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Executive Summary 
 
Deep neural network (DNN) models have the potential to provide significant predictive power 
for a multitude of applications using Nevada National Security Site (NNSS) image data 
including radiographs, high-speed footage, accelerator data, and aerial monitoring images. 
However, for these models to be relevant and assimilated within the weapons community, 
physics-interpretable uncertainty quantification (UQ) of DNN outputs must be provided. This 
project explores physics-informed DNN models that predict continuous values using image data 
as inputs, and methods for quantification of the uncertainty associated with the estimates 
provided by the models. 
 
Description 
 
DNN ensembles, with prediction uncertainties, were developed using a publicly available image 
dataset comparable to NNSS datasets. The dataset, provided by the Joint Center for Artificial 
Photosynthesis (JCAP), consists of 179,072 images of metal oxides printed onto glass slides. 
Each of these images has a corresponding absorption spectrum over the range of visible light 
frequencies. Ultimately, our objective was to use an ensemble of DNN models to predict a 
continuous absorption curve corresponding to each of the images in the dataset. Each of the 
DNN models in an ensemble gives slightly different predictions by randomly dropping out layer 
nodes, enabling us to calculate an average prediction and corresponding error bars/envelopes. 
 
Prior to developing DNN models, several pre-processing steps were applied to the image data. In 
particular, we implemented two dimensionality reduction techniques to reduce the data from 
64 x 64 x 3 element arrays to 100 x 1 arrays. The two methods implemented were principal 
component analysis and variational autoencoders. Dimensionality reduction is necessary to 
ensure that DNN models can effectively learn parameters and provide robust predictions. As a 
second pre-processing step, we enhanced our image dataset by applying skew, rotation, 
translation, and noise to individual images, while retaining their corresponding output. This 
allowed us to considerably increase the number of samples that models can learn from, as well as 
provide more robust models (i.e., models are able to provide reliable predictions for absorption 
curves despite significant changes to the images). As a final pre-processing step, we reduced the 
absorption curves to condensed representations (22 element vectors) using autoencoders (AEs). 
DNN models, therefore, were specifically trained to use images to predict the AE representations 
of the spectra, and subsequently the compressed predictions were used to fully reconstruct the 
spectra. While dimensionality reduction techniques do lead to some information loss, we found 
that they improve the general performance of models.  
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DNN ensemble performance was compared to results published by Stein et al. (2019) using 
correlation coefficient and absorption error metrics. Our results closely match the trends of the 
published results (Figure 1), with slight improvements for the R-squared and Pearson coefficient 
scores. It should be noted that the correlation coefficients drop in value in parallel with the 
absorption error; while seemingly counterintuitive, this signifies that absorption values at lower 
energies have much more variability than at higher energy values.  
 

Figure 1. Plot of the R-squared, Pearson, MAE and RMSE for Stein et al. (left) and NNSS (right) results. 

 
Conclusion 
 
We have demonstrated the capacity to use DNN ensembles to predict continuous value outputs, 
as well as provide uncertainties associated with each prediction, for image datasets. While this 
capacity was demonstrated using the publicly available JCAP dataset, matching published 
results, it will be applied to NNSS image datasets over the course of the 2023 fiscal year. 
Furthermore, we have established a deep learning (DL) based workflow for image datasets that 
includes multiple approaches to dimensionality reduction and dataset enhancement. However, 
predicting continuous values using images, particularly for limited or imbalance datasets, 
remains an extremely challenging problem with relatively broad ranges of both absolute error 
and correlation coefficient values. For the JCAP dataset, both our models and the published 
results produce several predicted spectra with R-squared scores that are approximately zero 
(indicating that the model prediction is equivalent to the mean of all spectra with respect to 
error). Such results indicate the need to further explore DNN model architectures, dataset 
enhancement, ensemble methods, and other DL based methods before applying these models to 
NNSS data.  
 
Mission Impact/Benefit 
 
The demonstrated capacity to develop DL based models for image datasets that produce physics-
interpretable predictions with quantified uncertainties can benefit numerous applications at the 
NNSS including nuclear event analysis, remote sensing, nonproliferation, and radiography.  
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As a results of this project, we have established a workflow for applying such DL models, as 
well as the capacity to run these models on Lawrence Livermore National Laboratory clusters via 
a virtual environment (without access restrictions on computational tools). Moreover, the UQ 
methods developed throughout this project will allow NNSS scientists to evaluate the 
effectiveness of models and explore sources of uncertainty. In total, three scientists and two 
student-interns have established DL and probabilistic DL expertise in both the underlying 
mathematical fundamentals and model development using well-established Python platforms. 
Our team has also retained one of the student-interns, Malcom Hoffman, as a long-term casual 
employee. As the adaption of DL as a research tool across all sciences continues to grow 
exponentially, the work done for this project will enable NNSS scientists to both improve current 
analysis methods as well as continue to effectively collaborate across the DOE complex and 
other research institutions.  
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Lund et al., 2022. “Beginners’ Guide to Livermore Computing for MSTS Staff.”   
 
Gonzalez, 2022. “PyIFRS Image Processing and Automated Trace Reading Modules,” Reaction 
History Workshop, Nevada National Security Site, North Las Vegas, NV. 
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Minnesota, Minneapolis, MN.   
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