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Abstract. Efficient methods for searching the chemical space of molec-
ular compounds are needed to automate and accelerate the design of
new functional molecules such as pharmaceuticals. Given the high cost
in both resources and time for experimental efforts, computational ap-
proaches play a key role in guiding the selection of promising molecules
for further investigation. Here, we construct a workflow to accelerate de-
sign by combining approximate quantum chemical methods [i.e. density-
functional tight-binding (DFTB)], a graph convolutional neural network
(GCNN) surrogate model for chemical property prediction, and a masked
language model (MLM) for molecule generation. Property data from the
DFTB calculations are used to train the surrogate model; the surrogate
model is used to score candidates generated by the MLM. The surro-
gate reduces computation time by orders of magnitude compared to the
DFTB calculations, enabling an increased search of chemical space. Fur-
thermore, the MLM generates a diverse set of chemical modifications
based on pre-training from a large compound library. We utilize the
workflow to search for near-infrared photoactive molecules by minimiz-
ing the predicted HOMO-LUMO gap as the target property. Our results
show that the workflow can generate optimized molecules outside of the
original training set, which suggests that iterations of the workflow could
be useful for searching vast chemical spaces in a wide range of design
problems.
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1 Introduction

The “design and perfection of atom- and energy-efficient synthesis of revolution-
ary new forms of matter with tailored properties” is one of five scientific grand
challenges articulated in the Basic Energy Sciences Advisory Report on Direct-
ing Matter and Energy [1]. In chemical sciences, one of the most coveted and
impactful targets is the ability to design molecular compounds with desirable
properties such as biological activity for molecular therapeutics [2, 3] or particu-
lar photo-optical properties geared towards photovoltaic applications [4], or the
development of molecular dyes [5] or biomarkers [6]. While significant progress
has already been achieved in the field of machine learning-assisted computa-
tional drug discovery [7, 8], the use of artificial intelligence (AI) protocols for
the design of photoactive molecules is still in its infancy [9]. This situation can be
attributed in part to the fact that the prediction of photo-optical properties for a
given molecular structure requires computationally expensive quantum chemical
calculations, namely the computation of molecules in their ground and excited
states [10]. The computational generation of sufficiently large databases contain-
ing molecular structure and their optical properties is therefore far more costly
than the calculation of bioactivity, which is traditionally performed using com-
putationally much cheaper empirical scoring or classical force field calculations
of protein-ligand interactions [11].

A reasonable shortcut to predicting photo-optical molecular properties is
to approximate electronic excitation energies with energy differences between
molecular orbital (MO) energy levels [12]. Of particular interest here is the energy
difference between the highest occupied MO (HOMO) and the lowest unoccu-
pied MO (LUMO). This so-called “HOMO-LUMO” gap often correlates very well
with the lowest-energy, and hence most accessible, excited state that a molecule
typically adopts upon energy intake due to the absorption of photons. Thus,
HOMO-LUMO gaps have recently become the target of AI-based approached
to photoactive molecules [10, 12, 13]. However, as mentioned above, this ap-
proach is only a reasonable shortcut, since for the inverse design of molecular
structures with desirable photo-optical properties the entire absorption and/or
emission spectrum over the energy range of visible light is required [10]. Ab initio
multireference wavefunction electronic structure methods such as CAS-PT2 [14]
and NEVPT2 [15] are able to cover these energy ranges and provide a mea-
sure for absorption/emission intensity via the prediction of oscillator strengths,
and therefore accurately predict molecular dye candidate photophysical prop-
erties. However, this capability comes with a substantial price: The calculation
of an UV/Vis absorption spectrum for molecules containing only tens of atoms
are impractical on standard laptop or even Linux-operated workstations, due to
the enormous required computational effort and resources in CPU power and
memory. Computationally less demanding methods are density functional the-
ory (DFT)-based excited states time-dependent (TD)-DFT methods [16], with
the approximate TD-density-functional tight-binding (TD-DFTB) method being
one of the computationally most economical methods [17].
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In this work we present a vision for a DFTB- and TD-DFTB-based com-
putational workflow for the inverse design of molecules with desirable optical
properties. As others before us, we start with an approximation of excitation
energies by MO energy differences [12, 13]. Besides the use of computationally
efficient DFTB methods, our new inverse design algorithm has two major com-
ponents: 1) Development of a multi-headed graph convolutional neural network
(GCNN) approach that will allow the prediction of not only molecular orbital en-
ergy differences, but more complex properties such as multiple excitation energies
and oscillator strengths for dye candidates [18, 19]. The GCNNs surrogate mod-
els are sufficiently fast to supplant computationally expensive, explicit excited
state calculations required for the inverse design step, which will be component
2): Development of a machine learning masked language model (MLM)-based
generation of new dye candidates with subsequent evaluation against a target
function (desirable optical properties). As proof-of-principle, we present here a
study for the inverse design of molecules with the lowest-possible HOMO-LUMO
gap, which is motivated by possible applications as biomarkers in biomedical ap-
plications [20]. We note that our choice to minimize the HOMO-LUMO gap in
this proposed workflow is arbitrary and could be replaced by a particular energy
range. Our choice of a multi-headed GCNN surrogate will allow in subsequent
works to extend our molecular design algorithm to predict novel molecules with
optical spectra containing user-defined target features, such as intense optical
absorption or emission in particular regions of the visible light spectrum.

2 Computational Workflow for Molecular Design

2.1 Inverse design of molecules with small HOMO-LUMO gap

It is important to remember that we are using two AI components in our compu-
tational workflow, which can be trained jointly or independently from each other.
In this proof-of-principle work, we started with an existing generative MLM
model that originally targeted the generation of drug candidates for molecular
therapeutics [21], while the GCNN surrogate for the prediction of HOMO-LUMO
gaps was specifically trained as part of this work.

Fig. 1 illustrates schematically a pipeline for the adaptive training of the
GCNN surrogate model and the generation of new molecules with desirable
HOMO-LUMO gap as predicted by the DFTB method. We begin by performing
DFTB calculations on a subset of the 134,000 molecules contained in the QM9
database [22] to predict their HOMO-LUMO gaps, then train the GCNN surro-
gate which is subsequently utilized to score the newly generated molecules pre-
dicted by the MLM algorithm. In a final step, the newly predicted molecules are
re-calculated using the DFTB method and their HOMO-LUMO gaps compared
against the surrogate-predicted value (not shown in Fig. 1). In the following,
we briefly discuss the center pieces of our workflow, namely the DFTB calcu-
lations of HOMO-LUMO gaps from SMILES strings, the GCNN surrogate and
the MLM, and their interplay with each other, before elaborating the details of
each component in subsequent Sections.
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Fig. 1. Computational Workflow for Molecular Design.

DFTB To generate on-the-fly HOMO-LUMO gap predictions, we employ the
density-functional tight-binding (DFTB) method. DFTB is a fast and efficient
quantum mechanical simulation technique that is implemented e.g. in the DFTB+
program package [23], as well as in other popular quantum chemistry packages.
The required runs are performed in two stages. In the first stage we generate
the data for predicted HOMO-LUMO gaps from a Simplified Molecular Input
Line Entry System (SMILES) string [24] representing the molecular structure. If
the structures are in PDB format they can be easily transformed into SMILES
representation using the RDKit software [25]. All of the results are merged into
a single file and curated for the GCNN surrogate operation.

GCNN surrogate To train a surrogate model for HOMO-LUMO gap predic-
tion, we use the multi-headed HydraGNN package developed earlier by some
of our team [18, 19]. This surrogate, allowing multi-headed output, is ideally
suited for the simultaneous prediction of multiple important molecular charac-
teristics, such as electronic properties and synthesizability scoring. Training of
HydraGNN can be performed on multiple GPU nodes. The trained surrogate
model is then used to generate hydra score for subsequent molecule generation
operation. Details on the HydraGNN surrogate are given below.

Molecule generation using MLM In our last step we use the masked lan-
guage model (MLM) to generate novel molecules based on the surrogate model.
The MLM was trained following previously reported work [21] on the Enam-
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ine REAL database [26]. These new molecules are then used to validate the
surrogate-predicted HOMO-LUMO gaps using the DFTB method.

3 The DFTB Method

The density-functional tight-binding (DFTB) method [27, 28, 29] is an approx-
imation to traditional density functional theory (DFT) [30], roughly 2-3 orders
of magnitude faster yet providing detailed electronic structure by solving Kohn-
Sham equations using a parameterized Hamiltonian. DFTB methods can be
employed in simulations of processes that involve chemical reactions, electron
excitation, electron transfer, and mass and ion transport for systems containing
several tens of thousands of atoms. Linear scaling algorithms exist [31, 32] and
have been developed and applied to systems as large as 100 million atoms [33].

One of the key features of DFTB is the use of a two-center approximation [27],
which requires the pairwise generation of Hamiltonian element parameters and
repulsive potentials. The Foulkes-Haydock approach to the expansion of electron
density in a Taylor series around a reference density [28] gives rise to a hierar-
chical family of DFTB flavors, starting with the simplest version DFTB1 [27]
which is accurate to a first-order expansion, to the most involved DFTB3 flavor
which contains the full third-order terms [29]. All DFTB flavors can be cast into
a spin-dependent formalism using on-site spin coupling terms [34]. Moreover, a
long-range corrected version of the second-order DFTB2 flavor has been devel-
oped [35] in order to overcome the infamous self-interaction error inherent to
conventional DFT and DFTB methods. In addition, a variety of ad-hoc charge-
charge interaction damping and dispersion interactions have been introduced
that can be added to account for potential deficiencies in any of the DFTB fla-
vors [36]. However, the performance of any of these resultant DFTB flavors are
strongly dependent on the respective optimized electronic Hamiltonian param-
eters and repulsive potentials for the chemical element combination in question
which need to be optimized for any of the DFTB flavors individually.

High-quality DFTB parameters allow a near-1:1 reproduction of molecular
orbital (MO) electronic energy levels for molecules, as well as valence and con-
duction band structures for bulk solid materials relative to DFT [37]. Repulsive
potentials can be optimized such that DFTB calculations are able to reproduce
DFT geometrical parameters [29] as well as vibrational [38] and optical [39]
spectra. In terms of computational accuracy and efficiency, DFTB is settled in
between traditional DFT methods and classical force field approaches, although
higher accuracy than DFT can be achieved at times when empirical data is em-
ployed in the parameterization, for instance for the prediction of band gaps [40].

In our automated workflow, the DFTB calculations are run as follows. A
SMILES string corresponding to an arbitrary molecule is internally converted
into a set of Cartesian coordinates that are handed to the DFTB+ code as
input, along with the selected level of theory. A python script is started to per-
form the DFTB calculation via the ”atomic simulation environment” (ASE) [41],
which allows for software-agnostic electronic structure calculations. The DFTB
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calculation itself in our case is a geometry optimization with user-controllable
convergence criteria. The geometry optimization is necessary since the HOMO-
LUMO gap is sensitive to the selected geometry. Ideally, the global minimum
energy structure should be identified since it is the molecular conformation likely
adopted by the molecule in question. At the end of the calculation, the value
of the HOMO-LUMO gap is collected from the output corresponding to the
converged molecular structure. There are two shortfalls that may occur in the
DFTB calculation step: i) failure to achieve self-consistent-charge convergence
of the atomic charges in DFTB density calculations, and ii) failure to achieve
a converged minimum energy optimized structure. Our algorithm automatically
detects those cases and removes them from the database of molecules.

In the presented proof-of-principles applications, we selected the DFTB3
method [29] with the associated, so-called 3ob parameters [42] for the calcu-
lation of MO energies and molecular geometries.

4 Surrogate Models: Graph Convolutional Neural
Networks

GCNNs are a class of deep learning models that can operate directly on graphs.
Graphs, G = (V, E), are data structures that consist of a finite set of nodes V
and edges E connecting the nodes with their neighbour nodes. For example, an
edge, e = (u, v) ∈ E , connects node u ∈ V with its neighbour v ∈ V .

Representing molecules in the form of graph is natural. The atoms can be
viewed as nodes and chemical bonds as edges of the graph as in Fig. 2. Each
node in graph is represented by a nodal feature vector such as atomic features in
molecules and potentially label properties in the node-level tasks. For edges, in
addition to representing the connectivity of nodes in graph, they can also have
edge features such as the chemical bound types. Each graph can have global
graph-level properties such as the HOMO-LUMO gap for a specific molecular
graph.

Fig. 2. Graph representation of a molecule.

GCNNs employ a message-passing framework to represent the interactions of
nodes, the centerpiece of which is graph convolutional (GC) layers. In each GC
layer, messaging passing is performed sequentially with three steps, i.e., message
preparation, aggregation, and nodal state update. In message preparation, each
node wraps a message, e.g., a vector, based on their current state with a message
function and then sends out the message through edges to their neighbours. In
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message aggregation, the nodes collect the messages received from their neigh-
bours and aggregate the messages with an aggregation function. The aggregated
message is then used to update the node together with its current state via an
update function. After the message passing in one GC layer, all nodal states are
updated with information gathered from their immediate neighbour nodes. With
multiple GC layers stacked together, messages are passed to nodes that are fur-
ther away. In molecules, a single GC layer can be used to approximate pair-wise
atomic interactions, while the many-body effects are implicitly represented by
stacking many GC layers together. A variety of GCNNs have been developed
to better represent the atomic systems, such as crystal GCNN (CGCNN) [43]
for crystalline materials, MEGNet for both molecules and crystals [44], as well
as ALIGNN [45] that adds the bond angles in the model. More details about
GCNNs can be found in [18].

In this work, the GCNN model implemented in HydraGNN [18][19] is used
as a surrogate model for HOMO-LUMO gap property. The GC layer used is
principal neighborhood aggregation (PNA) [46]. HydraGNN is an open source
software built on PyTorch [47, 48] and PyTorch Geometric [49, 50] library. It is
capable of multitask prediction of hybrid node-level and graph-level properties in
large batch of graphs with variable number of nodes. HydraGNN utilizes ADIOS
[51], a data framework suitable for high performance computing, for data loading
in order to handle large graph data set. It has been tested on multiple systems
including ORNL’s Summit and NERSC’s Perlmutter with data sets larger than
100 GB.

Model architecture and training on Summit The GCNN model used in the
work consists of three parts, i.e., PNA convolutional layers, batch normalization
layers, and fully connected layers. The model starts with a stack of six PNA
layers of size 55, each of which is followed by a batch normalization layer, then
goes through a global mean pooling layer, and ends with three fully connected
layers with 100, 50, 25 neurons, respectively. ReLU activation functions are used.

The DFTB data set consists of 95k molecules with HOMO-LUMO gap gen-
erated using the method in Section 3. Ninety percent of the data set is used
for model training and the other 10% is split equally for model validation and
testing. The AdamW optimizer is used with the learning rate of 10−3 and the
batch size of 64. The model is trained for 200 epochs and the final test MAE for
HOMO-LUMO gap is 0.12 eV.

5 Molecule Generation: Masked Language Model

Research in natural language processing (NLP) has provided strategies to lever-
age large amounts of unlabeled data to train generalizable language models for
text generation and prediction [52]. Masked language models are typically de-
veloped using two distinct stages, known as pre-training and fine-tuning. Pre-
training is completely unsupervised (i.e., doesn’t require any manual labeling)

https://github.com/ORNL/HydraGNN
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and, therefore, can be performed on very large data sets. In fine-tuning, the pre-
trained model is further trained for a specific task (e.g., document classification)
using a labeled data set that is typically much smaller. Using this two-stage
approach, language models have achieved state-of-the-art results for a range of
NLP tasks for multiple application areas [52, 53].

Pre-training language models on text sequences can be accomplished using
a combination of tokenization and mask prediction. In tokenization, commonly
occurring sequences are used to generate a vocabulary for the model [54, 55].
This vocabulary is used to map text to a sequence of integer token IDs which are
used as input to the model. For mask prediction, tokens are randomly masked
and the model is trained to reproduce the original sequence based on context.
Therefore, for a given masked token, the model predicts a probability that each
token in the vocabulary will occur at that location.

Advances in language models can be directly applied to molecular structures
by using the Simplified Molecular Input Line Entry System (SMILES) text repre-
sentation [24]. Using a SMILES string, atoms and bonds for a given molecule are
converted to a sequence of characters. For example, benzene is given by c1ccccc1,
where c represents an individual aromatic carbon atom and 1 represents the start
and end of a ring. Similar to traditional text applications, tokenization can be
used to split up a given molecule into commonly occurring subsequences [54, 55].
Mask prediction during pre-training then proceeds with the model learning to
predict chemical structure based on context.

In our previous work [21, 56], we proposed a strategy to use pre-trained
models to generate new molecular structures. Similar to pre-training, a given
molecule, represented as a SMILES string, is tokenized and randomly masked.
The model predictions are then sampled to generate a set of mutations to the
original molecule as shown in Figure 5. Therefore, in combination with the scor-
ing provided by the surrogate model, the language model can be used to itera-
tively generate new molecules to search chemical space for a given optimization
task. Most notably, the MLM can generate molecules that are much larger in the
number of atoms relative to the original set of molecules. This is particularly im-
portant when considering the rapidly increasing chemical space with molecular
size.

Pre-training on Summit Following our previous work [21], we leveraged the
Enamine REAL database [26] as a starting point for language model training.
We then augmented the data set using a previously trained language model [21]
to include approximately 3.6 · 1010 molecules. A WordPiece tokenizer [54, 55]
was then trained using the full data set. As described in [21], we used data par-
allelism with DeepSpeed’s fused LAMB optimizer for mask prediction training
on 3 ·109 molecules on the Summit supercomputer at the Oak Ridge Leadership
Computing Facility using 1000 nodes (6 Nvidia 16 GB V100 GPUs per node).
The data set was evenly partitioned with 5 · 105 molecules for each GPU. Pre-
training was performed for 7 epochs using a batch size of 80 molecules with 3
gradient accumulation steps per GPU. The model is available for download at
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https://huggingface.co/mossaic-candle/adaptive-lm-molecules and can be used
with the Hugging Face transformers library [57].

6 Application: Minimizing the HOMO-LUMO gap

In this Section we describe our successful implementation of the end-to-end work-
flow for accelerating the molecular design process by coupling the approximate
quantum chemical methods (i.e. DFTB), surrogate GCNN model, and the gen-
erative MLM used as mutation operator for the molecule generation, for mini-
mizing the HOMO-LUMO gap as the target property.

For future reference, we label the 95k molecular compounds that were con-
tained in QM9 and successfully processed by the DFTB calculations to generate
their optimized molecular geometries and associated HOMO-LUMO gaps as the
“original data set”. As described in Section 4, this data set was split into training
and test data sets.

Fig. 3. Comparison of the DFTB-predicted HOMO-LUMO gap is shown for molecules
contained in the original data set and for newly generated molecules. The population of
molecules clearly shifted towards the target low values of the molecular HOMO-LUMO
gap.

Figure 3 shows the comparison of the HOMO-LUMO gap as predicted by
DFTB for the molecules contained in the original data set (blue) as well as for
the newly generated ones (orange). At first glance it becomes apparent that the
generated molecules possess much lower HOMO-LUMO gap values, following
the user-defined constraint. It further appears that, while the molecules in the
original data set show a multi-modal distribution of their HOMO-LUMO gaps
corresponding to the different molecular classes (aliphatic molecules > olefinic
molecules > conjugated molecules > molecules with double bonds and strained

https://huggingface.co/mossaic-candle/adaptive-lm-molecules
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rings), the new predicted molecules have a more concentrated distribution cen-
tered near the 3–3.5 eV (see Figs. 4 and 5).

Fig. 4. Selected molecules with HOMO-LUMO gaps < 1.7 eV that are already con-
tained in the original QM9 data set. None of these molecules contains more than 9
“heavy” (C,N,O) chemical elements.

Fig. 5. Selected molecules with HOMO-LUMO gaps < 1.7 eV contained in the gener-
ated data set. Many of the generated molecules with low HOMO-LUMO gaps contain
more than 9 atoms.

The latter figure likewise indicates that most of the newly generated molecules
contain more than 9 atoms, and that such structures were not at all included in
the original training set of the GCNN surrogate. We do note that the generated
molecules show a tendency towards including small, strained rings with double
bonds included, such as three- and four-membered rings that are often fused to
larger rings. Such molecules derive their small HOMO-LUMO gaps from their
ring strains which typically pushes the HOMO levels up and the LUMO levels
down, reducing the HOMO-LUMO gap [39], but at the same time increasing
their chemical reactivity and the difficulty of synthesis.
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Synthesizability is a quantity that can be calculated following the method
as mentioned by Etrl et al. [58]. In this empirical technique the synthetic acces-
sibility is estimated by coupling molecular complexity and molecular fragment
effects as analyzed by processing a large collection of chemical structures that
have already been synthesized before. This technique therefore contains at some
level historical data on the synthesizability of a large collection of molecules. The
method is then tested and validated by comparing with ‘ease of synthesis’ ranks.
These values were gathered by domain expert chemists. The agreement between
score and the ranks are generally very good. This technique also provides a good
way to estimate the synthesizability for large molecules that have never been
synthesized before.

Fig. 6. Comparison of the synthesizability score for molecules contained in the original
data set and for newly generated molecules. As the HOMO-LUMO gap decreases, the
synthesizability score increases. For discussion, see text.

Fig. 6 indicates that, in contrast to the molecules in the original data set,
the newly generated ones have much higher synthesizability scores, inline with
the above-mentioned fact that they feature strained molecular structures and
conjugated bonds with heteroatoms (such as carbonyl groups) that can be seen
as easily decomposable in potentially violent explosions such as the first molecule
shown in Fig. 5. This indicates the necessity that a molecular design scheme
focusing on a single target property such as low HOMO-LUMO gap may not
be very successful in delivering real-world solutions, and that a multi-objective
search needs to be performed instead that will result in a Pareto-optimal set
of molecules, combining a number of design targets such as low HOMO-LUMO
gaps paired with low values of synthesizability.

Fig. 7 gives an impression of the Mean Absolute Error (MAE) of the GCNN
surrogate predictions against DFTB-calculated HOMO-LUMO gaps for the molecules
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Fig. 7. Comparison of GCNN-predicted HOMO-LUMO gaps vs DFTB-computed ones
(“Correct Values”) for the training (left) and the test (right) data set of molecules
contained in the QM9 database.

contained in the original data set, separately for molecules of the training set
and the test set. The MAE is nearly identical in both close to 0.11 eV, indicat-
ing an excellent performance of the HydraGNN surrogate for this task, and the
homogeneity of the data set.

Fig. 8. Comparison of GCNN-predicted HOMO-LUMO gaps vs DFTB-computed ones
(“Correct Values”) for the MLM-generated molecules with smaller HOMO-LUMO
gaps.

Such good agreement between surrogate- and DFTB-predicted HOMO-LUMO
gaps is lost when considering the situation of the newly generated molecules,
shown in Fig. 8. The MAE is increased to 0.45 eV as the now larger molecules, not
contained in the original data set, lead to poorer performance of the HydraGNN
surrogate which was only trained on the QM9 database containing molecules
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with up to 9 heavy chemical elements. This fact indicates the usefulness to per-
form adaptive surrogate training in iterative molecular design approaches, as
indicated in Fig. 1 by the dashed arrow labeled “iteration”. Nevertheless, it
should be noted that the GCNN surrogate model, even without iterative im-
provements, was able to provide sufficiently reliable guidance to the MLM for
generating new molecular structures with reduced HOMO-LUMO gap.

For completeness, and to give an impression of the chemical variability con-
tained in the designed novel organic molecules with low HOMO-LUMO gap,
we show their molecular structures in the associated supplementary information
(SI). Fig. S1 shows all molecules with HOMO-LUMO gaps < 1.7 eV contained
in the original data set (43) and Fig. S2 shows those in the data set of generated,
novel molecules with the same HOMO-LUMO gap threshold (384).

7 Conclusions and Future Work

The current proof-of-principle shows that the combination of semiempirical quan-
tum chemical electronic structure theory, GCNN surrogate, and MLM generative
model succeeds to predict a plethora of novel molecular compounds with desir-
able optical properties, in this case HOMO-LUMO gaps that are as small as
possible. First we wish to mention how well our multi-headed GCNN surrogate
reproduced HOMO-LUMO gaps, the MAE was 0.11 eV for molecules both in
the training as well as test set (both part of the QM9 database). This accuracy
is similar to the one recently reported by Lilienfeld et al. [13] and is comparable,
or even exceeds, the error bars that can be expected from traditional DFT meth-
ods in their prediction of excitation energies, and thus lays the foundation for
an inverse design workflow focusing on HOMO-LUMO gaps. The surrogate lost
accuracy when trying to predict HOMO-LUMO gaps of larger molecules that
were not part of the training set, which indicates the necessity of adaptive surro-
gate training schemes in iterative molecular design. Our computational workflow
for accelerated molecular design using quantum chemical simulations and deep
learning models already possesses these capabilities, and we will exploit them in
future applications.

Nevertheless, even in a single iteration, our workflow succeeded in predicting
a significantly large number of molecules with very small HOMO-LUMO gaps
< 1.7 eV (384) which is much larger than the fraction of such molecules con-
tained in the entire QM9-based original data set containing 95k molecules (43).
This constitutes proof-of-principle of our combined surrogate/generative model
approach, even factoring in that the MLM was not even trained on molecules
with particular optical properties.

The newly generated molecules have the caveat that their synthesizability
scores are high, meaning that they are not easily to synthesize or are unstable
for other reasons, which underlines the necessity of multi-objective optimizations.
In future works, we will test the capability to perform adaptive training built
into our workflow, and incorporate advanced property predictions such as the
prediction of electronic excitation energies and oscillator strengths for real-world
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design applications targeting photoactive molecules and molecular dyes. Our
workflow will be generally applicable to any type of molecular properties that
can be predicted by quantum chemical electronic structure programs, such as
molecular energies, electronic and magnetic properties, vibrational properties,
and optical properties in general.
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