
LLNL-PROC-828126

Scalable Composition and
Analysis Techniques for Massive
Scientific Workflows

D. H. Ahn, X. Zhang, J. Allen, B. De Supinski, F. Di
Natale, S. Herbein, S. A. Jacobs, I. Karlin, D. Kirshner,
F. Lightstone, J. Mast, B. Van Essen

October 19, 2021

36th IEEE International Parallel & Distributed Processing
Symposium
Lyon, France
May 30, 2022 through June 3, 2022

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

32

2022 IEEE 18th International Conference on e-Science (e-Science)

978-1-6654-6124-5/22/$31.00 ©2022 IEEE
DOI 10.1109/eScience55777.2022.00018

20
22

 IE
EE

 1
8t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 e
-S

ci
en

ce
 (e

-S
ci

en
ce

) |
 9

78
-1

-6
65

4-
61

24
-5

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

ES
CI

EN
CE

55
77

7.
20

22
.0

00
18

2022 IEEE 18th International C onference on e-Science (e-Science)

Scalable Composition and Analysis Techniques for

Massive Scientific Workflows

Dong H. Ahn*, Xiaohua Zhangt, Jeffrey Mastt, Stephen Herbein*, Francesco Di Natale*, Dan Kirshnert,
Sam Ade Jacobst, Ian Karlin*, Daniel J. Milroyt, Bronis De Supinskit, Brian Van Essent, Jonathan Allent,

Felice C. Lightstone t
*NVIDIA, Santa Clara, CA, USA, tLawrence Livermore National Laboratory, Livermore, CA, USA

Email: * { donga, sherbein, fdinatale, ikarlin} @nvidia.com
t { zhang30, mast2, kirshnerl , jacobs32, milroy 1, desupinski 1, vanessen1, allen99, lightstone1} @ llnl.gov

Abstract-Composite science workflows are gaining traction
to manage the combined effects of (1) extreme hardware het­
erogeneity in new High Performance Computing (HPC) systems
and (2) growing software complexity - effects necessitated by
the convergence of traditional HPC with data sciences. Com­
posing, analyzing, and optimizing a composite workflow remains
highly challenging as the component technologies are generally
developed in isolation and often feature widely varying levels of
performance, scalability, and interoperability. In this paper, we
propose novel workflow composition and analysis techniques to
create and optimize a scalable and effective composite workflow
for heterogeneous HPC centers, and define the performance
space of variables that impact composite workflow performance •

We present PerfFlowAspect, an Aspect Oriented Programming
(AOP)-based tool to perform cross-cutting performance analysis
of composite workflows and better understand the impact of
key performance variables on workflows. Our solution directly
addresses AOP concerns that can affect workflow performance
and covers the full software lifecycle, ranging from the work­
Bow's initial composition through performance analysis and
optimization. We use our science workflow composition tech­
niques to implement the American Heart Association Molecule
Screening (AHA MoleS) workflow. Through experimentation,
we demonstrate that tuning a single performance variable can
improve AHA MoleS workflow performance by a factor of
up to 2.45x. Our evaluation suggests that our techniques can
significantly enhance the ability of a multi-disciplinary research
and development team to create a high performance composite
workflow.

I. INTRO DUCTION

Current economic factors are ushering in a new era of
extremely heterogeneous HPC. As Moore's Law is taper­
ing, specialized hardware such as graphics processing units
(GPU) [30] is increasingly taking the role previously played by
general purpose processors as the main computing workhorse.
As cloud computing has become a dominant market force [13,
16], HPC has also begun to embrace a heterogeneous software
environment, marrying its software stack to cloud solutions.
Indicatively, 2018 was the first year in which new additions to
the top 500 supercomputers derived more performance from
specialized processors than from general purpose processors.
Key cloud solutions including container and container orches­
tration technologies such as Kubemetes [22] and OpenShift
(which is built on top of Kubemetes), are also making inroads
into HPC infrastructure [12, 6] .

978-1-6654-6124-5/22/$31.00 ©2022 IEEE
DOl 1 0.1109/eScience55777 .2022.00018

32

At the same time, the complexity of science workflows
on HPC systems is growing sharply. The convergence of
traditional HPC and new simulation, analysis, and data science
approaches including Machine Learning (ML) and Artificial
Intelligence (AI) provides unprecedented opportunities for
discovery, but also creates workflows [2, 8, 35] that are far
more complex than traditional ones. These workflows often
combine many different applications. The different application
tasks in the workflow have vastly different computational
requirements. Each different task may perform well on one
type of computing hardware but not on others. Furthermore,
the applications runtimes and execution order can be wildly
different. Thus, this complexity must be managed through
full automation. A fully automated scientific workflow must
carefully map and run application tasks [8, 3, 17] to dif­
ferent specialized hardware (e.g., CPU, GPU, disaggregated
AI accelerators [18], 1/0 storage of certain tiers in a multi­
tiered storage subsystem [31]) and/or different system software
(e.g., persistent container services such as message-queue
and database services running on an on-premises Kubemetes
cluster).

With a growing trend toward specialized hardware, large
compute facilities will soon feature much higher hardware
heterogeneity at all levels. They will not only increasingly field
different heterogeneous compute node types, but also different
partitions within a large system with different specialized
hardware, and vastly different systems with different hardware
types across the facilities. Thus, the mapping of application
tasks in a workflow will result in going beyond the boundary of
a single system and programming the entire center resources.
Managing and mapping the tasks on heterogeneous resources
across different systems will add far more complexity in
multiple dimensions.

In this paper, we categorize some of the key challenges in
running automated cross-system workflows that users face on
current and future HPC centers. And we provide a solution
for each challenge. We specifically identify challenges in
three areas. 1) The conceptual challenge of understanding
the key performance space of a cross-system workflow that
can compose large numbers of domain-specific and general­
purpose software components each with different performance
charateristics. 2) The performance analysis challenge of gath-

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on February 02,2023 at 20:49:31 UTC from IEEE Xplore. Restrictions apply.

33

ering performance data from large numbers of components

to analyze the entire workflow without having to lose the

modularity and uniformity in ways which code instrumention

is cast across them. 3) The performance optimization challenge

of easily re-configuring the workflow to tune the end-to-end
workflow tum-around time performance in an iterative fashion.

In particular, the main contributions of our paper include:

• Composite science workflow composition techniques that

blend domain-specific components with reuseable work­

flow management components with ease of performance

analysis and tuning principles;

• Defining the performance space of composite workflows,

effective performance modeling and key variables per­

taining to this space;

• An AOP technique to build a cross-cutting performance
analysis concern into constituent components as our so­

lution to the performance analysis challenge;

• A workflow software architecture to enable an easy

iterative exploration of the performance space as our

solution to the performance optimization challenge.

To study the effectiveness of our solutions to these chal­

lenges, we identified and closely worked with a multidisci­

plinary science team that had concrete requirements to create

and automate a cross-system workflow at scale. As part of

our collaboration, the teams developed the American Heart

Association Molecule Screen (AHA MoleS) workflow with

the goal of categorizing and solving the major challenges that

emerge from running composite workflows across systems at

large scale. Using representative AHA MoleS inputs, we ran

the workflow across multiple supercomputers with different

hardware types as well as an on-premises OpenShift Kuber­

netes cluster. All of the systems reside at Lawrence Livermore

National Laboratory (LLNL), one of the world's largest HPC

centers.
Our empirical evaluation using AHA MoleS suggests that

our techniques enable easy composition, analysis, and op­

timization of this workflow in a multi-disciplinary research

and software-development environment. To the best of our

knowledge, our work is the first to identify specific challenges

and solutions required to build and run a fully automated cross­

system high-performance workflow combining three com­

pletely different types of computing resources at one of the

world largest computing facilities.

II. FAST DRUG MOLECULE SCREENING

To accelerate small molecule drug design and development,

HPC is widely used to virtually screen a library of small

molecule compounds against a protein target. Each molecular

docking calculation consists of two steps where the small

molecule is positioned in the protein binding pocket (pose)

and an energy score is calculated, predicting the molecular

binding. The explosion of chemical libraries from millions

of compounds to billions of compounds drastically changed

the scale of virtual screening, demanding faster more effi­

cient methods to accurately predict small molecule binding.

As such, machine learning algorithms (Fusion) have been

33

trained on molecular binding and can rescore molecules based

on given poses. Frequently, multiple methods are used in

combination to maximize successful predictions called "hits".

Additionally, this same workflow is used to virtually screen

molecules across the American Heart Association library of

three-dimensional human proteins, composed of over 10,000
proteins, to predict proteins involved in potential side effects.

A. AHA MoleS

The resulting workflow is called AHA MoleS. Figure 1
shows how AHA MoleS builds on and combines two classes of

software components: (1) modem general-purpose components

including Maestro [7], Flux [10] and RabbitMQ [33] orches­

trated by Kubemetes [22] ; and (2) domain-specific workflow

management and application software including ConveyorLC

Docking [38] and Fusion [19], which are two of the main

components in the Generative Molecular Design (GMD) [15],
particularly in the GMD Structural Core (GMD SC).

B. General-Purpose Workflow Components

The Maestro Workflow Conductor is a lightweight HPC

workflow tool that is capable of generically representing and

orchestrating multi-step computational workflows [7]. Maestro

centers around the concept of a "study": a YAML specification

that allows users to mark up their workflow easily in a Bash­

like syntax. It can then utilize the specification to construct a

Directed Acyclic Graph (DAG) of tasks to be automatically

scheduled using a specified scheduler interface. Maestro is

written entirely in Python for portability.

RabbitMQ is a high-availability, scalable messaging broker.

It supports a host of features, including messaging queues,

message prioritization, and delivery acknowledgement. Mul­

tiple producers and consumers can send and receive mes­

sages simultaneously, making RabbitMQ an ideal platform

for coordinating a workflow executed by many workers. Most

important to a screening workflow such as AHA MoleS is

the ability of RabbitMQ to be run within a datacenter-wide

Kubemetes cluster, which is accessible over the network from

every HPC cluster. This accessibility enables the workflows to

pool resources across multiple heterogeneous clusters.

Flux is a fully hierarchical workload manager for HPC. Its

hierarchical capabilities have proven to improve scalability and

flexibility significantly through a divide-and-conquer approach

that is well-suited for currently-emerging environments. Jobs

and resources are divided among the schedulers in the hi­

erarchy and managed in parallel. This approach significantly

increases the scalability of Flux over traditional schedulers that

rely on a centralized scheme. One of the key features of Flux

is that it allows for both single-and multi-user modes. Modem

composite workflows can leverage its single-user mode, where

hierarchical resource management and job scheduling are

provided in the user space within a batch allocation created

by an HPC system-level workload manager, such as Slurm

and IBM LSF. This allows researchers to set up their own

customized hierarchies within a batch allocation as well as

policies of Flux's graph-based job scheduler called Fluxion.

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on February 02,2023 at 20:49:31 UTC from IEEE Xplore. Restrictions apply.

34

� -GMD Structural Core

Fig. 1: AHA MoleS workflow architecture

These capabilities also allow users to tune additional schedul­

ing policies such as queuing and resource matching.

C. Domain-Specific Software Components

ConveyorLC is a high-throughput virtual screening pipeline

to automate the docking and rescoring of compounds against

protein targets [38, 36]. This pipeline mainly includes four

Message Passing Interface (MPI)-based parallel applications

for protein preparation, ligand preparation, molecular docking,

and Molecular Mechanics/Generalized Born-Solvent Accessi­

ble Surface Area (MM/GBSA) rescoring. The docking method

in the ConveyorLC pipeline is based on Autodock Vina.

A mixed MPI and multithreading hybrid parallel scheme is

employed in the ConveyorLC docking application [37]. The
virtual compounds were converted for the docking simulations

by the ConveyorLC ligand preparation application.

Fusion is a structure-based ML model for protein-ligand

binding affinity prediction based on the combination of a

three-dimensional convolutional neural network (3D-CNN)

and spatial graph neural network (SG-CNN) [19]. The 3D­

CNN component is designed to capture 3D atomic interactions

and implicit geometric configurations using a 3D voxel grid.

The SG-CNN component is modified from the PotentialNet [9]

architecture based on Gated Graph Sequence Neural Net­

works [23] and captures explicit pairwise atomic interactions.

The fusion of the 3D-CNN and SG-CNN components models

two complementary representations of protein-ligand interac­

tions to give more robust prediction accuracy when evaluating

new protein targets. The coherent Fusion model has been

implemented in the PyTorch ML framework, which provides

the ability to accelerate the calculations on GPUs [29].

Finally, GMD is an active learning drug discovery frame­

work. It incorporates the AMPL pipeline [24], GMD SC,

and a deep generative network model to iteratively search

for small molecule drug candidates. GMD is designed to

efficiently search through an exceptionally large chemical

space and converge on chemical compounds predicted to

have desirable drug-like properties including consideration of

efficacy, safety, pharmacokinetics (PK), and synthesizability of

34

the newly proposed compounds. GMD starts with a working

compound library and uses AMPL to predict key pharma­

relevant parameters of molecules. The GMD SC, including

ConveyorLC and Fusion, predicts the binding affinity of com­

pounds. The generative model uses design criteria to guide

the generation of new compounds based on the predicted

values calculated by AMPL, ConveyorLC, and Fusion. The

newly proposed compounds are incorporated into the working

compound library and used to inform the next iteration of

the GMD loop. Once the design loop converges on novel

compounds meeting the design criteria the most promising

compounds are selected for experimental validation and to

update the ML models. The AHA MoleS workflow adapts

the GMD SC infrastructure to enable screening large working

compound libraries against an expanded list of protein targets.

D. Challenges Encountered

We create the AHA MoleS workflow based on a purpose­

built architectural blueprint. The software engineering of

workflow composition is an important development. However,

we find that it is difficult to measure the performance of the

complete workflow. Gathering data on the workflow execution

is a necessary step to measuring and improving performance,

but reliance on trial-and-error necessitates a reconfigurable

workflow. An iterative approach permits performance analysis

and optimization on the entire workflow. In the following,

we provide details on the computing environment where

we evaluate our engineering developments, and then discuss

the solutions to these challenges in the remaining sections.

Although we develop the steps and techniques in the context

of AHA MoleS, it is important to note that our study allows

the techniques to be applied to the broader class of composite

scientific workflows.

E. Cross-System Worlqlow Evaluation Environment

The blueprint of our target workflow is to couple molecular

docking and an ML algorithm to score small molecule binding

in the protein. Each component has completely different com­

putational requirements, and thus this workflow requires to run

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on February 02,2023 at 20:49:31 UTC from IEEE Xplore. Restrictions apply.

35

across multiple systems to be effective. This section details the
systems we use to explore cross-system workflow challenges.
We aim to build our workflow software until we can perform
controlled benchmark runs using two supercomputers as well
as an on-premises Kubemetes cluster simultaneously: Ruby,
Lassen, and the Persistent Data Services (PDS) Red Hat
OpenShift cluster at LLNL. Ruby is a CPU machine with a
total of 1,512 nodes. Each node contains two Intel® Xeon®

CLX-8276L CPUs with a total of 56 cores. Lassen is a
machine using CPU-GPU heterogeneous architecture with a
total of 795 nodes. Each of the nodes has two IBM® Power9™
CPUs with a total of 44 cores and four Nvidia® Tesla™ V100
(Volta) GPUs. The PDS cluster consists of three Kubemetes
servers and five worker nodes, together with a NetApp®

AFF A400 storage system providing object and persistent
container storage. We targeted the molecule batch creation,
ConveyorLC Docking jobs, and batch completion to run on
Ruby while targeting Fusion jobs to run on Lassen. We map
our applications this way because each of these applications
perform best on respective type of computer hardware. We
expect that this will be a typical configuration in the future as
different applications in a workflow may perform well on a one
type of computing hardware but not on others. And how long
different applications need to run and in what order are also
wildly different from one another. One significant system-level
limitation is that our experiment used a Dedicated Application
Time (DAT) request to guarantee the allocation of the compute
resources on both supercomputers at the same time. This is
because there is no center-level scheduler that can schedule
across these machines in a coordinated fashion (e.g., allocating
both at the same time or allocate Ruby resources first and then
Lassen's). The settings and resource allocation for different
calculations (e.g., Docking and Fusion) in the workflow are
configurable.

Ill. PERFORMACE SPACE OF COMPOSITE WORKFLOWS

A science workflow is a sequence of tasks that are executed
in a specific order with or without dependencies. What distin­
guishes a composite workflow such as that constructed from
the components described in Section II from the traditional
approach is that the tasks can be generated, scheduled, and ulti­
mately executed by a set of many domain-specific and general­
purpose components in concert and across multiple clusters. In
a composite workflow, the domain-specific workflow managers
are often interacting closely with a set of general-purpose
workflow and resource/job manager components to push the
increasingly finer-grained units of work or tasks through their
work queues and resource allocators at multiple levels. Moving
tasks via a pipeline of two different components often involves
well-known operations (e.g., generate, submit, schedule, etc)
as well as adaptation procedures between these components.

A. Performance Space

One of the most important goals of any science workflow is
to complete its tasks as quickly as possible while being subject
to constraints such as amounts of compute resources that can

35

Job siz D

;-F;' l
- - •

Makespan

Fig. 2: Optimality relies on composite performance functions;
F is Flux scheduling, F' is optimized Flux scheduling, and
D is the task scheduler within ConveyorLC.

be simultaneously used, fair use of resources that are shared by
multiple users, etc. Thus, it is essential to minimize the critical
path that workflow tasks must go through in order to achieve
this goal. If no performance overhead is incurred in performing
scheduling-related operations, identifying those tasks that take
longest at each level through the DAG and shortening the time
to complete these tasks on the critical path should suffice.
In practice however, key workflow scheduling and execution
operations can incur significant performance overheads, which
are affected by multiple performance variables (e.g., sizes of
the task and architectures of the scheduler).

1) Relative performance: A task in a composite workflow
must be adapted between large numbers of components before
it can be allocated to a compute resource and executed at
increasingly finer granularity. Thus, the relative performance
and scalability characteristics of the components are critical
for any composition.

Let us consider the performance and scalability of Con­
veyorLC and GMD SC components described in Section II.
ConveyorLC implements its own ad hoc task-level scheduling
on top of MPI. As it uses the leader-worker pattern in which
each of the worker MPI rank processes fetches new docking
tasks from the single leader MPI rank (rank 0) and thus the
oth rank can experience a significant performance bottleneck
at scale. To run it at scale, therefore, ConveyerLC demands
an ensemble approach whereby a group of ConveyorLC jobs
are managed and run by another component such as Flux.
This performance characteristic is complicated by the GMD
SC software, which is designed to run at varying scales to
support a broader set of domain specific applications. One
of the implications of this characteristic on the composition
is that the number of ConveyorLC jobs that are exposed to
GMD SC for coupling cannot be excessively large, a relative
performance trait generally opposed to that of ConveyorLC.
The final characteristics emerge from Flux: its scheduling
performance can also vary depending on the workload.

2) Optimality relies on composite functions: Figure 2 illus­
trates optimality using the relative performance and scalability
of characteristics of the task scheduler within ConveyorLC and

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on February 02,2023 at 20:49:31 UTC from IEEE Xplore. Restrictions apply.

36

Independent
Variables

Start time

Dependent
Variables

Amount of
of resources ...- resources

for Fusion /; for Fusion

Size of

Z
ConveyorLC

ConveyorLC scheduling

job overhead

Amount of Flux
resources V" scheduling

for overhead

Docking

(a) Example

Independent
Variables

Start time

Dependent
Variables

Amount of
of resources .- resources

for Prod. for Cons.

/ lVar, / DVar1
W�'>(DV�,

lVarn DVarm

(b) General

Fig. 3: Performance Variables

of the job scheduling and execution services within Flux. Here,

our performance variable is the size of each ConveyorLC job

that is scheduled and executed by Flux. Given a fixed number

of compute nodes (N) that are managed by a Flux instance,

ConveyorLC can run in many different configurations. It can

run as single-node jobs (many jobs run in parallel), as a large

N-node job (one job runs at a time), or anything in-between.

The performance of the scheduler within either component

varies non-linearly and generally in an inverse manner. As the

size of ConveyorLC jobs increases the number of jobs run­

ning simultaneously decreases, which lowers the performance

overhead of scheduling and execution at the Flux level while

increasing the overhead at the ConveyorLC scheduler level.

Overall, the minimal mak.espan can only be determined on

the sum of the performance functions of the two schedulers:

F + D or F' + D as shown in Figure 2 where F is

the performance curve of Flux scheduling, F' is that of its

optimized scheduling, and D is the performance curve of the

task scheduler within ConveyorLC.

3) Performance variables: An optimization becomes

quickly non-trivial; real-world workflows would employ many

more components than our rather simple examples and many

performance variables beyond the job size variable would

affect the performance space. Figure 3 further expands on

our concept of performance variables. There are two types of

performance variables: 1) independent performance variables

and 2) dependent variables. As shown in Figure 3a, the

amount of resources allocated to docking simulations is an

independent variable. Researchers will choose it according to

their science objective. The job size of ConveyorLC is also an

independent variable: it will be chosen according to their prior

understanding of the scheduler behavior. Likewise, the start

time of the resources allocated to Fusion is an independent

performance variable. By contrast, the performance overhead

of Flux scheduling of ConveyorLC jobs become a dependent

variable that depends on both the resource allocation scale for

docking simulations and the size of ConveyorLC jobs. The

36

performance overhead of ConveyorLC scheduling becomes a

variable that depends on the size of ConveyorLC jobs. Finally,

the minimum amount of resources that Fusion needs for the

optimal mak.espan becomes another dependent variable that

depends on all three independent variables. Here, the identifi­

cation of the key performance variables and their dependence

relationship is critical for performance optimization. If one

component is optimized such that a dependent variable is

affected, researchers must account for all other dependent

variables correlated with it to understand its true impact.

IV. MANAGEABLE CROSS-COMPONENT PERFORMANCE

ANALYSIS

We now highlight our high-level principles for analyzing the

performance of composite workflows. First, each component
scheduler must identify the key performance and scalabil­
ity characteristics as pertaining to the planned composition
as early as possible. The domain experts of each compo­

nent should be responsible for this identification and cross­

discipline communications for later cross-component analysis.

Second, an overall workflow-level performance model must
guide the initial composition to allow for easy reasoning
of the overall workflow scheduling performance. This model

should be simple, yet rich to capture those events that are

on the critical path of the resulting end-to-end workflow.

Third, a well-defined method to monitor the performance
of the overall workflow is required. A composite workflow

almost always uses a large set of preexisting components,

each of which would generally use different logging and

built-in performance monitoring. Yet, we need a consistent

way to gather performance data for a particular composition

consisting of a disparate set of components to capture the

critical-path events.

A. Casting Critical Path Analysis (CPA)-based cross-cutting
performance concerns

For the first and second principles, we use CPA [34] as

the basis for our performance modeling. CPA is a common

technique to determine the cause of a workflow's mak.espan

by finding the event path in the task execution history of

the workflow that has the longest duration. This critical path

identifies where in the workflow we should focus our attention.

This helps researchers reason about how various components

interact with one another as the tasks are moving through these

operations for execution.

For the third principle, we developed a simple AOP [20]­

based tool called PerfFlowAspect (PerfFlowAspect) [11] . It is

a simple performance analysis tool that can cast a cross-cutting

performance-analysis concern or aspect across a heteroge­

neous set of components used to create a composite science

workflow. It is designed specifically to allow researchers to

weave the performance aspect into critical points of execu­

tion across many workflow components without having to

lose the modularity and uniformity of how performance is

measured and controlled. It closely follows the AOP design

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on February 02,2023 at 20:49:31 UTC from IEEE Xplore. Restrictions apply.

37

patterns to minimize code modification needed for the dis­
parate workflow-management technologies and also to mod­
ularize the control for managing ways to cast cross-cutting
performance-analysis instrumentation across many compo­

nents.

PerfFlow Aspect provides language support most relevant
for HPC workflows such as Python, C and C++. For Python,
it uses an annotating decorator whereby users can use

@ P e r fFlowAspect . a spect . critical_path () to
annotate their functions that are likely to be on the critical

path of the workflow's end-to-end performance. These

annotated functions then serve as the join points that can
be weaved together with PerfFlowAspect and acted upon.

Once annotated, running this python code will produce a
performance trace data files that use Chrome Tracing Format
(CTF) in JSON so that it can be loaded into Google Chrome

Tracing or Perfetto to render the critical path events on the
global tracing timeline.

When these annotated functions, or join points, are weaved
together with PerfFlow Aspect, users can invoke specific
performance-analysis actions, a piece of tracing code, on
those points of execution. They are often referred to as
advice in AOP. One type of advice within PerfFlowAspect
that our effort uses is Chrome tracing advice. This par­

ticular advice simply logs a performance event data in
CTF. PerfFlowAspect's annotation also supports the no­
tion of pointcut: a predicate that matches join points. In

fact, @PerfFlowAspect . aspect . critical_path ()
can take an optional keyword argument called pointcut whose

value can be around, before, after or their async variations
(around_a sync, before_a sync, and a fter_async).
point cut=around will invoke the advice before and
after the execution of the annotated function whereas
point cut=be fore or point cut =after will only ad­
vise either corresponding point of function execution.

Unlike dynamic programming languages such as Python,
CIC++ cannot natively and easily weave PerfFlowAspect
into the target program (e.g., using language features like

Python decorator). To overcome this language-level limitation,
PerfFlowAspect introduces a simple LLVM pass which can
detect critical-path annotations in the target C/C++ source files

and to weave these annotated program points together with
PerfFlowAspect's runtime library as part of Clang compilers'
optimization pass. This allows C/C++ and Python users alike

to use the consistent AOP abstraction of PerfFlowAspect. The
consistent abstraction and tool usage flow for both dynamic
languages and more traditional high performance computing
programming languages like C/C++ significantly facilitate the
high level of unity and modularity as required by the AOP
paradigm.

Each component developer in a multi-disciplinary team

like AHA MoleS can independently use PerfFlowAspect to
annotate their functions that are likely to be on the critical
path of the resulting workflow's end-to-end performance.

37

K8s I
dominant
region I

- - - J

region Flux dominant region

Fig. 4: Critical path of Docking tasks for AHA MoleS

B. Application to AHA MoleS

As shown in Figure 1 , AHA MoleS can be broadly catego­
rized as a producer-consumer workflow, where Docking tasks
running on a CPU-only supercomputer produce molecular

poses to be consumed by Fusion tasks running on a GPU­
equipped supercomputer. Figure 4 zooms in on a single Flux
instance that schedules and executes ConveyorLC jobs for

Docking tasks. We assume a task is generated by GMD SC,
which is sent to and enqueued into RabbitMQ before it is
dequeued by a GMD SC adapter (e1) that is responsible
for adapting the tasks for next steps. Because the GMD SC
adapter does not directly interface with Flux but via a Maestro
instance, the task has to be adapted to Maestro first via the
invocation of Maestro's submit API (e2). Maestro then adapts
the task to Flux via the invocation of Flux's submit API (e3).
Once the task is submitted to Flux, Flux must go through
critical events: its Fluxion scheduler first finds and allocates a
set of resources for this task (e4) and then its execution service

must launch and bootstrap the ConveyorLC job (e5).
The general case is when all of the compute node resources

managed by Flux have been utilized and a running job
completes e6• e6 is a j ob-complete event emitted from

Flux and e7 and e8 are a j ob-complete-dete cted events
emitted from Maestro and then from the GMD SC adapter. e9
indicates the GMD SC adapter sends a j ob-done message

to RabbitMQ. Between e5 and e6, there are many critical­
path events emitted from ConveyorLC as pertaining to its
task-level scheduling, which we omit. For the general case,

e1 through e9 represents the critical path of the Docking
portion of the workflow. This sequence can repeat many times
in particular when the size of each ConveyorLC job gets

smaller. Given the relative performance characteristics of Flux
and ConveyerLC scheduling, smaller jobs can significantly
increase the overall performance overhead of A, B and C
regions: R x Z:::i=t t(ei, ei+l) where R denotes a repeat count
and t(ei, ei+1) denotes a duration between two consecutive
events. However, they can significantly decrease the overall

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on February 02,2023 at 20:49:31 UTC from IEEE Xplore. Restrictions apply.

38

performance overhead of D region: R x t(e5, e6). This can
provide an insight into how this relative performance varies
over the variable: S i z e o f ConveyorLC j ob.

Fusion tasks begin with a RabbitMQ message, which con­
tains a set of molecular poses to be scored by it. The number of
molecular poses in each message is controlled by the workflow
domain-specific parameter called Mo lecule batch s i ze.
Each RabbitMQ message is consumed by a GMD SC adapter,
which creates and runs a corresponding Maestro specification.
Maestro prepares the run directories for the Fusion jobs and
submits the jobs to the enclosing Flux instance running on
the GPU-enabled supercomputer. Overall, the critical path
of Fusion is similar to Docking. The Docking and Fusion
tasks are composed together via the messages enqueued into
RabbitMQ by the GMD SC adaptors. To have a Fusion task
score a molecule post-Docking, the GMD SC adaptor that
consumed the initial Docking task enqueues a Fusion task into
the message queue after the Docking task completes.

C. Impacts of Varying Performance Variables

Eight different configurations of our workflow benchmark
runs have been performed with the combinations of two
versions of Flux, two settings of ConveyorLC Docking jobs,
and two settings of Fusion jobs (Table 1). One version of Flux
is labeled as Default (flux-core v0.26 and fluxion v0.15)
and the other as Opt or Opt im i z ed (flux-core v0.27 and
fluxion v0.16). The latter version has proven far more efficient
and scalable when applied not only to our testing workloads
but also a large production scientific workflow Multiscale
Machine-Learned Modeling Infrastructure (MuMMD [8, 3].
On Ruby, 981 nodes have been allocated with one node
reserved to run our custom scripts that perform batch creation
(using 4 threads) and batch completion (using 12 threads).
The number of molecules per batch is set to 1 ,715. The
remaining 980 nodes are divided into several Flux jobs; each
job is submitted and launched with the flux mini submit
command. One way is to divide them into four Flux jobs
so each run runs across 245 nodes. The other way is to
divide them into 196 Flux jobs so each run uses five nodes.
For the 245-node Docking job configuration, the number of
prefetch Docking jobs is set to 36. The number of prefetch
Docking jobs is 72 for the five-node job configuration. We
use the larger prefetch number for the five-node job since
this setting runs many more jobs simultaneously than the 245-
node job configuration. For the Fusion calculations on Lassen,
we use two different configurations: one with resource under­
provisioning and the other with over-provisioning. Our over­
provisioning setting allocates 220 Lassen nodes, which runs
880 Fusion jobs simultaneously, each job running on one of
the four GPUs of each Lassen node. With resource under­
provisioning, we only allocate 140 Lassen nodes and run 560
Fusion jobs simultaneously.

All eight benchmark runs use the same inputs of 2 million
docking calculations, which are divided into 1200 batches.
Some Fusion calculation batches crashed due to bad dock­
ing structure inputs. The crashes are unpredictable due to

38

TABLE 1: Performance of eight different configurations

Flux Docking Fusion Makes pan Per Mol.
Version Nodes/job Total nodes (s) (ms)
Default 245 220 15208 7.67
Default 5 220 7841 3.95
Default 245 140 15257 7.69
Default 5 140 9717 4.90
Opt. 245 220 19049 9.60
Opt. 5 220 8041 4.05
Opt. 245 140 19236 9.70
Opt. 5 140 9666 4.87

randomness in the docking and Fusion calculations. Up to 9
batches failed per benchmark run, so we calculate makespan
for each benchmark run based on the starting timestamp of
the first batch and the ending timestamp of the wth_to-last
batch, truncating the timestamps for the maximum number of
failed batches equally for all benchmark runs. The makespan
time per molecule is calculated from the adjusted makespan
divided by the adjusted number of the molecules as shown in
Table I. One of the most significant differences in performance
is the choice of the number of nodes given to each individual
ConveyorLC Docking job. The makespan time per molecule
for the five-node Docking jobs ranges from 3.95 to 4.90
ms while that for the 245-node Docking jobs ranges from
7.67 to 9.70 ms. We observe about 1 .6x to 2.4x speed-up
in performance by decreasing the number of Lassen nodes
used in individual Docking jobs alone from 245 to five nodes.
Another factor affecting performance is the choice of the
number of nodes for Fusion calculations. When the number
of nodes for Fusion calculations increases by 1 .6x from 140
to 220, the speed-up of 1 .2x for five-node Docking jobs is
more obvious than that of 245-node Docking jobs, which
shows no significant change. This is due to the fact that
the docking simulations using the 245-node Docking jobs
are the bottleneck in the workflow in such a way that we
cannot quickly produce the data for Fusion to utilize the
over-provisioned nodes. Therefore, the changes in performance
for 245-node Docking job configuration are marginal. To our
surprise, the default version of Flux systematically performs
better than the optimized one. For the five-node Docking job
setting, the default version is faster than the optimized one by
no more than a tenth millisecond. For the 245-node Docking
job setting, the default version is faster than the optimized
one by about 2 milliseconds. The version of Flux affects
the 245-node docking configuration more than the five-node
configuration.

D. Synthesis and Analysis

Section IV-C suggests that the choice of independent per­
formance variables is critically important for end-to-end work­
flow performance. With a better choice for a single indepen­
dent performance variable (S i z e o f ConveyorLC j ob),
the workflow achieves up to a 2.45x performance improvement
over the slowest configuration in Table I. The fact that the
De fault Flux version outperformed the Opt imi zed ver­
sion is unexpected and suggests the non-linear nature of the

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on February 02,2023 at 20:49:31 UTC from IEEE Xplore. Restrictions apply.

39

performance space. It also suggests that a suboptimal choice

of another independent performance variable (St art t ime
of resource s for Fus i on) can explain a significant
underutilizaton of Lassen resources, leading to a poor speedup

with Fusion resource scaling. In the best case, a 1 .57x Lassen
resource increase provides only a 1 .24x speedup. In the worse
case, the same 1 .57x Lassen resource increase is unable to
offer any speedup whatsoever.

The identification of dependent performance variables also
significantly helps researchers narrow the search space for end­

to-end workflow performance tuning. For example, a better
choice of a dependent variable (Amount o f resource s
for Fusion not only depends on the main indepen­
dent variable (Re source amount for Docking), but
also the other variables on which it depends: S i z e o f
ConveyorLC j ob and Start t i me o f resource s
for Fus i on. The study also suggests that the impacts of
a single component optimization must be carefully examined
in the overall workflow through this dependency chain.

For instance, the dependence from Flux schedu l ing
overhead--+ S i z e of ConveyorLC j ob would allow
researchers to reconsider the size of ConveyorLC jobs
when Flux is optimized in a singleton fashion. In fact,
when our study varies the job size, we find an unex­
pected change in the scheduling overhead curve of the op­
timized Flux version: it makes the overall workflow run

25% slower over the default version for the larger Docking­
job size. We theorized that the additional tuning (e.g.,
packing multiple job requests into a single Remote Pro­
cedure Call (RPC) for resource matching) suited well for
extremely high throughput, tiny job size-oriented workloads
significantly increased scheduling overhead on much larger

job sizes. The transitive dependence among the Amount
of resource s for Fus i on, S i z e o f ConveyorLC
j ob, Flux scheduling overhead, and ConveyorLC
s chedul ing overhead variables would also allow re­
searchers to adjust the resource amounts allocated to Fusion,
if and when a more effective scheduling optimization will end

up improving the overall docking simulation throughput.

E. Using PerfFlowAspect for cross-component performance
analysis

Can our PerfFlowAspect performance analysis techniques
help researchers better understand the impacts of a key perfor­
mance variable: S i z e o f ConveyorLC j ob ? Figure 5a
and Figure 6a show the PerfFlow Aspect traces, displayed

across the global timeline view within the Perfetto tool, of
Flux used to run ConvyerLC Docking jobs, either with larger
or smaller job size, respectively. These Figures show that

the same number of jobs at nearly 50 times larger scale
makes everything run slower: a 4.19x longer mak.espan (14,388
seconds divided by 3,431 seconds) as seen by Flux. Neverthe­

less, the overall mak.espan performance difference is only a
factor of 1 .93 slower from Table I. Therefore, it suggests that
more aggressive Fusion resource overprovisioning (Amount

39

o f resource s for Fus i on) and/or other Fusion opti­

mizations can further improve this workflow.
Can our PerfFlowAspect analysis help researchers

understand the impact of a single component performance
overhead change? Figure 5a and Figure 5b show the traces
of the top-level Flux instance of two different versions,
De fault and Opt imi zed, respectively. It shows that the

higher scheduling overhead associated with the optimized
Flux on the larger Docking jobs puts docking simulations

throughput on the critical path: a 1 .27x Flux scheduling

slowdown stemming from the optimized Flux almost entirely
explains the overall 1 .25x slowdown of the end-to-end
performance, compared to the corresponding default Flux
configuration. With the larger ConveyorLC Docking job
configuration, the docking throughput already appears lower
than the maximum Fusion throughput (even with Fusion
resource under-provisioning).

V. ITERATION-BASED TUNING TECHNIQUES

The architecture of a composite workflow must be flexi­

ble and highly re-configurable. Unlike the traditional mono­
lithic workflow approach with a single scheduler of known
performance characteristics, a composite workflow's perfor­
mance optimization is far more complex as it entails multi­

dimensional optimization across many components. The ar­
chitecture must be highly re-configurable to streamline many

trial-and-error-based optimization iterations. Furthermore, per­
formance analysis and optimization of a composite workflow
must be continuous. As the composite workflow starts to
run and performance data are collected and analyzed, vari­
ous component-wise optimization will be applied. For each
iteration, the relative performance can vary, and the critical

path for the workflow scheduling can change as a result as
well. Not only must the workflow be highly re-configurable
but also must it be re-configurable with respect to continuous

changes of the critical-path events.

A. Re-configurable base platform and continuous optimization

In addition to domain-specific parameter control, we used
the flexibility of Flux to address this challenge. Once the
components are blended using Flux, researchers can dial its

scheduling policies to reconfigure. A workflow can be config­
ured in such a way that the use of nested Flux instances can

hide from GMD SC the complexity and scalability required
to run many ConveyorLC jobs. Flux specifically allows GMD
SC to treat the group of ConveyorLC jobs as a single unit:

GMD SC only needs to run one GMD SC worker to adapt
ConveyorLC into its pipeline. Because Flux is a fully featured
workload manager, researchers can easily reconfigure other

important parameters such as the size of ConveyorLC jobs,
use of hierarchical nesting of different topologies, and many
other scheduling policies.

B. PerfFlowAspect applied to performance tuning

Can an PerfFlowAspect analysis inform researchers of a
previously unknown area for performance tuning? Figure 6b

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on February 02,2023 at 20:49:31 UTC from IEEE Xplore. Restrictions apply.

40

t .. ' ""'' 1UI152a [t40tUa

Sel«tHl range; UJ88011 333227 ms

(a) Large ConveyorLC Docking job, large Fusion and default Flux (b) Large ConveyorLC Docking job, large Fusion, optimized Flux

Fig. 5: PerfFlowAspect Traces Visualized in Perfetto

=
e-697-ls

(a) Small ConveyorLC Docking job, large Fusion and default Flux (b) Fusion traces for the best configuration

Fig. 6: PerfFlowAspect Traces Visualized in Perfetto

shows the traces of the Maestro adapter traces for Fusion.
Figure 6b in combination with Figure 6a clearly suggest that

there is a significant resource idling due to tight synchroniza­
tion of Docking and Fusion startup and shutdown. Figure 6a is
the best Docking configuration where Docking for all of the

compounds completes in 3,341 seconds. Once this is done,
however, there is no activity traced from within the Flux
instance, indicating Ruby resources idled during the remainder
of the time. As shown by the initial staggering patterns of
Figure 6b, the Maestro adapter activities also appear to be

ramping up slowly as not all Fusion resources are fully
utilized during this ramp-up phase. Note that this was not

clearly shown from the traces of Flux because from Flux's
perspective Fusion jobs were already submitted and running
and resources were fully utilized. This signifies the importance
of casting the performance analysis concerns across all of the
critical components as this kind of analysis would be infeasible
using single-component traces alone. Overall, it hints that the

more imbalanced Docking and Fusion throughput becomes,
the worse will this resource idling issue be. We communicated
this to the AHA MoleS workflow development team, and they

plan to implement a loose synchronization scheme between

Docking and Fusion.

VI. RELATED WORK

Many composite workflow approaches have been proposed,

which include MuMMI [8, 3], a massive ML-aided dis­
covery for Inertial Confinement Fusion (ICF) energy [26],
CASTELO [35], the recent winner [5] and two of the three

40

finalists [17, 25] of the SC20 Gordon Bell Special Award
competition, and VrrtualFlow [14]. One finalist [32] of the

SC21 Gordon Bell Special Award competition developed a
multi-resolution composite workflow and ran it across multiple
top supercomputers. Our focus of the general design prin­

ciples, composition, performance analysis and optimization
techniques differentiate ours from their focus: advancement
of domain sciences. Further, composable and general-purpose
workflow management tools such as Exa Works Software De­

velopment Toolkit (SDK) [27] have begun to gain traction
to enable more rapid development of this type of workflows.
We proposed an approach to rationalizing overall workflow
performance and its application to AHA MoleS, but our work

is directly applicable to the field at large including these
listed composite workflows and software tools that enable

them. Similarly, myriad performance tracing and profiling

tools exist, including HPCToolkit[1], TAU [28], Caliper [4],
Vampir and Score/P [21]. Their primarily focus is on the single

application level whereas ours is on gathering a holistic picture
of workflow-level performance.

VII. CONCLUSION

There is a growing consensus that three major characteris­

tics will define the next-generation of HPC centers: extreme
hardware heterogeneity at all levels; 2) closer convergence of
HPC with cloud computing software; and 3) complex scientific

workflows that must automatically and effectively map to
and run on next-generation resources across the entire center.

To provide a window into the challenges that these next-

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on February 02,2023 at 20:49:31 UTC from IEEE Xplore. Restrictions apply.

41

generation cross-system workflows will face, we present our
multi-disciplinary effort to run a drug screen workflow across
three completely different types of center resources, both
traditional HPC systems and on-premises cloud software-based
(OpenShift Kubemetes) system. To categorize key technical
challenges systematically, we direct our effort towards an end­
to-end benchmark demonstration of the resulting workflow at
massive cross-system scales. We solve each key challenge in
succession.

First, while creating a cross-system composite workflow us­
ing scalable and portable software components is an important
first step, gaining a deep understanding of the performance
space of the composite workflow is a necessity. We provide
performance insight by introducing the concept of perfor­
mance variables that capture the interplay of different software
components as a result of their relative performance. Second,
we find that instrumenting composite workflows and analyzing
their end-to-end performance is an unmet challenge which we
overcome with PerfFlowAspect. PerfFlowAspect can cast a
cross-cutting performance-analysis concern or aspect across a
heterogeneous set of resources used in the workflow. Finally,
we identify the difficulties of composite science workflow
performance tuning and we solve these by building support
for iteration-based optimization exploration directly into the
workflow architecture itself.

Our evaluation suggests that our solutions can significantly
enhance the capacity of a multi-disciplinary team to create,
analyze and optimize a high-performance composite workflow.
Our experiments show that a better choice for an independent
performance variable alone can provide AHA MoleS up to
a 2.45x performance improvement. Further, the identification
of dependent performance variables significantly helps narrow
the search space of end-to-end workflow performance tuning.
Our case studies demonstrate that our AOP-based techniques
allow researchers to gain insight into principal performance
features over these variables. Our work enables AHA MoleS
to run in production more efficiently while reducing necessary
human intervention in simulation campaigns. Using the AHA
MoleS workflow, a single subject matter expert can now handle
the simulation campaigns highly efficiently. Overall, our work
lights a path for scientific workflows to maximize the use of
next-generation compute center resources.

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab­
oratory under Contract DE-AC52-07NA27344 (LLNL-CONF-
83 1502).

REFERENCES

[1] Laksono Adhianto et al. "HPCToolkit: Tools for per­
formance analysis of optimized parallel programs". In:
Concurrency and Computation: Practice and Experi­
ence 22.6 (2010), pp. 685-701.

41

[2] Dong H. Ahn et al. "Flux: Overcoming scheduling
challenges for exascale workflows". In: Future Genera­
tion Computer Systems 110 (2020), pp. 202-213. ISSN:

0167 -739X. DOl: https://doi.org/1 0. 1016/j .future.2020.
04.006.

[3] Harsh Bhatia et al. "Generalizable Coordination of
Large Multiscale Workflow: Challenges and Learnings
at Scale". In: Proceedings of Supercomputing '2I: The
International Conference for High Performance Com­
puting. SC '21. 2021 . DOl: 10. 1 145/3458817.3476210.
URL: https://doi.org/10. 1 145/3458817.3476210.

[4] David Boehme et al. "Caliper: Performance Introspec­
tion for HPC Software Stacks". In: Proceedings of
the International Conference for High Performance
Computing, Networking, Storage and Analysis. SC
' 16. Salt Lake City, Utah: IEEE Press, 2016. ISBN:

9781467388153. DOl: 10.5555/3014904.3014967. URL:

https://doi.org/10.5555/3014904.3014967.
[5] Lorenzo Casalino et al. "AI-driven multiscale simula­

tions illuminate mechanisms of SARS-CoV-2 spike dy­
namics". In: The International Journal of High Perfor­
mance Computing Applications 35.5 (2021), pp. 432-
451.

[6] National Energy Research Scientific Computing Center.
SPIN. https :/ /www. nersc. gov I systems/ spin/. Retrieved
July 21, 2021. National Energy Research Scientific
Computing Center.

[7] Francesco Di Natale. Maestro Worliflow Conductor.
https://github.com!LLNL/maestrowf. Mar. 2017.

[8] Francesco Di Natale et al. "A massively parallel infras­
tructure for adaptive multiscale simulations: modeling
RAS initiation pathway for cancer". In: Proceedings
of Supercomputing 'I9: The International Conference
for High Performance Computing. SC ' 19. 2019. DOl:

10 . 1 145/1 122445 . 1 122456. URL: https ://doi . org/10.
1 145/3295500.3356197.

[9] Evan N. Feinberg et al. "PotentialNet for Molecular
Property Prediction". In: ACS Central Science 4.1 1
(2018), pp. 1520-1530. DOl: 1 0 . 1021 I acscentsci .
8b00507.

[10] Flux Framework Community. Flux Framework: A flexi­
ble framework for resource management customized for
your HPC site. http : I I flux- framework. org. Retrieved
June 20, 2021 .

[1 1] Flux Framework Community. PerfFlowAspect: a tool
to analyze cross-cutting performance concerns of com­
posite scientific worliflows. https : I I github . com/ flux ­
framework/PerfFlowAspect. Retrieved May 31 , 2022.

[12] David Fox. Enabling Worliflows in Livermore Comput­
ing. https : I /hpc . llnl . gov I sites/ default/ files/Enabling­
Workflows - in - Livermore - Computing - LC - User ­
Meeting - Dec- 2020% 20Final . pdf. Retrieved July 21,
2021 . Lawrence Livermore National Laboratory.

[13] Gartner, Inc. Gartner forecasts worldwide public cloud
end-user spending to grow 23% in 202I. https://www.
gartner.com/en/newsroom/press-releases/2021-04-21-

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on February 02,2023 at 20:49:31 UTC from IEEE Xplore. Restrictions apply.

42

gartner- forecasts- worldwide- public- cloud- end- user­
spending-to-grow-23-percent-in-2021 . Retrieved June
20, 2021.

[14] Christoph Gorgulla et al. "An open-source drug dis­

covery platform enables ultra-large virtual screens". In:

Nature 580.7805 (2020), pp. 663-668.
[15] Izumi V. Hinkson, Benjamin Madej, and Eric A.

Stahlberg. "Accelerating Therapeutics for Opportunities
in Medicine: A Paradigm Shift in Drug Discovery". In:
Frontiers in Pharmacology 1 1 (2020), p. 770. ISSN:

1663-9812. DOl: 10.33891fphar.2020.00770. URL: https:
//www.frontiersin.org/articlel10.33891fphar.2020.00770.

[16] Hyperion Research. How cloud computing is changing
HPC spending. https : I I hyperionresearch . com I wp -
content/uploads/2021 101 IHyperion-Research-Special­
Analysis - Clouds - and - HPC - December - 2020 . pdf.

Retrieved June 20, 2021.
[17] Sam Ade Jacobs et al. "Enabling rapid COVID-19 small

molecule drug design through scalable deep learning

of generative models". In: The International Journal
of High Performance Computing Applications (May
2021). DOI: 10. 1 17711094342021 1010930. eprint: https:

II doi . orgl 1 0 . 1 177/ 1094342021 1010930. URL: https :
//doi.org/10. 1 17711094342021 1010930.

[18] Michael James et al. "ISPD 2020 Physical Mapping

of Neural Networks on a Wafer-Scale Deep Learning
Accelerator". In: Proceedings of the 2020 International
Symposium on Physical Design. ISPD '20. Taipei,
Taiwan: Association for Computing Machinery, 2020,

pp. 145-149. ISBN: 9781450370912. DOl: 10 . 1 145 I
3372780 . 3380846. URL: https : I I doi . org I 10 . 1 145 I
3372780.3380846.

[19] Derek Jones et al. "Improved Protein-Ligand Binding
Affinity Prediction with Structure-Based Deep Fusion
Inference". In: Journal of Chemical Information and
Modeling 61 .4 (2021), pp. 1583-1592.

[20] Gregor Kiczales et al. "Aspect-oriented programming".
In: ECOOP'97 - Object-Oriented Programming. Ed.
by Mehmet Ak§it and Satoshi Matsuoka. Berlin, Hei­
delberg: Springer Berlin Heidelberg, 1997, pp. 220--242.
ISBN: 978-3-540-69127-3.

[21] Andreas Kniipfer et al. "The vampir performance analy­
sis tool-set". In: Tools for high performance computing.
Springer, 2008, pp. 139-155.

[22] Kubemetes. Production-Grade Container Orchestra­
tion. https:llkubemetes.io. Retrieved July 21, 2021 .

[23] Yujia Li et al. "Gated Graph Sequence Neural Net­
works". In: arXiv:1511.05493 (2017). arXiv: 1511 .
05493 [c s . LG] .

[24] Amanda J. Minnich et al. "AMPL: A Data-Driven

Modeling Pipeline for Drug Discovery". In: Journal
of Chemical Information and Modeling 60.4 (2020),

pp. 1955-1968.
[25] Jonathan Ozik et al. "A population data-driven work­

flow for COVID-19 modeling and learning". In: The

42

International Journal of High Performance Computing
Applications 35.5 (2021), pp. 483-499.

[26] J. L. Peterson. Machine Learning Aided Discovery
of a New NIF Design. Lawrence Livermore National

Laboratory, Aug. 2018.

[27] Rob Farber. Workflow Technologies Impact SC20 Gor­
don Bell COVID-19 Award Winner and Two of the Three
Finalists. https : I I www. exascaleproject. orgl workflow­
technologies - impact - sc20 - gordon - bell - covid - 19 -
award-winner-and-two-of-the-three-finalists. 2020.

[28] Sameer S Shende and Allen D Malony. "The TAU
parallel performance system". In: The International
Journal of High Performance Computing Applications
20.2 (2006), pp. 287-3 1 1 .

[29] Garrett A. Stevenson et al. "High-Throughput Vtrtual
Screening of Small Molecule Inhibitors for SARS­

CoV-2 Protein Targets with Deep Fusion Models". In:
Proceedings of Supercomputing '21: The International
Conference for High Performance Computing. SC '21 .
2021 . DOl: 10 . 1 145 1 3458817 . 3476193. URL: https :
//doi.org/10. 1 14513458817.3476193.

[30] Neil C. Thompson and Svenja Spanuth. "The Decline

of Computers as a General Purpose Technology". In:
Commun. ACM 64.3 (Feb. 2021), pp. 64-72.

[3 1] Tiffany Trader. Livermore 's El Capitan Supercomputer
to Debut HPE 'Rabbit' Near Node Local Storage. https:
//www.hpcwire.com/2021102118/livermores-el-capitan­

supercomputer- hpe - rabbit - storage - nodes. HPCwire,
2021 .

[32] Anda Trifan et al. "Intelligent Resolution: Integrating
Cryo-EM with Al-driven Multi-resolution Simulations
to Observe the SARS-CoV-2 Replication-Transcription

Machinery in Action". In: bioRxiv (2021). DOl: 10 .
1 101/2021 . 10.09.463779. eprint: https ://www.biorxiv.
orglcontent/early/2021/1 0112/2021 . 10.09.463779 .full.
pdf. URL: https://www.biorxiv.orglcontentlearly/2021/
10112/2021 . 10.09.463779.

[33] Anthony Wood. Rabbit MQ: For Starters. North
Charleston, SC, USA: CreateSpace Independent Pub­

lishing Platform, 2016. ISBN: 1540603423.
[34] C.-Q. Yang and B.P. Miller. "Critical path analysis for

the execution of parallel and distributed programs". In:
[1988] Proceedings. The 8th International Conference
on Distributed. 1988, pp. 366-373. DOl: 10. 1 109/DCS.

1988.12538.
[35] Chih-Chieh Yang et al. "Design of AI-Enhanced Drug

Lead Optimization Workflow for HPC and Cloud". In:

IEEE International Conference on Big Data. Dec. 2020,
pp. 5861-5863.

[36] Xiaohua Zhang, Horacio Perez-Sanchez, and Fe­
lice C. Lightstone. "A Comprehensive Docking and
MM/GBSA Rescoring Study of Ligand Recognition
Upon Binding Antithrombin". In: Curr. Top. Med.
Chern. 17.14 (2017), pp. 1631-1639. ISSN: 1568-0266.

[37] Xiaohua Zhang, Sergio E. Wong, and Felice C. Light­
stone. "Message passing interface and multithreading

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on February 02,2023 at 20:49:31 UTC from IEEE Xplore. Restrictions apply.

43

hybrid for parallel molecular docking of large databases
on petascale high performance computing machines".

In: Journal of Computational Chemistry 34. 1 1 (2013),
pp. 915-927. DOl: https://doi.org/10. 1002/jcc.23214.

[38] Xiaohua Zhang, Sergio E. Wong, and Felice C. Light­
stone. "Toward Fully Automated High Performance
Computing Drug Discovery: A Massively Parallel Vir­

tual Screening Pipeline for Docking and Molecular
Mechanics/Generalized Born Surface Area Rescoring to
Improve Enrichment". In: Journal of Chemical Infor­
mation and Modeling 54.1 (2014), pp. 324-337. DOl:

10. 1021/ci4005145.

43

Authorized licensed use limited to: Lawrence Livermore National Lab. Downloaded on February 02,2023 at 20:49:31 UTC from IEEE Xplore. Restrictions apply.

