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Rapid Computational Identification of Therapeutic Targets for Pathogens
Jonathan E. Allen (20-ERD-062)
Abstract

Biological threats continue to persist and evolve as an important challenge to national security.
There are multiple ways in which novel viral pathogens could emerge to pose a serious threat to
human health. This project developed a pathogen target identification tool that can rapidly
respond to a novel or emerging viral biological threat. A set of computational tools were
developed that provide detailed information on the newly sequenced genes, their protein
products and the drug target sites for the proteins that are best suited for biological
countermeasure development. Three key innovations were developed in the project. 1)
Development of a new extensive database of protein pocket structures with structure-based
search algorithms to rapidly link novel protein targets with the complete collection of previously
experimentally solved protein structures. 2) A novel clustering pipeline was introduced to group
matching structures and associated small-molecule binding ligands into a consensus protein
pocket with the associated small-molecule chemotypes predicted to fit in the pocket site. The
matching experimentally solved structures were used to inform the value of different target sites.
3) Where there are viral protein targets with pockets structurally matched to similar human
proteins, a biological knowledge graph, which links molecular interactions with human disease,
was used to further assess the potential negative impact of a viral protein target with similarities
to human proteins that could have important off target side effects. In total, the project produced
a new resource for rapid and detailed assessment of promising targets for countermeasures,
reflecting the ongoing wet lab, clinical, and computational data being collected. These
capabilities will improve the ability to respond to a biological threat in multiple domains.

Background and Research Objectives

There is a growing collection of new experimentally derived data being deposited in public
databases, which can be used to help identify and characterize novel biological threats. The
growth for publicly available protein structures has more than doubled over the last ten years
from 95,509 to 202,292 structures currently ( https://www.rcsb.org/stats/growth/growth-released-
structures) . In addition to experimentally solved protein structures, there is a steady
accumulation of biological data measuring molecular interactions and their links to human
disease, drug treatments, and potential side effects of therapeutics. A database of molecular and
disease data can be compiled into a graph database of relationships to link relationships between
proteins, genes, drugs, and disease. An example of the schema for the graph database, called the
Scalable Precision Medicine Open Knoweldge Engine (SPOKE), used in this project is shown in
Figure 1 and shows how the disruption of protein function can be linked to disease and adverse
health outcomes (Himmelstein & Baranzini, 2015).

The research objectives of this project were to develop new methods and insights into assessing a
novel viral genome for druggable targets and to provide tools to help assess which protein
regions to target and which regions to avoid.
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Figure 1. Schema for graph database showing experimentally derived relationships between molecular entities and human
disease.

Scientific Approach and Accomplishments

Three technical areas were explored for demonstrating improved assessment of novel protein
targets. The first area was to investigate the use of protein and chemical structure similarity
search between the new viral proteins and previously solved structures. To this end, a novel
structure based, updatable data resource was created called PDBspheres (Zemla et al., 2022).
PDBspheres is a computational system and data resource for enumerating through the complete
collection of experimentally solved structures available in the Protein Data Bank (PDB)
(consortium, 2018). The system identifies each small-molecule (ligand) protein interface and
extracts the structural region for a 12-angstrom radius from the center of the ligand. This
generates a set of localized exemplars for ligand-protein interfaces which can support searching
against novel protein structures. Rather than attempting to structurally align the whole protein,
the goal is to focus on the key functional interface which can allow the searching algorithms to
ignore other parts of the protein that less directly impact the binding. Since a single protein
structure can have multiple ligand binding sites, there are currently 2 million searchable
structural exemplars included in the system.
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Figure 2. Part one of the pipeline described in four steps. 1) viral genome is sequenced, 2) protein sequences are extracted and
3D structures are predicted from different sources (crystal structures, homology models, AI/ML predictions), 3) new viral protein
structures are searched against the PDBspheres library and 4) matches are reported as potential sites for counter measure
targeting.

An example of the procedure for matching new viral proteins to the PDBspheres library is shown
in Figure 2. While the reporting of structural matches of previously seen structures to the new
viral protein can provide interesting information, it remains challenging to summarize the
significance of the possibly hundreds of different matches to each protein sequence and in turn
assess the relative importance of evidence supporting the targeting of one protein over another.
For this reason, we embarked on exploring a second advance, which focused on clustering the
results from the initial search to come up with consensus target sites and their associated
chemotypes. A schematic for the pipeline for clustering the resulting structure matches is shown
in Figure 3. The challenge here was to devise an effective clustering scheme for the protein
pocket, highlighting the regions of the pocket that are observed to be in physical proximity to
previously solved ligand-protein structures and separately, clustering the ligands associated with
these sites to summarize both the chemical type associated with the binding site and the
consensus region of the binding site. This method is applied to the viral proteome to rapidly
generate a list of targetable protein sites and associated chemotypes for initiating a drug
discovery campaign. An example is shown in Figure 4 for the SARS-CoV-2 main protease
target site, where 15 distinct chemotypes are identified and listed by their decreasing molecular
weight. The middle plot in the figure shows the fraction of active compounds for a specific



chemotype that have been shown experimentally to be active inhibitors. The results highlight
potentially novel chemotypes to consider for the target site including the chemotypes labeled 1,
2,4 and 5. In addition, the identified consensus pocket sites and respective chemotypes can be
compared against observed mutations in the binding site to identify potentially significant viral
mutations that may induce antiviral resistance. An example of this analysis was explored for
clinical SARS-CoV-2 samples collected in California to find potential evidence for antiviral
resistance potential (Kimbrel et al., 2022).
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Figure 3. Pipeline for clustering both the structural matches using both the bound ligands and protein pockets to give a summary
of consensus pocket and chemotypes.
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Figure 4. Summary of SARS-CoV-2 Main protease (Mpro) target site and associated chemotypes.

Having established a computational system for identifying the potential target sites in the viral
proteome, the final step was to investigate use of a biological knowledge network such as the one
shown in Figure 1 to make predictions on potential drugs or targets using orthogonal non-
structure based biological data. We explored a dataset of compounds that were carefully labeled



for their observed impact on causing Drug Induced Liver Injury (DILI). A collection of 1,139
compounds were evaluated, 757 “safe” drugs and 382 DILI positive drugs (Posada et al., 2022).
Nodes in the graph included compounds connected to proteins they interact with as well as
disease types, molecular pathways, genes, and side effects. For each drug, a random walk is
taken on the graph to create a graph encoded feature vector using an algorithm called node2vec
(cite). The graph embedding is meant to create a biological descriptor for each drug, which can
be used to train a machine learning classifier. The results from the analysis showed that
prediction model accuracy could be as high as 84% (citation).

Lastly, we explored the potential to evaluate off target interactions by modeling compounds that
structurally fit both the viral protein target and off target human proteins. As an example, the
SARS-CoV-2 Mpro protein target is used and compared with the related MERS Mpro protein
target and each protein in the human proteome for which a structure can be produced. Each
matching human protein structure is evaluated with the biological knowledge graph using Yen’s
shortest path algorithm starting from the overlapping human protein and traversing the graph to
the closest nodes representing related side effects of concern. The expectation is that a drug
targeting the viral protein could also bind to the human protein and the knowledge graph can
assess the biological significance of disrupting the human protein’s function by measuring the
protein’s close proximity in the graph to an adverse health outcome. For the protease example,
the SARS-CoV-2 main protease protein pocket was found to share significant similarity with 124
human proteins across 377 distinct ligands, and each of the matching human proteins turns out to
be a member of the protease family. As a positive control, we can look at the active component
in the FDA approved SARS-CoV-2 main protease inhibitor Paxlovid and see significant
structural similarities to binding pockets of 7 human proteases, but the structural similarity of the
binding site is low (slightly above 50%) based on a structural similarity metric called the Global
distance calculation (GDC), which measures the fraction of atoms that align between the two
structures(GDC values range from 0-100 with 100 being a perfect match). Moreover, all of the
human proteases show a path length greater than two to any adverse side effect. In contrast,
while other human proteases directly connected to a ligand of interest were not found to have a
direct association with adverse side effects, in some cases the structural pocket site similarity
was much higher (GDC=89%), indicating a stronger potential for that ligand to interfere with a
small subset of human proteases.

Impact on Mission

Our collection of software tools is designed to effectively search existing experimental biological
data to rapidly report on the protein sites to target for novel viral pathogens. The software
exploits the high-performance computing resources by employing parallelized protein structure
search algorithms, which allow new target proteins to be searched against an extensive reference
collection of protein-ligand structure interfaces. This work is supporting the high-performance
computing, simulation and data science core competency. In addition, this is supporting a core
capability in advancing national security concerns in support of bioassurance and biosecurity. It
is expected that the newly developed tools will provide important insights in prioritizing protein
targets as novel pathogens may emerge with little knowledge on therapeutic development.

Conclusion



The potential to rapidly produce an antiviral for any new viral pathogen remains an important
challenge. The new tools developed in this project provide a novel data driven approach to
assessing individual protein targets for therapeutic development. As more experimental data is
collected, these data driven approaches will continue to improve and provide improved levels of
detailed evidence for focusing countermeasure development on specific proteins. Future
extensions of this work are to improve integration of more detailed biophysical modeling of
protein-ligand interactions, recognizing new protein-interaction sites (e.g. protein- protein
interactions and others), and develop additional knowledge network profiles for defining
negative health outcomes. The basic work in this project has contributed to several proposals in
response to calls from the Department of Defense and the Department of Energy.
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