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Abstract— We report an analysis quantifying the contribution
to uncertainty in annual energy projections from uncertainty in
ground-measured irradiance. Uncertainty in measured irradiance
is quantified for eight instruments by the difference from a well-
maintained, secondary standard pyranometer which is regarded
as truthful. We construct a statistical model of irradiance
uncertainty and apply the model to generate a sample of 100
annual time series of irradiance for each instrument. The sample
is propagated through a common performance model for a
reference photovoltaic system to quantify variation in annual
energy. Although the measured irradiance varies from the
reference by a few percent (standard deviation of 1-2%) the
uncertainty in annual energy is on the order of a fraction of one
percent. We propose a model for a factor that represents
uncertainty in modeled annual energy that arises from uncertainty
in ground-measured irradiance.
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I. INTRODUCTION

Financing institutions often require engineers to estimate
uncertainty in projected annual energy for a proposed
photovoltaic (PV) energy system in order to establish the
project’s risk of loan repayment. Annual energy production is
estimated by applying a sequence of models to weather data
(e.g., irradiance, air temperature) representative of the proposed
system’s location and operating condition. Uncertainty in annual
energy production arises from uncertainties in the weather data,
models or system characteristics.

The uncertainty in annual energy is often estimated by
applying multipliers to a base estimate of annual energy (e.g.
[1]) although more complex methods have been proposed (e.g.
[2]). Here we consider the approach outlined in [1] as a practical
approach to quantifying uncertainty in annual yield Y:

Y =[E fW®),P)] x 1L, (1 — A) (1)

In Eq. 1, frepresents a performance model for the PV system of
interest, W(f) is a time-indexed vector of weather inputs
representing a typical or base year, P is a vector of parameters
for the performance model. The summation of f(W(t), P)
provides the annual energy yield for the base year. Uncertainty
in this deterministic quantity is described by a set of uncertainty
factors, A;, each of which represents the contribution to
uncertainty in annual yield of an independent process,

parameter or data source. Each factor A; is quantified as a
fraction of annual energy yield. When each 4; is regarded as a
random variable, Y is also a random variable and the result of
Equation 1 is a distribution of annual energy yield.

In this paper, we quantify a factor A; representing
uncertainty in projected annual energy arising from uncertainty
in ground-measured global horizontal irradiance (GHI).

II. DATA SOURCE AND DATA PREPARATION

We downloaded measured GHI for calendar year 2020 for a
total of nine instruments (Table 1) at the National Renewable
Energy Laboratory’s (NREL) Solar Radiation Research
Laboratory in Golden, CO, USA, from the Measurement and
Instrumentation Data Center (MIDC [3]. Each GHI instrument
is regularly calibrated and maintained and is located in close
proximity to all other instruments. We regard these GHI data as
among the best achievable measurements for each type of
instrument. In addition, we downloaded measured diffuse
horizontal irradiance (DHI) measured by a horizontal Kipp and
Zonen CMP22 pyranometer with a shade ball, direct normal
irradiance (DNI) measured by a Kipp and Zonen DHPI1
pyrheliometer, snow depth (cm), precipitation (cm) and air
temperature (°C).

One instrument, a Kipp and Zonen CMP22 pyranometer is
selected and regarded as the “true” value of GHI. This selection
is somewhat arbitrary and not critically important, because our
intent is to quantify the effect on annual energy projections of
variation of other GHI instruments from the reference. Table I
lists the selected irradiance instruments, and the mean and
standard deviation of the percent difference in GHI at each time
relative to the reference instrument. Instruments are grouped by
accuracy class and classes are listed in order of decreasing
accuracy. Two other CMP22 instruments (CMP22-1 and
CMP22-2) are included, as well as two Licor 200 pyranometers,
one of which has a custom temperature adjustment (LI-200R).
Nomenclature follows that used by the MIDC to aid in
reproducing our analysis. Statistics in Table 1 are not weighted
by irradiance and thus a mean difference of e.g. —0.28% for the
LI-200 instrument does not imply that the annual insolation
would differ by the same percent. Relative differences in GHI
are generally more variable for instruments of lower accuracy
(Figure 1).
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TABLE L. SUMMARY OF GHI INSTRUMENTS AND RELATIVE
DIFFERENCES FROM REFERENCE
Instrument Mean St. Dev. Comments
CMP22 - - | Reference, sec. standard
CMP22-1 0.335% 1.087% | Sec. standard
CMP22-2 0.191% 1.046% | Sec. standard
PSP 0.208% 1.989% | Sec. standard
SPP 0.136% 1.219% | Sec. standard
CMPI11 -0.439% 1.422% | Class A
SPLite2 1.03% 1.930% | Economical
LI-200R 0.533% 1.852% | Economical
LI-200 -0.277% 2.323% | Economical
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Fig. 1. Relative differences from reference GHI for each instrument.

Data are recorded at 1-minute intervals. For quality checking
we also downloaded diffuse horizontal irradiance (DHI for the
“Diffuse CMP22-2” instrument), direct normal irradiance (DNI
for the “Direct CHP1-1” instrument), solar zenith, precipitation
(mm), and snow depth (cm). From the full year of data, we
selected the subset where:

- Solar elevation exceeds 5 degrees.

- Recorded GHI is within 5% of GHI estimated as
DHI + DNI x cos(Z), where Z is solar zenith.

- Snow depth is 0 cm, and precipitation is less than 2 mm.

These criteria select data where it is unlikely that shadows or
other external factors cause differences between instruments.

III. METHODOLOGY

Uncertainty is present in each measurement of GHI in an
instrument’s time series. Our goal is to understand how the
uncertainty in these measurements translates to uncertainty in
annual AC energy for a PV system.

To elucidate the uncertainty in annual AC energy, for each
instrument we construct many simulated time series of GHI with
statistics consistent with the single, measured time series of
GHI. We define areference PV system and a performance model

for the system. Keeping all other model inputs (e.g. air
temperature) the same for each instrument, the simulated time
series of GHI provide an estimate of the distribution of annual
AC energy.

To simulate time series of GHI for each instrument, we
create a model for the relative difference in GHI between each
instrument and the reference GHI. The model ensures that
simulated time series have similar distributions of values and
similar long-memory autocorrelation that is observed in the
measurements. For each instrument & the uncertainty
propagation is done as follows:

Step 1: Compute the relative difference Xi(f) in GHI from
the reference instrument (subscript R):

Xi(®) = (GD) - Gr(n)) / Gr(D) (1

Step 2: Bin the relative differences Xx(¢) by irradiance Gi(r)
(in increments of 100 W/m?), air temperature (in increments of
10°C) and solar zenith (in increments of 10 degrees). Within
each bin, fit an empirical cumulative distribution function
(ECDF). Record each GHI value’s rank (percentile) within the
appropriate bin’s ECDF. Binning is necessary because the
distribution of relative difference depends on GHI, air
temperature and zenith (e.g., Figure 2). The rank transformation
allows for simulations that transition between bins.

Step 3: Use the logit function to transform each rank from
the range [0, 1] to (—oo, ) to avoid having constraints on fitting
of the time series model.

Step 4: Fit an autoregressive fractionally integrated moving
average (ARFIMA) model to the time series of transformed
ranks, using the ar f ima function in the R package forecast
version 8.15'. The ARFIMA form is chosen because the time
series of relative differences exhibits autocorrelation at long lags
(Figure 3). Model order is selected automatically by the
arfima function.

Step 5: Generate a sample of 100 independent time series of
synthetic transformed ranks, and invert the logit and rank
transformations and use Eq. 1 to recover 100 independent time

series of synthetic GHI, Gk’l. (t), i=1,...,100.

Step 6: Simulate annual energy E4ci(f) for each synthetic
time series ék,[ (¢) for a reference PV system at Golden, CO,

USA. The reference system is set at 35-degree tilt, azimuth 180°,
1 kWpc and 1 kWac capacities, with a power temperature
coefficient of —0.4%/°C. Simulations are done with pvlib-
python [4]. DC and AC output are modeled using functions
based on the PVWatts v5 model. Cell temperature is modeled
using the Sandia Array Performance Model (SAPM) and
coefficients representative of a glass-polymer module on open
racking.

Step 7: Compute the relative difference between Ec(f) and
the annual energy simulated for the reference system using the
reference GHI:

! https://pkg.robjhyndman.com/forecast/



Di(t) = (Eaci(t) — Eacr(9)) | Eacr(?) (1)

The mean and standard deviation of Di(f) describe the
uncertainty in annual energy arising from uncertainty in the GHI
measurements for instrument 4.
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IV. VERIFICATION OF GHI SIMULATIONS

We compared statistics for the relative difference in GHI for
the simulations to statistics for the relative difference in
observed GHI. Figure 3 shows that autocorrelation matches
closely to about lag 10; beyond lag 10 the simulated GHI’s
autocorrelation exceeds that of the observations. Greater
autocorrelation at long lags will tend to overestimate somewhat
the variance in annual energy, because the simulated GHI will
tend to change less rapidly than the observed GHI and thus
remain away from central values for longer periods. We
compared the distributions of the relative difference in GHI
within each irradiance, temperature and zenith bin (e.g., Figure
4). The distributions are similar for the simulated and observed
GHI. These comparisons verify that the statistical model
produces GHI time series with statistics that are consistent with
the measurements.
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Fig. 2. Relative differences in GHI binned by a) GHI b) air temperature and
¢) solar zenith for the LI-200 instrument.
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Fig. 3. Autocorrelations for the relative difference in GHI for the LI-200
instrument and for one simulated time series of GHI.
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Fig. 4. Distributions of relative difference in GHI: measured (black) and
simulated (red) for the LI-200 instrument.



V. RESULTS

Table II summarizes statistics for the distribution of relative
difference in AC energy computed for each instrument from the
100 simulated time series of GHI. For each instrument, the
distribution of relative difference in AC energy is well-described
by a normal distribution (e.g., Figure 5). Confidence intervals
indicate that variation among instruments is greater than the
uncertainty due to the Monte Carlo generation of simulated GHI
time series. Mean relative difference in AC energy is
comparable in magnitude to and roughly correlated with the
mean relative difference in irradiance (Figure 6a). The
correlation is expected because of the strong correlation between
insolation (integrated irradiance) and annual AC energy.
Interestingly, the mean relative differences for instruments in
higher accuracy classes (CMP22-1, CMP22-2, PSP and SPP) are
similar to those for economical pyranometers. We hypothesize
that this similarity results from careful and accurate calibration
of each instrument to a common baseline. The similarity is
noteworthy given the conventional wisdom that lower
confidence should be assigned to data collected with economical
pyranometers, even with proper calibration and maintenance.
Even with proper calibration, variation among two pairs of
similar instruments (CMP22-1 and CMP22-2, and LI-200 and
LI-200R) indicates that instrument calibration or inherent
differences can be as great as the variation between instruments
of different manufacture.

TABLE IL SUMMARY OF RELATIVE DIFFERENCES IN AC ENERGY
Instrument Mean St. Dev.
CMP22-1 0.211% 0.218%
CMP22-2 -0.007% 0.271%
PSP -0.283% 0.515%
SPP 0.316% 0.432%
CMPI11 -0.476% 0.469%
SPLite2 0.674% 0.618%
LI-200R 0.212% 0.374%
LI-200 -0.220% 0.559%

Except for the CMP22-1 and CMP22-2 instruments, the
standard deviation of relative differences in AC energy (Figure
6b) is comparable for all other instruments. The relatively low
magnitude and small variability for the CMP22-1 and CMP22-
2 instruments is likely due to their similarity with the CMP22
instrument selected as the reference GHI. Variance in the
simulations of AC energy arises primarily from variance in the
relative differences from the reference GHI of the subject
instrument. The standard deviation in AC energy is roughly 30%
of the standard deviation in irradiance. The reduction in variance
likely results from the weighting inherent in the calculation of
AC energy (i.e., higher irradiance values contribute more to
annual AC energy than to lower irradiance values) combined
with the smaller variance in relative differences in irradiance at
higher irradiance (e.g., Figure 2a).
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Fig. 5. Distribution of relative difference in AC energy for the LI-200
instrument.

VI. MODEL FOR THE UNCERTAINTY FACTOR

We propose the following two-level model for a factor A
(see Equation 1) which represents uncertainty in annual AC
energy resulting from uncertainty in ground-measured
irradiance:

- The uncertainty factor A is described by a normal
distribution.

- The mean of the normal distribution is sampled from a
uniform distribution with a range from —0.4% to 0.4%.

- The standard deviation of the normal distribution is
sampled from a uniform distribution [0.35%, 0.6%].

The distributions for the mean and standard deviation are
defined by excluding the SPLite2 instrument as an outlier in
both mean and standard deviation, and by excluding the
CMP22-1 and CMP22-2 instruments from the distribution for
standard deviation, due to their similarity to the reference GHI
instrument. We regard the remaining instruments as
representative of all pyranometers with proper calibration. The
results in Figure 6 do not appear to support assigning different
uncertainty values for higher or lower accuracy instruments.
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Fig. 6. Mean (a) and standard deviation of relative difference in AC energy
compared to relative difference in irradiance. Error bars are confidence
intervals (alpha of 0.05) about the overall mean of 5 replicates each of size 100.
Error bars indicate uncertainty in overall mean due to sample size.

VII. SUMMARY AND CONCLUSIONS

Our analysis found that uncertainty in annual AC energy
arising from uncertainty in measured GHI can be modeled by a
normal distribution. Even for well-calibrated instruments,
estimated AC energy can be biased relative to a reference
calculation. We found that instruments regarded as less precise
(e.g., silicon photodiodes similar to the LI-200) did not
necessary correspond with greater uncertainty in annual AC
energy. The narrowest uncertain ranges are observed for
instruments CMP22-1 and CMP22-2 that are most like the
reference CMP22 instrument.

When using an annual factor approach to representing the
total uncertainty in AC energy (see Equation 1, and [1] Section
3.2), Table II offers distribution parameters (mean and standard
deviation) for several classes of irradiance instruments.
However, the distribution means in particular could vary
significantly from the mean in Table II when uncertainty in
instrument calibration, or instrument to instrument variation, is
taken into account. Consequently, we recommend a two-level

model for the uncertainty factor, as described in Section VI, that
does not distinguish between the type of irradiance instrument.
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