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Heterointegrated IlI-V & I1I-N membranes Ui
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Current layer transfer technology (ELO/LLO/spalling/bonding+wafer etching/smartcut)
: Limits in throughput, interface roughness, cost, universality



Remote epitaxy & 2DLT for membrane production

Remote epitaxy & Layer transfer

Graphene on wafer Epitaxial growth “
Nature, 544, 340 (2017)
Graphene transparency enables Weak vdW interface enables
epitaxy through graphene membrane exfoliation
x-STEM

Exfoliated GaAs EBSD map
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Challenges in Remote epitaxy: Interface control |||i|-

Interfacial oxide formed during Wet transfer - Failure of remote epitaxy
EBSD TEM EELS
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Transfer-free 2D materials is
esseqﬁal for advancing remote epitaxy
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Graphitized SiC as growth template Illil-

Graphene buffer layer (GBL) on SiC for remote epitaxy template

GBL structure

GBL

1. SiC graphitization 2. Ni deposition 3. Exfoliation

High-quality GaN growth on GBL Pristine substrate after exfoliation
" ‘ — Substrate can be reused

3x Reused graphene
2NM  puffer layer substrate
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Exfoliated GaN film

Nano Lett. 21, 4013 (2021)



“GROWN” 2D materials for remote epitaxy Illil-

Low-temperature grown 2D materials are “amorphous sp? materials”

Single-run MOCVD process Single-run MBE process
700°C 800°C
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amorphous graphene (a-Gr) on AlGaAs amorphous boron nitride (a-BN)
grown at 700°C on GaN grown at 800°C
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Wafer-scale remote epitaxy

GaAs remote epitaxy & Layer transfer

Handling tape
Ni stressof
® o o ® a-Gr

AlGaAs AlGaAs
GaAs GaAs

As-grown (TEM) After layer transfer

Damage-free wafer after peeling
Rims. =0.17 nm

Low-mag SEM
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Mir
GaN remote epitaxy & Layer transfer

Handling tape
Ni stressor

yer transfer
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Wafer-scale remote epitaxy of
II-V & IlI-N is demonstrated.



Repeated wafer recycle & membrane production |||i|-

Wafer recycling process

O, plasma
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15t exfoliation 2nd exfoliation 3rd exfoliation

Exfoliated
membrane

Exfoliated

Exfoliated

membrane membrane

Wafer is recycled to produce multiple GaAs membranes

arXiv.2204.08002



“Multi-stacking” remote epitaxy |||i|-

In situ growth of 2D/3D stacks Membrane production by layer-by-layer peeling

Host wafer 2D layer growth  Remote epitaxy As-grown stacks Stressor deposition Membrane peeling Repeat 2DLT All membranes peeled

~_ -~

Wafer reuse

Multi-stack growth & Layer-by-layer exfoliation
: Highest throughput enabled by remote epitaxy



“Multi-stacking” remote epitaxy
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“Multi-stacking” remote epitaxy

Intensity (a.u.)

Multi-stacked
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Ultimate wafer-scale single-crystal membrane production technology

arXiv.2204.08002



Limitation of Remote epitaxy Illil-

lonicity of material governs
surface electronic potential

Si GaAs GaN LiF

Gr
(Dry)

Graphene

Graphene

{[ 3um 3um

Single

Non-polar 2D interlayer

Graphene

lonicity = 0% 30% 50% 90%

lonicity (polarity) governs field penetration through graphene.

Elemental materials cannot be utilized as substrates or epilayer.
Nature Materials 17, 999 (2018)

ACS Nano, 15, 10587 (2021)



“Nanopatterned graphene” for universal layer transfer |||i|-

Release

Stressor
Graphene Graphene Nucleation & lateral overgrowth

formation patterning deposition

Chemical inertness of graphene enables selective nucleation
- Single-crystal film involving elemental materials




“Nanopatterned graphene” for universal layer transfer |||i|-

Three modes of peeling “Wafer-scale exfoliation” at the interface
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Peeling mode can be controlled by Ni stressor condition.

Nat. Nanotech. (under revision)



APB elimination by graphene nanopatterns

Direct Plan-view SEM  Cross-sectional TEM ~ InGaP LED on bare Ge
Heteroepitaxy e

> -

Cross-sectional TEM InGaP LED on graphene/Ge

Heteroepitaxy Plan-view SEM
on patterned Gr | -

 APBs are eliminated by epitaxy through nanopatterned Gr.

* Improved optoelectronic performance by nanopatterned Gr.

Nat. Nanotech. (under revision)



Dislocation reduction by graphene nanopatterns |||i|-

In collaboration with Prof. Hwang (OSU)

(1) Graphene nanopattern anopsttern itch-d00nm, oper
Cross-sectional TEM Ry

_.'Ir_{As : | : . Lattice-mismatched heteroepitaxy
| = on graphene nanopattern

- Reduced dislocation density
(2) SiO, mask (30nm thick)

Nat. Nanotech. (under revision)



H
MD simulations to reveal dislocation reduction mechanism Ill |

In collaboration with Prof. Shi (RPI)

Flexible mask (Graphene) Thick and rigid mask (SiO,) Direct heteroepitaxy (without mask)

Stacking
fault

Dislocation

Epilayer Epilayer
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‘Flexibility’ of graphene suppresses defect formation



Opportunities in Heterostructures

Diamond
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(GaAs, InP, InAs..)

Wurtzite
(GaN, AIN..)
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Diamond
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Optical link

Focal plane array

Transistors

High quality GaN on Si

Beyond limit of heteroepitaxy
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Optical link
Focal plane array
Transistors
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(GaN, AIN..)

High quality GaN on Si

Perovskite
(STO, BTO..)

Ferroelectric
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Spinel
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as of 2022

Garnet

(YIG,

GGG..)

Full color microLEDs
Hybrid heterojunction

Ferroelectric
5G, 6G

Full color microLEDs
Hybrid heterojunction

Tunable filter
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ME coupling
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I H
Summary I I |
 “Grown 2D layer” enables wafer-scale, high-throughput membrane production.

 “Nanopatterned graphene” allows for universal membrane production and defect

reduction.
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