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2D PEROVSKITES — OPTICAL PROPERTIES
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Neutzner...Kandada, Phys. Rev. Mater. 2, 064605



(PEA),Pbl, — EXCITONS AND SPECTRAL FINESTRUCTURE

DIVERSE CHARACTERISTICS
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1 [ XA 1] = Nature Materials, 18, 349 (2019)
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MULTI-POLARON THEORY

Ho_py = N Z U(p. k. K')el bt hprrepri
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FI'Qp_ph = Z (*’}-‘eei_qek + 'ﬂ}“hhl_qhk) (bq -+ b_q)
k.q

U(p, k, k") < O represents repulsive interactions and thus bipolaron

problem
U(p, k, k") > 0 represents attractive interactions and thus

Exciton-polaron problem



CRITERION FOR EXCITON-PHONON SCATTERING
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EXCITON LATTICE COUPLING VIA IMPULSIVE VIBRATIONAL SPECTROSCOPY

Dhar, Rogers and Nelson, Chem Rev 94, 157

Vib. Potential

energy
M

Configurationnal
coord.




EXCITON PHONON COUPLING VIA IMPULSIVE VIBRATIONAL SPECTROSCOPY
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EXCITON PHONON COUPLING VIA IMPULSIVE VIBRATIONAL SPECTROSCOPY

RISRS SPECTRUM — EQUIVALENT TO RESONANT RAMAN OBTAINED

3
A

>

O
N

ey s VIA TIME DOMAIN MEASUREMENT
C L 1'_5_0_?_(:
g 125 KE _l | I LI LI LI LI I LI LI |_
AN A A s — 1 —
- - E T _
: 100 K3 c [ |
AWM—WAF—
: : £.08 -~
n 75 K7 o % _ §
= 1 =] r@e T 2ok -
- 3 — e [ .
C ] © _ -
. 25 K1 Fourier Transform 504 —
- E _ -
-] B -
o — —
o L _
= _ _

5 10 15 20 "1 2 3 4 5 6 7 8
Pump-Probe delay [ps] Beating energy [meV]



MODE ASSIGNMENT: DFT CALCULATIONS
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SUMMARY OF RISRS MEASUREMENTS
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Nature Materials 18, 349 (2019)
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@ Lattice normal modes dress distinct excitons and carriers differently

@ Exciton polarons have binding energies that are offset by ~ 35 meV



HOMOGENOUS LINEWIDTH FROM 2D SPECTROSCOPY
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(PEA),Pbl,: EXCITON LINEWIDTH from 2D SPECTRUM
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EXCITATION INDUCED DEPHASING (EID)
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TIME DEPENDENT LINEWIDTH AND EID
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TEMPERATURE DEPENDENCE OF LINEWIDTH — PHONON
SCATTERING
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What is the importance of the phonon-phonon scattering in exciton dephasing?

* Critical to the verification of the exciton polaron hypothesis
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Example. Generic Damped oscillation

f(t) = e ?tsin(120m) + e *sin(100m)+ e ~8¢sin(80m)
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WAVELET ANALYSIS
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PHONON DEPHASING RATE
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Table 1 Comparison of the anharmonic constants and Frohlich coupling
constants (o) for different materials reported in the literature and that
of (PEA),Pbl, extracted from Fig. 3(c) and equation 2.

Material oy ho % % 107 /27y Ref
(-) (meV)  (ps 1) ()
MoS, — 47.6 1.6 1000 38
GaAs 0.068 36.6 11 83 39,40
CSPbC13 NCs ~1-2* 4.46 1.5 71 35,41,42
9.42 4.8 48
11.78 4.2 67
(PEA)ZPbI4 2.2 4.40 3.0+0.5 33 This work
2.61 — — 21
SrTiOq 4.5 5.58 8.0 12 40,43
1.65 1.5 27

*Specific value is not reported, this range reported covers distinct lead-halide
perovskites with similar compositions.



What is the importance of the phonon-phonon scattering in exciton dephasing?

* Critical to the verification of the exciton polaron hypothesis
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WHAT DO WE KNOW SO FAR?

Excitons in 2D hybrid metal halides are coupled to the phonons resulting in a spectral
finestructure

The finestructure is NOT composed of phonon-replicas: Distinct excitons

Exciton-exciton many-body scattering reflects the different lattice dressing of the excitons
Thermal dephasing of excitons — beyond (simple) exciton-LO phonon scattering

Peculiar phonon-phonon interactions contributes to the exciton dephasing

Population relaxes through the multiple exciton states via non-adiabatic coupling to the
anharmonic phonons

Metal cation does NOT have significant role in the phonon structure, apart from a few differences
due to lattice deformations.

TAKE-HOME MESSAGE

Excitons in 2D hybrid metal halides are
EXCITON POLARONS

-2l A AL

Phonon. XaX¥a¥ %,

Exciton
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