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Abstract— We report an analysis quantifying the contribution 

to uncertainty in annual energy projections from uncertainty in 

ground-measured irradiance. Uncertainty in measured irradiance 

is quantified for eight instruments by the difference from a well-

maintained, secondary standard pyranometer which is regarded 

as truthful. We construct a statistical model of irradiance 

uncertainty and apply the model to generate a sample of 100 

annual time series of irradiance for each instrument. The sample 

is propagated through a common performance model for a 

reference photovoltaic system to quantify variation in annual 

energy. Although the measured irradiance varies from the 

reference by a few percent (standard deviation of 1-2%) the 

uncertainty in annual energy is on the order of a fraction of one 

percent. We propose a model for a factor that represents 

uncertainty in modeled annual energy that arises from uncertainty 

in ground-measured irradiance. 
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I. INTRODUCTION 

Financing institutions often require engineers to estimate 
uncertainty in projected annual energy for a proposed 
photovoltaic (PV) energy system in order to establish the 
project’s risk of loan repayment. Annual energy production is 
estimated by applying a sequence of models to weather data 
(e.g., irradiance, air temperature) representative of the proposed 
system’s location and operating condition. Uncertainty in annual 
energy production arises from uncertainties in the weather data, 
models or system characteristics.  

The uncertainty in annual energy is often estimated by 
applying multipliers to a base estimate of annual energy (e.g. 
[1]) although more complex methods have been proposed (e.g. 
[2]). Here we consider the approach outlined in [1] as a practical 
approach to quantifying uncertainty in annual yield Y: 

 𝑌 = [∑ 𝑓(𝑾(𝑡), 𝑷)𝑡 ] × ∏ (1 − ∆𝑖)
𝑀
𝑖=1  () 

In Eq. 1, f represents a performance model for the PV system of 
interest, W(t) is a time-indexed vector of weather inputs 
representing a typical or base year, 𝑷 is a vector of parameters 
for the performance model. The summation of 𝑓(𝑾(𝑡), 𝑷) 
provides the annual energy yield for the base year. Uncertainty 
in this deterministic quantity is described by a set of uncertainty 
factors, ∆𝑖 , each of which represents the contribution to 
uncertainty in annual yield of an independent process, 

parameter or data source. Each factor ∆𝑖  is quantified as a 
fraction of annual energy yield. When each ∆𝑖 is regarded as a 
random variable, Y is also a random variable and the result of 
Equation 1 is a distribution of annual energy yield. 

In this paper, we quantify a factor ∆𝑖  representing 
uncertainty in projected annual energy arising from uncertainty 
in ground-measured global horizontal irradiance (GHI). 

II. DATA SOURCE AND DATA PREPARATION 

We downloaded measured GHI for calendar year 2020 for a 
total of nine instruments (Table 1) at the National Renewable 
Energy Laboratory’s (NREL) Solar Radiation Research 
Laboratory in Golden, CO, USA, from the Measurement and 
Instrumentation Data Center (MIDC [3]. Each GHI instrument 
is regularly calibrated and maintained and is located in close 
proximity to all other instruments. We regard these GHI data as 
among the best achievable measurements for each type of 
instrument. In addition, we downloaded measured diffuse 
horizontal irradiance (DHI) measured by a horizontal Kipp and 
Zonen CMP22 pyranometer with a shade ball, direct normal 
irradiance (DNI) measured by a Kipp and Zonen DHP1 
pyrheliometer, snow depth (cm), precipitation (cm) and air 
temperature (°C). 

One instrument, a Kipp and Zonen CMP22 pyranometer is 
selected and regarded as the “true” value of GHI. This selection 
is somewhat arbitrary and not critically important, because our 
intent is to quantify the effect on annual energy projections of 
variation of other GHI instruments from the reference. Table I 
lists the selected irradiance instruments, and the mean and 
standard deviation of the percent difference in GHI at each time 
relative to the reference instrument. Instruments are grouped by 
accuracy class and classes are listed in order of decreasing 
accuracy. Two other CMP22 instruments (CMP22-1 and 
CMP22-2) are included, as well as two Licor 200 pyranometers, 
one of which has a custom temperature adjustment (LI-200R). 
Nomenclature follows that used by the MIDC to aid in 
reproducing our analysis. Statistics in Table 1 are not weighted 
by irradiance and thus a mean difference of e.g. −0.28% for the 
LI-200 instrument does not imply that the annual insolation 
would differ by the same percent. Relative differences in GHI 
are generally more variable for instruments of lower accuracy 
(Figure 1). 
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TABLE I.  SUMMARY OF GHI INSTRUMENTS AND RELATIVE 

DIFFERENCES FROM REFERENCE 

Instrument Mean St. Dev. Comments 

CMP22 - - Reference, sec. standard 

CMP22-1 0.335% 1.087% Sec. standard 

CMP22-2 0.191% 1.046% Sec. standard 

PSP 0.208% 1.989% Sec. standard 

SPP 0.136% 1.219% Sec. standard 

CMP11 −0.439% 1.422% Class A 

SPLite2 1.03% 1.930% Economical 

LI-200R 0.533% 1.852% Economical 

LI-200 −0.277% 2.323% Economical 

 

 

Fig. 1. Relative differences from reference GHI for each instrument. 

Data are recorded at 1-minute intervals. For quality checking 
we also downloaded diffuse horizontal irradiance (DHI for the 
“Diffuse CMP22-2” instrument), direct normal irradiance (DNI 
for the “Direct CHP1-1” instrument), solar zenith, precipitation 
(mm), and snow depth (cm). From the full year of data, we 
selected the subset where: 

- Solar elevation exceeds 5 degrees. 

- Recorded GHI is within 5% of GHI estimated as 
DHI + DNI × cos(Z), where Z is solar zenith.  

- Snow depth is 0 cm, and precipitation is less than 2 mm. 

These criteria select data where it is unlikely that shadows or 
other external factors cause differences between instruments. 

III. METHODOLOGY 

Uncertainty is present in each measurement of GHI in an 
instrument’s time series. Our goal is to understand how the 
uncertainty in these measurements translates to uncertainty in 
annual AC energy for a PV system. 

To elucidate the uncertainty in annual AC energy, for each 
instrument we construct many simulated time series of GHI with 
statistics consistent with the single, measured time series of 
GHI. We define a reference PV system and a performance model 

 
1 https://pkg.robjhyndman.com/forecast/ 

for the system. Keeping all other model inputs (e.g. air 
temperature) the same for each instrument, the simulated time 
series of GHI provide an estimate of the distribution of annual 
AC energy.  

To simulate time series of GHI for each instrument, we 
create a model for the relative difference in GHI between each 
instrument and the reference GHI. The model ensures that 
simulated time series have similar distributions of values and 
similar long-memory autocorrelation that is observed in the 
measurements. For each instrument k the uncertainty 
propagation is done as follows: 

Step 1: Compute the relative difference Xk(t) in GHI from 
the reference instrument (subscript R): 

 Xk(t) = (Gk(t) – GR(t)) / GR(t) () 

Step 2: Bin the relative differences Xk(t) by irradiance Gk(t) 
(in increments of 100 W/m2), air temperature (in increments of 
10°C) and solar zenith (in increments of 10 degrees). Within 
each bin, fit an empirical cumulative distribution function 
(ECDF). Record each GHI value’s rank (percentile) within the 
appropriate bin’s ECDF. Binning is necessary because the 
distribution of relative difference depends on GHI, air 
temperature and zenith (e.g., Figure 2). The rank transformation 
allows for simulations that transition between bins. 

Step 3: Use the logit function to transform each rank from 
the range [0, 1] to (−∞, ∞) to avoid having constraints on fitting 
of the time series model. 

Step 4: Fit an autoregressive fractionally integrated moving 
average (ARFIMA) model to the time series of transformed 
ranks, using the arfima function in the R package forecast 

version 8.151. The ARFIMA form is chosen because the time 
series of relative differences exhibits autocorrelation at long lags 
(Figure 3). Model order is selected automatically by the 
arfima function. 

Step 5: Generate a sample of 100 independent time series of 
synthetic transformed ranks, and invert the logit and rank 
transformations and use Eq. 1 to recover 100 independent time 

series of synthetic GHI, ( ), , 1, ,100k iG t i = . 

Step 6: Simulate annual energy EAC,k(t) for each synthetic 

time series ( ),k iG t  for a reference PV system at Golden, CO, 

USA. The reference system is set at 35-degree tilt, azimuth 180°, 
1 kWDC and 1 kWAC capacities, with a power temperature 
coefficient of −0.4%/°C. Simulations are done with pvlib-
python [4]. DC and AC output are modeled using functions 
based on the PVWatts v5 model. Cell temperature is modeled 
using the Sandia Array Performance Model (SAPM) and 
coefficients representative of a glass-polymer module on open 
racking. 

Step 7: Compute the relative difference between EAC,k(t) and 
the annual energy simulated for the reference system using the 
reference GHI: 



 

 

 Dk(t) = (EAC,k(t) – EAC,R(t)) / EAC,R(t) () 

The mean and standard deviation of Dk(t) describe the 
uncertainty in annual energy arising from uncertainty in the GHI 
measurements for instrument k. 

 

 

IV. VERIFICATION OF GHI SIMULATIONS 

We compared statistics for the relative difference in GHI for 
the simulations to statistics for the relative difference in 
observed GHI. Figure 3 shows that autocorrelation matches 
closely to about lag 10; beyond lag 10 the simulated GHI’s 
autocorrelation exceeds that of the observations. Greater 
autocorrelation at long lags will tend to overestimate somewhat 
the variance in annual energy, because the simulated GHI will 
tend to change less rapidly than the observed GHI and thus 
remain away from central values for longer periods. We 
compared the distributions of the relative difference in GHI 
within each irradiance, temperature and zenith bin (e.g., Figure 
4). The distributions are similar for the simulated and observed 
GHI. These comparisons verify that the statistical model 
produces GHI time series with statistics that are consistent with 
the measurements. 

 

Fig. 2. Relative differences in GHI binned by a) GHI b) air temperature and 

c) solar zenith for the LI-200 instrument. 

 

Fig. 3. Autocorrelations for the relative difference in GHI for the LI-200 

instrument and for one simulated time series of GHI. 

 

Fig. 4. Distributions of relative difference in GHI: measured (black) and 

simulated (red) for the LI-200 instrument. 



 

 

V. RESULTS 

Table II summarizes statistics for the distribution of relative 
difference in AC energy computed for each instrument from the 
100 simulated time series of GHI. For each instrument, the 
distribution of relative difference in AC energy is well-described 
by a normal distribution (e.g., Figure 5). Confidence intervals 
indicate that variation among instruments is greater than the 
uncertainty due to the Monte Carlo generation of simulated GHI 
time series. Mean relative difference in AC energy is 
comparable in magnitude to and roughly correlated with the 
mean relative difference in irradiance (Figure 6a). The 
correlation is expected because of the strong correlation between 
insolation (integrated irradiance) and annual AC energy. 
Interestingly, the mean relative differences for instruments in 
higher accuracy classes (CMP22-1, CMP22-2, PSP and SPP) are 
similar to those for economical pyranometers. We hypothesize 
that this similarity results from careful and accurate calibration 
of each instrument to a common baseline. The similarity is 
noteworthy given the conventional wisdom that lower 
confidence should be assigned to data collected with economical 
pyranometers, even with proper calibration and maintenance. 
Even with proper calibration, variation among two pairs of 
similar instruments (CMP22-1 and CMP22-2, and LI-200 and 
LI-200R) indicates that instrument calibration or inherent 
differences can be as great as the variation between instruments 
of different manufacture. 

TABLE II.  SUMMARY OF RELATIVE DIFFERENCES IN AC ENERGY 

Instrument Mean St. Dev. 

CMP22-1 0.211% 0.218% 

CMP22-2 -0.007% 0.271% 

PSP -0.283% 0.515% 

SPP 0.316% 0.432% 

CMP11 -0.476% 0.469% 

SPLite2 0.674% 0.618% 

LI-200R 0.212% 0.374% 

LI-200 -0.220% 0.559% 

 

Except for the CMP22-1 and CMP22-2 instruments, the 
standard deviation of relative differences in AC energy (Figure 
6b) is comparable for all other instruments. The relatively low 
magnitude and small variability for the CMP22-1 and CMP22-
2 instruments is likely due to their similarity with the CMP22 
instrument selected as the reference GHI. Variance in the 
simulations of AC energy arises primarily from variance in the 
relative differences from the reference GHI of the subject 
instrument. The standard deviation in AC energy is roughly 30% 
of the standard deviation in irradiance. The reduction in variance 
likely results from the weighting inherent in the calculation of 
AC energy (i.e., higher irradiance values contribute more to 
annual AC energy than to lower irradiance values) combined 
with the smaller variance in relative differences in irradiance at 
higher irradiance (e.g., Figure 2a). 

 

 

Fig. 5. Distribution of relative difference in AC energy for the LI-200 

instrument. 

VI. MODEL FOR THE UNCERTAINTY FACTOR 

We propose the following two-level model for a factor ∆ 
(see Equation 1) which represents uncertainty in annual AC 
energy resulting from uncertainty in ground-measured 
irradiance: 

- The uncertainty factor ∆  is described by a normal 
distribution. 

- The mean of the normal distribution is sampled from a 
uniform distribution with a range from −0.4% to 0.4%. 

- The standard deviation of the normal distribution is 
sampled from a uniform distribution [0.35%, 0.6%]. 

The distributions for the mean and standard deviation are 
defined by excluding the SPLite2 instrument as an outlier in 
both mean and standard deviation, and by excluding the 
CMP22-1 and CMP22-2 instruments from the distribution for 
standard deviation, due to their similarity to the reference GHI 
instrument. We regard the remaining instruments as 
representative of all pyranometers with proper calibration. The 
results in Figure 6 do not appear to support assigning different 
uncertainty values for higher or lower accuracy instruments.  



 

 

 

Fig. 6. Mean (a) and standard deviation of relative difference in AC energy 

compared to relative difference in irradiance. Error bars are confidence 
intervals (alpha of 0.05) about the overall mean of 5 replicates each of size 100. 

Error bars indicate uncertainty in overall mean due to sample size. 

VII. SUMMARY AND CONCLUSIONS 

Our analysis found that uncertainty in annual AC energy 
arising from uncertainty in measured GHI can be modeled by a 
normal distribution. Even for well-calibrated instruments, 
estimated AC energy can be biased relative to a reference 
calculation. We found that instruments regarded as less precise 
(e.g., silicon photodiodes similar to the LI-200) did not 
necessary correspond with greater uncertainty in annual AC 
energy. The narrowest uncertain ranges are observed for 
instruments CMP22-1 and CMP22-2 that are most like the 
reference CMP22 instrument. 

When using an annual factor approach to representing the 
total uncertainty in AC energy (see Equation 1, and [1] Section 
3.2), Table II offers distribution parameters (mean and standard 
deviation) for several classes of irradiance instruments. 
However, the distribution means in particular could vary 
significantly from the mean in Table II when uncertainty in 
instrument calibration, or instrument to instrument variation, is 
taken into account. Consequently, we recommend a two-level 

model for the uncertainty factor, as described in Section VI, that 
does not distinguish between the type of irradiance instrument. 
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