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Heterogeneous Integration is the key for next-generation electronics



How can we integrate device layers? Ui
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. “Detachment from wafers” and “Layer transfer”
for stacking flexible epitaxial layers
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Remote epitaxy for single-crystal membrane production |||i|-
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Remote “heteroepitaxy” reduces dislocation density Mir
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Reported materials and processes for remote epitaxy AN E N En

Prospects of Remote Epitaxy B oM Sumer oo
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Limitations of Remote epitaxy Illil-

lonicity of material governs Polycrystal growth from non-ionic material
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lonicity (polarity) governs field penetration through graphene.
Elemental materials cannot be utilized as substrates or epilayer.

H. Kim, et al., ACS Nano, 15, 10587 (2021)



“Nanopatterned graphene” for universal layer transfer  |1]j1°
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“Nanopatterned graphene” for universal layer transfer  |1]j1°

Three modes of peeling ”Wafer-scale exfoliation” at the interface
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Antiphase boundary elimination on nanopatterns Mir
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* APBs are eliminated by epitaxy through nanopatterned Gr.
* Improved optoelectronic performance by nanopatterned Gr.

H. Kim, et al., Nature Nanotechnology, 17, 1054 (2022)



Dislocation reduction by graphene nanopatterns Mir
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Revealing dislocation reduction mechanism Mir

MD in collaboration with Prof. Shi (RPI)
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Advanced Epitaxy-on-2D technology |||i|-
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Epitaxy-on-2D enabled “Flexible” “Stackable” epitaxial membranes
as building blocks for heterogeneous integration



Summary

* Epitaxy on 2D materials enables producing freestanding membranes.
* Freestanding membranes offer new opportunities.

Applications
Vertically stacked Micro-LEDs Reconfigurable Al processor Chip-less & battery-less E-skin
Blue absorber \\ 3 -' -_E:..t/
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Si substrate

Please find out more on these Applications at:

NMO07.02.02. Vertically Stacked Full Color Micro-LEDs via Two-Dimensional Material-Based Layer Transfer

NMO07.10.02. Reconfigurable Heterointegration of Artificial Intelligence Chips Using GaAs/InGaP-Based Optoelectronic Devices
NMO07.10.09. Chip-less Battery-less Wireless Electronic Skin by Single Crystalline Freestanding Membranes
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