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Abstract—We present scalable hybrid-parallel algorithms for
training large-scale 3D convolutional neural networks. Deep
learning-based emerging scientific workflows often require model
training with large, high-dimensional samples, which can make
training much more costly and even infeasible due to excessive
memory usage. We solve these challenges by extensively applying
hybrid parallelism throughout the end-to-end training pipeline,
including both computations and I/O. Our hybrid-parallel
algorithm extends the standard data parallelism with spatial
parallelism, which partitions a single sample in the spatial
domain, realizing strong scaling beyond the mini-batch dimension
with a larger aggregated memory capacity. We evaluate our
proposed training algorithms with two challenging 3D CNNs,
CosmoFlow and 3D U-Net. Our comprehensive performance
studies show that good weak and strong scaling can be
achieved for both networks using up to 2K GPUs. More
importantly, we enable training of CosmoFlow with much larger
samples than previously possible, realizing an order-of-magnitude
improvement in prediction accuracy.

Index Terms—deep learning, convolutional neural network,
model-parallel training, hybrid-parallel training

I. INTRODUCTION

Recent advances in deep learning, especially convolutional

neural networks (CNNs), have become a subject of significant

research interest in emerging scientific workflows in research

fields such as cosmology [1], medical image analysis [2],

climate analysis [3], and turbulent flow simulations [4].

This is thanks to its potential for extraordinary impact, as

demonstrated in image and speech classification [5], [6],

playing games [7], and translating natural languages [8],

among others. While early successful results have been

reported in applying deep CNNs to scientific problems,

training highly robust and accurate scientific models can be

severely constrained as they tend to need to use much larger

samples, such as 3D medical images or simulation outputs.

Larger, high-dimensional samples can make deep CNNs even

deeper with each layer becoming more compute intensive,

making already long training times even longer. Furthermore,

increased sample sizes directly increase the memory usage of

model training, which is especially problematic in accelerators

with limited memory capacity such as GPUs. 3D CNNs

can consume tens to hundreds of gigabytes of memory, as

exemplified in the cosmology and medical models evaluated

in this work (see Section V). This easily exceeds the available

memory capacity of typical high-end GPUs. These two major

problems, high computational cost and memory usage, can

severely reduce the effectiveness of deep learning, especially

in scientific domains.

Parallelizing training can alleviate these problems by

employing more compute and memory resources. However,

the most commonly-used approach, data-parallelism, fails to

adequately address the challenges posed by extreme scientific

problems due to its limited parallelism. While training samples

are distributed over multiple processing elements (PEs) such as

GPUs, each PE must still process at least one complete sample,

resulting in limited reduction of per-PE memory pressure.

Reducing the size of training samples by, e.g., lowering

resolution is a common workaround. However, it inevitably

loses information in the original data, which can be critical to

train highly accurate models. Even if memory is not a problem,

the degree of parallelism is still limited by the number of

samples per mini-batch, which cannot be arbitrarily increased

without adversely affecting the model accuracy [9].

To address these issues in large-scale 3D CNNs, strong

scaling is required. We present an end-to-end training

framework that extends the parallelism beyond the current

state of practice for strong scaling. First, we develop a

highly efficient hybrid-parallel algorithm for 3D convolutions

that exploits parallelism both in the spatial and mini-batch

dimensions, allowing one sample to be distributed over

multiple PEs. This provides improved performance and is

indispensable for breaking the memory barrier in 3D CNNs.

Second, to achieve scalable end-to-end performance, the

performance of I/O pipeline must also strong scale for a

fixed number of samples, which may be gigabytes in size. We

apply the same hybrid-parallel techniques to I/O, maximizing

parallelism, increasing throughput, and minimizing scaling

bottlenecks.

We demonstrate end-to-end scalable training by extending

an existing DNN framework with our hybrid-parallel compute

and I/O algorithms. In our experimental studies, we use

CosmoFlow, a regression model for cosmology [1], and the
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3D U-Net, a segmentation model for medical images [2], as

representative large-sample 3D CNNs. We present compre-

hensive performance analyses of our algorithms and show

that they collectively enable efficient strong scaling for both

problems, i.e., parallel speedups without increasing the mini-

batch size. Even more importantly, we demonstrate that by

training CosmoFlow with much larger samples than previously

possible, it is possible to realize an order-of-magnitude

improvement in prediction accuracy, which can have a

tremendous impact in accelerating scientific discoveries. This

new capability enabled by our training pipeline is not limited

to the particular problem but can be a critical tool for broader

ML-enhanced scientific applications.

We summarize our contributions as follows:

• We present an end-to-end approach for strong-scaling

training large-sample 3D CNNs. We address the compute,

memory, and I/O challenges using hybrid-parallelism.

• We present a prototype implementation of our proposed

approach by extending the LBANN framework [10] and

demonstrate training on full-resolution samples for Cos-

moFlow (5123) and the 3D U-Net (2563). Our performance

results show show good strong and weak scaling on up to

2048 GPUs. Training the CosmoFlow model is 1.77x faster

when using 2048 GPUs over 512 GPUs, both using the same

mini-batch size of 64. Similarly, a 1.42x speedup is achieved

for the 3D U-Net when using 512 GPUs over 256 GPUs.

• We provide detailed model-based performance analyses of

both problems in order to give comprehensive understanding

of their scaling efficiencies.

• We demonstrate a significant improvement in prediction

accuracy by using full-resolution data. The CosmoFlow

model trained with 5123 samples, while requiring at least

eight V100 GPUs per sample, realizes ten times lower mean

squared error than when trained with 1283 samples, which

was the largest size reported previously.

II. BACKGROUND

Here, we first describe two fundamental methods to train a

single DNN in parallel: data- and model-parallelism. We also

describe hybrid-parallel training, a combination of both which

couples spatial partitioning and data-parallelism for improved

scalability. Then we introduce the CosmoFlow and the 3D U-

Net models in more detail.

A. Data-, model-, and hybrid-parallelism

Mini-batch Stochastic Gradient Descent (SGD) is the most

widely used technique to optimize the parameters of a given

deep neural network, and has the form:

W (t+1) = W (t)
− η(t)

N
∑

n=1

∇L
(

xn;W
(t)
)

,

where W (t) are the network parameters at step t, η(t) is the

learning rate at step t, N is the mini-batch size, L is the loss

function, and xn is the nth sample.

Layer

GPU

Forward data movement

Backward data movement

Backward grad. movement

Data-parallel (N = 2)

Allreduce

Input Conv. FC

Model-parallel

(spatial partitioning, N = 1)

Input Conv. FC

Hybrid-parallel

(N = 2)

Input Conv. FC

Fig. 1: Three different parallel strategies for deep neural

networks. N denotes the mini-batch size. “Data-parallel” and

“Hybrid-parallel” compute a mini-batch of two samples (

and ), while “Model-parallel” splits the spatial dimension

of one sample ( ) into two GPUs. Note that data movement

within a single process is typically cheap.

1) Data-parallelism: Data-parallel training, which parti-

tions samples to compute ∇L in parallel, is the most widely-

used training technique (Figure 1, top left). It takes advantage

of the fact that N is typically large enough to efficiently

parallelize training on up to thousands of GPUs [11]–[13]

and that communication requirements are relatively small

compared to the compute requirements for CNNs.

However, data-parallelism is limited by the number of

samples in a mini-batch, the memory requirements of training,

and how well the model learns.

2) Model-parallelism: On the other hand, model-parallel

training (Figure 1, top right) parallelizes the computation

of ∇L for each data sample across multiple GPUs. This

enables additional parallelism to be exploited, and partitions

data across multiple GPUs to reduce memory requirements. In

data-parallel training, if the memory requirements (including

necessary intermediate activations) exceed the memory

capacity of a GPU, training is infeasible. In contrast, with

model-parallelism, the memory requirements are roughly

inversely proportional to the number of partitions. This strong-

scaling advantage is especially attractive for high-dimensional

CNNs, since the large input data results in huge intermediate

activation tensors during training.

At the same time, model-parallel training requires careful

framework design to mitigate overheads. While data-parallel

training requires only a single global allreduce per layer
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to aggregate parameter updates, model-parallel training can

involve many fine-grained communication operations and

synchronizations in each layer.

Many strategies exist to exploit model-parallelism in CNNs,

including spatial partitioning, channel/filter partitioning, and

layer-wise pipelining (see Section VI). In this paper, due

to the high-resolution and 3-dimensional input data, we

focus on spatial partitioning as a natural way to decompose

the computation. Spatial partitioning distributes input and

activation tensors by partitioning the height, width, and depth

dimensions, similarly to traditional stencil computations. This

introduces a halo exchange (an exchange of spatial boundary

data between neighbor processes) within convolutional and

pooling layers to maintain correctness, although it can be

overlapped to hide communication overhead. For 3D data,

the improved surface-to-volume ratio of the problem mitigates

these communication overheads even further. Existing work

on spatial partitioning has been limited to 2D data; here, we

extend spatial partitioning to support 3D data.

3) Hybrid-parallelism: “Hybrid-parallelism” is the combi-

nation of data-parallelism and model-parallelism (Figure 1,

bottom). Hybrid parallelism takes advantage of both the low

overhead of data-parallelism to weak scale and of model-

parallelism to strong-scale onto more compute resources. It

requires careful selection of the relative balance of parallelism

to achieve good scalability, as demonstrated in Section V-B.

B. CosmoFlow

CosmoFlow [1] is a project to use deep learning to estimate

the values of important cosmological parameters from 3D

cosmological simulations. One of the goals in cosmology

is to understand and control the underlying systematics in

a cosmological survey. As there is only one universe to

observe, and the entire universe is needed to make these

measurements, constraining the effects of systematics falls

to computationally expensive simulations. The CosmoFlow

network aims to replicate both the systematics from survey

operations as well as those nature forces upon us. Creating

surrogates for these simulations is necessary to generate the

sheer statistical numbers needed to control the systematics.

Mathuriya et al. conducted thousands of independent N-

body dark matter simulations with varied initial cosmological

parameters, and constructed a dataset from them. The task is

to predict the initial parameters from 3D mass distributions.

The original spatial dimensions, 5123 voxels, required too

much memory to train on, so each sample was split into 1283

voxel sub-volumes which are used as different data samples.

As a result, the CosmoFlow network was trained with 99,456

training samples, each a 1283-voxel 3D histogram of particle

counts. It was reported that training with large mini-batches

containing 8192 samples did not converge to comparable

accuracy as smaller, 2048-sample mini-batches. These two

problems are easily solved by our approach, because each

sample is distributed among multiple GPUs, avoiding memory

limits and allowing scaling without large mini-batches.

The latest CosmoFlow dataset is the “2019 05 4parE”

dataset [14]. It contains 10,017 simulated universes, each of

which is composed of four channels (redshifts) and is 5123

voxels, stored as 16-bit integers, along with four cosmological

parameters that were used to generate the universe. These are

ΩM , the proportion of matter in the universe; σ8, the amplitude

of mass fluctuations at a distance scale of 8 Mpc/h; ns, the

scalar spectral index of the spatial curvature of a comoving

slice of space-time; and H0, Hubble’s constant. The dataset is

about 9.77 TiB in size. We normalize the parameters to be in

[−1, 1] when training, in line with prior work.

In this paper, we distinguish the datasets with the spatial

input sizes, 1283 to 5123. We split each dataset into 80%, 10%,

and 10% as training, validation, and test datasets respectively.

Additionally in this work, we will test the hypothesis that by

allowing neural networks to observe entire data samples during

training it is possible to learn longer range properties in the

data and improve the quality of this type of regression model.

C. The 3D U-Net

The 3D U-Net [2] is a 3D version of the U-Net [15], a 2D

CNN for image segmentation. It replaces all 2D operations

with 3D operations to perform volumetric segmentation on

3D data. U-Nets have been applied to a wide range of 2D

and 3D segmentation applications, such as biological image

analysis [2], [15] and CT image analysis [16].

In this paper, we apply the 3D U-Net to the Liver Tumor

Segmentation (LiTS) dataset [17], where the task is to segment

liver lesions in 3D CT scans. It consists of 131 CT scans for

training and 70 for testing. Each is composed of a variable

number of 512× 512 slices and per-voxel ground-truth labels.

To use a consistent input size, we down-sample the non-slice

dimensions and up- or down-sample the slice dimension so

each sample is 2563 voxels. We convert the original dataset

to equivalent HDF5 files with 16-bit integers.

The most significant difference between the 3D U-Net and

CosmoFlow networks is that it uses deconvolution layers to

upsample activations to their original size. As the memory

requirements for activations is cubic in the layer’s spatial

dimensions, the 3D U-Net requires a huge amount of memory

near both the input and output layers, compared to the

CosmoFlow network with the same input size. Furthermore,

the CT image and labeled segmentation of each sample in

the LiTS dataset are both the same size. Since the labels

are not small (e.g. a class label), we must consider the I/O

performance of reading them in addition to the inputs. Thus,

the 3D U-Net helps demonstrate performance in different

regimes than CosmoFlow.

III. SCALABLE TRAINING OF 3D CNNS

Scaling up the training of neural networks for large 3D

data cubes requires innovation in both spatially distributed

convolution/deconvolution, and parallel data ingestion, reuse,

and movement. In this section, we discuss each of these in turn.

We also propose a performance model to predict layer-wise

computation and communication time for a given network and
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Fig. 2: Overview of hybrid-parallel training. Each node contains four processes which partition a single data sample.

runtime configuration to validate our computational efficiency.

We use the Livermore Big Artificial Neural Network Toolkit

(LBANN) [10] to implement our approach, as it has already

demonstrated good scalability for 2D spatial partitioning [18].

Our training pipeline is summarized in Figure 2.

Part of the contributions described here derive from

traditional solutions in HPC systems and software architecture,

but are extended to tackle the complexities of training deep

neural networks.

Notation. We adopt cuDNN’s notation for tensor dimen-

sions, using N , C, D, H , and W to refer to samples,

channels, depth, height, and width, respectively. Unless

explicitly mentioned, we assume all tensors are fully packed.

We use “D-way”, “D × H-way”, or “D × H × W -way” to

refer to how many ways the depth, height, and/or width are

partitioned. We omit N when the remaining GPUs are used

for data-parallelism in a hybrid-parallel manner. For example,

if the total number of GPUs is 16, 2-way means there are

16/(2× 1× 1) = 8 groups each of which split a data sample

onto two GPUs in the depth dimension.

A. Hybrid-parallel Implementation of 3D CNNs

The hybrid-parallel training requires partitioning activations

in their spatial and sample dimensions over distributed PEs.

Once they are partitioned, each layer computation is done

locally except for layers that involve data dependencies

across partitions, which include convolutions, pooling, and

batch normalization. Convolution and pooling have a spatial

dependency that can be resolved with halo exchanges. For

batch normalization, partial statistics over partitions need to be

aggregated with allreduces to correctly compute per-channel

statistics for samples.

In this work, we extend an existing library [18] that provides

the basic infrastructure for implementing hybrid-parallel 2D

CNNs. This extension requires significant additional work to

both support 3D data and achieve good performance. We began

by adding support for 5D tensors (required for 3D data) to both

the library and underlying distributed linear algebra backend.

However, we found several performance issues and missing

support for realizing real end-to-end training of 3D CNNs,

which had not been reported before. Several operations were

designed for 2D data and not well-optimized for large, 3D

tensor shapes. For example, we identified that the existing

packing and unpacking CUDA kernels for the neighbor

communication of boundary regions were sub optimal for

our target problems. We developed a suite of new optimized

packing/unpacking kernels for common convolutional filters

(e.g., 33 and 53). Such optimized kernels are automatically

picked when possible. Similarly, we extend other network

components, such as distributed batch-normalization and the

cross-entropy loss, with optimized versions for large 3D

problems. In general, we find that due to the large data sizes,

operations that are normally considered cheap can in fact

dominate runtime if not well implemented.

The library also lacked support for many layers nec-

essary for more general CNN architectures, as it was

designed primarily for sequential networks. The 3D U-Net,

which contains both down- and upsampling branches with

residual connections between, required additional features.

We developed distributed, hybrid-parallel implementations of

deconvolution and support for more flexible distributed tensor

manipulations for the residual connections.

Unlike the activations, the layer parameters are relatively

small in our networks (e.g., 9.5M for CosmoFlow, see

Table I). Thus, we do not expect a significant benefit from

partitioning them (e.g., with channel/filter parallelism [19])

as we do the activations. We use standard data-parallel

techniques to aggregate parameter updates with allreduces in

backpropagation (green arrows in Figure 2).

Note that these extensions do not change the fundamental

architecture of the underlying framework, but extend some

base classes such as the tensor class and convolutional layer

classes to support hybrid-parallelism. Thus, our techniques can

4



be applied to any other deep learning framework.

B. I/O performance optimization

Training the CosmoFlow and the 3D U-Net networks

requires the ingestion and shuffling of many huge samples,

each of which is 1 GiB and 64 MiB in size respectively,

and is accessed once per epoch in random order. A key

challenge is that in the steady state, ingesting training data

from the PFS quickly becomes the dominant portion of the

runtime. Furthermore, the 10 TB CosmoFlow dataset is too

large to cache in local storage on our compute nodes. For

example, our typical configuration for the CosmoFlow network

uses a mini-batch of size 64 and our system has 240 GB/s

of PFS bandwidth. Thus, loading each mini-batch requires

at least 256 ms, which is prohibitively slow (Figure 4).

Handling this workload efficiently requires solving three tasks:

maximizing the utilized bandwidth to the parallel file system

(PFS), caching the data set efficiently in distributed memory

to avoid subsequent access to the PFS, and efficient shuffling

of samples from the data cache during each epoch.

However, when training with hybrid-parallelism, even if in-

memory caching is enabled, we found that we require that

data samples be spatially partitioned and mini-batches are

typically small. Traditional sample-parallel I/O approaches

have limited parallelism in this regime, and would require

data be redistributed to match the spatial parallelism, limiting

strong scaling and opportunities for hiding I/O overhead. In

Figure 5, we demonstrate that without this spatial-parallel I/O

technique training of the CosmoFlow network does not scale

at all with any number of GPUs, even if the entire dataset is

distributed among the host memory of the computing nodes.

This problem is even more acute for the 3D U-Net, where we

also spatially distribute the ground-truth segmentation.

To address this, we develop a new parallel I/O pipeline

where each process fetches its local hyperslab, or contiguous

3D fragment, of a data sample. This incorporates spatial

parallelism into the I/O process to enable strong scaling PFS

bandwidth and minimize data shuffling, redistribution, and

memory footprints. We build on existing infrastructure in

LBANN, including its C++ data readers and distributed, in-

memory data cache [20] to reduce PFS accesses.

Our data reader uses Conduit [21] as both an in-memory

data structure and an interface to an I/O backend, such as

HDF5 (Figure 3). Conduit is an open source data exchange

library that provides efficient ways of exchanging scientific

data. In prior work, LBANN has been optimized to provide

parallel I/O using both MPI and multi-threading, but was

limited to a single MPI rank per sample. To overcome this

performance bottleneck and support spatially parallel I/O, we

rearchitected the data ingestion pipeline to use parallel HDF5

with MPI-IO. This allows multiple ranks which each require

one hyperslab of a sample to coordinate their activity when

ingesting large samples. Using this, data loading can now track

the strong-scaling of our hybrid-parallelism while minimizing

data redistribution, as each rank reads only the data it needs.
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MPI Rank
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CPU GPUs

M
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Fig. 3: Data movement during both the initial epoch 0 (left)

and steady state epoch 1+ (right). During epoch 0, HDF5

ingests hyperslabs in parallel into the data store. During epoch

1+, the data store distributes the hyperslabs for each sample

in the mini-batch that is about to be trained on.

However, as GPU performance continues to outstrip I/O

bandwidth, it is also necessary to minimize PFS accesses. To

do this, when samples are loaded (Figure 3a), they are placed

into Conduit nodes and then into LBANN’s distributed, in-

memory data store to cache the samples for the duration of

training. We extended the data store to hold a sample as a

collection of hyperslabs. This aligns the spatially parallel I/O,

training, and data caching for best performance with hybrid-

parallel convolution.

After the first epoch is complete, the data store has cached

the entire data set, which it will distribute on subsequent

epochs. Before each epoch, the data store computes a global

owner map and a schedule mapping samples to SGD iterations.

This allows the data store to redistribute hyperslabs of samples

as needed for the upcoming mini-batch (see Figure 3b).

As we strong scale, the capacity of the data store increases

in proportion to the compute resources, allowing increasingly

large datasets to be cached. This is also well-positioned to take

advantage of node-local storage and non-volatile memories on

future systems.

C. Performance Modeling

We use a performance model to predict the time to

perform one iteration of training with given a configuration,

such as the mini-batch size and the number of nodes, to

understand the quantitative behavior of the framework and

validate performance. We first collect the time to perform

(de)convolution, pooling, and batch normalization kernels with

various input sizes on a single GPU using cuDNN [22], and

then we combine the benchmark results with a communication

model to predict layer-wise runtime on multiple GPUs.

The time to perform forward-computation of convolutional

or pooling layer l is

FP l = max

{

Compl
(

Dmain
l

)

,

2
∑

d=0

2SR
(

Dhalo
l,d

)

}

+ Compl
(

Dhalo
l

)

where Compl(D) is time to compute layer l on a given

domain D, and SR(D) is time to perform peer-to-peer send-

receive communication between two GPUs (via NVLink or
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inter-node InfiniBand depending on the location of the two

processes). The shape of Dmain
l , the domain which can be

computed without halo communication, and Dhalo
l,d , the domain

which requires halo region to be computed, are defined by the

partitioning of the layer. We define BDl and BF l, the time

to perform the backward-data and backward-filter passes on

layer l, respectively, in a similar manner.

To estimate Compl(D), we benchmark each layer type

on a single GPU. Unless noted, we use the largest

cuDNN workspace possible, and autotune to find the fastest

convolution algorithms. We use the median of three trials after

warmup. To estimate SR(D), we use Aluminum’s ping-pong

benchmark and apply linear regression to estimate the time for

arbitrary message sizes.

The time for a batch-normalization layer is the sum of the

computational time and time to perform allreduce of the local

sum and squared-sum of each channel.

Finally, the total time of the network is

Cost =
∑

l

FP l +max

{

∑

l

(BDl +BF l) ,
∑

l

ARl(θl)

}

,

where ARl is time to perform allreduce among all of the

GPUs and θl is the number of parameters of layer l. To

estimate ALl, measure the performance on one node (4

GPUs) to 128 nodes (512 GPUs), with float vectors of 1 to

16 M elements, and apply linear regression [23], [24] with

logarithmic transformations to predict the time for a given

message size and the number of GPUs.

We ignore the cost of non-3D part of the 3D CNNs (e.g.,

fully-connected and loss layers), since their costs are negligible

compared to other costs, such as allreduces or convolution. We

also ignore the cost of I/O for loading data samples from the

PFS or between processes, as our optimized pipeline mitigates

I/O costs drastically for the two networks we use in this paper.

IV. EXTENDED COSMOFLOW MODEL

We now discuss extensions we make to the CosmoFlow

network, as this is the first attempt to train the network with

64× larger input data than before. We use the CosmoFlow

model presented in the previous work as our baseline model

and extend it to improve its prediction accuracy by exploiting

our new hybrid-parallel training capabilities.

Table I summarizes three models, corresponding to the

1283, 2563, and 5123 voxel training datasets, respectively. For

each of the models, we have applied several extensions to the

original baseline model. First, we add a batch normalization

layer [25] after every convolutional layer. Ravanbakhsh et

al. reported that batch normalization was critical in training

a similar model [26]. However, in the original CosmoFlow

model, it was dropped due to the computational cost of batch

normalization, especially in a distributed training setting. We

present training results in both configurations (Section V)

and observe that while batch normalization increases memory

requirements, it improves final prediction accuracy. Second,

in order to simplify comparison of the three models, we

insert additional pooling layers in the 2563 and 5123

TABLE I: CosmoFlow network architecture. Wi is the

input spatial width. cN→pN are convolution followed by

pooling and fcN are fully connected layers. We use stride

1 convolution and stride 2 pooling unless noted. All layers

use “same” padding.

Layer(s) Output width

Name(s) Filter Wi = 128 Wi = 256 Wi = 512

c1→p1 16× 33 1283→643 2563→1283 5123→2563

c2→p2 32× 3
3

64
3→32

3
128

3→64
3

256
3→128

3

c3→p3 64× 33 323→163 643→323 1283→643

c4→p4
128 × 33

83→43 163→83 323→163

(stride of 2)

c5→p5 256 × 33 43→23 83→43 163→83

c6→p6 256 × 3
3

2
3→N/A 4

3→2
3

8
3→4

3

c7→p7 256 × 33 23→N/A 23→N/A 43→23

fc1 2048 2048 2048 2048

fc2 256 256 256 256

fc3 4 4 4 4

# conv. ops. [GFlops/sample] 55.55 443.8 3550
(Forward) [GFlops/sample] 18.52 147.9 1183

Memory [GiB/sample] 0.824 6.59 52.7

# parameters
[

106
]

9.44 9.44 9.44

models (the pool6 layer in both models and the pool7 layer

in the 5123 model). Finally, we experimentally identified

several minor parametric changes that improve prediction

accuracy or simplify the implementation of distributed

convolution, including removal of biases and use of padding

in convolutional layers. We removed biases as we observed

significant performance overheads for them in practice.

The remaining details follow the original model: We use

leaky ReLU [27] activations (except for the last layer), dropout

with a keep probability of 0.8 after every fully-connected layer,

and adopt the mean squared error as the loss function. We use

the Adam [28] optimizer with β1 = 0.9, β2 = 0.999, and

ǫ = 10−8 and a linear learning-rate decay schedule which

leads to 0.01x of the initial rate in 100 epochs. We perform

grid search to tune initial learning rate η(0) for each network.

To compare with prior work and study the impact of data

volume, we synthesize two datasets with data volumes of size

1283 and 2563, by splitting each 5123 cube into 64 and 8

sub-volumes, respectively. This is analogous to the partitioning

method used in the original work. The intuition behind this was

that the data volumes should be sufficiently large to contain

galaxy clusters, which are sensitive cosmological probes.

Training the largest network needs 4 GPUs to store

the 52.7 GiB of memory required (Table I). When batch

normalization layers are introduced, memory requirements

double, necessitating at least 8 GPUs (2 nodes) per sample.

V. EVALUATION

In this section, we first evaluate the computational perfor-

mance of our hybrid-parallel implementation for CosmoFlow
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and the 3D U-Net in both strong scaling (fixed global mini-

batch size) and weak scaling (fixed mini-batch size on each

GPU) regimes. Then, we demonstrate the importance of

increasing the input data resolution of the CosmoFlow network

to improve its prediction accuracy. To our knowledge, this

work is the first attempt to train the CosmoFlow network with

the full-resolution universe data instead of partitioning them

into small sub-volumes.

A. Evaluation environment

We use Lassen, a GPU supercomputer at Lawrence

Livermore National Laboratory composed of 792 nodes. Each

node has two IBM POWER9 CPUs with 256 GB memory and

four NVIDIA V100 GPUs with 16 GB memory and NVLink2.

Each CPU has two GPUs directly connected to it via NVLink,

and the two GPUs on each socket are also directly connected

via NVLink. The network is dual-rail EDR InfiniBand.

We use GCC 7.3.1, CUDA 10.1, cuDNN 7.6.4, NCCL 2.4.2

and IBM Spectrum MPI 10.2.0.11rtm2. We use auto-tuning

to select cuDNN convolution algorithms. We use FP32 for

computation throughout the experiments. We do not use FP16

mixed-precision training (or Tensor Cores), as the impact of

applying low-precision training to CosmoFlow has not yet

been evaluated.

For the 3D U-Net, we use the original network architecture

proposed in the paper [2], but increase the input/output size

to 2563. As mentioned in Section II-C, the network consumes

much more memory than the CosmoFlow network for the same

input data size, so we use a smaller size to keep the number

of GPUs per sample the same as the CosmoFlow experiments.

B. Strong scaling

Training neural networks with strong scaling increases

the number of compute resources brought to bear without

perturbing the learning behavior of the model. In conjunction

with hybrid-parallelism this technique allows us to use an

unprecedented number of GPUs per data sample. Figure 4

shows the strong scaling performance of the CosmoFlow

network with the 5123 dataset. We use global mini-batch sizes

(N ) of 1, 2, 4, 16 and 64, and split the network in the depth

dimension. We run the framework for 4 epochs with a 128-

sample subset of the dataset (if the mini-batch size is smaller

than 128), or the full dataset, and show the median iteration

time except for the first epoch. We also show predicted

times by our performance model, which largely match with

the actual measured times, confirming our implementation

performed as expected.

As shown in the figure, when the mini-batch size, N , is 16

and 64, we achieve speedups of 1.98x with 512 GPUs (128

nodes) compared to 128 GPUs (32 nodes), and 1.77x with

2048 GPUs (512 nodes) compared to 512 GPUs (128 nodes),

respectively. We note that for 16 samples the performance gain

for going to 1024 GPUs falls off, as the problem becomes

over-decomposed. However, the computational performance in

terms of throughput can still be scaled further by increasing

the batch size to 64. As shown in Section V-D, this mini-batch
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Fig. 4: Strong scaling of CosmoFlow. Shaded bars show time

predicted by the performance model. “F.” and “B.” are forward

and backward passes, resp. N is the mini-batch size. Bars are

annotated with throughput (samples/s) and speedup relative to

the minimum setting with the same N .
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Fig. 5: Strong scaling of CosmoFlow without spatial-parallel

I/O, using only distributed caching with Conduit.

size is a reasonable choice for actual training, and thus we

prove that we successfully scale the training of the CosmoFlow

network to thousands of GPUs. Furthermore, the I/O time is

almost invisible in the figure since it is almost completely

overlapped with computations in our optimized I/O pipeline.

This makes a significant contrast to conventional I/O methods

in terms of strong scaling performance, as their I/O parallelism

is limited by the mini-batch size. In fact, without our spatially-

parallel I/O approach, the iteration time does not scale due to

the I/O overhead, as indicated in Figure 5, which visualizes
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Fig. 6: Single-GPU execution timelines for training the 5123

dataset with mini-batch size 4. Top: 8 GPUs/sample (32 total).

Bottom: 16 GPUs/sample (64 total). We show one iteration of

the root process’s GPU of each run.

the impact of the I/O overhead when the spatial-parallel I/O is

disabled. This demonstrates the necessity of strong-scaling I/O

along with compute in order to efficiently parallelize training.

To understand the parallel efficiency of the implementation

and identify potential bottlenecks, Figure 6 shows the GPU

execution timeline of a mini-batch iteration when 32 and

64 GPUs are used to train the 5123 model with a mini-

batch size of 4. A speedup of approximately 1.66x is

achieved using 2× the number of GPUs. The “Main” row

corresponds to the CUDA stream where compute kernels are

launched; the “Halo xchg” row is an asynchronous stream to

perform on-device halo exchanges; and the “Allreduce” row

corresponds to a stream used by the asynchronous allreduce

operations by NCCL. From the beginning of back propagation,

NCCL starts to communicate computed parameter gradients

among processes asynchronously to the main computation

stream. Since the communication of gradient updates is done

asynchronously, this does not block the compute kernels. In

both cases, the main streams are nearly fully packed, indicating

the GPU compute units are fully occupied. Similarly, the

timelines indicate that the cost of our optimized halo

exchanges is almost negligible in these scenarios. Overall, we

see that the speedup from the 8-way to 16-way parallelization

is mostly determined by the speedups of the individual

convolution kernels in the cuDNN library. In this work, we

have exclusively relied on cuDNN for optimized convolution

kernels. These results indicate that they may not be well-tuned

for non-cube domains, as we only achieved 1.66x speedup

going from 8-way to 16-way parallelization. Identifying the

local compute kernels as the bottleneck to better scaling is also

corroborated by our performance model, shown in Figure 4,

which was generated by profiling cuDNN.
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Fig. 7: Strong scaling of the 3D U-Net. Shaded bars show

iteration time predicted by the performance model.

TABLE II: Achieved performance of CosmoFlow convolution

layers compared to peak performance of cuDNN.

Depth N Layer
Time Perf. Peak Rel.
[ms] [TFlop/s] [%]

8-way 64 All 142.9 22.6 23.6 95.6
32-way 64 All 48.8 89.9 109.1 82.4

8-way 64 conv1 73.9 12.2 13.0 93.8
32-way 64 conv1 23.5 34.6 53.4 64.7

The ability to strong scale the performance of the 3D U-

Net with an input size of 2563 is shown in Figure 7. With

this network, we have to use at least 16 GPUs per sample due

to the memory requirements. We achieve good strong scaling

performance between 16-way and 32-way partitioning, such

as 1.42x on 512 GPUs over 256 GPUs with a mini-batch size

of 16. As shown in Figure 7, similarly to the CosmoFlow

network, most of the iteration time is spent in computation,

implying that we achieve near-peak performance, despite the

communication overheads of hybrid-parallelism compared to

data-parallelism.

To better characterize our performance and scaling

efficiency, we compare the performance of our distributed

convolution layers in the 5123 CosmoFlow network to the

peak achievable performance of cuDNN in Table II. The Time

and Perf columns give the measured performance of our code

(including halo communication, etc.), measured with nvprof.

In the Peak column, we report the TFlop/s achieved by running

only the local cuDNN kernel for that configuration. This gives

an effective upper bound on the performance we can achieve

using cuDNN in our configuration. Finally, we report the

achieved percent of this peak in the Rel column.

We observe that for CosmoFlow, we achieve 95.6%

and 82.4% of this peak performance for 8- and 32-way

partitioning, respectively. This indicates that the overhead

of our distributed convolution is relatively small. We also

observe another benefit of strong scaling: the potential peak

performances exhibit super-linear scaling, albeit fairly slightly.
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This is due to a larger, aggregated memory space available

with a larger number of GPUs, allowing cuDNN to use more

efficient convolution algorithms.

We also examined which layer dominates runtime, and

for CosmoFlow we find that the conv1 layer accounts for

almost half of the entire network runtime. This is due to

the layer processing the largest spatial dimensions. For 8-way

partitioning, we achieve excellent scaling efficiency; for 32-

way partitioning, communication overheads limit gains, but

still enable overall performance improvements.

While these results show good scaling efficiency with

respect to the achievable peak with cuDNN, the TFlops/s

achieved is relatively low compared to the theoretical peak of

the hardware. This indicates that there is significant potential

for further optimizing 3D convolution kernels.

C. Weak scaling

The second component of our hybrid-parallelism approach

is to exploit data parallelism in conjunction with spatial

parallelism. This allows us to explore the impact of weak

scaling by increasing the global mini-batch size while tuning

the learning rate. Figure 8 shows the weak scaling performance

of the two 3D CNNs with different input sizes. For the

CosmoFlow network with 1283 cubes, the data size used in

the previous work, we use per-GPU batch sizes of 8 and

increase the global mini-batch size as we increase the number

of GPUs. We evaluate the performance using 4-way and 8-way

partitioning for reference. In the 5123 case, we only evaluate

hybrid parallelization where each data sample is partitioned

among 8, 16 or 32 GPUs as nearly 53 GB of memory is

required per sample as shown in Table I. While it is smaller

than the aggregate capacity of 4 GPUs, we found that it results

in an out-of-memory error as additional auxiliary data need to

be allocated. We measure performance as in Section V-B.

In the case of CosmoFlow with 1283 cubes, our imple-

mentation achieves nearly linear speedup up to 512 GPUs

(128 compute nodes), in part because of the asynchronous

overlapped communication engine of Aluminum and also

because of the relatively high compute-to-communication

ratio in 3D CNNs. We achieve a 65.4x speedup on 512

GPUs compared to 4 GPUs with the 1283 cubes. In this

case, the highest efficiency is achieved with the data-parallel

scheme since the hybrid parallelization involves additional

communications due to halo exchanges.

With 5123, however, hybrid parallelization is required as

the model is too large to fit into the device memory of a

single GPU. Thus, we evaluate three configurations, 8-way,

16-way and 32-way, and the global mini-batch size is linearly

increased as the number of GPUs is increased, resulting in

147.31x, 71.32x, and 37.2x of speedup on 2048 GPUs over

8, 16, 32 GPUs (where the mini-batch size is 1) respectively.

With the 3D U-Net, we achieve good weak scalability (28.4x

on 1024 GPUs over 32 GPUs with 32-way partitioning) as

well.

In all cases, increasing the spatial parallelism results

in lower throughput due to the additional communication

overhead as well as the decreased compute efficiency of the

cuDNN kernel library. However, we note that the hybrid

parallelization enables further speedups for a given fixed mini-

batch size as it is also shown in Section V-B.

D. CosmoFlow model accuracy improvement with 5123

universe cubes

This experiment set out to test if training on entire data

samples would improve the quality of the model learned by

the network. Figure 9 shows training results of the CosmoFlow

network with the full-resolution dataset (5123) and split

versions (1283 and 2563). We swept the initial learning rate

from 10−4 to 10−2 logarithmically and show the results with

the best. We train for 130 epochs with a mini-batch size of

64 in every configuration, and use the 4-way partitioning (256

GPUs in total) for the networks without batch normalization

layers, or 8-way (512 GPUs in total) for networks with batch

normalization, due to the increased memory requirements. To

account for training variance, we show the median result of

five trials with different initial random seeds.

We observe that the test loss decreases significantly as we

increase the dataset size to 0.0169 MSE with 2563 and 0.00727

MSE with 5123 data. Adding batch normalization improves

this result further, to 0.00445 MSE, achieving an order-of-

magnitude improvement compared to the baseline 1283 data.

At the same time, we get 2.79x of speedup from 1283 to 5123

with the same number of GPUs and the same mini-batch size.

This result implies that the CNN can be trained with the same

computing resources and dataset size, but with a smaller mini-

batch and small overheads (see Section V-C). This brings an

opportunity to keep mini-batch sizes fixed and strong-scale

onto more GPUs for speedup.

Figure 10 shows the correlation between the predicted and

actual cosmological parameters and the associated residuals

for our networks on each dataset. We clearly demonstrate

improvements in the quality of predictions with increasing data

volume; and the benefit of batch normalization. In particular,

we observe that prediction of H0 (the Hubble constant)

shows the most improvement in accuracy with increasing data

volume. This makes intuitive sense, as it is related to the large-

scale expansion of the universe. As cosmological simulations

move to sub-percent measurements, being able to test the

quality of the surrogates via a greatly improved Cosmoflow

network, with an order of magnitude improvement in the

measurement of the cosmological parameters, is the only way

to quickly validate the quality and precision of the models.

VI. RELATED WORK

Scalable training and model-parallelism has a long history

in deep learning; Ben-Nun & Hoefler [29] provide a

comprehensive overview. We discuss the most relevant.

Early work on models such as AlexNet incorporated model-

parallelism using grouped convolution or partitioning fully-

connected layers [5], [30]. Coates et al. [31] applied spatial

partitioning to locally-connected layers. Gholami et al. [32]

consider spatial parallelism, but provide only simulated

9



Number of GPUs

4 8 16 32 64 128 256 512

102

103

104

T
h

ro
u

g
h

p
u

t
[s

am
p

le
s/

s]

Data-parallel

Hybrid (4-way)

Hybrid (8-way)

(a) CosmoFlow, 1283

Number of GPUs

8 16 32 64 128 256 512 1024 2048

101

102

103

T
h

ro
u

g
h

p
u

t
[s

am
p

le
s/

s]

Hybrid (8-way)

Hybrid (16-way)

Hybrid (32-way)

(b) CosmoFlow, 5123 , BN layers

Number of GPUs

16 32 64 128 256 512 1024

100

101

102

T
h

ro
u

g
h

p
u

t
[s

am
p

le
s/

s]

Hybrid (16-way)

Hybrid (32-way)

(c) U-Net, 2563

Fig. 8: Weak scaling of the two different 3D CNNs. We increase the global mini-batch size as we increase the number of

GPUs. In the hybrid results, we partition a single sample by multiple GPUs in its spatial domain.
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point in time for visibility.

results. FlexFlow [33] presents an automated system for

identifying model- and hybrid-parallelism. Frameworks such

as DistBelief [34], Project Adam [35], Mesh-TensorFlow [36],

and TF-Replicator [37] also support limited forms of

model-parallelism, but do not do spatial partitioning. The

Distconv library [18] provides the basis for our 3D hybrid

parallelism, but is limited to 2D CNNs. Extending this to

efficiently support 3D CNNs requires significant novel work

(Section III-A). Further, this work does not consider I/O,

which is a key bottleneck for scaling 3D CNNs, nor does

it demonstrate improved learning. Similarly, channel and filter

parallelism [19] provides another method for partitioning data,

primarily targeting wide CNNs. It also only considers only

2D data and neglects I/O. Further, channel/filter parallelism

requires communication of entire activation tensors, instead

of only halo regions, so the communication overheads will

be significantly greater for the large, 3D data we consider.

In general, these prior approaches have not considered the

extreme strong scaling regime required for training 3D CNNs.

Further, with CosmoFlow, we have demonstrated that training
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Fig. 10: True/predicted cosmological parameters (normalized

to [−1, 1]) from four different configurations (top) and the

distribution of the residuals (bottom). In the top figure, we

show 200 randomly chosen data points for visibility.

on full-resolution input data actually produces better results.

Many approaches, such as pipelining [38]–[41] and micro-

batching [42] are orthogonal to our 3D spatial partitioning.

Others directly target memory pressure during training,
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but perform additional computation, including gradient

accumulation [43], out-of-core algorithms [44]–[46], and

recomputation [47], [48].

I/O performance has also been a recent focus, particularly

for data sets with many or large samples. This has typically

involved optimizing I/O pipelines with data staging and

asynchronous I/O [1], [3], [20], [49]–[52]. We build upon these

to handle the case where I/O for even a single sample is a

bottleneck by partitioning and scaling I/O spatially, adapting

collective I/O techniques developed for large-scale parallel

scientific workloads [53]–[55].

3D CNNs have been widely used for 3D volume

datasets, including medical imagery [2], [16], [56] and

video action recognition [57], [58]. These typically extend

a 2D CNN architecture by replacing the 2D convolutions

with 3D operations [2]. While 3D convolutional layers

enjoy similar learning properties to 2D ones and are more

parameter-efficient than fully-connected layers for extracting

spatial features, the memory requirements have made them

challenging to use [56]–[58]. In particular, this has limited

many works to small mini-batches, low-resolution data, or

CNN architecture tradeoffs [56], [58]. We demonstrate that

tackling these problems enables further improvements in

prediction accuracy.

VII. CONCLUSIONS

Parallel training of DNNs is now considered a common

practice rather than an art thanks to the wide availability

of parallelized software stacks for deep learning. However,

as shown in this paper, addressing the computational

requirements in applying deep learning to scientific problems

on 3D data sets necessitates finer-grained scalable parallel

algorithms both in compute and I/O. We demonstrated

the ability to spatially partition the training over many

GPU-accelerated HPC nodes, enabling the traditional strong

scaling that other HPC applications enjoy: accelerated time

to solution without a compromise in the quality of the

learned model. Further, we have demonstrated this with two

networks that differ significantly in task, architecture, and

performance characteristics, so we expect our work to be

broadly applicable. As a result, we have created a scalable

framework that can tackle the 3D CNNs that are rapidly

emerging at the forefront of scientific machine learning.

Another hypothesis of this work was that learning on

full-resolution data would allow models to learn better

representations of long-range features present in the data.

Our work with CosmoFlow demonstrated the strength of this

hypothesis, where the extended CosmoFlow model achieved

an order-of-magnitude improvement in prediction quality

while significantly reducing training time by exploiting a

larger-scale system.
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