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Method Electronic / Photonic
Performance

Process 
Compatibility Flexibility Cost

Organic layer Coating, 
Deposition

Not as good a
inorganic High Good Low

Inorganic layer
(poly/amorphous) Deposition Not as good as

single-crystal Okay Okay Med

Inorganic layer
(single-crystal) Epitaxy Best Low Poor High

CostCompatibilityPerformance Flexibility

How can we integrate device layers?

Flexibility of single-crystalline electronics

Wafer (0.5 mm)

Device layer (nm-μm)

Too thick to be flexible
Integration of single-crystalline electronics

Wafer (0.5 mm)

Device layer 1 
Device layer 2 
Device layer 3 

Restricted due to lattice mismatch

UNIVERSAL approach:
“Detachment from wafers” and “Layer transfer”
for stacking flexible epitaxial layersDevice layer 1 



Graphene transparency enables
epitaxy through graphene
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Weak vdW interface enables
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>>

Various materials work for remote epitaxy

H. Kim, et al., J. Appl. Phys., 130, 174901 (2021)

Remote epitaxy for single-crystal membrane production



Conventional
Heteroepitaxy

“REMOTE”
Heteroepitaxy
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S. Bae, et al., Nature Nanotechnology 15,272 (2020)

Reduced dislocation by “spontaneous relaxation” on graphene

Epitaxy of GaP on GaAs
(4% lattice mismatch)
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Remote “heteroepitaxy” reduces dislocation density



H. Kim, et al., Nature Reviews Methods Primers 2, 40 (2022)

Prospects of Remote Epitaxy

Thin films that are…
1. Freestanding
2. Flexible
3. Single-crystalline
4. Ultrathin

Materials library is expanding!
But still mostly on materials development

Reported materials and processes for remote epitaxy



Ionicity of material governs
surface electronic potential
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Polycrystal growth from non-ionic material
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Graphene
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H. Kim, et al., ACS Nano, 15, 10587 (2021)

Ionicity (polarity) governs field penetration through graphene.
Elemental materials cannot be utilized as substrates or epilayer.

Nature Materials, 17, 999 (2018)

Limitations of Remote epitaxy



Chemical inertness of graphene enables selective nucleation
 Single-crystal film growth

Graphene
formation
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H. Kim, et al., Nature Nanotechnology, 17, 1054 (2022)

“Nanopatterned graphene” for universal layer transfer
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Three modes of peeling

Exfoliation at the 2D interface can be achieved.
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“Wafer-scale exfoliation” at the interface
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GaAs membrane

Substrate Undulation at the patterned area

“Nanopatterned graphene” for universal layer transfer

H. Kim, et al., Nature Nanotechnology, 17, 1054 (2022)



Ge

GaAs

200 nmGe (on-axis)

GaAs

Direct 
Heteroepitaxy

Plan-view SEM Cross-sectional TEM

500 nm

• APBs are eliminated by epitaxy through nanopatterned Gr.
• Improved optoelectronic performance by nanopatterned Gr.

InGaP LED on bare Ge

InGaP LED on graphene/Ge

Scale bars, 10 μm

TEM in collaboration with Prof. Hwang (OSU)
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Heteroepitaxy
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Plan-view SEM Cross-sectional TEM

2 μm

No APB

Antiphase boundary elimination on nanopatterns

H. Kim, et al., Nature Nanotechnology, 17, 1054 (2022)
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(1) Graphene nanopattern

200 nm

InAs

InP

InP
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(3) Direct heteroepitaxy

Nanopattern pitch=400nm, opening=100nm

200 nm

InAs

InP

SiO2 Void
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(2) SiO2 mask (30nm thick) Nanopattern pitch=400nm, opening=100nm

Lattice-mismatched heteroepitaxy

 Graphene nanopattern reduces 
dislocation density.

Cross-sectional TEM

TEM in collaboration with Prof. Hwang (OSU)

InAs on InP (3.3% lattice mismatch)

Dislocation reduction by graphene nanopatterns

H. Kim, et al., Nature Nanotechnology, 17, 1054 (2022)



Flexible mask (Graphene) Thick and rigid mask (SiO2)

‘Flexibility’ of graphene suppresses defect formation

Epilayer

Substrate

Epilayer

Substrate

Epilayer

Substrate

Stacking 
fault

Dislocation

Direct heteroepitaxy (without mask)

MD in collaboration with Prof. Shi (RPI)

Revealing dislocation reduction mechanism

H. Kim, et al., Nature Nanotechnology, 17, 1054 (2022)



Epitaxy-on-2D enabled “Flexible” “Stackable” epitaxial membranes

Advanced Epitaxy-on-2D technology

Wafer

Scalability
by wafer-scale process

Universality
by grown 2D & nanopattern

Wafer

as building blocks for heterogeneous integration



Summary
• Epitaxy on 2D materials enables producing freestanding membranes.
• Freestanding membranes offer new opportunities.

Please find out more on these Applications at:
NM07.02.02. Vertically Stacked Full Color Micro-LEDs via Two-Dimensional Material-Based Layer Transfer
NM07.10.02. Reconfigurable Heterointegration of Artificial Intelligence Chips Using GaAs/InGaP-Based Optoelectronic Devices
NM07.10.09. Chip-less Battery-less Wireless Electronic Skin by Single Crystalline Freestanding Membranes

Applications

Nano-
membrane

Vertically stacked Micro-LEDs Reconfigurable AI processor Chip-less & battery-less E-skin
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