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Abstract—Transient stability is one of the critical aspects of
power system stability assessment. The increasing integration of
inverter-based resources and the retirement of conventional
synchronous generators result in the decreasing system inertia
and growing complexity of system operating conditions. Using a
few selected typical operating conditions cannot guarantee
system transient stability in all operating conditions, and the
time-domain simulation of all operating conditions requires
tremendous time and is often infeasible. This paper proposes a
more efficient transient stability assessment method based on
deep learning. The binary search method is used to determine
the critical clearing time (CCT) in creating training databased
by time-domain simulation. This method is fast and accurate
with 1 ms resolution. The buses whose CCTs are lower than 200
ms are considered critical buses. Buses close to each other are
grouped based on their mutual admittance matrix to reduce the
search space of the critical buses. This paper also proposes the
generator feature normalization based on the physical model.
Case study on the reduced 240-bus WECC system model
demonstrates that the proposed method can predict CCT
accurately and efficiently.

Index Terms—Transient stability assessment, machine learning,
deep learning, critical clearing time.

L INTRODUCTION

Transient stability is a critical aspect of power system
stability, which refers to the ability of an AC power system to
maintain its synchronism after a large disturbance. In current
industry practices, transient stability is typically evaluated by
time-domain simulation of selected representative operating
scenarios, e.g., summer peak, winter peak, and spring light.
Two direct methods are also used to assess power system
transient stability: the extended equal area criterion (EEAC)
[1]-[2] and the boundary controlling unstable (BCU)
equilibrium point method [3]-[5].

Recent fundamental changes in power systems, e.g.,
replacement of conventional synchronous generators with
inverter-based resources (IBRs), integration of large-scale
distributed energy storages (electric vehicles), and integration
of large amount of dispatchable loads, have resulted in more
complex system dynamics. More importantly, due to the
intermittence of renewables, power grids can experience
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more dramatic and frequent variations of operating
conditions. This makes it infeasible to use traditional offline
transient stability assessment methods, which only consider a
few selected representative operating conditions. Thus, it is
highly desirable to significantly improve its efficiency to
achieve fast and accurate transient stability assessment based
on real-time operating condition variations.

The critical clearing time (CCT) of a three-phase fault at
each high-voltage bus can be used as the transient stability
index. In [6]-[8], the CCT is estimated using a Lyapunov’s
type energy function or a transient energy function (TEF).
This method has some limitations and does not guarantee
accurate results all the time. Reference [9] proposes a
combination of simulations and the CCT approximation
method, which computes the approximated CCT using the
energy function approach, starts the time-domain simulation
with this approximated value, and finally obtains the accurate
CCT. However, in a large power system, the accuracy of the
energy function approach may not be guaranteed. As a result,
the large error between the approximated CCT and actual
CCT requires lots of repeated simulations to get the actual
CCT. Also, extra calculation is needed to get the
approximated CCT before the simulation.

Artificial Intelligence (AI) technologies, especially deep
learning neural networks, have many successful applications
in various areas, such as image recognition and language
processing [10]. They also have great potential to
fundamentally transform the way today’s power industry
monitors, analyzes, and controls power grids. Some
researchers have investigated the application of Al in transient
stability assessment. A deep imbalanced learning framework
is proposed in [11], which can improve the effectiveness of
transient instability recognition, since unstable cases are hard
to see in an actual power grid. A convolutional neural network
(CNN) transient stability classifier is developed in [12] to
predict if the system is transient stable or not. A new transient
stability assessment based on multi-branch stacked denoising
autoencoder (MSDAE) is presented in [13]. MSDAE can
achieve feature extraction and classification intrinsically and
simultaneously in an end-to-end manner. However, their
training dataset does not consider multiple operating



conditions due to renewable generation variations. Moreover,
reference [14] investigates the adaptive remedial action
scheme based on deep learning.

This paper investigates the application of deep learning
neural network in transient stability assessment. The reduced
240-bus WECC system model is used as the study system,
which has 8,784 hourly dispatches in total in a year of 366
days [15]. CCT is used as the metric to assess the transient
stability. The binary search algorithm is used to determine the
CCT in time-domain simulations. Buses are grouped based on
their mutual admittance matrix to identify the critical buses.

II. STUDY SYSTEM AND TRAINING/TESTING DATASET

A. Reduced 240-bus WECC System Model

The 240-bus WECC system model developed by the
National Renewable Energy Laboratory (NREL) is a reduced
model of the actual WECC system [16]. WECC system
includes the provinces of Alberta and British Columbia in
Canada, the northern portion of Baja California in Mexico,
and all or portions of the 14 western states in the U.S. [17].

The 240-bus reduced WECC model has one year dispatch
data obtained from the unit commitment and optimal power
flow. The model reflects the generation resource mix of the
WECC system as of 2018. Moreover, the developed dynamic
model is validated against field frequency measurements by
FNET/GridEye during actual events. The dynamic model
preserves the dominant inter-area oscillation modes in the
actual WECC system. Figure 1 shows the renewable
penetration level in one year, which is varying between 0.20%
to 49.19%.
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Figure 1. Renewable penetration of the study system.

B. Training/Testing Dataset Generation

1) System transient stability definition: In this study
system, there are 187 high-voltage buses, and the rest are
generator buses at lower voltage levels. The fault is applied
on each of the 187 buses and is cleared after time t. Around 2
seconds after the fault is cleared, rotor angle signals are
checked to see if any generators are out-of-step. To this end,
generator’s relative rotor angle is used, which is defined as

(1)

§;(t) = A;(t) — Ave{A(t)} (1)
where §;(t) is generator i’s relative rotor angle at time t.
A;(t) is generator i’s rotor angle at time t. Ave{A(t)}is the
average rotor angle of all large generators at time t.

Generator i is deemed as out-of-step in (2) if the relative
rotor angle deviation is larger than 180° around 2 seconds
after fault clearance.

abS{Si(tpre—fault) - (Si(tafter—fault)} > 180° 2)

where tpre_fauiels time right before the fault, and tageer—faure is
first swing (2 seconds in this case) after the fault.

In this study, CCT is used as the index of transient
stability assessment. The CCT is defined as the maximum
allowable time interval between the start and removal of the
fault that maintains the system synchronized. However, the
system will lose synchronization when fault is cleared after
CCT.

2) Binary search algorithm for CCT: To get the CCT for
a specific bus in one selected operating condition, multiple
simulations are performed. The binary search algorithm is
applied to reduce the number of simulations. The binary
search algorithm can find the position of a target value within
a sorted array. In this paper, O to 2000 ms is the range for the
CCT search. If the CCT is in this range, the actual CCT can
be found in 11 repeated simulations at most (log 2000 = 11).
Also, multiple cores of CPUs are utilized to accelerate the
simulations. If a PC is equipped with an 8-core CPU,
multiple-core processing will speed up the simulation 2 to 3
times, considering the additional overhead time.

TABLE 1 shows one example of the binary search
method. After 11 repeated simulations with different fault
clearing time values, the program found the accurate CCT for
one specific bus. In this example, the CCT is 232 ms.

TABLE 1. BINARY SEARCH ALGORITHM FOR CCT
Simulation Fault clearing time  Transient
steps (ms) stability
I 1,000 Unstable
D 500 Unstable
3 250 Unstable
4 125 Stable
50 188 Stable
6" 219 Stable
7" 234 Unstable
g 227 Stable
9" 231 Stable
10" 233 Unstable
1" 232 Stable

3) Bus clustering: There are 187 buses in the system
where faults can be applied to search for CCT. According to
the NERC standard, backup relay is required to act in 12
cycles, which is 200 ms [18]. It is assumed that buses with a
small mutual impedance will have similar CCTs because of a
shorter electric distance. For example, applying a bus fault on
two ends of a short line may have very similar impacts, and
thus the CCTs will be close to each other. Therefore, all the
buses are
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Figure 2. Grouped Buses’ CCT in four typical scenarios (Group 1 to Group 19)

grouped according to their mutual admittance, and one
representative bus from each group is chosen that has the
lowest CCT in the group. Also, since different operating
conditions will result in different CCTs for the same bus, four
typical operating conditions representing the heaviest load
case, lightest load case, lowest inertia case, and highest
inertia case, are selected for simulations with the binary
search algorithm to screen all buses’ CCT.

In this study, buses whose mutual admittances are larger
than 50 p.u. are grouped into one group. As a result, all 187
buses are grouped into 57 groups. Figure 2 shows Group 1 to
Group 19 for illustration. The groups are separated by black
dash lines. In each group, there are red, yellow, purple, and
green lines connecting different color dots. The lines
represent lightest load case, lowest inertia case, heaviest load
case, and highest inertia case respectively. The colored dots
on each line represent buses in that group, and the dots of the
same color in each group across different line represents the
same bus. For instance, in Group 15, there are two buses
represented by blue and orange. The CCT of the orange bus is
always larger than 200 ms in four scenarios, while the CCT
of the blue bus is less than 200 ms in the lightest load case
and highest inertia case. In most groups, the bus with the
lowest CCT is always the same in the same group across four
cases. Note that the buses with CCT less than 200 ms are of
our interest. In some groups, none of these buses has a CCT
less than 200 ms. By using this grouping method, around 30
critical buses with low CCT are identified for the transient
stability assessment.

4) Flow chart: The overall flowchart of the transient
stability assessment is given as follows.

Step 1: Pick four typical cases (lightest load, heaviest
load, lowest inertia, and highest inertia,) for CCT scanning of
all buses;

Step 2: Calculate 187 buses’ CCT for each of these four
cases using binary search algorithm;

Step 3: Group all 187 buses into different groups by the
admittance matrix and select the critical buses for this system
which always has CCT less than 200 ms in four different
scenarios;

Step 4: Pick one or several buses from those critical
buses for study. In this paper, only one bus (#6102) is
selected for demonstration;

Step 5: Calculate 8784 different CCT values for the bus
picked in Step 4 for all dispatches of a whole year;

Step 6: Build the machine learning model based on the
results in Step 5, and train and test the machine learning
model.

III. DEEP LEARNING MODEL FOR TRANSIENT STABILITY

ASSESSMENT

A. Deep Learning Model

In this study, the deep learning model is applied for
transient stability assessment. The deep learning model is a
neural network with more than one hidden layer. It can
progressively abstract the input features from the previous
layer to the next layer and results in better generalization.
Generator dispatches and load flow results are the input of the
neural network that are not sequential nor time dependent.
The fully connected feed-forward neural network is a good fit
for those features.

Figure 3 shows the neural network model for the transient
stability assessment. The input features are the generators’
dispatch and load flow results. The output of the model is the
CCT of bus #6102.
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Figure 3. Neural network model for transient stability assessment.

B. Feature Normalization

Feature normalization is an important data processing
step before training the machine learning model. Normalized
features can have similar scales, so the model training



efficiency can be improved. There are mainly two feature
normalization methods: min-max normalization and standard
normalization. Min-max normalization can scale the features
into a range from O to 1, while standard normalization can
scale features into Gaussian distribution with mean of 0 and
standard deviation of 1.

Typically, the normalization scale is obtained from the
training dataset, and applied to both the training dataset and
the testing dataset. For image processing, this would not be a
problem, since pixel value range is always from O to 255 for
any samples in the training dataset and the testing dataset. For
other types of applications, when the training dataset does not
cover the full range of minimum and maximum of the whole
dataset, the normalization scale based on the training dataset
only may be biased. Considering the power system physical
model, this study normalizes the generator’s output according
to the generator’s Pmin and Pmax settings in the model for
both the training dataset and the testing dataset, as shown in
(3).

. x — Pmin(X)
X = - 3)
Pmax(X) — Pmin(X)
where x' is a generator’s normalized value. x is that
generator’s output. Pmin(X) and Pmax(X) are generator’s

Pmin value and Pmax value and in the simulation tool
respectively.

Similarly, for the load features, the scale is obtained from
the whole dataset, as given in (4).

. x —min(X) .
~ max(X) — min(X) )
where x' is a load’s normalized value. x is that load’s output.
X is one feature in whole load dataset.

IV.

Based on the method introduced in Section II and
Section II, the whole training dataset for one of the critical
buses, Bus #6102, is generated. The binary search method is
used during the CCT searching simulation, and the training
dataset’s CCT resolution is 1 ms. The deep learning neural
network model defined in Figure 3 is built for transient
stability assessment and trained based on the training dataset.

SIMULATION

A model with too many layers and nodes tends to be over
fitting, while one with insufficient layers and nodes tends to

be under fitting. In this study, models with 3, 6, 8 and 9
hidden layers are built and tested. Different learning rates of
0.001, 0.005, 0.008, 0.01, 0.02 and 0.025 are attempted
during model training. Dataset percentage for training also
has an impact on the model’s performance. Model’s
performance based on different percentages of training
dataset is also compared. Validation is performed during the
training process to prevent overfitting. The training process
ends when the model stops improving on the validation
dataset during training. TABLE II lists the best models’
performance tested on the testing dataset when trained with
different training dataset percentages. Root Mean Squared
Error, Mean Absolute Error (MAE), and r-squared are used as
the metrics.

From the table, when the training dataset reaches 70%,
the model’s performance does not improve anymore with the
increasing training dataset percentage, e.g., the model’s
performance is very close when the training dataset is 70%
and 80%.

TABLE II. MODEL PERFORMANCE COMPARISON.
Training dataset RMSE (ms) MAE (ms) R?

Percentage
10% 0.01636 0.011676 0.84093
20% 0.013938 0.009868 0.883444
30% 0.012441 0.008571 0.906948
40% 0.01119 0.007822  0.925682
50% 0.009527 0.006259 0.94582
60% 0.00932 0.005635 0.948318
70% 0.006019 0.003755 0.978561
80% 0.006067 0.003400  0.977657

Figure 4 shows the model’s CCT prediction value,
prediction error histogram, and Gaussian distribution on the
testing dataset (1845 testing samples) when trained with 70%
training dataset (4303 training samples). The MAE on the
testing dataset is 3.75ms. The standard deviation of the error
is 6.01 ms. According to the probability density function
(PDF) in Figure 4(c), with 95% probability, the prediction
error ranges from -12ms to 12.1 ms. Figure 5 shows the daily
prediction of CCT value. The daily result shows the predicted
CCTs match well with the simulated values.
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V. CONCLUSION

This paper proposes a deep learning-based transient
stability assessment method that predicts the CCT values
quickly and accurately under different operating conditions.
In the training dataset generation, the binary search algorithm
is used for CCT calculation, which can find the bus’s CCT
within 11 simulations at 1 ms resolution. This provides an
accurate training database for training the deep learning
model. This paper also proposes a bus grouping method
based on the mutual admittance, so it can find critical buses
in the system quickly. The simulation results show that the
model trained with 70% training dataset has good
performance, and the daily prediction results demonstrate that
the model can accurately predict CCT values.
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