This result
illustrates the effect of proper optics design on the spin dynamics and the importance
of spin matching. Note that spin diffusion is present in the matched case as well. It
cannot be avoided in this ring configuration due to n0 being horizontal in the arcs at a

Fig. 14.40 Left: optics of the AGS Booster ring with the spin-matched snake insertion. Right:
expanded view of the optics of the spin-matched snake insertion
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Fig. 14.41 Polarization of 100 electrons as a function of the turn number in the AGS Booster
lattice with a solenoidal snake for the spin-matched (red) and spin-mismatched (blue) snake
configurations

sufficiently high synchrotron radiation rate. This scenario is used for demonstration
purposes only. It shows that spin diffusion due to improper spin matching can
dominate over other depolarizing effects.

Appendix

A run of Zgoubi code, in addition to zgoubi.res execution listing, and depending on
user’s requests, may produce various output files. An example is zgoubi.plt which
stores particle coordinates, spin coordinates, electric and magnetic field vectors, etc.,
step-by-step across optical elements. Another instance is zgoubi.fai which can be
used for turn-by-turn particle data storage during multiturn tracking in a circular
accelerator. In the present problems, data treatment and graphs can be obtained by
reading these files, using gnuplot for instance, or Zgoubi graphic/data treatment
interface program Zpop [3]. A brief introduction to these aspects of code and output
data handling is given below, and all details can be found in Zgoubi Users’ Guide
regarding the many storage files at disposal; besides, guidance is provided in due
place in the problem assignments (Sect. 14.1) and their solutions (Sect. 14.2).

• Data analysis and plotting:

– in the matter of graphics it is foreseeable to achieve about any type of graphic,
from Zgoubi output files, using gnuplot; if data analysis and other averaging
are needed it can be managed via gnuplot scripts (using for instance awk
commands, external programs, etc.);
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– an additional possibility is to use Zpop, which is part of Zgoubi package. Zpop
provides most of the data treatment and graphics means needed to analyze and
display the contents of Zgoubi output files.

Besides the run listing zgoubi.res, the main two Zgoubi output files, generally
used for data analysis or graphics, are zgoubi.fai (created when introducing the
keyword FAISTORE (or FAISCNL, similar), it stores local particle data next to
an optical element), and zgoubi.plt recorded if the flag IL=2 is present in optical
elements: it logs step-by-step particle and field data, during numerical integration
through the element.

Many additional files can be produced (usually by means of a PRINT
argument in a keyword, see the Users’ Guide), for instance to log data produced
by various optical elements and commands, during ray-tracing, in view of data
treatment, plotting, debugging, etc. Instances are SPNPRT[PRINT] (spin data
logged in zgoubi.SPNPRT.Out), SRLOSS[PRINT] (synchrotron radiation Monte
Carlo data logged in zgoubi.SRLOSS.Out).

• Keywords in Zgoubi: by “keyword” it is meant, the name of the optical
elements (such as BEND, MULTIPOL, WIENFILT), or input/output procedures
(such as FAISCEAU, FAISTORE, SPNPRT, SRPRNT), or commands (such as
REBELOTE, TWISS, FIT, GOTO, SYSTEM), as they appear in a simulation
input data file. Keywords are most of the time referred to without any additional
explanation in the exercises: details and explanations regarding the use and
functioning of keywords are to be found in the Users’ Guide [1].

• It is recommended, when setting up the input data files to work out the
simulations, to have Zgoubi Users’ Guide at hand. PART B of the guide in
particular, details the formatting of the input data which follow most keywords,
and their units (a few keywords only, for instance FAISCEAU, MARKER, do
not require additional data). PART A is the “physics content” and details what
keywords are doing and how. The Users’ Guide INDEX is a convenient tool
to navigate keywords. A complete list may also be found in the “Glossary of
Keywords” Sections, at the beginning of both PART A and PART B, and an
overview of what they can be used at is given in “Optical elements versus
keywords” Sections.

– A concise notation KEYWORDS[ARGUMENT1, ARGUMENT2, . . .] may
be used in the assignments: it follows the nomenclature of the Users’ Guide,
Part B. A couple of examples:

OBJET[KOBJ=1] stands for keyword OBJET, and the value of KOBJ=1
retained here;
OPTIONS[CONSTY=ON] stands for keyword OPTIONS, and the option
retained here, CONSTY, switched ON.

– The keyword INCLUDE is used at times. The goal is mostly to modularize
input data sequences, with usually the benefit of reduced file lengths and
improved clarity. In a very similar way to the Latex or Fortran “include”
command, a segment of an optical sequence subject to an INCLUDE by a
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Fig. 14.42 Cartesian and cylindrical reference frames in optical elements. Let a particle location
M(X,Y,Z) project to m(X,Y) (the dashed curve shows the projected trajectory). In the case of an
optical element defined in Cartesian coordinates (shown here as a rectangular box; for instance,
the cases of BEND, MULTIPOL), X and Y in zgoubi.plt denote the coordinates taken along the
reference frame axes. In the case of an optical element (depicted here as an angular sector AT with
some reference radius RM) (for instance, the case of DIPOLE[S]), X is the polar angle, counted
positive clockwise, Y is the radius

parent input data file, may always be replaced by that very sequence segment,
in the parent file.

• (O;X,Y,Z) coordinates in an optical element: this is the coordinate system in
which the field E(X, Y,Z) and/or B(X, Y,Z) is defined (the origin for X depends
on the optical element). Depending on the optical element concerned, this
(O;X,Y,Z) reference frame may be

– either Cartesian, in which case X, Y, and Z denote the particle position in that
frame, T and P the horizontal and vertical trajectory angles (Figs. 1, 2 in the
Users’ Guide, and Fig. 14.42 here),

– or cylindrical, in which case, given m the projection of particle position M

in the Z=0 plane (Fig. 14.42), Y denotes the radial coordinate: Y = |Om|,
whereas X denotes the polar angle OX-Om (as a matter of fact, the nature of
the variables named X and Y in the source code does change, and in zgoubi.plt
as well) T is the horizontal trajectory angle with respect to the normal to Om,
P is the vertical trajectory angle.
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