

1 **Title Page**

2 **Authors**

3 Lee H. Dietterich^{*1, 2}, Jason Karpman², Avishesh Neupane², Mark Ciochina², Daniela F. Cusack¹

4 ^{2, 3}

5 **Title**

6 Carbon content of soil fractions varies with season, rainfall, and soil fertility across a lowland
7 tropical moist forest gradient

8 **Author Affiliations and Corresponding Author**

9 ¹ *Department of Ecosystem Science and Sustainability, Colorado State University, Campus
10 Delivery 1476, Fort Collins, CO, 80523, USA.*

11 ² *Department of Geography, University of California, Los Angeles, 1255 Bunche Hall Box
12 951524, Los Angeles, CA 90095, USA*

13 ³ *Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of
14 Panama*

15 *Corresponding Author: lee.dietterich@gmail.com

16 **Author ORCIDs**

17 Lee H. Dietterich: 0000-0003-4465-5845

18 Jason Karpman: 0000-0002-5948-3559

19 Avishesh Neupane: 0000-0003-4401-2161

20 Mark Ciochina: NA

21 Daniela F. Cusack: 0000-0003-4681-7449

22

23 **Declarations**

24 **Funding**

25 Funding was provided by NSF GSS grant #BCS-1437591 and DOE grant DE-SC0015898 to D.

26 F. Cusack.

27 **Conflicts of interest**

28 The authors declare no conflict of interest.

29 **Availability of data and material**

30 The raw data from this project is being submitted as Online Resource 1.

31 **Code availability**

32 The R script used in analyzing the data is being submitted as Online Resource 2.

33 **Authors' contributions**

34 The study was conceived and samples were collected by DFC. Laboratory analyses were

35 performed by LHD, JK, AN, and MC. LHD analyzed the data and wrote the paper. All authors

36 contributed to reviewing and editing the manuscript.

37

38 **Abstract**

39 Tropical forests contain some of the largest soil carbon (C) stocks on Earth, making them
40 broadly relevant to terrestrial-climate feedbacks, yet our understanding of how their soil organic
41 C (SOC) fractions vary over space and time is limited. We studied effects of season, fertility, and
42 mean annual precipitation (MAP) on the C contents of soil fractions across 14 lowland forests in
43 Panama. We measured free-debris, occluded-debris, and mineral-associated SOC fractions, as
44 well as soluble C associated with each fraction. We hypothesized that mineral-associated SOC
45 would be greatest in infertile, strongly weathered soils with large reactive mineral contents. We
46 also hypothesized that the debris SOC fractions would accumulate during the dry season,
47 reflecting seasonal increases in litterfall. To address this, we compared soil fractions in wet and
48 dry seasons from fertile and infertile soils across a range of 1809 – 2864 mm MAP. The C
49 content (mg C / g soil) of all soil fractions varied with fertility and MAP: specifically, free-debris
50 SOC was greatest in wet, high-fertility soils, and occluded-debris SOC was greater in high-
51 fertility than low-fertility soils. The mineral-associated SOC fraction, which contained the
52 majority of bulk soil C, showed increasing C content with greater MAP in infertile sites,
53 presumably driving similar spatial patterns in the bulk soil. Only the free-debris SOC fraction
54 showed strong seasonal variation, increasing in mass during the dry season. Nitrogen behaved
55 similarly to C. In summary, soil C contents increased with MAP in infertile sites but not fertile
56 sites, driven by the mineral-associated SOC fraction. The dry season had greater free-debris
57 SOC, but this seasonal trend was not apparent in bulk soil C, likely because of the small size of
58 the free-debris SOC fraction. Thus, changes in the quantity and seasonality of precipitation,
59 which are projected for tropical forests, might shift spatial and temporal patterns of soil C
60 storage, which would in turn influence forest-climate feedbacks for this C-rich biome.

61

62 **Keywords:** Soil organic carbon (SOC), dissolved organic carbon (DOC), gradients, nitrogen,
63 density fractionation, Panama.

64 **Introduction**

65 Tropical forests account for 30% of global aboveground carbon (C) stocks (Field et al.
66 1998), and 30% of global soil organic C (SOC) (Jobbágy and Jackson 2000), and these
67 aboveground and belowground SOC stocks are vulnerable to global change (Cusack et al. 2016).
68 Soil organic C is comprised of a diverse variety of organic molecules that are stored for varying
69 lengths of time, from months to millenia, via numerous mechanisms (Schmidt et al. 2011). In
70 upland, mineral soils, the majority of long-term SOC storage takes place in organo-mineral
71 associations (Trumbore 1993; Marin-Spiotta et al. 2009), while the majority of nutrient cycling is
72 likely tied to the rapid turnover of organic matter recently originated from plant tissues (here
73 referred to as “debris”) (Swanson et al. 2005; Torn et al. 2013). Thus, understanding dynamics
74 of different SOC fractions could help us predict effects of global change on multiple time scales.
75 Belowground dynamics, particularly in tropical forests, remain a major source of uncertainty in
76 Earth systems models (Ciais et al. 2013; Todd-Brown et al. 2014).

77 In particular, precipitation will likely be a major component of global change in the
78 tropics (Kharin et al. 2007). Models predict longer, more severe dry seasons and fewer, more
79 intense rainfall events for some tropical regions (Kharin et al. 2007; Joetzjer et al. 2013; Magrin
80 et al. 2014; Boisier et al. 2015), and increased overall rainfall for other tropical regions (Seidel et
81 al. 2008; Xie et al. 2010; Feng et al. 2013; Rodell et al. 2018). Assessing responses of SOC
82 fractions to variation in precipitation among seasons or across rainfall gradients could help us
83 improve predictions of how climate change might alter SOC storage in these C-rich ecosystems.

84 Tropical forest soils also vary widely in weathering status and fertility level (Quesada et
85 al. 2011), which could affect how changes in rainfall might alter SOC storage. For instance,
86 increasing weathering typically increases soil clay content, which is often related to greater SOC

87 stocks (Jobbág and Jackson 2000). Soil fertility can also directly influence SOC stocks via
88 effects on plant productivity (Tanner et al. 2016; Cusack et al. 2018b), community composition
89 or litter stoichiometry (Jandl et al. 2007; Schulp et al. 2008), or decomposer activity (Nottingham
90 et al. 2013; Nottingham et al. 2015). Fertility can also alter the form or function of mycorrhizal
91 symbioses (Johnson et al. 2010; Phillips et al. 2013; Sheldrake et al. 2017), which can in turn
92 affect SOC cycling (Tedersoo and Bahram 2019). Thus, it is important to understand interacting
93 effects of rainfall, seasonality, and soil fertility in order to predict how climate change might
94 alter soil C storage across diverse tropical forest landscapes.

95 Conceptual models divide bulk SOC into functionally different fractions, which can be
96 approximated by physical fractionation techniques. We used a four-pool approach, building on
97 Sollins et al. (1999) and Cusack et al. (2018a) to measure the following fractions: (1) free-debris
98 SOC (i.e. free light fraction), which typically contains the most rapidly cycling SOC in tropical
99 soils (Marín-Spiotta et al. 2008) and is comprised largely of unattached particles of leaf and root
100 litter; (2) occluded-debris SOC (i.e. occluded light fraction), which is chemically similar to free-
101 debris SOC but has been incorporated into physical soil structures such as aggregates; (3)
102 mineral-associated SOC (i.e. heavy or dense fraction), which is made up of organic compounds
103 sorbed to mineral surfaces (Kleber et al. 2015); and (4) soluble C released during the isolation of
104 each solid fraction. The debris fractions are likely most important for nutrient cycling and
105 availability, while the mineral-associated SOC is generally the largest SOC fraction in clay-rich
106 tropical soils (Trumbore 1993; Glaser et al. 2000; Marin-Spiotta et al. 2009) and can contain the
107 oldest SOC (Trumbore and Zheng 1996; Torn et al. 1997; Lützow et al. 2006), although recent
108 work has shown that portions of the mineral-associated SOC can also be dynamic in response to
109 environmental change (Sollins et al. 2006; Cusack et al. 2011). Understanding how these

110 fractions change over natural variability in MAP, seasonality, and soil fertility can provide
111 insight into how climatic change might influence SOC storage and cycling across complex
112 tropical forest landscapes.

113 We assessed seasonal variation in four SOC fractions in 14 lowland Panama moist forest
114 sites across natural gradients in MAP and soil fertility, in which soil fertility varies primarily
115 with geological substrate and is largely independent of MAP. We hypothesized that the debris
116 fractions, which are derived from recent leaf and root litter inputs, vary with rainfall seasonality
117 in tropical forests, reflecting changes in litterfall. We also hypothesized that mineral-associated
118 SOC increases in wetter, more clay-rich soils, which have a high density of charged clay surfaces
119 for sorption. Finally, we hypothesized that SOC would be more potentially soluble during the
120 wet season when it is in more advanced stages of decomposition. Among fractions, we predicted
121 that mineral-associated SOC would be the least mobile and therefore release the smallest amount
122 of soluble C.

123

124 **Methods**

125 *Study sites*

126 The Isthmus of Panama spans a MAP gradient of \sim 1750 mm y^{-1} MAP on the Pacific
127 coast, to \sim 4000 mm y^{-1} MAP on the Caribbean coast (Pyke et al. 2001; Engelbrecht et al. 2007).
128 The forests have a tropical monsoon climate. The wetter Caribbean coast has a shorter dry season
129 (\sim 115 days), compared with the drier Pacific coast (\sim 150 days). The Isthmus of Panama also
130 includes soils varying widely in fertility, arising primarily from variation in geological substrate
131 (Turner and Engelbrecht 2011; Condit et al. 2013; Cusack et al. 2018b; Turner et al. 2018).

132 Because of the strong influence of geology, soil nutrient levels are weakly if at all correlated
133 with MAP (Stewart et al. 1980; Pyke et al. 2001; Turner and Engelbrecht 2011).

134 We studied 14 distinct forest stands across these gradients in the central lowlands of
135 Panama spanning the Panama Canal region (Fig. 1, Table 1). The sites are a subset of a larger
136 network of >50 1-ha plots maintained by the Smithsonian Tropical Research Institute (STRI) in
137 lowland tropical forests (elevation 10 – 410 meters above sea level) (Pyke et al. 2001). All sites
138 are on flat topography, and span a range of soil orders and textures (Cusack et al. 2018b). Sites'
139 MAP values were calculated using the nearest available long-term rainfall data from Panama
140 Canal Authority (ACP) sites (Engelbrecht et al. 2007). We note that these calculations tend to
141 underestimate STRI's MAP measurements for the wetter Caribbean sites (STRI 2020). The mean
142 annual temperature at all sites is ~26°C and mean monthly temperature varies by <1°C during
143 the year (Windsor et al. 1990). All sites are classified as tropical moist forest (Holdridge et al.
144 1971), though tree species composition varies markedly among sites (Condit et al. 2013; Turner
145 et al. 2018; Umaña et al. 2020).

146 The 14 sites were grouped into four MAP ranges and two levels of soil fertility, with sites
147 selected to include fertile and infertile soils within each MAP range. The MAP ranges were:
148 1800 – 1900 mm MAP (3 sites), 2000 – 2350 mm MAP (4 sites), 2450 – 2600 mm MAP (4
149 sites), and 2800 – 3050 mm MAP (3 sites), hereafter referred to as 1850, 2200, 2500 and 3000
150 mm MAP ranges (Cusack et al. 2019). Fertile and infertile sites within each MAP range were
151 selected based on prior data for total C, resin-extractable P, and base cations (Cusack et al.
152 2018b), and corresponded to cutoffs of approximately 2.4 mg/kg resin-extractable P, 2000 mg/kg
153 extractable base cations, and pH 5.9. We had a total of seven fertile sites and seven infertile sites
154 distributed across the MAP gradient.

155

156 *Sample collection*

157 Soils were collected at each site once during the late wet season (October – early
158 December 2015), and once during the dry season (January – March 2016). At each site, three 50-
159 m transects were established with 4 sampling points along each transect at 10, 20, 30 and 40 m.

160 Soils were collected from 0-10 cm depth, collecting five soil cores at each sampling point along
161 each transect using a 2.5 cm diameter constant volume soil corer (i.e. 20 cores per transect).

162 Organic horizons are absent from most of these sites, which is typical for tropical soils with rapid
163 litter decomposition. Where present, organic horizons were included except for intact surface
164 litter, which was gently removed from the soil surface prior to sampling. Samples were then
165 pooled and homogenized by hand for each transect, for three replicates per site. We did not
166 observe charcoal in these samples, and ^{13}C NMR of soils near the middle of our rainfall gradient
167 revealed no microscopic charcoal (Cusack et al. 2018a). To measure soil bulk density, one core
168 per transect was collected with a 6 cm diameter constant volume corer; the corer was pounded
169 into the undisturbed face of a small soil pit (30 cm depth) at the end of each transect, and
170 carefully excavated by inserting a painter's pallet underneath it to prevent soil loss while
171 removing the corer from the pit.

172

173 *SOC and DOC fractionation*

174 Soils were stored at 4 °C and then sieved (<4 mm) one week or less before performing
175 density fractionation. Density fractionation largely followed Swanston et al. (2005) and Cusack
176 et al. (2018a). In brief, 30 g of fresh soil was weighed into a centrifuge tube, gently inverted by
177 hand with ~100 ml of C-free sodium polytungstate (SPT, 1.7 g/ml; GeoLiquids, Inc., Prospect

178 Heights, IL, USA), and centrifuged for 1 h at 3500 rpm. This density was selected based on
179 preliminary tests and visual inspection, with the aim of floating debris organic matter and not
180 floating mineral soil. Material floating after this step was considered free-debris SOC, which was
181 aspirated and rinsed five times with DI water over a 0.4 μ m membrane filter to remove SPT. All
182 filtrate solution was collected for soluble C analyses, with no material discarded at any point.
183 The remaining soil was resuspended in 1.7 g/ml SPT and mixed with a SPX Lightnin G3U05R
184 mixer for 60 s at 75% power, then given 450 J/ml of energy (Kaiser and Berhe 2014) with a
185 Branson 450 sonifier with the following settings: power 10 (400 W), time 3 min, pulse 70%,
186 solution volume ~110 ml. This energy level was used by Cusack et al. (2018a) for soils from this
187 region, who found this energy level to be optimal for recovering occluded material with minimal
188 contamination by mineral particles; occluded material recovered had a chemical signature of
189 strongly decomposed organic matter. An ice bath was used during sonication to counteract the
190 warming effects of the sonifier. Samples were centrifuged again for 1 h at 3500 rpm to isolate the
191 occluded-debris SOC, which was aspirated and rinsed over a filter in the same way as the free-
192 debris SOC, retaining all filtrate solution for soluble C analyses. The remaining pellet was
193 considered mineral-associated SOC. We rinsed the mineral-associated SOC to remove SPT by
194 aspirating the supernatant, adding DI water, stirring and shaking vigorously, then centrifuging
195 for 1 h at 3500 rpm and repeating this process five times before drying the mineral-associated
196 SOC at 105 °C. All aspirated supernatant was retained for soluble C analyses.

197 We measured the dry mass of each solid fraction and compared the total to the moisture-
198 corrected dry mass of the original fresh soil to ensure that minimal material was gained or lost
199 during the fractionation procedure. On average, we recovered $99.74 \pm 0.56\%$ of the original
200 moisture-corrected sample mass ($n = 84$, min = 86.39%, max = 117.19%). Each dried fraction

201 was then ground, either in a ball mill (debris fractions) or with mortar and pestle (mineral-
202 associated SOC) and C and N concentrations were measured on a Costech Elemental Analyzer
203 (Valencia, CA).

204

205 *Soil C stability and soluble C leaching*

206 The supernatants associated with each SOC fraction were analyzed for total dissolved
207 organic C (DOC) and total dissolved N (TDN) on a Shimadzu TOC-L with TDN analyzer
208 (Columbia, MD). Soluble C extracted in SPT resembles the results of the commonly used
209 potassium chloride (KCl) extractions for salt-extractable C and N (Swift 1996). The
210 concentration of SPT used was greater than the standard concentration of KCl used for similar
211 extractions, so it is likely that we recovered more soluble C than we would have in a KCl
212 extraction. The C concentrations of supernatants associated with each fraction were analyzed
213 separately, and total C was calculated using the volume of solution recovered from separating
214 and rinsing each fraction. It should be noted that the initial collection of SPT contained C not
215 only from the free-debris fraction, but also included salt-extractable C from the initial bulk soil
216 sample. Similarly, the soluble C collected during the separation and rinsing of the occluded-
217 debris fraction could include soluble C released from the mineral-associated fraction that was
218 still present in the samples prior to separation of the occluded-debris fraction. Thus, the soluble
219 C we present is associated with each of the three SOC fractions, but is not an isolated extraction
220 from that fraction alone. Rather, the soluble C that we present represents a sequential extraction.
221 Thus, soluble C reported for each fraction should be considered loosely related to that fraction,
222 but also reflecting any other fraction still included in the sample up until that step. Still, our
223 sequential extraction of soluble C represents release of increasingly protected or sorbed C over

224 the course of the density fractionation process. Importantly, we collected and assessed all C
225 released during the process, rather than discarding supernatant, as is commonly done for this
226 method; this allows us to account for all of the C and N in the original bulk soils.

227

228 *Data processing and statistical analysis*

229 To account for changes in effective sampling depth due to seasonal shifts in bulk density
230 (Table 1, Turner et al. 2015), we standardized effective dry season sampling depths to wet season
231 sampling depth using seasonal ratios of bulk density. We used depth distributions for bulk soil C
232 from Cusack and Turner (2020) and depth profiles for SOC fractions from Cusack et al. (2011)
233 and Finstad et al. (in prep.) to adjust our dry season density fractionation data to match the depth
234 sampled in the wet season (Fig. S1). We fit logarithmic models to the published depth profiles,
235 and integrated over them to standardize our SOC fraction masses and C and N concentrations
236 (data in Online Resource 1, calculations in Online Resource 2). We present statistical results for
237 the standardized data in Table S1, and statistical results for the raw data in Table S2. Overall,
238 standardizing for effective depth sampled in the dry season relative to the wet season resulted in
239 few qualitative changes to statistical results, but was included to ensure robust comparisons
240 across seasons.

241 We conducted statistical analyses using the following response factors: proportion of soil
242 mass (g fraction / g bulk soil), C content (mg C / g bulk soil), C concentration (mg C / g
243 fraction), and C:N ratio. We also calculated C stocks to 10 cm depth (mg C / cm² bulk soil) but
244 did not run statistical analyses on stocks to this shallow depth. For soluble C extracted while
245 separating and rinsing each fraction, we analyzed fraction soluble C (mg C soluble / g C in
246 fraction) and total soluble C (mg C soluble / g bulk soil). We conducted the same statistical

247 analyses for parallel measures of N. Measures for N were highly correlated with those for C in
248 these fractions, so we discuss N results in the main text only where they differ from those for C.

249 For statistical analyses, our study was replicated at the level of experimental sites. Sites
250 were chosen for their variation in rainfall and soil fertility because these have been shown to be
251 the dominant factors driving plant distributions, root biomass, soil C stocks, and other ecosystem
252 properties across these sites (Turner and Engelbrecht 2011; Condit et al. 2013; Cusack et al.
253 2018b; Turner et al. 2018; Cusack et al. 2019). Therefore, for the response factors above, we
254 performed two-way analysis of variance (ANOVA) with season and site as fixed effects, and
255 then used planned contrasts to test for effects of season (categorical nominal factor), fertility
256 (categorical nominal factor), MAP range (categorical ordinal factor), and their interactions using
257 sums of squares and degrees of freedom appropriately reduced based on the initial ANOVA
258 model. We used MAP range as a categorical factor because of the clumped distribution of MAP
259 values (Table 1; Cusack et al. 2019). Post-hoc Fisher's Least Significant Difference (LSD)
260 means separation tests were used to explore differences among seasons, soil fertility levels, and
261 MAP ranges. Residual distributions were examined for all response variables, and the following
262 variables were log+1 transformed to ensure that the assumptions of linear models were met:
263 debris fraction proportions of soil mass and C and N content, and fraction soluble C and N for all
264 fractions (mg C soluble / g C in fraction, or mg N soluble / g N in fraction).

265 As a parallel exploratory exercise, we used a forward stepwise model selection approach
266 to investigate relationships between season, MAP, and ecosystem characteristics with SOC
267 fractions, using previously published data for these sites (Cusack et al. 2018b; Cusack et al.
268 2019; Cusack and Turner 2020). Site-level predictors included season, MAP, resin-extractable P
269 to 10 cm depth, aboveground biomass of trees greater than 10 cm diameter at breast height, root

270 biomass to 1 m depth, soil pH in water to 10 cm depth, total extractable soil bases to 10 cm
271 depth, total inorganic soil N to 10 cm depth, soil clay content to 50 cm depth, and forest floor
272 biomass. The minimum adequate model was produced using a $P < 0.1$ cutoff and seeking to
273 minimize the Bayesian Information Criterion (BIC). This approach identifies significant
274 predictors and penalizes the addition of parameters to avoid overparametrization (Schwarz
275 1978), yielding the minimum adequate general linear model. We then performed multiple
276 regression analysis of the terms in the minimum adequate model on the transect-level data to see
277 whether any of these more specific predictors refined our understanding from the above ANOVA
278 results. The predictors most commonly identified in the minimum adequate models were season
279 and the following measures of soil fertility: resin P, total extractable bases, and soil pH (Table
280 S3), supporting the importance of season and fertility to SOC in these sites. Model selection was
281 performed in JMP (SAS Institute, 2018 JMP Pro 14.0.0). All other analyses were performed in R
282 (CRAN R Project, version 4.0.0 “Arbor Day”). Data are presented as averages \pm 1 standard error
283 of the mean (SE), using $P < 0.05$ for statistical significance.

284

285 **Results**

286 *Distribution of SOC among density fractions*

287 The free-debris and occluded-debris SOC fractions accounted for a small proportion of
288 soil mass overall (free-debris SOC $2.5 \pm 0.3\%$, occluded-debris SOC $1.4 \pm 0.2\%$, $n = 84$, Fig.
289 2A), but because of their relatively high C concentrations (free-debris SOC $32.2 \pm 0.53\%$,
290 occluded-debris SOC $30.6 \pm 1.01\%$, $n = 84$, Table 2, Fig 4A-B), they contributed a significant
291 proportion of bulk soil C (free-debris SOC $16.5 \pm 1.1\%$, $n = 84$, occluded-debris SOC $8.3 \pm$
292 0.7% , $n = 84$, Fig. 2B-C, Fig. 3A-D). Conversely, although the mineral-associated SOC fraction

293 had a much lower C concentration than the debris fractions ($3.2 \pm 0.12\%$, $n = 84$, Table 2, Fig.
294 4E), it accounted for such a large majority of the soil mass ($96.1 \pm 0.4\%$, $n = 84$, Fig. 2A) that it
295 still contributed a majority of bulk soil C ($75.1 \pm 1.5\%$, $n = 84$, Fig. 2B-C).

296

297 *Patterns of free-debris SOC*

298 In our initial ANOVAs, season and site significantly affected all response variables
299 related to the free-debris SOC fraction, so we focus here on the results of the contrasts analysis,
300 which allowed us to disentangle effects of season, fertility, MAP, and their interactions. Season
301 and fertility were significantly related to the free-debris SOC fraction as a proportion of soil
302 mass (Table S1), which was greater in the dry season than the wet season, and greater in fertile
303 sites than infertile sites (Fig. 2A). The C content of the free-debris SOC fraction was best
304 predicted by season, fertility, MAP, and a fertility \times MAP interaction. Specifically, the free-debris
305 C content more than doubled from the wet season (4.24 ± 0.41 mg C / g soil, $n = 42$) to the dry
306 season (10.84 ± 1.77 mg C / g soil, $n = 42$), and increased with greater MAP on fertile soils but
307 not on infertile soils (Fig. 3A-B). The free-debris fraction as a proportion of bulk soil C followed
308 a similar pattern (Fig. 2B).

309 The C concentration of the free-debris SOC fraction varied significantly with season and
310 there was a fertility \times MAP interaction, in which free-debris %C increased slightly in the wet
311 season (Table 2, S5), and was greatest in infertile sites at our highest MAP range (Table S5, Fig.
312 4A). In contrast with the patterns for C, only soil fertility affected free-debris SOC N
313 concentrations, which were greater in fertile sites than infertile sites (Table 2, S5). Free-debris C
314 and N concentrations were positively correlated with each other ($r = 0.34$, $n = 84$), and C and N
315 generally behaved similarly throughout this dataset (Table S1). Season, fertility, and a

316 fertility×MAP interaction predicted the C:N ratio of the free-debris SOC fraction, which was
317 greater in the wet season than the dry season, and greater in infertile than fertile soils (Table 2,
318 S4, S5, Fig. 4B).

319 For soluble C extracted while separating and rinsing this SOC fraction, season, MAP, and
320 a fertility×MAP interaction were significant predictors. Free-debris fraction soluble C (mg C
321 soluble / g C in fraction) was 147.2% greater in the wet season (170.4 ± 17.9 mg/g, n = 42) than
322 the dry season (68.9 ± 6.4 mg/g, n = 42), and decreased with MAP (Fig. 5A, S2A, S3A, Table 2,
323 S4, S5). Only MAP significantly affected free-debris total soluble C (mg C soluble / g bulk soil)
324 (Fig. 1D, 5B, S2B, S3B). Total soluble C extracted during the separation and rinsing of the free-
325 debris fraction was 0.579 ± 0.034 mg C / g bulk soil, representing $11.9 \pm 1.1\%$ of the C retained
326 in the free-debris fraction.

327 In summary, the strongest patterns for the free-debris SOC fraction were an increase in
328 mass and thus accumulation in the dry season, and greater potential solubility in the wet season.

329

330 *Patterns of occluded-debris SOC*

331 Site was a significant predictor in initial ANOVAs of all response variables related to the
332 occluded-debris SOC fraction, but season was never a significant predictor for this fraction. In
333 the contrast analysis, fertility, MAP, and a fertility×MAP interaction were the significant effects
334 on the occluded-debris SOC fraction as a proportion of soil mass (Table S1). This pattern was
335 driven by increases in the mass of this fraction in some fertile sites but not all across the MAP
336 gradient (Table 2, Fig. 2A). The occluded-debris C content and proportion of soil C followed
337 similar patterns to its proportion of soil mass (Fig. 2B-C, 3C-D, Table 2, S4, S5).

338 For the C concentration of the occluded-debris fraction, fertility, MAP, and a
339 fertility×MAP interaction were significant effects. The C concentration of the occluded-debris
340 SOC fraction was greater in infertile sites ($33.1 \pm 1.3 \%$, $n = 44$) than fertile sites ($27.7 \pm 1.5 \%$,
341 $n = 40$) and was lower in wetter sites than drier sites (Fig. 4C). In contrast, occluded debris N
342 concentrations did not vary with soil fertility, but were also lowest in the wettest sites. Occluded-
343 debris C and N concentrations were strongly correlated ($r = 0.71$, $n = 84$), and C and N produced
344 similar statistical results for this fraction (Table S1). The C:N ratio of the occluded-debris
345 fraction was greater in infertile than fertile soils (Fig. 4D).

346 Fraction soluble C from the occluded-debris SOC fraction (mg C soluble / g C in
347 fraction) varied among sites but was not related to season, fertility, or MAP (Fig. 5C, S2C, S3C).
348 However, for total soluble C from this fraction (mg C soluble / g bulk soil), there were was a
349 significant main effect of fertility and significant fertility×MAP, season×MAP, and
350 season×fertility×MAP interactions. Total occluded-debris soluble C was greater in fertile soils
351 than infertile soils, especially so in the dry season, and varied widely but not directionally among
352 MAP ranges (Fig. 5D, S2D, S3D). Total soluble C associated with the occluded-debris fraction
353 was 0.981 ± 0.063 mg C / g bulk soil, representing $42.9 \pm 4.3\%$ of the C retained in the
354 occluded-debris fraction.

355 In summary, the strongest patterns for the occluded-debris SOC fraction were that mass,
356 C content, and total soluble C associated with this fraction increased in some but not all fertile
357 sites, but the C concentration of this fraction was greater in infertile, drier sites.

358

359 *Patterns of mineral-associated SOC*

360 In the initial ANOVAs, site was a significant predictor for all response variables relating
361 to the mineral-associated SOC fraction, most of which also responded significantly to season or a
362 season×site interaction. In the contrasts analysis, a main effect of MAP and the fertility×MAP
363 and season×MAP interactions were significant predictors of the C content of the mineral-
364 associated SOC fraction (Table S1), which increased at higher MAP in infertile sites, primarily
365 in the wet season (Fig. 3E-F, Table 2).

366 For the C concentration of the mineral-associated SOC fraction, there were significant
367 effects of fertility, MAP, and fertility×MAP and season×MAP interactions (Table S1). The C
368 concentration of this fraction, like its C content, increased with MAP in infertile sites primarily
369 in the wet season (Fig. 4E). There was a strong correlation between the C and N concentrations
370 of the mineral-associated SOC fraction ($r = 0.945$, $n = 84$), and the C and N results for this
371 fraction were largely similar (Table S1). Season, fertility, MAP, and the fertility×MAP
372 interaction affected the C:N ratio of the mineral-associated SOC fraction, which was greater in
373 the wet season than the dry season, tended to decrease with increasing MAP in fertile sites, and
374 reached its lowest values at the 2500 mm MAP range for both fertility levels (Fig. 4F). The
375 mineral-associated SOC fraction's proportions of soil mass and soil C offset concurrent changes
376 in the debris fractions described above (Fig. 2A-B, 3E-F), so they were not analyzed separately.

377 For soluble C released during rinsing of the mineral-associated SOC fraction, both
378 fraction soluble C (mg C soluble / g C in fraction) and total soluble C (mg C soluble / g bulk
379 soil) showed a significant main effect of fertility and a fertility×MAP interaction; total soluble C
380 also showed a significant main effect of MAP. Both of these measures of potentially soluble C
381 associated with this fraction were greater in fertile soils, especially at our wettest and driest sites
382 (Fig. 1D, 5E-F, S2E-F, S3E-F, Table 2, S4, S5). On average, total soluble C associated with the

383 mineral-associated fraction was 1.54 ± 0.090 mg C soluble / g bulk soil, representing $4.96 \pm$
384 0.28% of the C retained in the mineral-associated fraction. This is a much smaller proportion
385 than for either of the debris fractions (Fig. 5F, S2E, S3E, Table 2, S4, S5), consistent with the
386 idea that C in mineral-associated SOC is more stable than in the debris fractions.

387

388 *Patterns in bulk soil C*

389 Fertility, MAP, and a fertility \times MAP interaction were the significant predictors of bulk
390 soil C content, C:N ratios, and total soluble C (mg C soluble / g bulk soil) which followed similar
391 patterns to the mineral-associated SOC fraction. Bulk soil C content increased with MAP in
392 infertile soils, but did not vary directionally with MAP in fertile soils (Fig. 4G). Bulk soil C:N
393 ratios were higher in infertile than fertile soils overall but with occasional exceptions (Fig. 4H).
394 Total soluble C tended to be greater in fertile than infertile soils, though again with substantial
395 variation among sites (Fig. 5G, S2G, S3G). On average, bulk soil total soluble C comprised 3.09 ± 0.153 mg C / g bulk soil, representing $8.29 \pm 0.41\%$ of the bulk soil C retained in the solid
396 fractions, and indicating that $7.57 \pm 0.34\%$ of the original bulk soil C was potentially soluble.

397
398 Season, fertility, MAP, and a season \times fertility interaction were all significant predictors of
399 site-level bulk density. Bulk density was greater in the dry season (0.903 ± 0.039 g/cm³, n = 14)
400 than the wet season (0.749 ± 0.033 g/cm³, n = 14), tended to decrease with increasing MAP, and
401 was greater in fertile (0.857 ± 0.043 g/cm³, n = 14) than infertile sites (0.796 ± 0.038 g/cm³, n =
402 14) driven by a difference in the dry season (Table 1).

403

404 **Discussion**

405 *Spatial patterns in mineral-associated SOC*

406 Perhaps our most striking result was that in infertile soils, the C content of the mineral-
407 associated SOC fraction increased strongly across the MAP gradient, approximately doubling
408 from our lowest to highest MAP sites. This result is consistent with a modeling study
409 parametrized from a drought-deciduous Brazilian caatinga which predicted increases in SOC
410 storage with greater wet season length because in longer wet seasons, productivity was increased
411 more than respiration overall (Rohr et al. 2013). In general, the infertile Panama soils are more
412 strongly weathered than the fertile soils according to US Soil Taxonomy (Cusack et al. 2019;
413 Cusack and Turner 2020), so they likely have greater binding site density on clay surfaces
414 (Wiesmeier et al. 2019). This could give rise to greater formation of organo-mineral associations,
415 especially in wetter sites in which leaf litter may be enriched in complex compounds such as
416 lignin (Santiago and Mulkey 2005; Santiago 2009; Dale et al. 2015), whose aromatic and
417 phenolic residues can form strong organo-mineral associations under certain conditions (Kaiser
418 and Zech 1999; Kaiser 2003). The mineral-associated SOC fraction is commonly thought to
419 represent a relatively stable C pool with slower turnover times, suggesting that wetter, infertile
420 tropical forest soils may contain more of this stable C. However, components of the mineral-
421 associated SOC fraction have also been shown to be dynamic on decadal timescales in a forest in
422 Panama (Cusack et al. 2018a), so greater investigation is required to understand the long-term
423 stability of mineral-associated SOC in wet, infertile tropical forests.

424 Soil clay content can also influence the size of the mineral-associated SOC fraction via
425 differential availability of sites for SOC to sorb to clay mineral surfaces (e.g. Baldock and
426 Skjemstad 2000; Eusterhues et al. 2003; Mora et al. 2014; Angst et al. 2018). However, in our
427 data set there was no relationship between clay content and the C content of any density fraction
428 in these sites. Alternatively, variation in soil cations could affect the mineral-associated SOC

429 fraction via cation bridging (Roychand and Marschner 2014; Singh et al. 2016), although we also
430 found no relationship between clay content and total bases in this sites, nor between clay content
431 and resin P or fertility index. Sesquioxide formation (Oh and Richter 2005), specific surface
432 area, and concentrations of sesquioxides and electrolytes in soils could also influence organo-
433 mineral associations (Singh et al. 2016). These factors require further investigation as drivers of
434 mineral-associated SOC at these sites.

435 The mineral-associated SOC fraction had slightly greater C content during the wet season
436 than the dry season, supporting previous results from a mid-rainfall site in this region (Cusack et
437 al. 2018a). However, this pattern was much stronger for the mineral-associated C:N ratio, which
438 increased markedly in the wet season and in infertile soils. This is consistent with greater
439 mineral-associated SOC storage in wet, infertile soils, and may also indicate faster N cycling or
440 reduced N accumulation under these conditions. We did see strong seasonal changes in bulk
441 density for our surface soils, and future work could investigate how bulk density and soil
442 fractions vary below the top 10 cm to get a deeper understanding of overall SOC stocks. We also
443 note that, while our 14 study sites encompass substantial variation in MAP and soil fertility, the
444 global tropics vary more widely in both of these factors, so examining the behavior of SOC
445 fractions in a greater diversity of sites could also provide useful insights.

446

447 *Seasonal shifts in free-debris SOC*

448 Our data support the conceptual model that free-debris SOC is derived from plant litter
449 that accumulates in the dry season due to greater litterfall and reduced decomposition, which has
450 been suggested in these sites (Turner et al. 2015; Cusack et al. 2018a). This pattern held despite
451 the C concentration and C:N ratio of the free-debris SOC increasing slightly during the wet

452 season. The higher C:N ratio and lower fraction mass we observed in infertile soils at high
453 rainfall is consistent with plants in these sites producing more complex C compounds for defense
454 and structural tissues, as has been shown in this region of Panama (Santiago and Mulkey 2005;
455 Santiago 2009; Fyllas et al. 2009; Dale et al. 2015) and in a survey of plants in the Amazon
456 Basin (Fyllas et al. 2009). Tree community composition varies significantly among our study
457 sites (Condit et al. 2013; Turner et al. 2018; Umaña et al. 2020), so patterns in leaf and root
458 tissue chemistry could be driven by community shifts as well as by intraspecific variation.
459 Limitation of soil metabolism by nutrients other than C (Nottingham et al. 2018; Camenzind et
460 al. 2018) could also contribute to higher C:N ratios in wet, infertile soils. We conclude that the
461 quantity of free-debris SOC is driven primarily by seasonal trends in litterfall, and its chemical
462 characteristics are driven by effects of fertility and MAP on litter chemistry and soil metabolism.

463

464 *Spatial patterns in occluded-debris SOC*

465 For the occluded-debris SOC fraction, soil fertility and MAP were the strongest
466 predictors, with greater C content in this fraction at fertile sites at some rainfall ranges. This
467 pattern was particularly strong in our Metropolitano and Campo Chagres sites, both of which are
468 on Mollisols with large seasonal changes in bulk density, suggesting that some properties of this
469 soil order or seasonal shrink/swell dynamics may affect occlusion of SOC in aggregates, though
470 we note that site P04 shares these characteristics but had relatively low occluded-debris SOC.
471 Broadly, fertility and moisture effects on SOC dynamics appear to be more important than
472 seasonal patterns in litterfall for driving accumulation of occluded-debris SOC.

473 We expected that the occluded-debris SOC fraction would accumulate in the wet season,
474 as found in a mid-rainfall site in Panama (Cusack et al. 2018a) and a tropical dry forest in

475 Mexico (García-Oliva et al. 2003). In the latter study, the proportion of macro-aggregates
476 increased over the course of the wet season, as did C and nutrient concentrations within micro-
477 aggregates. This suggests that aggregate formation during the wet season might promote
478 accumulation of occluded-debris SOC in some sites. Another study in the same site found that
479 bulk SOC was greater in the dry season, which the authors attributed to variation in the microbial
480 community composition and C and N availability of soil micro- and macroaggregates (Noguez et
481 al. 2008). In a study of aggregate dynamics in agricultural systems in Brazil, Reis Ferreira et al.
482 (2020) suggested that root and hyphal growth and organic matter decomposition support soil
483 aggregation. In our study sites, these factors are likely greater in fertile soils and in the wet
484 season. On the other hand, physical factors such as raindrop impacts and wet-dry shrink-swell
485 cycles could disrupt aggregates in the wet season, as found in a series of agricultural soils in
486 Greece (Dimoyiannis 2009). Such conflicting effects of rainfall seasonality on aggregate
487 dynamics could explain why fertility and MAP, but not season, were consistently related to
488 accumulation of occluded-debris SOC in our analysis.

489 If occluded-debris SOC is derived primarily from free-debris SOC, then processes that
490 increase the mass of the free-debris SOC fraction in fertile sites could in turn increase the mass
491 of the occluded-debris SOC fraction. Such processes could include increased root turnover
492 (Ostertag 2001; Jourdan et al. 2008) or faster initial decomposition of less complex or more
493 nutrient-rich leaf litter in fertile sites. Forests in both Panama (Umaña et al. 2020) and the
494 Brazilian Amazon (Fyllas et al. 2009) have been shown to have leaves with traits favoring faster
495 decomposition in more fertile sites. Another study in Panama found that early leaf litter
496 decomposition rates varied widely among species (Dale et al. 2015), so a fertility-induced
497 community shift to tree species with faster-decomposing litter is plausible, although Dale et al.

498 (2015) interestingly did not find direct effects of leaf nutrient concentrations on decomposition
499 rate.

500

501 *Soluble C associated with SOC fractions*

502 Fraction soluble C (mg C soluble / g C in fraction) released during the isolation of free-
503 debris SOC was much greater in the wet season than in the dry season, suggesting a more
504 advanced stage of decomposition in the wet season for this fraction and perhaps for the bulk soil
505 overall (Gmach et al. 2020). This is supported by much higher rates of soil respiration during the
506 wet season at these sites (Cusack et al. 2019). Free-debris SOC is considered the most mobile of
507 these fractions (Swanson et al. 2005), and previous work in Panama has also shown that soluble
508 C released while isolating this fraction is greater than that for the mineral-associated SOC
509 fraction (Cusack et al. 2018a). More soluble C was released during the isolation of occluded-
510 debris SOC than for free-debris SOC, suggesting that occluded-debris SOC is more highly
511 decomposed than free-debris SOC, and that occlusion within aggregates can allow for
512 accumulation of this more mobile SOC fraction. This supports findings from a review of
513 temperate soil C stabilization (Lützow et al. 2006) and an incubation experiment using soils from
514 a temperate forest in Germany (Angst et al. 2017).

515 Total soluble C (mg C soluble / g bulk soil) from the mineral-associated SOC fraction
516 and from bulk soil was greater in fertile sites than infertile sites, especially at low MAP. This
517 pattern was apparently driven by increased solubility of mineral-associated SOC in fertile sites.
518 We suggest that factors related to soil fertility, such as soil mineralogy, might influence the
519 nature of organo-mineral associations, leading to a more dynamic mineral-associated SOC
520 fraction in fertile soils. In particular, in our study sites, changes in soil fertility are associated

521 with soil weathering status, thus, the less weathered, more fertile soils examined in this study
522 may have lower availability of secondary clays and sesquioxides (Cusack and Turner 2020).
523 These chemical factors can accumulate with weathering and strongly bind organic matter, as
524 found by (Oh and Richter 2005) in the southeastern United States, perhaps accounting for the
525 decreased soluble C we observed in infertile soils.

526 Fraction soluble C (mg C soluble / g C in fraction) was lowest for the mineral-associated
527 SOC fraction, consistent with the idea that this SOC fraction is relatively stable. At the same
528 time, the solubility of some mineral-associated SOC indicates that a portion of this fraction is
529 dynamic. This is consistent with previous studies showing rapid accumulation of SOC in this
530 fraction with N addition in Puerto Rico (Cusack et al. 2011) losses of mineral-associated SOC on
531 decadal timescales with litter removal in Panama (Cusack et al. 2018a), and rapid cycling of ~7%
532 of this fraction in a California grassland (Torn et al. 2013). Together, these studies support a
533 shifting paradigm in which the mineral-associated SOC fraction has a much more dynamic
534 component than previously thought.

535

536 *Conclusions*

537 We examined spatial and temporal patterns of four SOC fractions across landscape-scale
538 variation in seasonality, soil fertility, and MAP for 14 distinct lowland tropical moist forests in
539 Panama. Mineral-associated SOC increased with MAP in infertile sites and in the wet season,
540 suggesting more stable sorption dynamics in wetter and infertile tropical soils. This could be
541 related to soil mineralogy, decomposition patterns, and/or differences in plant tissue chemistry
542 across our sites. The mechanisms driving this pattern merit further investigation. We also
543 observed strong seasonal effects on the free-debris SOC fraction, which accumulated during the

544 dry season, reflecting large increases in litterfall. The occluded-debris SOC fraction varied
545 primarily with soil fertility and MAP, showing large increases in a subset of fertile sites. The
546 lack of a seasonal effect on the occluded-debris SOC fraction was surprising, given prior studies
547 and the large seasonal shift in the free-debris SOC fraction. Overall, these results highlight the
548 importance of MAP and seasonality in driving the physical and chemical nature of tropical forest
549 SOC, and the interacting influence of soil fertility. These results improve our understanding of
550 the variation in SOC across tropical forests, and could be used to advance prediction of how
551 changes in rainfall might alter SOC storage in tropical forest soils.

552

553 **Tables**

554

555 **Table 1.** Baseline characteristics of study sites, compiled from (Turner and Engelbrecht 2011;
556 Condit et al. 2013; Cusack et al. 2018b; Turner et al. 2018; Cusack et al. 2019). Fertility index is
557 abbreviated as follows: F, fertile; I, infertile.

558

559 **Table 2.** Effects of fertility and MAP on fraction C and N concentrations, C:N ratios,
560 contributions to soil C and N stocks, and proportional soluble C and N. For each response
561 variable, values within a SOC fraction marked with the same letter are not significantly different
562 at the $P < 0.05$ level according to Fisher's LSD test.

563

564 **Supplementary Tables**

565

566 **Table S1.** Results from ANOVA and contrasts analysis of the effects of season, soil fertility
567 index (“Fertility”), and MAP range (“MAP”) and their interactions on response variables relating
568 to density fraction contributions to (A) soil C and (B) soil N. Each row corresponds to one
569 response variable. Mineral-associated SOC proportions of soil mass, C, and N are omitted
570 because they are not independent of the corresponding debris fraction proportions, which are
571 considered to drive these patterns. For bulk density, we had just one measurement per site and
572 season, so we analyzed it by three-way ANOVA with season, fertility, and MAP as fixed effects.
573 Statistically significant terms are marked as follows in the cells to the right of the described
574 response; non-significant terms are left blank. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$. For season
575 and fertility, directions of significant effects are shown and abbreviated D, dry season; W, wet
576 season; F, fertile soils; I, infertile soils.

577

578 **Table S2.** Statistical results as in Table S1, using raw data not standardized for seasonal changes
579 in bulk density.

580

581 **Table S3.** Results from model selection and multiple regression procedure to identify important
582 predictors of density fraction contributions to soil C. Each row corresponds to one response
583 variable. Predictors included in the minimum adequate model are marked with an X, as well as +
584 or – to indicate a positive or negative relationship, except for the effect of season which is
585 marked D>W for variables greater in the dry season than the wet season, and W>D for variables
586 greater in the wet season than the dry season. Significant results from multiple regression of each
587 response against the selected predictors are appended to the X as follows: * $P < 0.05$, ** $P <$
588 0.01 , *** $P < 0.001$.

589

590 **Table S4.** Effects of season and MAP on fraction carbon and nitrogen concentrations (%), C:N
591 ratio, contributions to soil C and N stocks, and proportional soluble C and N. For each response
592 variable, values within a fraction marked with the same letter are not significantly different at the
593 $P < 0.05$ level according to Fisher's LSD test.

594

595 **Table S5.** Effects of season and fertility on fraction carbon and nitrogen concentrations (%), C:N
596 ratio, contributions to soil C and N stocks, and proportional soluble C and N. For each response
597 variable, values within a fraction marked with the same letter are not significantly different at the
598 $P < 0.05$ level according to Fisher's LSD test.

599

600 **Figures**

601

602 **Figure 1.** A map showing the 14 study sites across rainfall and geological gradients in central
603 Panama, extending from the drier Pacific coast in the south to the wetter Caribbean coast in the
604 north. Colors represent different geological substrates and formations (Fm). Soil fertility index is
605 shown as fertile (black squares) or infertile (white circles). Site names match Table 1 except for
606 Roubik, which was not included in this study. Reprinted by permission from Springer Nature
607 Customer Service Centre GmbH: Springer *Biogeochemistry* “Seasonal changes in soil respiration
608 linked to soil moisture and phosphorus availability along a tropical rainfall gradient” Daniela F.
609 Cusack et al., copyright 2019.

610

611 **Figure 2.** Effects of season and fertility on soil density fractions as (A) proportions of soil mass,
612 (B) proportions of soil C, (C) C contents, and (D) total soluble C (mg C soluble / g bulk soil).
613 Within each panel and fraction, lowercase letters inside bars show Fisher LSD means separations
614 for each fraction. In (C-D), uppercase letters above bars show Fisher LSD means separations for
615 total bulk soil C content and soluble C, respectively. Season and fertility are abbreviated as
616 follows: Dry-Fert, dry season in fertile sites; Dry-Inf, dry season in infertile sites; Wet-Fert, wet
617 season in fertile sites; Wet-Inf, wet season in infertile sites.

618

619 **Figure 3.** Effects of season and MAP on C contents of (A, B) free-debris SOC fraction, (C, D)
620 occluded-debris SOC fraction, and (E, F) mineral-associated SOC fraction, for (A, C, E) low
621 fertility sites and (B, D, F) high fertility sites. Within each panel, lowercase letters above bars
622 show Fisher LSD means separations among MAP ranges.

623

624 **Figure 4.** Soil fertility and MAP interactively affected (A, C, E, G) C concentrations and (B, D,
625 F, H) C:N ratios of (A, B) free-debris SOC fractions, (C, D) occluded-debris SOC fractions, (E,
626 F) mineral-associated SOC fractions, and (G, H) bulk soil. Within each panel, lowercase letters
627 inside bars show Fisher LSD means separations for each combination of fertility and MAP
628 range, and uppercase letters above pairs of bars show Fisher LSD means separations among
629 MAP ranges.

630

631 **Figure 5.** Effects of fertility and MAP on soluble C extracted while isolating (A, B) free-debris
632 SOC fractions, (C, D) occluded-debris SOC fractions, (E, F) mineral-associated SOC fractions,
633 and calculated for (G,H) bulk soil. These are expressed as (A, C, E, G) (mg C soluble / g C in

634 fraction) and (B, D, F, H) total soluble C (mg C soluble / g bulk soil). Within each panel,
635 lowercase letters inside bars show Fisher LSD means separations for each combination of
636 fertility and MAP range, and uppercase letters above pairs of bars show Fisher LSD means
637 separations among MAP ranges.

638

639 **Supplementary Figures**

640

641 **Figure S1.** Depth profile data from Cusack et al. (2011), Cusack and Turner (2020), and Finstad
642 et al. (in prep), and logarithmic fits used to standardize data for seasonal changes in bulk density.
643 (A, C, E) Fraction proportions of soil mass and (B, D, F) fraction C concentrations are plotted
644 against soil depth for (A, B) free-debris SOC, (C, D) occluded-debris SOC, and (E, F) mineral-
645 associated SOC fractions. Because each measurement of fraction mass or C concentration was
646 measured for a depth interval (e.g. 0-10 cm) rather than a specific depth, we used the midpoints
647 of each depth interval (e.g. 5 cm) for plotting and fitting.

648

649 **Figure S2.** Season and MAP interactively affected soluble C extracted while isolating (A, B)
650 free-debris SOC, (C, D) occluded-debris SOC, (E, F) mineral-associated SOC, and (G,H) bulk
651 soil. These are expressed as (A, C, E, G) (mg C soluble / g C in fraction) and (B, D, F, H) total
652 soluble C (mg C soluble / g bulk soil). Within each panel, lowercase letters inside bars show
653 Fisher LSD means separations for each combination of season and MAP range, and uppercase
654 letters above pairs of bars show Fisher LSD means separations among MAP ranges.

655

656 **Figure S3.** Season and soil fertility interactively affected soluble C extracted while isolating (A,
657 B) free-debris SOC, (C, D) occluded-debris SOC, (E, F) mineral-associated SOC, and (G) bulk
658 soil. These are expressed as (A, C, E, G) (mg C soluble / g C in fraction) and (B, D, F, H) total
659 soluble C (mg C soluble / g bulk soil). Within each panel, lowercase letters inside bars show
660 Fisher LSD means separations for each combination of fertility and MAP range, and uppercase
661 letters above pairs of bars show Fisher LSD means separations among MAP ranges.

662

663 **Online Resource 1:** Raw data produced and analyzed in this study.

664

665 **Online Resource 2:** R code used for calculations and data analysis in this study.

666

667 **Acknowledgments**

668 Funding was provided by NSF GSS grant #BCS-1437591 and DOE grant DE-SC0015898 to D.
669 F. Cusack. We thank B. L. Turner for help selecting and characterizing sites and for providing
670 constructive comments on the manuscript, and we thank Lucas Lu, Emma Friedl, Yun Choi,
671 Amanda Lai, Shirley Lin, Dayana Agudo, and Aleksandra Bielnicka for laboratory support.

672 **References**

673

674 Angst G, Messinger J, Greiner M, et al (2018) Soil organic carbon stocks in topsoil and subsoil
675 controlled by parent material, carbon input in the rhizosphere, and microbial-derived
676 compounds. *Soil Biology and Biochemistry* 122:19–30. doi: 10.1016/j.soilbio.2018.03.026

677 Angst G, Mueller KE, Kögel-Knabner I, et al (2017) Aggregation controls the stability of lignin
678 and lipids in clay- sized particulate and mineral associated organic matter. *Biogeochemistry*
679 132:307–324. doi: 10.1007/s10533-017-0304-2

680 Baldock JA, Skjemstad JO (2000) Role of the soil matrix and minerals in protecting natural
681 organic materials against biological attack. *Organic Geochemistry* 31:697–710.

682 Boisier JP, Ciais P, Ducharne A, Guimbertea M (2015) Projected strengthening of Amazonian
683 dry season by constrained climate model simulations. *Nature Climate Change* 5:656–660.
684 doi: 10.1038/nclimate2658

685 Camenzind T, Hättenschwiler S, Treseder KK, et al (2018) Nutrient limitation of soil microbial
686 processes in tropical forests. *Ecol Monogr* 88:4–21. doi: 10.1002/ecm.1279

687 Ciais P, Sabine C, Govindasamy B, et al (2013) Chapter 6: Carbon and Other Biogeochemical
688 Cycles. In: Stocker T, Qin D, Plattner G-K (eds) *Climate Change 2013 The Physical Science*
689 Basis. Cambridge, UK,

690 Condit R, Engelbrecht BMJ, Pino D, et al (2013) Species distributions in response to individual
691 soil nutrients and seasonal drought across a community of tropical trees. *Proceedings of the*
692 *National Academy of Sciences* 110:5064–5068. doi: 10.1073/pnas.1218042110

693 Cusack DF, Ashdown D, Dietterich LH, et al (2019) Seasonal changes in soil respiration linked
694 to soil moisture and phosphorus availability along a tropical rainfall gradient.
695 *Biogeochemistry* 10:9–22. doi: 10.1007/s10533-019-00602-4

696 Cusack DF, Halterman SM, Tanner EVJ, et al (2018a) Decadal-scale litter manipulation alters
697 the biochemical and physical character of tropical forest soil carbon. *Soil Biology and*
698 *Biochemistry* 124:199–209. doi: 10.1016/j.soilbio.2018.06.005

699 Cusack DF, Karpman J, Ashdown D (2016) Global change effects on humid tropical forests:
700 Evidence for biogeochemical and biodiversity shifts at an ecosystem scale. *Reviews of*
701 doi: 10.1002/(ISSN)1944-9208

702 Cusack DF, Markesteijn L, Condit R, et al (2018b) Soil carbon stocks across tropical forests of
703 Panama regulated by base cation effects on fine roots. *Biogeochemistry* 137:253–266. doi:
704 10.1007/s10533-017-0416-8

705 Cusack DF, Silver WL, Torn MS, McDowell WH (2011) Effects of nitrogen additions on above-
706 and belowground carbon dynamics in two tropical forests. 104:203–225. doi:
707 10.1007/s10533-010-9496-4

708 Cusack DF, Turner BL (2020) Fine Root and Soil Organic Carbon Depth Distributions are
709 Inversely Related Across Fertility and Rainfall Gradients in Lowland Tropical Forests.
710 *Ecosystems* 1–18. doi: 10.1007/s10021-020-00569-6

711 Dale SE, Turner BL, Bardgett RD (2015) Isolating the effects of precipitation, soil conditions,
712 and litter quality on leaf litter decomposition in lowland tropical forests. *Plant Soil* 394:225–
713 238. doi: 10.1007/s11104-015-2511-8

714 Dimoysiannis D (2009) Seasonal soil aggregate stability variation in relation to rainfall and
715 temperature under Mediterranean conditions. *Earth Surf Process Landforms* 34:860–866.
716 doi: 10.1002/esp.1785

717 Engelbrecht BMJ, Comita LS, Condit R, et al (2007) Drought sensitivity shapes species
718 distribution patterns in tropical forests. *Nature* 447:80–82. doi: 10.1038/nature05747

719 Eusterhues K, Rumpel C, Kleber M, Kögel-Knabner I (2003) Stabilisation of soil organic matter
720 by interactions with minerals as revealed by mineral dissolution and oxidative degradation.
721 *Organic Geochemistry* 34:1591–1600. doi: 10.1016/j.orggeochem.2003.08.007

722 Feng X, Porporato A, Rodriguez-Iturbe I (2013) Changes in rainfall seasonality in the tropics.
723 *Nature Climate Change* 3:811–815. doi: 10.1038/nclimate1907

724 Field C, Behrenfeld M, Randerson J, Falkowski P (1998) Primary production of the biosphere:
725 integrating terrestrial and oceanic components. *Science* 281:237–240.

726 Fyllas NM, Patiño S, Baker TR, et al (2009) Basin-wide variations in foliar properties of
727 Amazonian forest: phylogeny, soils and climate. *Biogeosciences* 6:2677–2708.

728 García-Oliva F, Sveshtarova B, Oliva M (2003) Seasonal effects on soil organic carbon
729 dynamics in a tropical deciduous forest ecosystem in western Mexico. *Soil Biology &*
730 *Biochemistry* 19:179–188. doi: 10.1017/S0266467403003201

731 Glaser B, Balashov E, Haumaier L, et al (2000) Black carbon in density fractions of
732 anthropogenic soils of the Brazilian Amazon region. *Organic Geochemistry* 31:669–678.

733 Gmach MR, Cherubin MR, Kaiser K, Cerri CEP (2020) Processes that influence dissolved
734 organic matter in the soil: a review. *Sci agric (Piracicaba, Braz)* 77:127–10. doi:
735 10.1590/1678-992x-2018-0164

736 Holdridge L, Grenke W, Hatheway W, et al (1971) Forest environments in tropical life zones.
737 Pergamon Press, New York

738 Jandl R, Lindner M, Vesterdal L, et al (2007) How strongly can forest management influence
739 soil carbon sequestration? *Geoderma* 137:253–268. doi: 10.1016/j.geoderma.2006.09.003

740 Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation
741 to climate and vegetation.

742 Joetzjer E, Douville H, Delire C, Ciais P (2013) Present-day and future Amazonian precipitation
743 in global climate models: CMIP5 versus CMIP3. *Clim Dyn* 41:2921–2936. doi:
744 10.1007/s00382-012-1644-1

745 Johnson NC, Wilson GWT, Bowker MA, et al (2010) Resource limitation is a driver of local
746 adaptation in mycorrhizal symbioses. *Proceedings of the National Academy of Sciences*
747 107:2093–2098. doi: 10.1073/pnas.0906710107

748 Jourdan C, Silva EV, Gonçalves JLM, et al (2008) Fine root production and turnover in Brazilian
749 Eucalyptus plantations under contrasting nitrogen fertilization regimes. *Forest Ecology and*
750 *Management* 256:396–404. doi: 10.1016/j.foreco.2008.04.034

751 Kaiser K (2003) Sorption of natural organic matter fractions to goethite (α -FeOOH): effect of
752 chemical composition as revealed by liquid-state ^{13}C NMR and wet-chemical analysis.
753 *Organic Geochemistry* 34:1569–1579. doi: 10.1016/S0146-6380(03)00120-7

754 Kaiser M, Berhe AA (2014) How does sonication affect the mineral and organic constituents of
755 soil aggregates?-A review. *J Plant Nutr Soil Sci* 177:479–495. doi: 10.1002/jpln.201300339

756 Kaiser K, Zech W (1999) Release of natural organic matter sorbed to oxides and a subsoil. *Soil*
757 *Science Society of America Journal* 63:1157–1166. doi: 10.2136/sssaj1999.6351157x

758 Kharin VV, Zwiers FW, Zhang X (2007) Changes in temperature and precipitation extremes in
759 the IPCC ensemble of global coupled model simulations. *J Climate*. doi:
760 10.1175/JCLI4066.1

761 Kleber M, Eusterhues K, Keiluweit M, et al (2015) Mineral-Organic Associations: Formation,
762 Properties, and Relevance in Soil Environments. Elsevier Ltd

763 Lützow von M, Kögel-Knabner I, Ekschmitt K, et al (2006) Stabilization of organic matter in
764 temperate soils: mechanisms and their relevance under different soil conditions - a review.
765 *European Journal of Soil Science* 57:426–445. doi: 10.1111/j.1365-2389.2006.00809.x

766 Magrin GO, Marengo JA, Boulanger J-P, et al (2014) Central and South America. In: Barros VR,
767 Field CB, Dokken DJ, et al. (eds) *Climate Change Impacts, Adaptation, and Vulnerability.*
768 *Part B Regional Aspects, Contribution of Working Group II to the Fifth Assessment Report*
769 *on the Intergovernmental Panel on Climate Change*. Cambridge, UK and New York, NY,
770 USA, pp 1499–1566

771 Marin-Spiotta E, Silver WL, Swanston CW, Ostertag R (2009) Soil organic matter dynamics
772 during 80 years of reforestation of tropical pastures. *Glob Change Biol* 15:1584–1597. doi:
773 10.1111/j.1365-2486.2008.01805.x

774 Marín-Spiotta E, Swanston CW, Torn MS, et al (2008) Chemical and mineral control of soil
775 carbon turnover in abandoned tropical pastures. *Geoderma* 143:49–62. doi:
776 10.1016/j.geoderma.2007.10.001

777 Mora JL, Guerra JA, Armas-Herrera CM, et al (2014) Storage and depth distribution of organic

778 carbon in volcanic soils as affected by environmental and pedological factors. *Catena*
779 123:163–175. doi: 10.1016/j.catena.2014.08.004

780 Noguez AM, Escalante AE, Forney LJ, et al (2008) Soil aggregates in a tropical deciduous
781 forest: effects on C and N dynamics, and microbial communities as determined by t-RFLPs.
782 *Biogeochemistry* 89:209–220. doi: 10.1007/s10533-008-9214-7

783 Nottingham AT, Hicks LC, Ccahuana AJQ, et al (2018) Nutrient limitations to bacterial and
784 fungal growth during cellulose decomposition in tropical forest soils. 54:219–228. doi:
785 10.1007/s00374-017-1247-4

786 Nottingham AT, Turner BL, Stott AW, Tanner EVJ (2015) Nitrogen and phosphorus constrain
787 labile and stable carbon turnover in lowland tropical forest soils. 80:26–33. doi:
788 10.1016/j.soilbio.2014.09.012

789 Nottingham AT, Turner BL, Winter K, et al (2013) Root and arbuscular mycorrhizal mycelial
790 interactions with soil microorganisms in lowland tropical forest. *FEMS Microbiol Ecol*
791 85:37–50. doi: 10.1111/1574-6941.12096

792 Oh N-H, Richter DD (2005) Elemental translocation and loss from three highly weathered soil–
793 bedrock profiles in the southeastern United States. *Geoderma* 126:5–25. doi:
794 10.1016/j.geoderma.2004.11.005

795 Ostertag R (2001) Effects of nitrogen and phosphorus availability on fine-root dynamics in
796 Hawaiian montane forests. *Ecology* 82:485–499.

797 Phillips RP, Brzostek E, Midgley MG (2013) The mycorrhizal-associated nutrient economy: a
798 new framework for predicting carbon-nutrient couplings in temperate forests. *New*
799 *Phytologist* 199:41–51. doi: 10.1111/nph.12221

800 Pyke CR, Condit R, Aguilar S, Lao S (2001) Floristic composition across a climatic gradient in a
801 neotropical lowland forest. *Journal of Vegetation Science* 12:553–566.

802 Quesada CA, Lloyd J, Anderson LO, et al (2011) Soils of Amazonia with particular reference to
803 the RAINFOR sites. *Biogeosciences* 8:1415–1440. doi: 10.5194/bg-8-1415-2011

804 Reis Ferreira dos C, da Silva Neto EC, Pereira MG, et al (2020) Dynamics of soil aggregation
805 and organic carbon fractions over 23 years of no-till management. *Soil & Tillage Research*
806 198:104533. doi: 10.1016/j.still.2019.104533

807 Rodell M, Famiglietti JS, Wiese DN, et al (2018) Emerging trends in global freshwater
808 availability. *Nature Publishing Group* 557:651–659. doi: 10.1038/s41586-018-0123-1

809 Rohr T, Manzoni S, Feng X, et al (2013) Effect of rainfall seasonality on carbon storage in
810 tropical dry ecosystems. *J Geophys Res Biogeosci* 118:1156–1167. doi: 10.1002/jgrg.20091

811 Roychand P, Marschner P (2014) Respiration and sorption of water-extractable organic carbon
812 as affected by addition of Ca²⁺, isolated clay or clay-rich subsoil to sand. *Pedosphere* 24:98–

813 106.

814 Santiago LS (2009) Can growth form classification predict litter nutrient dynamics and
815 decomposition rates in lowland wet forest? *Biotropica* 42:72–79. doi: 10.1111/j.1744-
816 7429.2009.00604.x

817 Santiago LS, Mulkey SS (2005) Leaf productivity along a precipitation gradient in lowland
818 Panama: patterns from leaf to ecosystem. *Trees* 19:349–356. doi: 10.1007/s00468-004-0389-
819 9

820 Schmidt MWI, Torn MS, Abiven S, et al (2011) Persistence of soil organic matter as an
821 ecosystem property. *Nature* 478:49–56. doi: 10.1038/nature10386

822 Schulp CJ, Nabuurs G-J, Verburg PH, de Waal RW (2008) Effect of tree species on carbon
823 stocks in forest floor and mineral soil and implications for soil carbon inventories. *Forest
824 Ecology and Management* 256:482–490. doi: 10.1016/j.foreco.2008.05.007

825 Schwarz G (1978) Estimating the dimension of a model. *The Annals of Statistics* 6:461–464.

826 Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing
827 climate. *Nature Geoscience* 1:21–24.

828 Sheldrake M, Rosenstock NP, Revillini D, et al (2017) A phosphorus threshold for
829 mycoheterotrophic plants in tropical forests. 284:20162093–20162099. doi:
830 10.1098/rspb.2016.2093

831 Singh M, Sarkar B, Biswas B, et al (2016) Adsorption-desorption behavior of dissolved organic
832 carbon by soil clay fractions of varying mineralogy. *Geoderma* 280:47–56. doi:
833 10.1016/j.geoderma.2016.06.005

834 Sollins P, Glassman CA, Paul EA, et al (1999) Soil carbon and nitrogen: pools and fractions. In:
835 Sollins P (ed) *Standard Soil Methods for Long-term Ecological Research*. New York, NY,

836 Sollins P, Swanston C, Kleber M, et al (2006) Organic C and N stabilization in a forest soil:
837 Evidence from sequential density fractionation. *Soil Biology and Biochemistry* 38:3313–
838 3324. doi: 10.1016/j.soilbio.2006.04.014

839 Stewart R, Stewart J, Woodring W (1980) Geologic map of the Panama Canal and vicinity,
840 Republic of Panama.

841 Swanston CW, Torn MS, Hanson PJ, et al (2005) Initial characterization of processes of soil
842 carbon stabilization using forest stand-level radiocarbon enrichment. *Geoderma* 128:52–62.
843 doi: 10.1016/j.geoderma.2004.12.015

844 Swift RS (1996) Organic matter characterization. In: Sparks DL (ed) *Methods of Soil Analysis:*
845 *Part 3: Chemical Methods*. Soil Science Society of America, Madison, WI, pp 1011–1069

846 Tanner EVJ, Sheldrake MWA, Turner BL (2016) Changes in soil carbon and nutrients following

847 6 years of litter removal and addition in a tropical semi-evergreen rain forest. Biogeosciences
848 13:6183-6190. doi: 10.5194/bg-13-6183-2016

849 Tedersoo L, Bahram M (2019) Mycorrhizal types differ in ecophysiology and alter plant
850 nutrition and soil processes. Biol Rev 94:1857–1880. doi: 10.1111/brv.12538

851 Todd-Brown KEO, Randerson JT, Hopkins F, et al (2014) Changes in soil organic carbon
852 storage predicted by Earth system models during the 21st century. Biogeosciences 11:2341–
853 2356. doi: 10.5194/bg-11-2341-2014

854 Torn MS, Kleber M, Zavaleta ES, et al (2013) A dual isotope approach to isolate soil carbon
855 pools of different turnover times. Biogeosciences 10:8067–8081. doi: 10.5194/bg-10-8067-
856 2013

857 Torn MS, Trumbore SE, Chadwick OA, Vitousek PM (1997) Mineral control of soil organic
858 carbon storage and turnover. Nature 389:170–173.

859 Trumbore SE (1993) Comparison of carbon dynamics in tropical and temperate soils using
860 radiocarbon measurements. Global Biogeochem Cycles 7:275–290.

861 Trumbore SE, Zheng S (1996) Comparison of fractionation methods for soil organic matter ^{14}C
862 analysis.

863 Turner BL, Brenes-Arguedas T, Condit R (2018) Pervasive phosphorus limitation of tree species
864 but not communities in tropical forests. 555:367–370. doi: 10.1038/nature25789

865 Turner BL, Engelbrecht BMJ (2011) Soil organic phosphorus in lowland tropical rain forests.
866 Biogeochemistry 103:297–315. doi: 10.1007/s10533-010-9466-x

867 Turner BL, Yavitt JB, Harms KE, Garcia MN, Wright SJ (2015) Seasonal changes in soil
868 organic matter after a decade of nutrient addition in a lowland tropical forest.
869 Biogeochemistry 123:221–235. doi: 10.1007/s10533-014-0064-1

870 Umaña MN, Condit R, Pérez R, et al (2020) Shifts in taxonomic and functional composition of
871 trees along rainfall and phosphorus gradients in central Panama. Journal of Ecology 1:260–
872 11. doi: 10.1111/1365-2745.13442

873 Wiesmeier M, Urbanski L, Hobley E, et al (2019) Soil organic carbon storage as a key function
874 of soils - A review of drivers and indicators at various scales. Geoderma 333:149–162. doi:
875 10.1016/j.geoderma.2018.07.026

876 Windsor DM, Rand AS, Rand WM (1990) Características de la Precipitación de la Isla de Barro
877 Colorado. In: Leigh EG Jr, Rand AS, Windsor DM (eds) *Ecología de un bosque tropical:
878 ciclos estacionales y cambios a largo plazo*. Balboa, Rep. of Panama, pp 53–71

879 Xie S-P, Deser C, Vecchi GA, et al (2010) Global Warming Pattern Formation: Sea Surface
880 Temperature and Rainfall. J Climate 23:966–986. doi: 10.1175/2009JCLI3329.1

