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Abstract-Composite science workflows are gaining traction 
to manage the combined effects of (1) extreme hardware het­
erogeneity in new High Performance Computing (HPC) systems 
and (2) growing software complexity - effects necessitated by 
the convergence of traditional HPC with data sciences. Com­
posing, analyzing, and optimizing a composite workflow remains 
highly challenging as the component technologies are generally 
developed in isolation and often feature widely varying levels of 
performance, scalability, and interoperability. In this paper, we 
propose novel workflow composition and analysis techniques to 
create and optimize a scalable and effective composite workflow 
for heterogeneous HPC centers, and define the performance 
space of variables that impact composite workflow performance • 

We present PerfFlowAspect, an Aspect Oriented Programming 
(AOP)-based tool to perform cross-cutting performance analysis 
of composite workflows and better understand the impact of 
key performance variables on workflows. Our solution directly 
addresses AOP concerns that can affect workflow performance 
and covers the full software lifecycle, ranging from the work­
Bow's initial composition through performance analysis and 
optimization. We use our science workflow composition tech­
niques to implement the American Heart Association Molecule 
Screening (AHA MoleS) workflow. Through experimentation, 
we demonstrate that tuning a single performance variable can 
improve AHA MoleS workflow performance by a factor of 
up to 2.45x. Our evaluation suggests that our techniques can 
significantly enhance the ability of a multi-disciplinary research 
and development team to create a high performance composite 
workflow. 

I. INTRO DUCTION 

Current economic factors are ushering in a new era of 
extremely heterogeneous HPC. As Moore's Law is taper­
ing, specialized hardware such as graphics processing units 
(GPU) [30] is increasingly taking the role previously played by 
general purpose processors as the main computing workhorse. 
As cloud computing has become a dominant market force [13, 
16], HPC has also begun to embrace a heterogeneous software 
environment, marrying its software stack to cloud solutions. 
Indicatively, 2018 was the first year in which new additions to 
the top 500 supercomputers derived more performance from 
specialized processors than from general purpose processors. 
Key cloud solutions including container and container orches­
tration technologies such as Kubemetes [22] and OpenShift 
(which is built on top of Kubemetes), are also making inroads 
into HPC infrastructure [12, 6] . 
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At the same time, the complexity of science workflows 
on HPC systems is growing sharply. The convergence of 
traditional HPC and new simulation, analysis, and data science 
approaches including Machine Learning (ML) and Artificial 
Intelligence (AI) provides unprecedented opportunities for 
discovery, but also creates workflows [2, 8, 35] that are far 
more complex than traditional ones. These workflows often 
combine many different applications. The different application 
tasks in the workflow have vastly different computational 
requirements. Each different task may perform well on one 
type of computing hardware but not on others. Furthermore, 
the applications runtimes and execution order can be wildly 
different. Thus, this complexity must be managed through 
full automation. A fully automated scientific workflow must 
carefully map and run application tasks [8, 3, 17] to dif­
ferent specialized hardware (e.g., CPU, GPU, disaggregated 
AI accelerators [18], 1/0 storage of certain tiers in a multi­
tiered storage subsystem [31]) and/or different system software 
(e.g., persistent container services such as message-queue 
and database services running on an on-premises Kubemetes 
cluster). 

With a growing trend toward specialized hardware, large 
compute facilities will soon feature much higher hardware 
heterogeneity at all levels. They will not only increasingly field 
different heterogeneous compute node types, but also different 
partitions within a large system with different specialized 
hardware, and vastly different systems with different hardware 
types across the facilities. Thus, the mapping of application 
tasks in a workflow will result in going beyond the boundary of 
a single system and programming the entire center resources. 
Managing and mapping the tasks on heterogeneous resources 
across different systems will add far more complexity in 
multiple dimensions. 

In this paper, we categorize some of the key challenges in 
running automated cross-system workflows that users face on 
current and future HPC centers. And we provide a solution 
for each challenge. We specifically identify challenges in 
three areas. 1) The conceptual challenge of understanding 
the key performance space of a cross-system workflow that 
can compose large numbers of domain-specific and general­
purpose software components each with different performance 
charateristics. 2) The performance analysis challenge of gath-
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ering performance data from large numbers of components 

to analyze the entire workflow without having to lose the 

modularity and uniformity in ways which code instrumention 

is cast across them. 3) The performance optimization challenge 

of easily re-configuring the workflow to tune the end-to-end 
workflow tum-around time performance in an iterative fashion. 

In particular, the main contributions of our paper include: 

• Composite science workflow composition techniques that 

blend domain-specific components with reuseable work­

flow management components with ease of performance 

analysis and tuning principles; 

• Defining the performance space of composite workflows, 

effective performance modeling and key variables per­

taining to this space; 

• An AOP technique to build a cross-cutting performance 
analysis concern into constituent components as our so­

lution to the performance analysis challenge; 

• A workflow software architecture to enable an easy 

iterative exploration of the performance space as our 

solution to the performance optimization challenge. 

To study the effectiveness of our solutions to these chal­

lenges, we identified and closely worked with a multidisci­

plinary science team that had concrete requirements to create 

and automate a cross-system workflow at scale. As part of 

our collaboration, the teams developed the American Heart 

Association Molecule Screen (AHA MoleS) workflow with 

the goal of categorizing and solving the major challenges that 

emerge from running composite workflows across systems at 

large scale. Using representative AHA MoleS inputs, we ran 

the workflow across multiple supercomputers with different 

hardware types as well as an on-premises OpenShift Kuber­

netes cluster. All of the systems reside at Lawrence Livermore 

National Laboratory (LLNL), one of the world's largest HPC 

centers. 
Our empirical evaluation using AHA MoleS suggests that 

our techniques enable easy composition, analysis, and op­

timization of this workflow in a multi-disciplinary research 

and software-development environment. To the best of our 

knowledge, our work is the first to identify specific challenges 

and solutions required to build and run a fully automated cross­

system high-performance workflow combining three com­

pletely different types of computing resources at one of the 

world largest computing facilities. 

II. FAST DRUG MOLECULE SCREENING 

To accelerate small molecule drug design and development, 

HPC is widely used to virtually screen a library of small 

molecule compounds against a protein target. Each molecular 

docking calculation consists of two steps where the small 

molecule is positioned in the protein binding pocket (pose) 

and an energy score is calculated, predicting the molecular 

binding. The explosion of chemical libraries from millions 

of compounds to billions of compounds drastically changed 

the scale of virtual screening, demanding faster more effi­

cient methods to accurately predict small molecule binding. 

As such, machine learning algorithms (Fusion) have been 
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trained on molecular binding and can rescore molecules based 

on given poses. Frequently, multiple methods are used in 

combination to maximize successful predictions called "hits". 

Additionally, this same workflow is used to virtually screen 

molecules across the American Heart Association library of 

three-dimensional human proteins, composed of over 10,000 
proteins, to predict proteins involved in potential side effects. 

A. AHA MoleS 

The resulting workflow is called AHA MoleS. Figure 1 
shows how AHA MoleS builds on and combines two classes of 

software components: (1) modem general-purpose components 

including Maestro [7], Flux [10] and RabbitMQ [33] orches­

trated by Kubemetes [22] ; and (2) domain-specific workflow 

management and application software including ConveyorLC 

Docking [38] and Fusion [19],  which are two of the main 

components in the Generative Molecular Design (GMD) [ 15], 
particularly in the GMD Structural Core (GMD SC). 

B. General-Purpose Workflow Components 

The Maestro Workflow Conductor is a lightweight HPC 

workflow tool that is capable of generically representing and 

orchestrating multi-step computational workflows [7]. Maestro 

centers around the concept of a "study": a YAML specification 

that allows users to mark up their workflow easily in a Bash­

like syntax. It can then utilize the specification to construct a 

Directed Acyclic Graph (DAG) of tasks to be automatically 

scheduled using a specified scheduler interface. Maestro is 

written entirely in Python for portability. 

RabbitMQ is a high-availability, scalable messaging broker. 

It supports a host of features, including messaging queues, 

message prioritization, and delivery acknowledgement. Mul­

tiple producers and consumers can send and receive mes­

sages simultaneously, making RabbitMQ an ideal platform 

for coordinating a workflow executed by many workers. Most 

important to a screening workflow such as AHA MoleS is 

the ability of RabbitMQ to be run within a datacenter-wide 

Kubemetes cluster, which is accessible over the network from 

every HPC cluster. This accessibility enables the workflows to 

pool resources across multiple heterogeneous clusters. 

Flux is a fully hierarchical workload manager for HPC. Its 

hierarchical capabilities have proven to improve scalability and 

flexibility significantly through a divide-and-conquer approach 

that is well-suited for currently-emerging environments. Jobs 

and resources are divided among the schedulers in the hi­

erarchy and managed in parallel. This approach significantly 

increases the scalability of Flux over traditional schedulers that 

rely on a centralized scheme. One of the key features of Flux 

is that it allows for both single-and multi-user modes. Modem 

composite workflows can leverage its single-user mode, where 

hierarchical resource management and job scheduling are 

provided in the user space within a batch allocation created 

by an HPC system-level workload manager, such as Slurm 

and IBM LSF. This allows researchers to set up their own 

customized hierarchies within a batch allocation as well as 

policies of Flux's graph-based job scheduler called Fluxion. 

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on February 02,2023 at 20:49:31 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 1: AHA MoleS workflow architecture 

These capabilities also allow users to tune additional schedul­

ing policies such as queuing and resource matching. 

C. Domain-Specific Software Components 

ConveyorLC is a high-throughput virtual screening pipeline 

to automate the docking and rescoring of compounds against 

protein targets [38, 36]. This pipeline mainly includes four 

Message Passing Interface (MPI)-based parallel applications 

for protein preparation, ligand preparation, molecular docking, 

and Molecular Mechanics/Generalized Born-Solvent Accessi­

ble Surface Area (MM/GBSA) rescoring. The docking method 

in the ConveyorLC pipeline is based on Autodock Vina. 

A mixed MPI and multithreading hybrid parallel scheme is 

employed in the ConveyorLC docking application [37]. The 
virtual compounds were converted for the docking simulations 

by the ConveyorLC ligand preparation application. 

Fusion is a structure-based ML model for protein-ligand 

binding affinity prediction based on the combination of a 

three-dimensional convolutional neural network (3D-CNN) 

and spatial graph neural network (SG-CNN) [19]. The 3D­

CNN component is designed to capture 3D atomic interactions 

and implicit geometric configurations using a 3D voxel grid. 

The SG-CNN component is modified from the PotentialNet [9] 

architecture based on Gated Graph Sequence Neural Net­

works [23] and captures explicit pairwise atomic interactions. 

The fusion of the 3D-CNN and SG-CNN components models 

two complementary representations of protein-ligand interac­

tions to give more robust prediction accuracy when evaluating 

new protein targets. The coherent Fusion model has been 

implemented in the PyTorch ML framework, which provides 

the ability to accelerate the calculations on GPUs [29]. 

Finally, GMD is an active learning drug discovery frame­

work. It incorporates the AMPL pipeline [24], GMD SC, 

and a deep generative network model to iteratively search 

for small molecule drug candidates. GMD is designed to 

efficiently search through an exceptionally large chemical 

space and converge on chemical compounds predicted to 

have desirable drug-like properties including consideration of 

efficacy, safety, pharmacokinetics (PK), and synthesizability of 
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the newly proposed compounds. GMD starts with a working 

compound library and uses AMPL to predict key pharma­

relevant parameters of molecules. The GMD SC, including 

ConveyorLC and Fusion, predicts the binding affinity of com­

pounds. The generative model uses design criteria to guide 

the generation of new compounds based on the predicted 

values calculated by AMPL, ConveyorLC, and Fusion. The 

newly proposed compounds are incorporated into the working 

compound library and used to inform the next iteration of 

the GMD loop. Once the design loop converges on novel 

compounds meeting the design criteria the most promising 

compounds are selected for experimental validation and to 

update the ML models. The AHA MoleS workflow adapts 

the GMD SC infrastructure to enable screening large working 

compound libraries against an expanded list of protein targets. 

D. Challenges Encountered 

We create the AHA MoleS workflow based on a purpose­

built architectural blueprint. The software engineering of 

workflow composition is an important development. However, 

we find that it is difficult to measure the performance of the 

complete workflow. Gathering data on the workflow execution 

is a necessary step to measuring and improving performance, 

but reliance on trial-and-error necessitates a reconfigurable 

workflow. An iterative approach permits performance analysis 

and optimization on the entire workflow. In the following, 

we provide details on the computing environment where 

we evaluate our engineering developments, and then discuss 

the solutions to these challenges in the remaining sections. 

Although we develop the steps and techniques in the context 

of AHA MoleS, it is important to note that our study allows 

the techniques to be applied to the broader class of composite 

scientific workflows. 

E. Cross-System Worlqlow Evaluation Environment 

The blueprint of our target workflow is to couple molecular 

docking and an ML algorithm to score small molecule binding 

in the protein. Each component has completely different com­

putational requirements, and thus this workflow requires to run 
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across multiple systems to be effective. This section details the 
systems we use to explore cross-system workflow challenges. 
We aim to build our workflow software until we can perform 
controlled benchmark runs using two supercomputers as well 
as an on-premises Kubemetes cluster simultaneously: Ruby, 
Lassen, and the Persistent Data Services (PDS) Red Hat 
OpenShift cluster at LLNL. Ruby is a CPU machine with a 
total of 1,512 nodes. Each node contains two Intel® Xeon® 

CLX-8276L CPUs with a total of 56 cores. Lassen is a 
machine using CPU-GPU heterogeneous architecture with a 
total of 795 nodes. Each of the nodes has two IBM® Power9™ 
CPUs with a total of 44 cores and four Nvidia® Tesla™ V100 
(Volta) GPUs. The PDS cluster consists of three Kubemetes 
servers and five worker nodes, together with a NetApp® 

AFF A400 storage system providing object and persistent 
container storage. We targeted the molecule batch creation, 
ConveyorLC Docking jobs, and batch completion to run on 
Ruby while targeting Fusion jobs to run on Lassen. We map 
our applications this way because each of these applications 
perform best on respective type of computer hardware. We 
expect that this will be a typical configuration in the future as 
different applications in a workflow may perform well on a one 
type of computing hardware but not on others. And how long 
different applications need to run and in what order are also 
wildly different from one another. One significant system-level 
limitation is that our experiment used a Dedicated Application 
Time (DAT) request to guarantee the allocation of the compute 
resources on both supercomputers at the same time. This is 
because there is no center-level scheduler that can schedule 
across these machines in a coordinated fashion (e.g., allocating 
both at the same time or allocate Ruby resources first and then 
Lassen's). The settings and resource allocation for different 
calculations (e.g., Docking and Fusion) in the workflow are 
configurable. 

Ill. PERFORMACE SPACE OF COMPOSITE WORKFLOWS 

A science workflow is a sequence of tasks that are executed 
in a specific order with or without dependencies. What distin­
guishes a composite workflow such as that constructed from 
the components described in Section II from the traditional 
approach is that the tasks can be generated, scheduled, and ulti­
mately executed by a set of many domain-specific and general­
purpose components in concert and across multiple clusters. In 
a composite workflow, the domain-specific workflow managers 
are often interacting closely with a set of general-purpose 
workflow and resource/job manager components to push the 
increasingly finer-grained units of work or tasks through their 
work queues and resource allocators at multiple levels. Moving 
tasks via a pipeline of two different components often involves 
well-known operations (e.g., generate, submit, schedule, etc) 
as well as adaptation procedures between these components. 

A. Performance Space 

One of the most important goals of any science workflow is 
to complete its tasks as quickly as possible while being subject 
to constraints such as amounts of compute resources that can 
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Fig. 2: Optimality relies on composite performance functions; 
F is Flux scheduling, F' is optimized Flux scheduling, and 
D is the task scheduler within ConveyorLC. 

be simultaneously used, fair use of resources that are shared by 
multiple users, etc. Thus, it is essential to minimize the critical 
path that workflow tasks must go through in order to achieve 
this goal. If no performance overhead is incurred in performing 
scheduling-related operations, identifying those tasks that take 
longest at each level through the DAG and shortening the time 
to complete these tasks on the critical path should suffice. 
In practice however, key workflow scheduling and execution 
operations can incur significant performance overheads, which 
are affected by multiple performance variables (e.g., sizes of 
the task and architectures of the scheduler). 

1) Relative performance: A task in a composite workflow 
must be adapted between large numbers of components before 
it can be allocated to a compute resource and executed at 
increasingly finer granularity. Thus, the relative performance 
and scalability characteristics of the components are critical 
for any composition. 

Let us consider the performance and scalability of Con­
veyorLC and GMD SC components described in Section II. 
ConveyorLC implements its own ad hoc task-level scheduling 
on top of MPI. As it uses the leader-worker pattern in which 
each of the worker MPI rank processes fetches new docking 
tasks from the single leader MPI rank (rank 0) and thus the 
oth rank can experience a significant performance bottleneck 
at scale. To run it at scale, therefore, ConveyerLC demands 
an ensemble approach whereby a group of ConveyorLC jobs 
are managed and run by another component such as Flux. 
This performance characteristic is complicated by the GMD 
SC software, which is designed to run at varying scales to 
support a broader set of domain specific applications. One 
of the implications of this characteristic on the composition 
is that the number of ConveyorLC jobs that are exposed to 
GMD SC for coupling cannot be excessively large, a relative 
performance trait generally opposed to that of ConveyorLC. 
The final characteristics emerge from Flux: its scheduling 
performance can also vary depending on the workload. 

2) Optimality relies on composite functions: Figure 2 illus­
trates optimality using the relative performance and scalability 
of characteristics of the task scheduler within ConveyorLC and 
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Fig. 3: Performance Variables 

of the job scheduling and execution services within Flux. Here, 

our performance variable is the size of each ConveyorLC job 

that is scheduled and executed by Flux. Given a fixed number 

of compute nodes (N) that are managed by a Flux instance, 

ConveyorLC can run in many different configurations. It can 

run as single-node jobs (many jobs run in parallel), as a large 

N-node job (one job runs at a time), or anything in-between. 

The performance of the scheduler within either component 

varies non-linearly and generally in an inverse manner. As the 

size of ConveyorLC jobs increases the number of jobs run­

ning simultaneously decreases, which lowers the performance 

overhead of scheduling and execution at the Flux level while 

increasing the overhead at the ConveyorLC scheduler level. 

Overall, the minimal mak.espan can only be determined on 

the sum of the performance functions of the two schedulers: 

F + D or F' + D as shown in Figure 2 where F is 

the performance curve of Flux scheduling, F' is that of its 

optimized scheduling, and D is the performance curve of the 

task scheduler within ConveyorLC. 

3) Performance variables: An optimization becomes 

quickly non-trivial; real-world workflows would employ many 

more components than our rather simple examples and many 

performance variables beyond the job size variable would 

affect the performance space. Figure 3 further expands on 

our concept of performance variables. There are two types of 

performance variables: 1) independent performance variables 

and 2) dependent variables. As shown in Figure 3a, the 

amount of resources allocated to docking simulations is an 

independent variable. Researchers will choose it according to 

their science objective. The job size of ConveyorLC is also an 

independent variable: it will be chosen according to their prior 

understanding of the scheduler behavior. Likewise, the start 

time of the resources allocated to Fusion is an independent 

performance variable. By contrast, the performance overhead 

of Flux scheduling of ConveyorLC jobs become a dependent 

variable that depends on both the resource allocation scale for 

docking simulations and the size of ConveyorLC jobs. The 
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performance overhead of ConveyorLC scheduling becomes a 

variable that depends on the size of ConveyorLC jobs. Finally, 

the minimum amount of resources that Fusion needs for the 

optimal mak.espan becomes another dependent variable that 

depends on all three independent variables. Here, the identifi­

cation of the key performance variables and their dependence 

relationship is critical for performance optimization. If one 

component is optimized such that a dependent variable is 

affected, researchers must account for all other dependent 

variables correlated with it to understand its true impact. 

IV. MANAGEABLE CROSS-COMPONENT PERFORMANCE 

ANALYSIS 

We now highlight our high-level principles for analyzing the 

performance of composite workflows. First, each component 
scheduler must identify the key performance and scalabil­
ity characteristics as pertaining to the planned composition 
as early as possible. The domain experts of each compo­

nent should be responsible for this identification and cross­

discipline communications for later cross-component analysis. 

Second, an overall workflow-level performance model must 
guide the initial composition to allow for easy reasoning 
of the overall workflow scheduling performance. This model 

should be simple, yet rich to capture those events that are 

on the critical path of the resulting end-to-end workflow. 

Third, a well-defined method to monitor the performance 
of the overall workflow is required. A composite workflow 

almost always uses a large set of preexisting components, 

each of which would generally use different logging and 

built-in performance monitoring. Yet, we need a consistent 

way to gather performance data for a particular composition 

consisting of a disparate set of components to capture the 

critical-path events. 

A. Casting Critical Path Analysis ( CPA)-based cross-cutting 
performance concerns 

For the first and second principles, we use CPA [34] as 

the basis for our performance modeling. CPA is a common 

technique to determine the cause of a workflow's mak.espan 

by finding the event path in the task execution history of 

the workflow that has the longest duration. This critical path 

identifies where in the workflow we should focus our attention. 

This helps researchers reason about how various components 

interact with one another as the tasks are moving through these 

operations for execution. 

For the third principle, we developed a simple AOP [20]­

based tool called PerfFlowAspect (PerfFlowAspect) [11] .  It is 

a simple performance analysis tool that can cast a cross-cutting 

performance-analysis concern or aspect across a heteroge­

neous set of components used to create a composite science 

workflow. It is designed specifically to allow researchers to 

weave the performance aspect into critical points of execu­

tion across many workflow components without having to 

lose the modularity and uniformity of how performance is 

measured and controlled. It closely follows the AOP design 
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patterns to minimize code modification needed for the dis­
parate workflow-management technologies and also to mod­
ularize the control for managing ways to cast cross-cutting 
performance-analysis instrumentation across many compo­

nents. 

PerfFlow Aspect provides language support most relevant 
for HPC workflows such as Python, C and C++. For Python, 
it uses an annotating decorator whereby users can use 

@ P e r fFlowAspect . a spect . critical_path ( ) to 
annotate their functions that are likely to be on the critical 

path of the workflow's end-to-end performance. These 

annotated functions then serve as the join points that can 
be weaved together with PerfFlowAspect and acted upon. 

Once annotated, running this python code will produce a 
performance trace data files that use Chrome Tracing Format 
(CTF) in JSON so that it can be loaded into Google Chrome 

Tracing or Perfetto to render the critical path events on the 
global tracing timeline. 

When these annotated functions, or join points, are weaved 
together with PerfFlow Aspect, users can invoke specific 
performance-analysis actions, a piece of tracing code, on 
those points of execution. They are often referred to as 
advice in AOP. One type of advice within PerfFlowAspect 
that our effort uses is Chrome tracing advice. This par­

ticular advice simply logs a performance event data in 
CTF. PerfFlowAspect's annotation also supports the no­
tion of pointcut: a predicate that matches join points. In 

fact, @PerfFlowAspect . aspect . critical_path ( ) 
can take an optional keyword argument called pointcut whose 

value can be around, before, after or their async variations 
(around_a sync, before_a sync, and a fter_async). 
point cut=around will invoke the advice before and 
after the execution of the annotated function whereas 
point cut=be fore or point cut =after will only ad­
vise either corresponding point of function execution. 

Unlike dynamic programming languages such as Python, 
CIC++ cannot natively and easily weave PerfFlowAspect 
into the target program (e.g., using language features like 

Python decorator). To overcome this language-level limitation, 
PerfFlowAspect introduces a simple LLVM pass which can 
detect critical-path annotations in the target C/C++ source files 

and to weave these annotated program points together with 
PerfFlowAspect's runtime library as part of Clang compilers' 
optimization pass. This allows C/C++ and Python users alike 

to use the consistent AOP abstraction of PerfFlowAspect. The 
consistent abstraction and tool usage flow for both dynamic 
languages and more traditional high performance computing 
programming languages like C/C++ significantly facilitate the 
high level of unity and modularity as required by the AOP 
paradigm. 

Each component developer in a multi-disciplinary team 

like AHA MoleS can independently use PerfFlowAspect to 
annotate their functions that are likely to be on the critical 
path of the resulting workflow's end-to-end performance. 
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Fig. 4: Critical path of Docking tasks for AHA MoleS 

B. Application to AHA MoleS 

As shown in Figure 1 ,  AHA MoleS can be broadly catego­
rized as a producer-consumer workflow, where Docking tasks 
running on a CPU-only supercomputer produce molecular 

poses to be consumed by Fusion tasks running on a GPU­
equipped supercomputer. Figure 4 zooms in on a single Flux 
instance that schedules and executes ConveyorLC jobs for 

Docking tasks. We assume a task is generated by GMD SC, 
which is sent to and enqueued into RabbitMQ before it is 
dequeued by a GMD SC adapter ( e1) that is responsible 
for adapting the tasks for next steps. Because the GMD SC 
adapter does not directly interface with Flux but via a Maestro 
instance, the task has to be adapted to Maestro first via the 
invocation of Maestro's submit API (e2). Maestro then adapts 
the task to Flux via the invocation of Flux's submit API (e3). 
Once the task is submitted to Flux, Flux must go through 
critical events: its Fluxion scheduler first finds and allocates a 
set of resources for this task ( e4) and then its execution service 

must launch and bootstrap the ConveyorLC job (e5). 
The general case is when all of the compute node resources 

managed by Flux have been utilized and a running job 
completes e6• e6 is a j ob-complete event emitted from 

Flux and e7 and e8 are a j ob-complete-dete cted events 
emitted from Maestro and then from the GMD SC adapter. e9 
indicates the GMD SC adapter sends a j ob-done message 

to RabbitMQ. Between e5 and e6, there are many critical­
path events emitted from ConveyorLC as pertaining to its 
task-level scheduling, which we omit. For the general case, 

e1 through e9 represents the critical path of the Docking 
portion of the workflow. This sequence can repeat many times 
in particular when the size of each ConveyorLC job gets 

smaller. Given the relative performance characteristics of Flux 
and ConveyerLC scheduling, smaller jobs can significantly 
increase the overall performance overhead of A, B and C 
regions: R x Z:::i=t t(ei, ei+l) where R denotes a repeat count 
and t(ei, ei+1 ) denotes a duration between two consecutive 
events. However, they can significantly decrease the overall 
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performance overhead of D region: R x t(e5, e6). This can 
provide an insight into how this relative performance varies 
over the variable: S i z e  o f  ConveyorLC j ob. 

Fusion tasks begin with a RabbitMQ message, which con­
tains a set of molecular poses to be scored by it. The number of 
molecular poses in each message is controlled by the workflow 
domain-specific parameter called Mo lecule batch s i ze. 
Each RabbitMQ message is consumed by a GMD SC adapter, 
which creates and runs a corresponding Maestro specification. 
Maestro prepares the run directories for the Fusion jobs and 
submits the jobs to the enclosing Flux instance running on 
the GPU-enabled supercomputer. Overall, the critical path 
of Fusion is similar to Docking. The Docking and Fusion 
tasks are composed together via the messages enqueued into 
RabbitMQ by the GMD SC adaptors. To have a Fusion task 
score a molecule post-Docking, the GMD SC adaptor that 
consumed the initial Docking task enqueues a Fusion task into 
the message queue after the Docking task completes. 

C. Impacts of Varying Performance Variables 

Eight different configurations of our workflow benchmark 
runs have been performed with the combinations of two 
versions of Flux, two settings of ConveyorLC Docking jobs, 
and two settings of Fusion jobs (Table 1). One version of Flux 
is labeled as Default (flux-core v0.26 and fluxion v0.15) 
and the other as Opt or Opt im i z ed (flux-core v0.27 and 
fluxion v0.16). The latter version has proven far more efficient 
and scalable when applied not only to our testing workloads 
but also a large production scientific workflow Multiscale 
Machine-Learned Modeling Infrastructure (MuMMD [8, 3]. 
On Ruby, 981 nodes have been allocated with one node 
reserved to run our custom scripts that perform batch creation 
(using 4 threads) and batch completion (using 12 threads). 
The number of molecules per batch is set to 1 ,715. The 
remaining 980 nodes are divided into several Flux jobs; each 
job is submitted and launched with the flux mini submit 
command. One way is to divide them into four Flux jobs 
so each run runs across 245 nodes. The other way is to 
divide them into 196 Flux jobs so each run uses five nodes. 
For the 245-node Docking job configuration, the number of 
prefetch Docking jobs is set to 36. The number of prefetch 
Docking jobs is 72 for the five-node job configuration. We 
use the larger prefetch number for the five-node job since 
this setting runs many more jobs simultaneously than the 245-
node job configuration. For the Fusion calculations on Lassen, 
we use two different configurations: one with resource under­
provisioning and the other with over-provisioning. Our over­
provisioning setting allocates 220 Lassen nodes, which runs 
880 Fusion jobs simultaneously, each job running on one of 
the four GPUs of each Lassen node. With resource under­
provisioning, we only allocate 140 Lassen nodes and run 560 
Fusion jobs simultaneously. 

All eight benchmark runs use the same inputs of 2 million 
docking calculations, which are divided into 1200 batches. 
Some Fusion calculation batches crashed due to bad dock­
ing structure inputs. The crashes are unpredictable due to 
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TABLE 1: Performance of eight different configurations 

Flux Docking Fusion Makes pan Per Mol. 
Version Nodes/job Total nodes (s) (ms) 
Default 245 220 15208 7.67 
Default 5 220 7841 3.95 
Default 245 140 15257 7.69 
Default 5 140 9717 4.90 
Opt. 245 220 19049 9.60 
Opt. 5 220 8041 4.05 
Opt. 245 140 19236 9.70 
Opt. 5 140 9666 4.87 

randomness in the docking and Fusion calculations. Up to 9 
batches failed per benchmark run, so we calculate makespan 
for each benchmark run based on the starting timestamp of 
the first batch and the ending timestamp of the wth_to-last 
batch, truncating the timestamps for the maximum number of 
failed batches equally for all benchmark runs. The makespan 
time per molecule is calculated from the adjusted makespan 
divided by the adjusted number of the molecules as shown in 
Table I. One of the most significant differences in performance 
is the choice of the number of nodes given to each individual 
ConveyorLC Docking job. The makespan time per molecule 
for the five-node Docking jobs ranges from 3.95 to 4.90 
ms while that for the 245-node Docking jobs ranges from 
7.67 to 9.70 ms. We observe about 1 .6x to 2.4x speed-up 
in performance by decreasing the number of Lassen nodes 
used in individual Docking jobs alone from 245 to five nodes. 
Another factor affecting performance is the choice of the 
number of nodes for Fusion calculations. When the number 
of nodes for Fusion calculations increases by 1 .6x from 140 
to 220, the speed-up of 1 .2x for five-node Docking jobs is 
more obvious than that of 245-node Docking jobs, which 
shows no significant change. This is due to the fact that 
the docking simulations using the 245-node Docking jobs 
are the bottleneck in the workflow in such a way that we 
cannot quickly produce the data for Fusion to utilize the 
over-provisioned nodes. Therefore, the changes in performance 
for 245-node Docking job configuration are marginal. To our 
surprise, the default version of Flux systematically performs 
better than the optimized one. For the five-node Docking job 
setting, the default version is faster than the optimized one by 
no more than a tenth millisecond. For the 245-node Docking 
job setting, the default version is faster than the optimized 
one by about 2 milliseconds. The version of Flux affects 
the 245-node docking configuration more than the five-node 
configuration. 

D. Synthesis and Analysis 

Section IV-C suggests that the choice of independent per­
formance variables is critically important for end-to-end work­
flow performance. With a better choice for a single indepen­
dent performance variable (S i z e  o f  ConveyorLC j ob), 
the workflow achieves up to a 2.45x performance improvement 
over the slowest configuration in Table I. The fact that the 
De fault Flux version outperformed the Opt imi zed ver­
sion is unexpected and suggests the non-linear nature of the 
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performance space. It also suggests that a suboptimal choice 

of another independent performance variable (St art t ime 
of resource s for Fus i on) can explain a significant 
underutilizaton of Lassen resources, leading to a poor speedup 

with Fusion resource scaling. In the best case, a 1 .57x Lassen 
resource increase provides only a 1 .24x speedup. In the worse 
case, the same 1 .57x Lassen resource increase is unable to 
offer any speedup whatsoever. 

The identification of dependent performance variables also 
significantly helps researchers narrow the search space for end­

to-end workflow performance tuning. For example, a better 
choice of a dependent variable (Amount o f  resource s 
for Fusion not only depends on the main indepen­
dent variable (Re source amount for Docking), but 
also the other variables on which it depends: S i z e  o f  
ConveyorLC j ob and Start t i me o f  resource s 
for Fus i on. The study also suggests that the impacts of 
a single component optimization must be carefully examined 
in the overall workflow through this dependency chain. 

For instance, the dependence from Flux schedu l ing 
overhead--+ S i z e  of ConveyorLC j ob would allow 
researchers to reconsider the size of ConveyorLC jobs 
when Flux is optimized in a singleton fashion. In fact, 
when our study varies the job size, we find an unex­
pected change in the scheduling overhead curve of the op­
timized Flux version: it makes the overall workflow run 

25% slower over the default version for the larger Docking­
job size. We theorized that the additional tuning (e.g., 
packing multiple job requests into a single Remote Pro­
cedure Call (RPC) for resource matching) suited well for 
extremely high throughput, tiny job size-oriented workloads 
significantly increased scheduling overhead on much larger 

job sizes. The transitive dependence among the Amount 
of resource s for Fus i on, S i z e  o f  ConveyorLC 
j ob, Flux scheduling overhead, and ConveyorLC 
s chedul ing overhead variables would also allow re­
searchers to adjust the resource amounts allocated to Fusion, 
if and when a more effective scheduling optimization will end 

up improving the overall docking simulation throughput. 

E. Using PerfFlowAspect for cross-component performance 
analysis 

Can our PerfFlowAspect performance analysis techniques 
help researchers better understand the impacts of a key perfor­
mance variable: S i z e  o f  ConveyorLC j ob ?  Figure 5a 
and Figure 6a show the PerfFlow Aspect traces, displayed 

across the global timeline view within the Perfetto tool, of 
Flux used to run ConvyerLC Docking jobs, either with larger 
or smaller job size, respectively. These Figures show that 

the same number of jobs at nearly 50 times larger scale 
makes everything run slower: a 4.19x longer mak.espan (14,388 
seconds divided by 3,431 seconds) as seen by Flux. Neverthe­

less, the overall mak.espan performance difference is only a 
factor of 1 .93 slower from Table I. Therefore, it suggests that 
more aggressive Fusion resource overprovisioning (Amount 
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o f  resource s for Fus i on) and/or other Fusion opti­

mizations can further improve this workflow. 
Can our PerfFlowAspect analysis help researchers 

understand the impact of a single component performance 
overhead change? Figure 5a and Figure 5b show the traces 
of the top-level Flux instance of two different versions, 
De fault and Opt imi zed, respectively. It shows that the 

higher scheduling overhead associated with the optimized 
Flux on the larger Docking jobs puts docking simulations 

throughput on the critical path: a 1 .27x Flux scheduling 

slowdown stemming from the optimized Flux almost entirely 
explains the overall 1 .25x slowdown of the end-to-end 
performance, compared to the corresponding default Flux 
configuration. With the larger ConveyorLC Docking job 
configuration, the docking throughput already appears lower 
than the maximum Fusion throughput (even with Fusion 
resource under-provisioning). 

V. ITERATION-BASED TUNING TECHNIQUES 

The architecture of a composite workflow must be flexi­

ble and highly re-configurable. Unlike the traditional mono­
lithic workflow approach with a single scheduler of known 
performance characteristics, a composite workflow's perfor­
mance optimization is far more complex as it entails multi­

dimensional optimization across many components. The ar­
chitecture must be highly re-configurable to streamline many 

trial-and-error-based optimization iterations. Furthermore, per­
formance analysis and optimization of a composite workflow 
must be continuous. As the composite workflow starts to 
run and performance data are collected and analyzed, vari­
ous component-wise optimization will be applied. For each 
iteration, the relative performance can vary, and the critical 

path for the workflow scheduling can change as a result as 
well. Not only must the workflow be highly re-configurable 
but also must it be re-configurable with respect to continuous 

changes of the critical-path events. 

A. Re-configurable base platform and continuous optimization 

In addition to domain-specific parameter control, we used 
the flexibility of Flux to address this challenge. Once the 
components are blended using Flux, researchers can dial its 

scheduling policies to reconfigure. A workflow can be config­
ured in such a way that the use of nested Flux instances can 

hide from GMD SC the complexity and scalability required 
to run many ConveyorLC jobs. Flux specifically allows GMD 
SC to treat the group of ConveyorLC jobs as a single unit: 

GMD SC only needs to run one GMD SC worker to adapt 
ConveyorLC into its pipeline. Because Flux is a fully featured 
workload manager, researchers can easily reconfigure other 

important parameters such as the size of ConveyorLC jobs, 
use of hierarchical nesting of different topologies, and many 
other scheduling policies. 

B. PerfFlowAspect applied to performance tuning 

Can an PerfFlowAspect analysis inform researchers of a 
previously unknown area for performance tuning? Figure 6b 
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(a) Large ConveyorLC Docking job, large Fusion and default Flux (b) Large ConveyorLC Docking job, large Fusion, optimized Flux 

Fig. 5: PerfFlowAspect Traces Visualized in Perfetto 
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(a) Small ConveyorLC Docking job, large Fusion and default Flux (b) Fusion traces for the best configuration 

Fig. 6: PerfFlowAspect Traces Visualized in Perfetto 

shows the traces of the Maestro adapter traces for Fusion. 
Figure 6b in combination with Figure 6a clearly suggest that 

there is a significant resource idling due to tight synchroniza­
tion of Docking and Fusion startup and shutdown. Figure 6a is 
the best Docking configuration where Docking for all of the 

compounds completes in 3,341 seconds. Once this is done, 
however, there is no activity traced from within the Flux 
instance, indicating Ruby resources idled during the remainder 
of the time. As shown by the initial staggering patterns of 
Figure 6b, the Maestro adapter activities also appear to be 

ramping up slowly as not all Fusion resources are fully 
utilized during this ramp-up phase. Note that this was not 

clearly shown from the traces of Flux because from Flux's 
perspective Fusion jobs were already submitted and running 
and resources were fully utilized. This signifies the importance 
of casting the performance analysis concerns across all of the 
critical components as this kind of analysis would be infeasible 
using single-component traces alone. Overall, it hints that the 

more imbalanced Docking and Fusion throughput becomes, 
the worse will this resource idling issue be. We communicated 
this to the AHA MoleS workflow development team, and they 

plan to implement a loose synchronization scheme between 

Docking and Fusion. 

VI. RELATED WORK 

Many composite workflow approaches have been proposed, 

which include MuMMI [8, 3], a massive ML-aided dis­
covery for Inertial Confinement Fusion (ICF) energy [26], 
CASTELO [35], the recent winner [5] and two of the three 
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finalists [17, 25] of the SC20 Gordon Bell Special Award 
competition, and VrrtualFlow [14]. One finalist [32] of the 

SC21 Gordon Bell Special Award competition developed a 
multi-resolution composite workflow and ran it across multiple 
top supercomputers. Our focus of the general design prin­

ciples, composition, performance analysis and optimization 
techniques differentiate ours from their focus: advancement 
of domain sciences. Further, composable and general-purpose 
workflow management tools such as Exa Works Software De­

velopment Toolkit (SDK) [27] have begun to gain traction 
to enable more rapid development of this type of workflows. 
We proposed an approach to rationalizing overall workflow 
performance and its application to AHA MoleS, but our work 

is directly applicable to the field at large including these 
listed composite workflows and software tools that enable 

them. Similarly, myriad performance tracing and profiling 

tools exist, including HPCToolkit[1], TAU [28], Caliper [4], 
Vampir and Score/P [21]. Their primarily focus is on the single 

application level whereas ours is on gathering a holistic picture 
of workflow-level performance. 

VII. CONCLUSION 

There is a growing consensus that three major characteris­

tics will define the next-generation of HPC centers: extreme 
hardware heterogeneity at all levels; 2) closer convergence of 
HPC with cloud computing software; and 3) complex scientific 

workflows that must automatically and effectively map to 
and run on next-generation resources across the entire center. 

To provide a window into the challenges that these next-
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generation cross-system workflows will face, we present our 
multi-disciplinary effort to run a drug screen workflow across 
three completely different types of center resources, both 
traditional HPC systems and on-premises cloud software-based 
(OpenShift Kubemetes) system. To categorize key technical 
challenges systematically, we direct our effort towards an end­
to-end benchmark demonstration of the resulting workflow at 
massive cross-system scales. We solve each key challenge in 
succession. 

First, while creating a cross-system composite workflow us­
ing scalable and portable software components is an important 
first step, gaining a deep understanding of the performance 
space of the composite workflow is a necessity. We provide 
performance insight by introducing the concept of perfor­
mance variables that capture the interplay of different software 
components as a result of their relative performance. Second, 
we find that instrumenting composite workflows and analyzing 
their end-to-end performance is an unmet challenge which we 
overcome with PerfFlowAspect. PerfFlowAspect can cast a 
cross-cutting performance-analysis concern or aspect across a 
heterogeneous set of resources used in the workflow. Finally, 
we identify the difficulties of composite science workflow 
performance tuning and we solve these by building support 
for iteration-based optimization exploration directly into the 
workflow architecture itself. 

Our evaluation suggests that our solutions can significantly 
enhance the capacity of a multi-disciplinary team to create, 
analyze and optimize a high-performance composite workflow. 
Our experiments show that a better choice for an independent 
performance variable alone can provide AHA MoleS up to 
a 2.45x performance improvement. Further, the identification 
of dependent performance variables significantly helps narrow 
the search space of end-to-end workflow performance tuning. 
Our case studies demonstrate that our AOP-based techniques 
allow researchers to gain insight into principal performance 
features over these variables. Our work enables AHA MoleS 
to run in production more efficiently while reducing necessary 
human intervention in simulation campaigns. Using the AHA 
MoleS workflow, a single subject matter expert can now handle 
the simulation campaigns highly efficiently. Overall, our work 
lights a path for scientific workflows to maximize the use of 
next-generation compute center resources. 

ACKNOWLEDGMENT 

This work was performed under the auspices of the U.S. 
Department of Energy by Lawrence Livermore National Lab­
oratory under Contract DE-AC52-07NA27344 (LLNL-CONF-
83 1502). 

REFERENCES 

[1] Laksono Adhianto et al. "HPCToolkit: Tools for per­
formance analysis of optimized parallel programs". In: 
Concurrency and Computation: Practice and Experi­
ence 22.6 (2010), pp. 685-701. 

41 

[2] Dong H. Ahn et al. "Flux: Overcoming scheduling 
challenges for exascale workflows". In: Future Genera­
tion Computer Systems 110  (2020), pp. 202-213. ISSN: 

0167 -739X. DOl: https://doi.org/1 0. 1016/j .future.2020. 
04.006. 

[3] Harsh Bhatia et al. "Generalizable Coordination of 
Large Multiscale Workflow: Challenges and Learnings 
at Scale". In: Proceedings of Supercomputing '2I: The 
International Conference for High Performance Com­
puting. SC '21.  2021 .  DOl: 10. 1 145/3458817.3476210. 
URL: https://doi.org/10. 1 145/3458817.3476210. 

[ 4] David Boehme et al. "Caliper: Performance Introspec­
tion for HPC Software Stacks". In: Proceedings of 
the International Conference for High Performance 
Computing, Networking, Storage and Analysis. SC 
' 16. Salt Lake City, Utah: IEEE Press, 2016. ISBN: 

9781467388153. DOl: 10.5555/3014904.3014967. URL: 

https://doi.org/10.5555/3014904.3014967. 
[5] Lorenzo Casalino et al. "AI-driven multiscale simula­

tions illuminate mechanisms of SARS-CoV-2 spike dy­
namics". In: The International Journal of High Perfor­
mance Computing Applications 35.5 (2021), pp. 432-
451.  

[6] National Energy Research Scientific Computing Center. 
SPIN. https :/ /www. nersc. gov I systems/ spin/. Retrieved 
July 21, 2021.  National Energy Research Scientific 
Computing Center. 

[7] Francesco Di Natale. Maestro Worliflow Conductor. 
https://github.com!LLNL/maestrowf. Mar. 2017. 

[8] Francesco Di Natale et al. "A massively parallel infras­
tructure for adaptive multiscale simulations: modeling 
RAS initiation pathway for cancer". In: Proceedings 
of Supercomputing 'I9: The International Conference 
for High Performance Computing. SC ' 19. 2019. DOl: 

10 . 1 145/1 122445 . 1 122456. URL: https ://doi . org/10.  
1 145/3295500.3356197. 

[9] Evan N. Feinberg et al. "PotentialNet for Molecular 
Property Prediction". In: ACS Central Science 4.1 1  
(2018), pp. 1520-1530. DOl: 1 0  . 1021 I acscentsci . 
8b00507. 

[10] Flux Framework Community. Flux Framework: A flexi­
ble framework for resource management customized for 
your HPC site. http : I  I flux- framework. org. Retrieved 
June 20, 2021 .  

[1 1] Flux Framework Community. PerfFlowAspect: a tool 
to analyze cross-cutting performance concerns of com­
posite scientific worliflows. https : I I github . com/ flux ­
framework/PerfFlowAspect. Retrieved May 31 ,  2022. 

[12] David Fox. Enabling Worliflows in Livermore Comput­
ing. https : I  /hpc . llnl .  gov I sites/ default/ files/Enabling­
Workflows - in - Livermore - Computing - LC - User ­
Meeting - Dec- 2020% 20Final . pdf. Retrieved July 21,  
2021 .  Lawrence Livermore National Laboratory. 

[13] Gartner, Inc. Gartner forecasts worldwide public cloud 
end-user spending to grow 23% in 202I. https://www. 
gartner.com/en/newsroom/press-releases/2021-04-21-

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on February 02,2023 at 20:49:31 UTC from IEEE Xplore.  Restrictions apply. 



42

gartner- forecasts- worldwide- public- cloud- end- user­
spending-to-grow-23-percent-in-2021 .  Retrieved June 
20, 2021. 

[14] Christoph Gorgulla et al. "An open-source drug dis­

covery platform enables ultra-large virtual screens". In: 

Nature 580.7805 (2020), pp. 663-668. 
[15] Izumi V. Hinkson, Benjamin Madej, and Eric A. 

Stahlberg. "Accelerating Therapeutics for Opportunities 
in Medicine: A Paradigm Shift in Drug Discovery". In: 
Frontiers in Pharmacology 1 1  (2020), p. 770. ISSN: 

1663-9812. DOl: 10.33891fphar.2020.00770. URL: https: 
//www.frontiersin.org/articlel10.33891fphar.2020.00770. 

[16] Hyperion Research. How cloud computing is changing 
HPC spending. https : I I hyperionresearch . com I wp -
content/uploads/2021 101 IHyperion-Research-Special­
Analysis - Clouds - and - HPC - December - 2020 . pdf. 

Retrieved June 20, 2021.  
[17] Sam Ade Jacobs et al. "Enabling rapid COVID-19 small 

molecule drug design through scalable deep learning 

of generative models". In: The International Journal 
of High Performance Computing Applications (May 
2021). DOI: 10. 1 17711094342021 1010930. eprint: https: 

II doi . orgl 1 0 . 1 177/ 1094342021 1010930. URL: https : 
//doi.org/10. 1 17711094342021 1010930. 

[18] Michael James et al. "ISPD 2020 Physical Mapping 

of Neural Networks on a Wafer-Scale Deep Learning 
Accelerator". In: Proceedings of the 2020 International 
Symposium on Physical Design. ISPD '20. Taipei, 
Taiwan: Association for Computing Machinery, 2020, 

pp. 145-149. ISBN: 9781450370912. DOl: 10 . 1 145 I 
3372780 . 3380846. URL: https : I  I doi . org I 10 . 1 145 I 
3372780.3380846. 

[19] Derek Jones et al. "Improved Protein-Ligand Binding 
Affinity Prediction with Structure-Based Deep Fusion 
Inference". In: Journal of Chemical Information and 
Modeling 61 .4 (2021), pp. 1583-1592. 

[20] Gregor Kiczales et al. "Aspect-oriented programming". 
In: ECOOP'97 - Object-Oriented Programming. Ed. 
by Mehmet Ak§it and Satoshi Matsuoka. Berlin, Hei­
delberg: Springer Berlin Heidelberg, 1997, pp. 220--242. 
ISBN: 978-3-540-69127-3. 

[21] Andreas Kniipfer et al. "The vampir performance analy­
sis tool-set". In: Tools for high performance computing. 
Springer, 2008, pp. 139-155. 

[22] Kubemetes. Production-Grade Container Orchestra­
tion. https:llkubemetes.io. Retrieved July 21, 2021 .  

[23] Yujia Li et al. "Gated Graph Sequence Neural Net­
works". In: arXiv:1511.05493 (2017). arXiv: 1511 . 
05493 [ c s . LG ] . 

[24] Amanda J. Minnich et al. "AMPL: A Data-Driven 

Modeling Pipeline for Drug Discovery". In: Journal 
of Chemical Information and Modeling 60.4 (2020), 

pp. 1955-1968. 
[25] Jonathan Ozik et al. "A population data-driven work­

flow for COVID-19 modeling and learning". In: The 

42 

International Journal of High Performance Computing 
Applications 35.5 (2021), pp. 483-499. 

[26] J. L. Peterson. Machine Learning Aided Discovery 
of a New NIF Design. Lawrence Livermore National 

Laboratory, Aug. 2018. 

[27] Rob Farber. Workflow Technologies Impact SC20 Gor­
don Bell COVID-19 Award Winner and Two of the Three 
Finalists. https : I  I www. exascaleproject. orgl workflow­
technologies - impact - sc20 - gordon - bell - covid - 19 -
award-winner-and-two-of-the-three-finalists. 2020. 

[28] Sameer S Shende and Allen D Malony. "The TAU 
parallel performance system". In: The International 
Journal of High Performance Computing Applications 
20.2 (2006), pp. 287-3 1 1 .  

[29] Garrett A. Stevenson et al. "High-Throughput Vtrtual 
Screening of Small Molecule Inhibitors for SARS­

CoV-2 Protein Targets with Deep Fusion Models". In: 
Proceedings of Supercomputing '21: The International 
Conference for High Performance Computing. SC '21 . 
2021 .  DOl: 10 . 1 145 1 3458817 . 3476193. URL: https : 
//doi.org/10. 1 14513458817.3476193. 

[30] Neil C. Thompson and Svenja Spanuth. "The Decline 

of Computers as a General Purpose Technology". In: 
Commun. ACM 64.3 (Feb. 2021), pp. 64-72. 

[3 1] Tiffany Trader. Livermore 's El Capitan Supercomputer 
to Debut HPE 'Rabbit' Near Node Local Storage. https: 
//www.hpcwire.com/2021102118/livermores-el-capitan­

supercomputer- hpe - rabbit - storage - nodes. HPCwire, 
2021 .  

[32] Anda Trifan et al. "Intelligent Resolution: Integrating 
Cryo-EM with Al-driven Multi-resolution Simulations 
to Observe the SARS-CoV-2 Replication-Transcription 

Machinery in Action". In: bioRxiv (2021). DOl: 10 . 
1 101/2021 . 10.09.463779. eprint: https ://www.biorxiv. 
orglcontent/early/2021/1 0112/2021 . 10.09.463779 .full. 
pdf. URL: https://www.biorxiv.orglcontentlearly/2021/ 
10112/2021 . 10.09.463779. 

[33] Anthony Wood. Rabbit MQ: For Starters. North 
Charleston, SC, USA: CreateSpace Independent Pub­

lishing Platform, 2016. ISBN: 1540603423. 
[34] C.-Q. Yang and B.P. Miller. "Critical path analysis for 

the execution of parallel and distributed programs". In: 
[1988] Proceedings. The 8th International Conference 
on Distributed. 1988, pp. 366-373. DOl: 10. 1 109/DCS. 

1988.12538. 
[35] Chih-Chieh Yang et al. "Design of AI-Enhanced Drug 

Lead Optimization Workflow for HPC and Cloud". In: 

IEEE International Conference on Big Data. Dec. 2020, 
pp. 5861-5863. 

[36] Xiaohua Zhang, Horacio Perez-Sanchez, and Fe­
lice C. Lightstone. "A Comprehensive Docking and 
MM/GBSA Rescoring Study of Ligand Recognition 
Upon Binding Antithrombin". In: Curr. Top. Med. 
Chern. 17.14 (2017), pp. 1631-1639. ISSN: 1568-0266. 

[37] Xiaohua Zhang, Sergio E. Wong, and Felice C. Light­
stone. "Message passing interface and multithreading 

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on February 02,2023 at 20:49:31 UTC from IEEE Xplore.  Restrictions apply. 



43

hybrid for parallel molecular docking of large databases 
on petascale high performance computing machines". 

In: Journal of Computational Chemistry 34. 1 1  (2013), 
pp. 915-927. DOl: https://doi.org/10. 1002/jcc.23214. 

[38] Xiaohua Zhang, Sergio E. Wong, and Felice C. Light­
stone. "Toward Fully Automated High Performance 
Computing Drug Discovery: A Massively Parallel Vir­

tual Screening Pipeline for Docking and Molecular 
Mechanics/Generalized Born Surface Area Rescoring to 
Improve Enrichment". In: Journal of Chemical Infor­
mation and Modeling 54.1 (2014), pp. 324-337. DOl: 

10. 1021/ci4005145. 

43 

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on February 02,2023 at 20:49:31 UTC from IEEE Xplore.  Restrictions apply. 


