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Heterointegrated III-V & III-N membranes
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Remote epitaxy & 2DLT for membrane production
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Challenges in Remote epitaxy: Interface control

ACS Nano, 15, 10587 (2021)
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Transfer-free 2D materials is
essential for advancing remote epitaxy



Graphitized SiC as growth template

Nano Lett. 21, 4013 (2021)

Graphene buffer layer (GBL) on SiC for remote epitaxy template

GBL structure
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Pristine substrate after exfoliation
 Substrate can be reused
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“GROWN” 2D materials for remote epitaxy
Low-temperature grown 2D materials are “amorphous sp2 materials”
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Wafer-scale remote epitaxy
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Repeated wafer recycle & membrane production
Wafer recycling process
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“Multi-stacking” remote epitaxy

Multi-stack growth & Layer-by-layer exfoliation
: Highest throughput enabled by remote epitaxy
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“Multi-stacking” remote epitaxy

Three stacks of III-V/a-Gr grown and exfoliated.
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“Multi-stacking” remote epitaxy

Ultimate wafer-scale single-crystal membrane production technology
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Limitation of Remote epitaxy
Ionicity of material governs
surface electronic potential
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Ionicity (polarity) governs field penetration through graphene.
Elemental materials cannot be utilized as substrates or epilayer.

Nature Materials 17, 999 (2018)



“Nanopatterned graphene” for universal layer transfer

Chemical inertness of graphene enables selective nucleation
 Single-crystal film involving elemental materials
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“Nanopatterned graphene” for universal layer transfer
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APB elimination by graphene nanopatterns
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• APBs are eliminated by epitaxy through nanopatterned Gr.

• Improved optoelectronic performance by nanopatterned Gr.
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Dislocation reduction by graphene nanopatterns
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In collaboration with Prof. Hwang (OSU)

Lattice-mismatched heteroepitaxy
on graphene nanopattern

 Reduced dislocation density

Cross-sectional TEM



MD simulations to reveal dislocation reduction mechanism
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‘Flexibility’ of graphene suppresses defect formation
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Opportunities in Heterostructures
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Summary
• “Grown 2D layer” enables wafer-scale, high-throughput membrane production.
• “Nanopatterned graphene” allows for universal membrane production and defect

reduction.
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