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ABSTRACT

Thermal tomography (TT) is a computational method for the reconstruction of depth profile of the internal material defects from
Pulsed Infrared Thermography (PIT) nondestructive evaluation. The PIT method consists of recording material surface temperature
transients with a fast frame infrared camera, following thermal pulse deposition on the material surface with a flashlamp and heat diffu-
sion into material bulk. TT algorithm obtains depth reconstructions of thermal effusivity, which has been shown to provide visualization
of the subsurface internal defects in metals. In many applications, one needs to determine the defect shape and orientation from recon-
structed effusivity images. Interpretation of TT images is non-trivial because of blurring, which increases with depth due to the heat dif-
fusion-based nature of image formation. We have developed a deep learning convolutional neural network (CNN) to classify the size
and orientation of subsurface material defects in TT images. CNN was trained with TT images produced with computer simulations of
2D metallic structures (thin plates) containing elliptical subsurface voids. The performance of CNN was investigated using test TT
images developed with computer simulations of plates containing elliptical defects, and defects with shapes imported from scanning
electron microscopy images. CNN demonstrated the ability to classify radii and angular orientation of elliptical defects in previously
unseen test TT images. We have also demonstrated that CNN trained on the TT images of elliptical defects is capable of classifying the
shape and orientation of irregular defects.

Published by AIP Publishing. https://doi.org/10.1063/5.0089072

I. INTRODUCTION

Thermal tomography (TT) is a computationally lightweight
method for material depth reconstructions from pulsed infrared ther-
mography (PIT) nondestructive evaluation (NDE) measurements.1–4

Pulsed or flash thermography is an active thermography method,
in which a thermal pulse is deposited on a material surface with
a flashlamp, and as heat diffuses into the material bulk, surface
temperature transients are recorded with a fast frame infrared
camera.5–8 Internal defects have thermal diffusivity that differs
from the surrounding material matrix. As a result, their presence
in a material results in relatively slower local surface temperature
decay. Thus, information about internal defects can be obtained

from measurements of a material’s surface temperature tran-
sients. Although resolution in PIT is limited due to diffusion-
based imaging, PIT offers several potential advantages as mea-
surements are one-sided, non-contact, and scalable to arbitrary
size structures.9 While there exist other approaches to active ther-
mography, such as lock-in thermography or flying spot thermog-
raphy, PIT has the advantage of relative simplicity of
experimental measurements.10–13 Using PIT data, the TT algo-
rithm obtains a depth profile of the material by constructing a
spatial thermal effusivity matrix (function of spatial coordinates
only) from the data cube of sequentially recorded surface temper-
atures (function of spatial and time coordinates).
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The need to image and quantify defects (size, shape, and ori-
entation) arises in a number of applications. In prior work, quanti-
tative imaging of delamination defects in layered ceramic and metal
composite structures used TT.3,4 More recently, TT was used to
image subsurface defects in additively manufactured (AM)
metals.1,2 The challenge of quantitative NDE in AM of metals is
the detection and characterization of internal pores (air voids),
which appear due to intrinsic features of the laser powder-bed
fusion (LPBF) process.14–18 lPBF is the primary method for AM of
high-strength, corrosion-resistant high melting temperature alloys,
such as stainless-steel 316L (SS316L) and Inconel 718 (IN718).19,20

Typical porosity defects observed in LPBF manufacturing consist of
microscopic spheroidal-shape keyhole pores caused by excessive
laser power, irregular-shape lack of fusion (LOF) pores caused by
insufficient laser power, and spherical gas pores caused by gas
trapped in the solidifying melt pool. In prior studies, we demon-
strated the capability of TT to image calibrated defects in stainless-
steel 316L (SS316L) and Inconel 718 (IN718).1,2 The defects con-
sisted of hemispherical regions containing un-sintered powder
imprinted into metallic specimens during LPBF manufacturing and
flat bottom hole (FBH) indentations in metallic specimens. The
likelihood of fatigue crack initiation in AM metals depends on
factors such as the size and shapes of pores, proximity to the
surface, and orientation relative to the surface plane.21,22 While TT
provides the capability of visualizing defects, the interpretation of
TT images of thermal effusivity is non-trivial because of blurring,
which increases with depth.

In this work, we develop a machine learning capability to
automatically extract features from the TT images of thermal effu-
sivity.23 Our approach is based on supervised learning with a deep
learning convolutional neural network (CNN). The performance of
CNN is investigated in the classification of simulated thermal effu-
sivity images, which are generated with computer simulations of
PIT, using heat transfer calculations in the 2D structures and TT
algorithm reconstructions. The CNN is trained on a database of
simulated thermal effusivity images of metallic plates containing
elliptical subsurface air voids, which are characterized by semi-
major and semi-minor radii and angular orientation. We demon-
strate the CNN’s capability to extract radii and angular orientation
of the elliptical defects by testing the CNN with thermal effusivity
images which are different from the CNN training data. In addi-
tion, we show that a CNN trained on elliptical defects is capable of
classifying irregular-shaped defects that actually occur in LPBF
metals. Thermal effusivity images of irregular defects are generated
using TT reconstructions of simulated PIT data for 2D structures
with defect shapes extracted from scanning electron microscopy
(SEM) images of stainless-steel sections printed with LPBF. To
show that the CNN is capable of classifying these irregular defects,
we compare CNN results to the radii and angular orientation of the
irregular defect’s equivalent ellipse. The ability of our CNN to clas-
sify irregular defects is advantageous for future applications of this
method, as training the CNN on irregular defects would require an
excessively large database of measurements.

A number of different approaches for the analysis of PIT data
defects have been proposed in the literature. Some of the recently
discussed approaches include the model, virtual wave, and machine
learning-based methods. In one model-based approach, an analytical

model was developed for the characterization of spheres and cylin-
ders.24 However, this method is limited to canonically shaped
defects. Another model-based approach proposes the construction of
computational finite-difference models to characterize defects.25 An
additional model is based on thermographic signal reconstruction
(TSR). This method involves curve fitting for temperature transient
signals based on Newton’s law of cooling.26 Fitting transient temper-
ature data were accomplished using the Gauss–Newton algorithm
and storing the estimated polynomial coefficients for each tempera-
ture signal. However, this approach may result in partial loss of
information in reconstruction. An approach based on the virtual
wave concept has been proposed. In this approach, a local transfor-
mation kernel converts “thermal waves” (observed thermographic
data) into virtual acoustic waves.27,28 Virtual acoustic waves are then
analyzed using ultrasound reconstruction algorithms to eliminate the
virtual time dimension. One such algorithm is the frequency domain
synthetic aperture focusing technique. In practice, the thermal to
ultrasonic conversion process increases the algorithm runtime and
potentially leads to the loss of information in thermographic images.
A recently proposed approach combined virtual waves with machine
learning to enhance performance.29 A number of supervised and
unsupervised machine learning approaches were proposed recently,
which are aimed at the detection and sizing of calibrated
defects.30–32 In our approach, the TT algorithm allows for a near
real-time visualization of material defects without a priori assump-
tions about the shape of these defects. Using a CNN to analyze the
reconstructed thermal effusivity images applies for recent advances
in deep learning33 and image processing to the classification of inter-
nal material defects.

II. DEVELOPMENT OF CONVOLUTIONAL NEURAL
NETWORK (CNN) FOR CLASSIFICATION OF DEFECTS
IN IMAGES

A. Thermal tomography reconstruction of thermal
effusivity

In the experimental PIT system, we acquire data with a labora-
tory setup consisting of a megapixel fast frame infrared (IR) camera
and flashlamp as shown in the schematic depiction in Fig. 1. A
pulse trigger signals a capacitor to discharge in a circuit containing
a white light flashlamp. The flashlamp source delivers a pulse of
thermal energy to the material surface. Heat transfer takes place
from the heated surface to the interior of the sample, resulting in a
continuous decline in surface temperature. A megapixel fast frame
IR camera records blackbody radiation to obtain time-resolved
images of surface temperature distribution T(y,z,t). The acquired
thermal-imaging data cube, therefore, consists of a series of 2D
images of the sample’s surface temperature at consecutive times. As
shown in Fig. 1, x is the depth coordinate, and y and z are coordi-
nates in the transverse plane. The reconstruction algorithm of TT
obtains thermal effusivity e(x,y,z) from time-dependent surface
temperature T(y,z,t) measurements. The reconstructed e(x) at the
location (y,z) in the plane is obtained only from the surface tem-
perature transient T(t) measured at the location (y,z).

The TT algorithm assumes that the material is a thermally
insulated deep slab, for which heat propagation can be ap-
proximated as one-dimensional along the spatial x-coordinate.
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The analytic solution for semi-infinite slabs is given as1

T(x, t) ¼ Qffiffiffiffiffiffiffiffiffiffiffi
ρckπt

p exp � x2

4αt

� �
, 0 � x � 1, (1)

where Q is the instantaneously deposited surface thermal energy
density, and α is the thermal diffusivity defined as

α ¼ k/ρc: (2)

Here, k is the thermal conductivity, ρ is the density, and c is
the specific heat. Thermal effusivity which is a measure of how
material exchanges heat with its surroundings is defined as

e ¼
ffiffiffiffiffiffiffi
ρck

p
: (3)

Following instantaneous deposition of energy on the material
surface, heat diffuses into the material bulk. One can obtain the
relationship between thermal wavefront depth inside the material x
and time t after heat deposition as1

x ¼ ffiffiffiffiffiffiffi
παt

p
: (4)

Using the analytic solution of Eq. (1) for semi-infinite slabs,
one can obtain the apparent effusivity as function time e(t),

e(t) ¼ Q

T(x ¼ 0, t)
ffiffiffiffiffi
πt

p : (5)

Spatial and temporal effusivities e(x) and e(t) are related
through a convolution integral, where 1/x is the transfer function,1,3

e(t) ¼
ðx

0

x�1e(ξ)dξ: (6)

With the help of Eq. (4), this can be transformed into a func-
tion of depth e(x), given as1

e(x) ¼ x
2Q

π
ffiffiffi
α

p d
dt

1
T(t)

� �����
t¼x2/πα

: (7)

Equation (7) shows that the spatial reconstruction of effusivity
e(x) is given as a product of depth function x and time derivative
of the inverse of surface temperature T(t) evaluated at time t, which
corresponds to depth x according to Eq. (4). To calculate e(x) at a
particular value of x, we first calculate the corresponding time
t = x2/πα and then take the time derivative of the inverse of T(t) at
this time t.

Information about material internal structure is contained in
recorded surface temperature transients T(y,z,t) because thermal
resistance of the internal structures affects the local surface temper-
ature decay rate. Reconstructed effusivity e(x,y,z) transforms this
information into a spatial domain. For example, pores have lower
thermal diffusivity compared to the rest of the solid material. This
results in slower surface temperature decay in regions above the
defects and the appearance of local temperature “hot spots.” TT
reconstruction will show regions of lower effusivity, which can be
interpreted as material defects.

B. Development of simulated thermal tomography
images of metallic plates with elliptical defects

In this work, we model the TT thermal effusivity reconstruc-
tions of 2D stainless-steel structures (thin plates) containing ellipti-
cal air voids. We use an elliptical model for the defect because
thermal imaging based on heat diffusion theoretically smooths out
any rough edges present. Thus, we anticipate that this smoothing
effect allows an arbitrarily shaped defect to be described with an
equivalent ellipse. The diagram describing the flow of the TT com-
puter simulation procedure and elliptical defect labeling is shown
in Fig. 2. The ellipse is characterized by semi-major and semi-
minor axes Rx and Ry, and angular orientation θ is measured for
counterclockwise rotation from the x axis. The x axis is along the
depth of the plate, and the y axis is along the face of the plate (con-
sistent with the specimen depiction in Fig. 1).

FIG. 1. Schematic drawing of experi-
mental pulsed infrared thermography
(PIT) data acquisition setup. Flashlamp
deposits thermal pulse on a material
sample surface. Fast frame IR camera
records surface transient temperature
as heat is diffusing into the material
bulk.
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Heat diffusion in a plate containing an elliptical defect is
modeled with 2D heat transfer using MATLAB PDE Toolbox. The
thermal pulse from the flashlamp is incident on the face of the
plate along the transverse y axis. In computer simulations, we use
the same parameters as was used in the experimental system
reported in prior publications, where Balcar ASYM 6400 delivers a
pulse of 6400 J/2 ms thermal energy to the material surface.1 The
model of a metal structure with elliptical air void is first created as
a MATLAB polyshape data structure and then turned into a com-
putational mesh. In all computer simulations, the plate has physical
dimensions of 5 × 5mm2, with mesh spatial resolution of
Δx = Δy = 10 μm, which corresponds to 500 × 500 elements in the
computational grid. The boundary conditions of the mesh are spec-
ified as insulating. For modeling of the solid plate, we use SS316L
thermophysical parameters ρ = 7954 kg/m3, k = 13.96W/mK, and
c = 499.07 J/kg.1,14,15 Thermophysical parameters of elliptical air
void are ρ=1.225 kg/m3, k = 26.24 mW/mK, and c = 1.00 kJ/kg.

As heat diffuses into the plate along the x-direction, tempera-
ture is sampled on the plate boundary along the y axis. In the
experimental laboratory system reported in prior publications,
imaging data were acquired with a FLIR x8501sc camera with
1280 × 1024 pixels and a frame rate of 180 Hz at full frame.1,14 The
frame rate can be increased at the expense of reducing the imaging
frame to maintain the information transfer rate constant (product
of the number of pixels and data acquisition rate). In prior experi-
mental work, we have observed that, in general, better performance
results are obtained for a frame rate larger than 180 Hz. For the 2D
case studied in this work, we assume that the maximum imaging
resolution along the edge of the plate is 1024 pixels at a 180 Hz
frame rate. For TT reconstructions in this paper, we used the com-
bination scaled by a factor of 3, i.e., 340 pixels at 540 Hz frame rate
(approximately 2 ms data acquisition rate). Because the number of
sampling points (340 points) is smaller than the number of grid
meshes (500 points), we interpolated surface temperature to obtain
340 measurements.

Two examples of TT effusivity reconstruction images with
computer simulations of SS316 plates containing elliptical void
defects (Rx = 160 μm, Ry = 310 μm, and θ = 0°) and (Rx = 60 μm,
Ry = 210 μm, and θ = 15°) are shown in Figs. 3(a) and 3(b), respec-
tively. Generation of TT thermal effusivity images implemented in
MATLAB takes 60 s runtime, on average, on a 2017 MacBook Pro
with MacOS Mojave. Heat transfer and effusivity reconstruction
calculations take approximately 45 and 15 s, respectively, to com-
plete. Reconstructed effusivity values are displayed as pseudocolor
images of e(x,y) in Fig. 3. Note that according to Eq. (3), the
thermal effusivity of SS316 is e≈ 7444 J⋅m−3/2⋅(mK s)−1/2, while
that of elliptical air void is e≈ 5.7 J m−3/2⋅(mK s)−1/2. However, the
values of reconstructed effusivity do not match exact material
values near sharp boundaries due to blurring caused by heat diffu-
sion. One can observe that the back edge of the plate at x = 2.5 mm
plane has an effusivity value of approximately 4000 J m−3/2⋅
(mK s)−1/2 in both Figs. 3(a) and 3(b). Any defects can be detected
by observing relative changes in effusivity within the plate. Regions
of lower effusivity give us an indication of the shape and location
of such defects, as shown in Fig. 3. The smallest effusivity values in
regions corresponding to the defects are approximately 4000 and
5000 J m−3/2⋅(mK s)−1/2 in Figs. 3(a) and 3(b), respectively.

FIG. 2. Labeling of the elliptical defect in the plate. The depth of the plate is
along the x axis, and y axis is along the front face of the plate. The semi-major
and semi-minor axes of the elliptical air void are Rx and Ry. The ellipse is
rotated by an angle θ measured counterclockwise relative to the x axis.

FIG. 3. Simulated thermal effusivity
reconstruction of SS316 plate contain-
ing elliptical void defects with parame-
ters (a) Rx = 160 μm, Ry = 310 μm,
θ = 0° and (b) Rx = 60 μm,
Ry = 210 μm, θ = 15°. Color bar units
are J m−3/2⋅(mK s)−1/2.
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C. Construction of convolutional neural network (CNN)

Using the database of TT reconstructions, we developed a
deep learning convolutional neural network (CNN) for the classifi-
cation of defects in thermal effusivity images. The flow chart of the
CNN algorithm is shown in Fig. 4. The CNN takes the effusivity
reconstruction image as an input and returns characteristic dimen-
sions Rx, Ry, and θ of the elliptical defect. To develop the CNN, we
used AutoKeras’s image classification module. We choose not to
incorporate physics-informed machine learning32 into the design of
the CNN, because in our approach, the main function of CNN is
image regression. Since image regression does not rely on the
underlying partial differential equations related to the physics of
TT image formation, in our approach, we take advantage of the
existing AutoKeras framework. AutoKeras is an automated
machine learning system based on the open-source software library
Keras. Keras is a framework through which users can construct
neural networks using Python and the TensorFlow machine learn-
ing library. AutoKeras takes the utility of Keras one step further
and fully automates the neural network constructions and optimi-
zation process. While AutoKeras has a variety of neural network
models for users to adapt, we chose to use AutoKeras’s AutoModel.
This allowed us to define our own inputs and outputs, as well as to
specify the use of convolutional layers within the framework of our
image regression network. AutoKeras infers any unspecified com-
ponents of the network structure and fine-tunes the hyperpara-
meters of the network. Thus, a majority of the network
development process is completely automated, the result being a
functioning CNN.

There are four layers in the CNN. Using AutoKeras language,
the input node is ImageInput, which means the CNN is fed images
as represented by a Python numpy array. The training and test

images in the input layer of CNN are of the same size. Following
the input node, the CNN uses two AutoKeras blocks—ConvBlock
and DenseBlock. These blocks represent layers of computations in
the CNN architecture. The ConvBlock includes convolutional and
pooling layers required for the CNN. The DenseBlock encompasses
the fully connected network following the convolutional layers. In
the CNN process, convolution layers are followed by pooling layers,
until a flattening layer compresses the data into a one-dimensional
array. Convolution layers consist of identical neurons that are con-
nected to local neurons in the previous layer. As the neuron or
filter operates on parts of the input image, its pixel values are mul-
tiplied by the filter values. This convolution operation creates a
“feature map” from the original image. This allows features of the
image to be isolated and identified. More convolution layers allow
the CNN to detect lower-level features within the image, which is
why convolution layers are usually stacked. Pooling layers—in this
case, max pooling layers—are also utilized between convolution
layers to keep the feature maps generalized. Max pooling takes the
maximum value from each segment of the feature map produced
by a given convolutional layer. Thus, pooling is necessary to ensure
that the CNN is sensitive to small translations in the input. After
flattening, this array is passed through a traditional fully connected
(dense) layer to make the final prediction. The CNN has some
advantages over a fully connected network, especially in image
analysis and classification. The CNN’s feature map makes it partic-
ularly adept at detecting subtle features in images, which is crucial
for image classification. Additionally, the CNN uses copies of the
same neuron to process data, which saves both time and memory.

The training set for CNN consisted of 300 simulated thermal
effusivity images for plates with elliptical defects with different
sizes and angular orientations. By default, AutoKeras uses 20% of
training data as validation data. The range of values for both Rx

FIG. 4. Flowchart of the CNN algorithm for classifying defects in TT thermal effusivity images. The input to CNN is the thermal effusivity image of a structure containing a
defect and the output is the set of parameters (Rx, Ry, and θ) of the elliptical defect model.
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and Ry is from 10 to 310 μm, with angular orientations θ in the
range from 0° to 45°. The training set included circles (Rx = Ry) and
ellipses (Rx≠ Ry). Computer run time for CNN training is approxi-
mately 15 min. The code was run on MacBook Pro 1300 2017,
which has i5-7360 U, which has two cores and four threads.
During the computation, 80% of the CPU load was occupied by
the user, 10% was occupied by the system, and 10% was idle.

III. CLASSIFICATION OF DEFECTS IN SIMULATED
THERMAL EFFUSIVITY IMAGES WITH CNN

A. CNN classification of elliptical defects

The test set consisted of 12 thermal effusivity images of
metallic structures with elliptical defects, which are different
from the training set of effusivity images. Parameters of elliptical
defects in test images (actual Rx, Ry, and θ) and CNN predictions
for these defects (predicted Rx, Ry, and θ) are listed for 12 test
cases labeled (a)–(l) in Table I. The test cases are listed in the
order of increasing areas of ellipses. In addition, we list the actual
and predicted aspect ratios, where an aspect ratio expressed as x:y
is defined as the ratio of the larger radius to the smaller radius of
the ellipse,

Aspect ratio ¼ max(Rx , Ry)/min(Rx , Ry): (8)

Note that the definition of rotated ellipse contains an ambigu-
ity. For example, reversing the values of Rx and Ry is equivalent to
a rotation of the ellipse by an angle—θ. Since the ellipse is repro-
duced after rotation by 180°, the following ellipses are equivalent:
(Rx, Ry, θ)=(Ry, Rx, –θ)=(Ry, Rx, π–θ). Thus, instead of a direct
comparison of the actual and predicted values of radii and angles, a
metric related to 2D space would provide a more accurate represen-
tation of CNN performance. We introduce Area Error (AE) and
Area Orientation Error (AOE) metrics for evaluating CNN perfor-
mance. We define AE as the absolute value in the difference in
areas of predicted and actual ellipses A and P, normalized by the
area of ellipse A,

AE ¼ jkAk � kPkj
kAk , (9)

where ||A|| = πRxRy is the area of the actual elliptical defect and ||
P|| is the area of the predicted ellipse. As defined in Eq. (9), the
values of the AE metric are non-negative. There is no upper bound
on the value of AE, and the minimum value of AE = 0 indicates no
error in prediction. To incorporate angular information into per-
formance metrics, we define AOE as

AOE ¼ k(A> P)ck
kAk : (10)

For the quantity in the numerator, A> P is the intersection
of A and P calculated in the sense of Venn diagrams, (A> P)c is
the complement of the intersection in the total space defined by
the union A< P, and k(A> P)ck is the area of the complement of
the intersection. As defined in Eq. (10), the values of the AOE
metric are non-negative. There is no upper bound on the value of
AOE, and the value of AOE = 0 would indicate no error in
prediction.

The values of AE and AOE metrics of CNN performance calcu-
lated for the test cases (a)–(l) CNN prediction are listed in the last
column of Table I. Computer run time for generating CNN classifica-
tion results in Table I, which is approximately one minute per test
case, when using a 2017 MacBook Pro with MacOS Mojave.

Note that the AE and AOE performance metrics of CNN for
each individual test case have been comparable. The values of both
AE and AOE metrics are smaller than 0.62 and 0.55, respectively,
indicating the good predictive ability of CNN. Larger values of AE
and AOE correlated with a larger deviation of prediction aspect
ratio from the actual one. The trends are that the error metrics AE
and AOE increase as Rx and Ry decrease or as the aspect ratio sig-
nificantly deviates from that of 1:1. The smallest errors are observed
for the test case (l), which has the largest radii in the test set, and
the smallest aspect ratio of 1.2:1. The largest errors are for the test
case (a), which has some of the smallest radii in the test set and

TABLE I. Characteristics of actual elliptical defects (Rx, Ry, and θ) and aspect ratios, and predictions made with CNN, along with performance error metrics AE and AOE.

No.

Actual Predicted Metric

Rx (μm) Ry (μm) Aspect ratio θ (°) Rx (μm) Ry (μm) Aspect ratio θ (°) AE AOE

A 40 10 4:1 0 32.8 27.4 1.2:1 −1.03 0.62 0.55
B 50 30 1.67:1 0 58.7 35.5 1.65:1 0.87 0.26 0.28
C 30 50 1.67:1 30 30.2 51.6 1.71:1 10.8 0.04 0.2
D 40 60 1.5:1 40 42.7 60.7 1.42:1 35.3 0.06 0.07
E 260 60 4.33:1 20 271.4 43.8 6.2:1 26.9 0.24 0.49
F 260 60 4.33:1 10 273.4 73.6 3.72:1 9.5 0.29 0.19
I 310 60 5.17:1 35 284.3 60.0 4.74:1 35.3 0.08 0.06
G 210 160 1.31:1 30 209.3 153.3 1.33:1 32.4 0.05 0.03
J 310 110 2.82:1 25 293.3 104.1 2.82:1 21.1 0.11 0.11
H 260 160 1.63:1 45 257.0 153.0 1.7:1 35.9 0.06 0.09
K 210 310 1.48:2 20 230.7 323.4 1.4:1 25.8 0.15 0.10
L 260 310 1.2:1 20 247 320.9 1.3:1 25.8 0.02 0.03
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one of the largest aspect ratios of 4:1. The errors AE and AOE
decrease when the aspect ratio decreases to 1.5:1, as for the test
case (d). When the aspect ratio remains close to 4:1, but the actual
radii increase, such as for the test cases (e) and (f ), the error
decreases relative to the test case (a) as well. Selected graphs of
actual and predicted ellipses, which are plotted using parameters
listed in Table I, are shown in Fig. 5. Figures 5(a) and 5(d) corre-
spond to the numbering of test cases in Table I. In each panel of
Fig. 5, actual ellipses are plotted with dashed lines, while CNN pre-
dictions are plotted with solid lines.

B. CNN classification of irregular-shape defects

Although the preceding discussion focused on elliptical defects,
pores in AM metals have arbitrary non-elliptical shapes. Our
hypothesis is that because thermal imaging smooths out sharp edges,
a CNN trained on TT images with elliptical defects is capable of
classifying irregular-shape defects. For the test of this hypothesis, we
use the SEM (scanning electron microscopy) images of actual defects
in sections of LPBF printed SS316 specimens. Two examples of such
defects are shown in Fig. 6. We use the gray scale SEM image to
obtain the contours of the defect. To characterize this defect, we use
the least-squares criterion for estimation of the best fit to an ellipse
from a given set of points in the plane. The dimensions of the two
equivalent ellipses for the defects in Figs. 6(a) and 6(b) are
(Rx = 10 μm and Ry = 37 μm) and (Rx = 43 μm and Ry = 75 μm). To

generate the TT test images, we create a MATLAB polyshape data
structure consisting of a plate containing a void with the contours of
the defect. As in the case of elliptical defects, the structure consists of
a 5 × 5mm2 SS316 plate with an air void in the shape of the con-
tours of the defect from the SEM image. Next, a computational
mesh is created to perform 2D heat transfer calculations, as
described in Sec. II B. Thermal tomography reconstructions are per-
formed according to the procedures described in Secs. II A and II B.
Different test images were generated by rotating the irregular-shaped
defects in the plane.

Six test cases, labeled (a)–(f) in Table II, were generated by
extracting the shape of the defect from the first SEM image in
Fig. 6(a) and rotating the shape by 20° for each subsequent test
case. To classify the defects in thermal effusivity images for plates
with irregular defects, the CNN attempts to interpret the defects as
ellipses and assign corresponding values of Rx, Ry, and θ. To evalu-
ate CNN performance, Table II lists the parameters for equivalent
ellipses of actual defects (actual Rx, Ry, and θ) and predictions
made with CNN (predicted Rx, Ry, and θ). Aspect ratios are calcu-
lated for equivalent and predicted ellipses using Eq. (8). Values of
the AE and AOE metrics for the evaluation of CNN performance
for equivalent and predicted ellipses in each of the six test cases in
Table II were calculated using Eqs. (9) and (10).

Comparison of the values of AE and AOE in Tables I and II
indicates that error metrics are generally higher for the test cases in
Table II. Equivalent ellipse values Rx and Ry for the irregular defect

FIG. 5. Visualization of actual ellipses
(dashed lines) and predictions with
CNN (solid) lines for the test cases[
(a)–(d)] listed in Table I.
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in Table II, which has an aspect ratio of 3.6:1, correspond closely to
the dimensions of the ellipse (a) listed in Table I and shown in
Fig. 5(a). Notably, the values of AE and AOE for the ellipse in
Fig. 5(a) are similar to the values described in Table II. The best
result for the irregular-shaped defects, according to both AE and
AOE metrics, is obtained for case (b) in Table II, while the worst
result according to both metrics is test case (e).

Visualizations of the actual and predicted defects for the SEM
image defect in Fig. 6(a) are displayed in Fig. 7. Figures 7(a)–7(f )
correspond to the numbering of test cases in Table II. In each
panel of Fig. 7, equivalent ellipses plotted with dashed lines are
overlaid with shapes of the actual defects extracted from the SEM
images. Ellipses predicted with CNN are plotted with solid lines.
One can observe that the largest prediction errors, as measured
with the AE metric, are for cases (a) and (e), in which CNN over-
predicts the sizes of the actual defects. As measured with the AOE
metric, the largest errors are for the test cases (c) and (e), for which
CNN respectively under-predicts and over-predicts the size of
actual defects. The error in prediction is smallest for the test case
(b), when the equivalent ellipse is oriented at an oblique angle to
the front of the plate (y axis).

Six test cases, labeled (a)–(f ) in Table III, were generated by
extracting the shape of the defect from the second SEM image in
Fig. 6(b) and rotating the shape by 20° for each subsequent test
case. Table III lists the parameters for equivalent ellipses of actual

defects (actual Rx, Ry, and θ), and predictions made with CNN
(predicted Rx, Ry, and θ). Aspect ratios are calculated for equivalent
and predicted ellipses using Eq. (8). Values of the AE and AOE
metrics in each of the six test cases were calculated for equivalent
and predicted ellipses using Eqs. (9) and (10).

The best performance according to both error metrics is test
case (f ), while the worst performance is for the test case (a).
Performance metrics AE and AOE for the six test cases in Table III
are smaller than those listed in Table II. In addition, predictions for
the aspect ratio for the test cases in Table III are more accurate
than those in Table II. The difference in CNN performance is likely
due to the fact that the second irregular defect is larger than the
first one, and the aspect ratio for the second defect is 1.75:1, which
is closer to 1:1 than that of 3.6:1 for the first defect. This is consis-
tent with the trends for elliptical defects reported in Table I.
Elliptical defects in the test cases (b) and (c) in Table I have aspect
ratios of 1.67:1 and radii size comparable to those in Table III. The
errors for the elliptical defects (b) and (c) in Table I are comparable
to those of the defects in Table III. Visualizations of actual and pre-
dicted ellipses for the defects in Table III are displayed in Fig. 8.
Figures 8(a)–8(f ) correspond to the numbering of test cases in
Table III. In each panel of Fig. 8, equivalent ellipses plotted with
dashed lines are overlaid with the shape of an irregular defect.
Ellipses predicted with CNN are plotted with solid lines. One can
observe that the larger errors, such as those for test cases (a) and (b),

FIG. 6. SEM images of the defects in
LPBF printed SS316 specimens. The
defects can be characterized with an
equivalent ellipses with (a) Rx = 10 μm
and Ry = 37 μm and (b) Rx = 43 μm
and Ry = 75 μm.

TABLE II. Characteristics of equivalent ellipses (Rx, Ry, and θ) of irregular-shape defects and predictions of ellipses made with CNN, along with performance metrics AE
and AOE.

No.

Actual Predicted Metric

Rx (μm) Ry (μm) Aspect ratio θ (°) Rx (μm) Ry (μm) Aspect ratio θ (°) AE AOE

A 10.3 37.2 3.61:1 18.7 26.6 33.7 1.27:1 17.1 1.34 0.59
B 10.3 37.2 3.61:1 38.7 13.7 32.2 2.35:1 28.5 0.15 0.34
C 10.3 37.2 3.61:1 58.7 6.8 33.8 5:1 51.1 0.4 0.67
D 10.3 37.2 3.61:1 78.7 14.0 39.9 2.85:1 96.2 0.46 0.47
E 10.3 37.2 3.61:1 98.7 17.7 62.8 3.55:1 102.8 1.9 0.64
F 10.3 37.2 3.61:1 118.7 17.1 34.7 2:1 103.1 0.58 0.49
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FIG. 7. Visualization of equivalent ellip-
ses (dashed lines) and predictions with
CNN (solid) lines for the irregular-shape
defects listed in Table II. Panels (a)–(f )
correspond to the numbering of test
cases in Table III. Ellipses are overlaid
on the rotated shapes extracted from
the SEM image in Fig 6(a).

TABLE III. Characteristics of equivalent ellipses (Rx, Ry, and θ) of irregular-shape defects and predictions of ellipses made with CNN, along with performance metrics.

No.

Actual Predicted Metric

Rx (μm) Ry (μm) Aspect ratio θ (°) Rx (μm) Ry (μm) Aspect ratio θ (°) AE AOE

A 43.0 75.1 1.75:1 3.14 53.9 74.7 1.4:1 1.91 0.20 0.18
B 43.0 75.1 1.75:1 23.14 44.3 71.8 1.62:1 17.46 0.19 0.20
C 43.0 75.1 1.75:1 43.14 44.4 83.6 1.88:1 41.59 0.13 0.10
D 43.0 75.1 1.75:1 63.14 36.5 89.5 2.45:1 59.93 0.01 0.20
E 43.0 75.1 1.75:1 83.14 55.9 73.6 1.32:1 81.70 0.01 0.02
F 43.0 75.1 1.75:1 103.14 42.4 75.7 1.8:1 102.39 0.006 0.001
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are due to overestimation of the size of the defect. The error is
largest when the defect is orientated with the long radius of the
equivalent ellipse along the front edge of the plate (y axis). This
could be potentially attributed to the shape of the irregular defect.

IV. CONCLUSION

Thermal tomography (TT) is a computational method for
material depth profile reconstruction and visualization of internal
material defects. TT performance has been demonstrated to be
effective in the imaging of calibrated subsurface defects in metals.
In many applications, such as in additive manufacturing of metals,

a nondestructive evaluation of the subsurface material defects is
required to evaluate the likelihood of defects causing fatigue
crack initiation. While TT provides visualization of the defects,
interpretation of the images is non-trivial as a result of inherent
image blurring due to heat diffusion. We described the develop-
ment of a deep learning convolutional neural network (CNN) to
classify the size and orientation of subsurface defects in simu-
lated thermal tomography (TT) images. The CNN is trained on
a database of TT images generated based on a set of simulated
metallic structures with elliptical subsurface voids. TT images
were created with MATLAB PDE Toolbox heat transfer calcula-
tions for 2D structures.

FIG. 8. Equivalent ellipses (dashed
lines) and predictions with CNN (solid)
lines for the irregular-shape defects
listed in Table III. Panels (a)–( f ) corre-
spond to the numbering of test cases
in Table III. Ellipses are overlaid on the
rotated shapes extracted from the SEM
image in Fig 6(b).
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Tests of CNN performance demonstrate the ability to classify
radii and angular orientation of the subsurface defects in TT
images. In addition, we showed that CNN trained on elliptical
defects is capable of classifying irregular-shaped defects obtained
from scanning electron microscopy (SEM) of stainless-steel sec-
tions printed with LPBF. As metrics of CNN performance, we
introduced the area error (AE) and the area orientation error
(AOE) criteria, which compared the actual ellipses (equivalent
ellipses, in the case of irregular defects) with ellipses predicted
with CNN. The general trend in errors in CNN-based prediction
is that the errors are larger for smaller defects and defects with a
higher aspect ratio. The errors observed in the CNN prediction of
irregular-shape defects are consistent with the errors in the CNN
prediction of elliptical defects.

In this paper, we modeled material defects using elliptical
shape model approximation. In future works, we will investigate
more realistic models, such as Gaussian circles and Gaussian
spheres (in 3D), which can provide a closer fit to the shape of irreg-
ular defects.34 In addition, our CNN-based classification approach
will be extended to the analysis of simulated 3D thermography data
and the classification of experimental data.
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