‘ ! ! . LLNL-JRNL-812691

LAWRENCE
LIVERMORE
NATIONAL

oo | 1 NE Case for Strong Scaling in Deep
Learning: Training Large 3D CNNs with
Hybrid Parallelism

Y. Oyama, N. Maruyama, N. Dryden, E. McCarthy, P.
Harrington, J. Balewski, S. Matsuoka, P. Nugent, B.
Van Essen

July 21, 2020

IEEE Transactions on Parallel & Distributed Systems

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

arXiv:2007.12856v1 [cs.DC] 25 Jul 2020

The Case for Strong Scaling in Deep Learning:
Training Large 3D CNNs with Hybrid Parallelism

Yosuke Oyama* , Naoya Maruyama, Nikoli Drydent!, Erin McCarthy5', Peter Harrington¥,
Jan Balewski¥, Satoshi Matsuokall *, Peter Nugentﬂ and Brian Van Essenf
* Tokyo Institute of Technology, oyama.y.aa@m.titech.ac. jp
T Lawrence Livermore National Laboratory, {maruyama3, vanessenl}@llnl.gov
Y ETH Ziirich, ndryden@ethz.ch
§ University of Oregon, emccarth@cs.uoregon.edu
T Lawrence Berkeley National Laboratory, {PHarrington,balewski, penugent}@lbl.gov
' RIKEN Center for Computational Science, matsu@acm.org

Abstract—We present scalable hybrid-parallel algorithms for
training large-scale 3D convolutional neural networks. Deep
learning-based emerging scientific workflows often require model
training with large, high-dimensional samples, which can make
training much more costly and even infeasible due to excessive
memory usage. We solve these challenges by extensively applying
hybrid parallelism throughout the end-to-end training pipeline,
including both computations and I/O. Our hybrid-parallel
algorithm extends the standard data parallelism with spatial
parallelism, which partitions a single sample in the spatial
domain, realizing strong scaling beyond the mini-batch dimension
with a larger aggregated memory capacity. We evaluate our
proposed training algorithms with two challenging 3D CNNs,
CosmoFlow and 3D U-Net. Our comprehensive performance
studies show that good weak and strong scaling can be
achieved for both networks using up to 2K GPUs. More
importantly, we enable training of CosmoFlow with much larger
samples than previously possible, realizing an order-of-magnitude
improvement in prediction accuracy.

Index Terms—deep learning, convolutional neural network,
model-parallel training, hybrid-parallel training

I. INTRODUCTION

Recent advances in deep learning, especially convolutional
neural networks (CNNs), have become a subject of significant
research interest in emerging scientific workflows in research
fields such as cosmology [1l], medical image analysis [2],
climate analysis [3], and turbulent flow simulations [4].
This is thanks to its potential for extraordinary impact, as
demonstrated in image and speech classification [5], [6],
playing games [7], and translating natural languages [8],
among others. While early successful results have been
reported in applying deep CNNs to scientific problems,
training highly robust and accurate scientific models can be
severely constrained as they tend to need to use much larger
samples, such as 3D medical images or simulation outputs.
Larger, high-dimensional samples can make deep CNNs even
deeper with each layer becoming more compute intensive,
making already long training times even longer. Furthermore,
increased sample sizes directly increase the memory usage of
model training, which is especially problematic in accelerators
with limited memory capacity such as GPUs. 3D CNNs
can consume tens to hundreds of gigabytes of memory, as

exemplified in the cosmology and medical models evaluated
in this work (see Section [V)). This easily exceeds the available
memory capacity of typical high-end GPUs. These two major
problems, high computational cost and memory usage, can
severely reduce the effectiveness of deep learning, especially
in scientific domains.

Parallelizing training can alleviate these problems by
employing more compute and memory resources. However,
the most commonly-used approach, data-parallelism, fails to
adequately address the challenges posed by extreme scientific
problems due to its limited parallelism. While training samples
are distributed over multiple processing elements (PEs) such as
GPUs, each PE must still process at least one complete sample,
resulting in limited reduction of per-PE memory pressure.
Reducing the size of training samples by, e.g., lowering
resolution is a common workaround. However, it inevitably
loses information in the original data, which can be critical to
train highly accurate models. Even if memory is not a problem,
the degree of parallelism is still limited by the number of
samples per mini-batch, which cannot be arbitrarily increased
without adversely affecting the model accuracy [9].

To address these issues in large-scale 3D CNNs, strong
scaling is required. We present an end-to-end training
framework that extends the parallelism beyond the current
state of practice for strong scaling. First, we develop a
highly efficient hybrid-parallel algorithm for 3D convolutions
that exploits parallelism both in the spatial and mini-batch
dimensions, allowing one sample to be distributed over
multiple PEs. This provides improved performance and is
indispensable for breaking the memory barrier in 3D CNNs.
Second, to achieve scalable end-to-end performance, the
performance of I/O pipeline must also strong scale for a
fixed number of samples, which may be gigabytes in size. We
apply the same hybrid-parallel techniques to I/O, maximizing
parallelism, increasing throughput, and minimizing scaling
bottlenecks.

We demonstrate end-to-end scalable training by extending
an existing DNN framework with our hybrid-parallel compute
and I/O algorithms. In our experimental studies, we use
CosmoFlow, a regression model for cosmology [1f], and the

http://arxiv.org/abs/2007.12856v1

3D U-Net, a segmentation model for medical images [2]], as
representative large-sample 3D CNNs. We present compre-
hensive performance analyses of our algorithms and show
that they collectively enable efficient strong scaling for both
problems, i.e., parallel speedups without increasing the mini-
batch size. Even more importantly, we demonstrate that by
training CosmoFlow with much larger samples than previously
possible, it is possible to realize an order-of-magnitude
improvement in prediction accuracy, which can have a
tremendous impact in accelerating scientific discoveries. This
new capability enabled by our training pipeline is not limited
to the particular problem but can be a critical tool for broader
ML-enhanced scientific applications.
We summarize our contributions as follows:

e We present an end-to-end approach for strong-scaling
training large-sample 3D CNNs. We address the compute,
memory, and I/O challenges using hybrid-parallelism.

« We present a prototype implementation of our proposed
approach by extending the LBANN framework [[10] and
demonstrate training on full-resolution samples for Cos-
moFlow (5122) and the 3D U-Net (256?). Our performance
results show show good strong and weak scaling on up to
2048 GPUs. Training the CosmoFlow model is 1.77x faster
when using 2048 GPUs over 512 GPUs, both using the same
mini-batch size of 64. Similarly, a 1.42x speedup is achieved
for the 3D U-Net when using 512 GPUs over 256 GPUs.

« We provide detailed model-based performance analyses of
both problems in order to give comprehensive understanding
of their scaling efficiencies.

« We demonstrate a significant improvement in prediction
accuracy by using full-resolution data. The CosmoFlow
model trained with 5123 samples, while requiring at least
eight V100 GPUs per sample, realizes ten times lower mean
squared error than when trained with 1282 samples, which
was the largest size reported previously.

II. BACKGROUND

Here, we first describe two fundamental methods to train a
single DNN in parallel: data- and model-parallelism. We also
describe hybrid-parallel training, a combination of both which
couples spatial partitioning and data-parallelism for improved
scalability. Then we introduce the CosmoFlow and the 3D U-
Net models in more detail.

A. Data-, model-, and hybrid-parallelism

Mini-batch Stochastic Gradient Descent (SGD) is the most
widely used technique to optimize the parameters of a given
deep neural network, and has the form:

N
WD — w® 03"y (mn; W(t)) 7
n=1
where W (%) are the network parameters at step t, n(*) is the
learning rate at step ¢, IV is the mini-batch size, L is the loss
function, and x,, is the nth sample.

— Forward data movement
--» Backward data movement
-+ Backward grad. movement

'r» Layer

GPU

Data-parallel (N — Model-parallel

2 (spatial partitioning, N = 1)
Input Conv. FC Input Conv. FC
BBl DDl
i Allreduce b —\’/ 2

Hybrid-parallel
(N=2)

Input Conv

Fig. 1: Three different parallel strategies for deep neural
networks. NV denotes the mini-batch size. “Data-parallel” and
“Hybrid-parallel” compute a mini-batch of two samples (H
and 2), while “Model-parallel” splits the spatial dimension
of one sample (M) into two GPUs. Note that data movement
within a single process is typically cheap.

1) Data-parallelism: Data-parallel training, which parti-
tions samples to compute VL in parallel, is the most widely-
used training technique (Figure [T top left). It takes advantage
of the fact that N is typically large enough to efficiently
parallelize training on up to thousands of GPUs [1L1]-[13]
and that communication requirements are relatively small
compared to the compute requirements for CNNs.

However, data-parallelism is limited by the number of
samples in a mini-batch, the memory requirements of training,
and how well the model learns.

2) Model-parallelism: On the other hand, model-parallel
training (Figure [Il top right) parallelizes the computation
of VL for each data sample across multiple GPUs. This
enables additional parallelism to be exploited, and partitions
data across multiple GPUs to reduce memory requirements. In
data-parallel training, if the memory requirements (including
necessary intermediate activations) exceed the memory
capacity of a GPU, training is infeasible. In contrast, with
model-parallelism, the memory requirements are roughly
inversely proportional to the number of partitions. This strong-
scaling advantage is especially attractive for high-dimensional
CNNs, since the large input data results in huge intermediate
activation tensors during training.

At the same time, model-parallel training requires careful
framework design to mitigate overheads. While data-parallel
training requires only a single global allreduce per layer

to aggregate parameter updates, model-parallel training can
involve many fine-grained communication operations and
synchronizations in each layer.

Many strategies exist to exploit model-parallelism in CNNss,
including spatial partitioning, channel/filter partitioning, and
layer-wise pipelining (see Section [VI). In this paper, due
to the high-resolution and 3-dimensional input data, we
focus on spatial partitioning as a natural way to decompose
the computation. Spatial partitioning distributes input and
activation tensors by partitioning the height, width, and depth
dimensions, similarly to traditional stencil computations. This
introduces a halo exchange (an exchange of spatial boundary
data between neighbor processes) within convolutional and
pooling layers to maintain correctness, although it can be
overlapped to hide communication overhead. For 3D data,
the improved surface-to-volume ratio of the problem mitigates
these communication overheads even further. Existing work
on spatial partitioning has been limited to 2D data; here, we
extend spatial partitioning to support 3D data.

3) Hybrid-parallelism: “Hybrid-parallelism” is the combi-
nation of data-parallelism and model-parallelism (Figure
bottom). Hybrid parallelism takes advantage of both the low
overhead of data-parallelism to weak scale and of model-
parallelism to strong-scale onto more compute resources. It
requires careful selection of the relative balance of parallelism
to achieve good scalability, as demonstrated in Section [V-Bl

B. CosmoFlow

CosmoFlow [1] is a project to use deep learning to estimate
the values of important cosmological parameters from 3D
cosmological simulations. One of the goals in cosmology
is to understand and control the underlying systematics in
a cosmological survey. As there is only one universe to
observe, and the entire universe is needed to make these
measurements, constraining the effects of systematics falls
to computationally expensive simulations. The CosmoFlow
network aims to replicate both the systematics from survey
operations as well as those nature forces upon us. Creating
surrogates for these simulations is necessary to generate the
sheer statistical numbers needed to control the systematics.

Mathuriya et al. conducted thousands of independent N-
body dark matter simulations with varied initial cosmological
parameters, and constructed a dataset from them. The task is
to predict the initial parameters from 3D mass distributions.
The original spatial dimensions, 5123 voxels, required too
much memory to train on, so each sample was split into 1283
voxel sub-volumes which are used as different data samples.
As a result, the CosmoFlow network was trained with 99,456
training samples, each a 1283-voxel 3D histogram of particle
counts. It was reported that training with large mini-batches
containing 8192 samples did not converge to comparable
accuracy as smaller, 2048-sample mini-batches. These two
problems are easily solved by our approach, because each
sample is distributed among multiple GPUs, avoiding memory
limits and allowing scaling without large mini-batches.

The latest CosmoFlow dataset is the “2019_05_4parE”
dataset [14]]. It contains 10,017 simulated universes, each of
which is composed of four channels (redshifts) and is 5123
voxels, stored as 16-bit integers, along with four cosmological
parameters that were used to generate the universe. These are
Qr, the proportion of matter in the universe; og, the amplitude
of mass fluctuations at a distance scale of 8 Mpc/h; ng, the
scalar spectral index of the spatial curvature of a comoving
slice of space-time; and H(, Hubble’s constant. The dataset is
about 9.77 TiB in size. We normalize the parameters to be in
[—1,1] when training, in line with prior work.

In this paper, we distinguish the datasets with the spatial
input sizes, 1283 to 5123. We split each dataset into 80%, 10%,
and 10% as training, validation, and test datasets respectively.
Additionally in this work, we will test the hypothesis that by
allowing neural networks to observe entire data samples during
training it is possible to learn longer range properties in the
data and improve the quality of this type of regression model.

C. The 3D U-Net

The 3D U-Net [2] is a 3D version of the U-Net [15], a 2D
CNN for image segmentation. It replaces all 2D operations
with 3D operations to perform volumetric segmentation on
3D data. U-Nets have been applied to a wide range of 2D
and 3D segmentation applications, such as biological image
analysis [2], [15] and CT image analysis [16].

In this paper, we apply the 3D U-Net to the Liver Tumor
Segmentation (LiTS) dataset [17], where the task is to segment
liver lesions in 3D CT scans. It consists of 131 CT scans for
training and 70 for testing. Each is composed of a variable
number of 512 x 512 slices and per-voxel ground-truth labels.
To use a consistent input size, we down-sample the non-slice
dimensions and up- or down-sample the slice dimension so
each sample is 256° voxels. We convert the original dataset
to equivalent HDFS files with 16-bit integers.

The most significant difference between the 3D U-Net and
CosmoFlow networks is that it uses deconvolution layers to
upsample activations to their original size. As the memory
requirements for activations is cubic in the layer’s spatial
dimensions, the 3D U-Net requires a huge amount of memory
near both the input and output layers, compared to the
CosmoFlow network with the same input size. Furthermore,
the CT image and labeled segmentation of each sample in
the LiTS dataset are both the same size. Since the labels
are not small (e.g. a class label), we must consider the 1/O
performance of reading them in addition to the inputs. Thus,
the 3D U-Net helps demonstrate performance in different
regimes than CosmoFlow.

III. SCALABLE TRAINING OF 3D CNNSs

Scaling up the training of neural networks for large 3D
data cubes requires innovation in both spatially distributed
convolution/deconvolution, and parallel data ingestion, reuse,
and movement. In this section, we discuss each of these in turn.
We also propose a performance model to predict layer-wise
computation and communication time for a given network and

MPI Data Ingestion convl conv7 fcl,2,3
Rank g >
I T N
0 HDF5 . [s ﬂ‘ [O Shuffle COIIV.V. FC I:’ Back-prop.
Dataset 1 g [— (] LI !
| Halo ex
1 22— | 1l 1l i
3 > = D I D + conv D 0
L CPU! GPUs)
Sample H 4 Parameter gradients aggregation 4 4
Exchange \ (allreduce) \ \i
(HDF5 L Conv. Shuffl Conv. _ FC .)
4 = i }; Al e o [Back-prop.
5 2 i Hal D
s gD -0 e
2222222787 | V.
2 Ulcpo—U B O GPUs

Compute node

Fig. 2: Overview of hybrid-parallel training. Each node contains four processes which partition a single data sample.

runtime configuration to validate our computational efficiency.
We use the Livermore Big Artificial Neural Network Toolkit
(LBANN) [10] to implement our approach, as it has already
demonstrated good scalability for 2D spatial partitioning [18].
Our training pipeline is summarized in Figure

Part of the contributions described here derive from
traditional solutions in HPC systems and software architecture,
but are extended to tackle the complexities of training deep
neural networks.

Notation. We adopt cuDNN’s notation for tensor dimen-
sions, using N, C, D, H, and W to refer to samples,
channels, depth, height, and width, respectively. Unless
explicitly mentioned, we assume all tensors are fully packed.
We use “D-way”, “D x H-way”, or “D x H x W-way” to
refer to how many ways the depth, height, and/or width are
partitioned. We omit N when the remaining GPUs are used
for data-parallelism in a hybrid-parallel manner. For example,
if the total number of GPUs is 16, 2-way means there are
16/(2 x 1 x 1) = 8 groups each of which split a data sample
onto two GPUs in the depth dimension.

A. Hybrid-parallel Implementation of 3D CNNs

The hybrid-parallel training requires partitioning activations
in their spatial and sample dimensions over distributed PEs.
Once they are partitioned, each layer computation is done
locally except for layers that involve data dependencies
across partitions, which include convolutions, pooling, and
batch normalization. Convolution and pooling have a spatial
dependency that can be resolved with halo exchanges. For
batch normalization, partial statistics over partitions need to be
aggregated with allreduces to correctly compute per-channel
statistics for samples.

In this work, we extend an existing library [[18] that provides
the basic infrastructure for implementing hybrid-parallel 2D
CNNs. This extension requires significant additional work to
both support 3D data and achieve good performance. We began

by adding support for 5D tensors (required for 3D data) to both
the library and underlying distributed linear algebra backend.

However, we found several performance issues and missing
support for realizing real end-to-end training of 3D CNNs,
which had not been reported before. Several operations were
designed for 2D data and not well-optimized for large, 3D
tensor shapes. For example, we identified that the existing
packing and unpacking CUDA kernels for the neighbor
communication of boundary regions were sub optimal for
our target problems. We developed a suite of new optimized
packing/unpacking kernels for common convolutional filters
(e.g., 3% and 53). Such optimized kernels are automatically
picked when possible. Similarly, we extend other network
components, such as distributed batch-normalization and the
cross-entropy loss, with optimized versions for large 3D
problems. In general, we find that due to the large data sizes,
operations that are normally considered cheap can in fact
dominate runtime if not well implemented.

The library also lacked support for many layers nec-
essary for more general CNN architectures, as it was
designed primarily for sequential networks. The 3D U-Net,
which contains both down- and upsampling branches with
residual connections between, required additional features.
We developed distributed, hybrid-parallel implementations of
deconvolution and support for more flexible distributed tensor
manipulations for the residual connections.

Unlike the activations, the layer parameters are relatively
small in our networks (e.g., 9.5M for CosmoFlow, see
Table [). Thus, we do not expect a significant benefit from
partitioning them (e.g., with channel/filter parallelism [19])
as we do the activations. We use standard data-parallel
techniques to aggregate parameter updates with allreduces in
backpropagation (green arrows in Figure).

Note that these extensions do not change the fundamental
architecture of the underlying framework, but extend some
base classes such as the tensor class and convolutional layer
classes to support hybrid-parallelism. Thus, our techniques can

be applied to any other deep learning framework.

B. I/O performance optimization

Training the CosmoFlow and the 3D U-Net networks
requires the ingestion and shuffling of many huge samples,
each of which is 1 GiB and 64 MiB in size respectively,
and is accessed once per epoch in random order. A key
challenge is that in the steady state, ingesting training data
from the PFS quickly becomes the dominant portion of the
runtime. Furthermore, the 10 TB CosmoFlow dataset is too
large to cache in local storage on our compute nodes. For
example, our typical configuration for the CosmoFlow network
uses a mini-batch of size 64 and our system has 240 GB/s
of PES bandwidth. Thus, loading each mini-batch requires
at least 256 ms, which is prohibitively slow (Figure [).
Handling this workload efficiently requires solving three tasks:
maximizing the utilized bandwidth to the parallel file system
(PES), caching the data set efficiently in distributed memory
to avoid subsequent access to the PFS, and efficient shuffling
of samples from the data cache during each epoch.

However, when training with hybrid-parallelism, even if in-
memory caching is enabled, we found that we require that
data samples be spatially partitioned and mini-batches are
typically small. Traditional sample-parallel I/O approaches
have limited parallelism in this regime, and would require
data be redistributed to match the spatial parallelism, limiting
strong scaling and opportunities for hiding I/O overhead. In
Figure 3] we demonstrate that without this spatial-parallel I/O
technique training of the CosmoFlow network does not scale
at all with any number of GPUs, even if the entire dataset is
distributed among the host memory of the computing nodes.
This problem is even more acute for the 3D U-Net, where we
also spatially distribute the ground-truth segmentation.

To address this, we develop a new parallel I/O pipeline
where each process fetches its local hyperslab, or contiguous
3D fragment, of a data sample. This incorporates spatial
parallelism into the I/O process to enable strong scaling PFS
bandwidth and minimize data shuffling, redistribution, and
memory footprints. We build on existing infrastructure in
LBANN, including its C++ data readers and distributed, in-
memory data cache [20] to reduce PFS accesses.

Our data reader uses Conduit [21] as both an in-memory
data structure and an interface to an I/O backend, such as
HDF5 (Figure B). Conduit is an open source data exchange
library that provides efficient ways of exchanging scientific
data. In prior work, LBANN has been optimized to provide
parallel I/O using both MPI and multi-threading, but was
limited to a single MPI rank per sample. To overcome this
performance bottleneck and support spatially parallel I/O, we
rearchitected the data ingestion pipeline to use parallel HDF5
with MPI-1O. This allows multiple ranks which each require
one hyperslab of a sample to coordinate their activity when
ingesting large samples. Using this, data loading can now track
the strong-scaling of our hybrid-parallelism while minimizing
data redistribution, as each rank reads only the data it needs.

MPI Rank

sl = [sB——"

1 9] 9]

- —— S M——0 (500 0

3 Ol cpvicrd O0)cpu i cros

e Sample Sample

PFS Exchange H Exchange><
122200 0 [-o00———O
s 0 |foa————m
6 2 [J i . 2 ; 1
7 Ulcruieros Udlcpuioros
(a) Epoch 0 (b) Epoch 1+

Fig. 3: Data movement during both the initial epoch 0 (left)
and steady state epoch 1+ (right). During epoch 0, HDF5
ingests hyperslabs in parallel into the data store. During epoch
1+, the data store distributes the hyperslabs for each sample
in the mini-batch that is about to be trained on.

However, as GPU performance continues to outstrip I/O
bandwidth, it is also necessary to minimize PFS accesses. To
do this, when samples are loaded (Figure 3a)), they are placed
into Conduit nodes and then into LBANN'’s distributed, in-
memory data store to cache the samples for the duration of
training. We extended the data store to hold a sample as a
collection of hyperslabs. This aligns the spatially parallel I/O,
training, and data caching for best performance with hybrid-
parallel convolution.

After the first epoch is complete, the data store has cached
the entire data set, which it will distribute on subsequent
epochs. Before each epoch, the data store computes a global
owner map and a schedule mapping samples to SGD iterations.
This allows the data store to redistribute hyperslabs of samples
as needed for the upcoming mini-batch (see Figure 3b).

As we strong scale, the capacity of the data store increases
in proportion to the compute resources, allowing increasingly
large datasets to be cached. This is also well-positioned to take
advantage of node-local storage and non-volatile memories on
future systems.

C. Performance Modeling

We use a performance model to predict the time to
perform one iteration of training with given a configuration,
such as the mini-batch size and the number of nodes, to
understand the quantitative behavior of the framework and
validate performance. We first collect the time to perform
(de)convolution, pooling, and batch normalization kernels with
various input sizes on a single GPU using cuDNN [22], and
then we combine the benchmark results with a communication
model to predict layer-wise runtime on multiple GPUs.

The time to perform forward-computation of convolutional
or pooling layer [is

2
e = com (o) 3 25 (01|
d=0
+ Comp, (Dlhalo)

where Comp;(D) is time to compute layer [on a given
domain D, and SR(D) is time to perform peer-to-peer send-
receive communication between two GPUs (via NVLink or

inter-node InfiniBand depending on the location of the two
processes). The shape of D"*" the domain which can be
computed without halo communication, and Dlhgl", the domain
which requires halo region to be computed, are defined by the
partitioning of the layer. We define BD; and BF, the time
to perform the backward-data and backward-filter passes on
layer [, respectively, in a similar manner.

To estimate Comp,(D), we benchmark each layer type
on a single GPU. Unless noted, we use the largest
cuDNN workspace possible, and autotune to find the fastest
convolution algorithms. We use the median of three trials after
warmup. To estimate SR(D), we use Aluminum’s ping-pong
benchmark and apply linear regression to estimate the time for
arbitrary message sizes.

The time for a batch-normalization layer is the sum of the
computational time and time to perform allreduce of the local
sum and squared-sum of each channel.

Finally, the total time of the network is

Cost = FP; + max {Z (BDy + BFy), ZARl(el)} :
l

l l

where AR; is time to perform allreduce among all of the
GPUs and 6; is the number of parameters of layer [. To
estimate AL;, measure the performance on one node (4
GPUs) to 128 nodes (512 GPUs), with float vectors of 1 to
16 M elements, and apply linear regression [23[], [24] with
logarithmic transformations to predict the time for a given
message size and the number of GPUs.

We ignore the cost of non-3D part of the 3D CNNs (e.g.,
fully-connected and loss layers), since their costs are negligible
compared to other costs, such as allreduces or convolution. We
also ignore the cost of I/O for loading data samples from the
PFS or between processes, as our optimized pipeline mitigates
I/O costs drastically for the two networks we use in this paper.

IV. EXTENDED COSMOFLOW MODEL

We now discuss extensions we make to the CosmoFlow
network, as this is the first attempt to train the network with
64 x larger input data than before. We use the CosmoFlow
model presented in the previous work as our baseline model
and extend it to improve its prediction accuracy by exploiting
our new hybrid-parallel training capabilities.

Table [summarizes three models, corresponding to the
1283, 2563, and 5122 voxel training datasets, respectively. For
each of the models, we have applied several extensions to the
original baseline model. First, we add a batch normalization
layer [25] after every convolutional layer. Ravanbakhsh et
al. reported that batch normalization was critical in training
a similar model [26]. However, in the original CosmoFlow
model, it was dropped due to the computational cost of batch
normalization, especially in a distributed training setting. We
present training results in both configurations (Section [V])
and observe that while batch normalization increases memory
requirements, it improves final prediction accuracy. Second,
in order to simplify comparison of the three models, we
insert additional pooling layers in the 2563 and 5123

TABLE 1. CosmoFlow network architecture. W; is the
input spatial width. cN—pN are convolution followed by
pooling and fcN are fully connected layers. We use stride
1 convolution and stride 2 pooling unless noted. All layers
use “same” padding.

Layer(s) Output width
Name(s) Filter W; =128 W; = 256 W; =512
cl—pl 16 x 33 | 1283643 25631285 51232563
c2—p2 32x3% | 6435323 1283643 2561283
c3—p3 64x 3% | 3255163 643323 1283643
128 x 3° 343 3_,g3 3163
cA=p4 (ride of 2) ‘ 83 4 163—8 32316
c5—p5 256 x 3% | 4323 8343 163—83
c6—p6 256 x 33 | 25N/A 4323 8343
c7—p7 256 x3% | 255N/A 23—N/A 4323
fcl 2048 2048 2048 2048
fc2 256 256 256 256
fc3 4 4 4
conv. ops. [GFlops/sample] 55.55 443.8 3550
(Forward) [GFlops/sample] 18.52 147.9 1183
Memory [GiB/sample] 0.824 6.59 52.7
parameters [106] 9.44 9.44 9.44

models (the pool6 layer in both models and the pool7 layer
in the 512% model). Finally, we experimentally identified
several minor parametric changes that improve prediction
accuracy or simplify the implementation of distributed
convolution, including removal of biases and use of padding
in convolutional layers. We removed biases as we observed
significant performance overheads for them in practice.

The remaining details follow the original model: We use
leaky ReLU [27] activations (except for the last layer), dropout
with a keep probability of 0.8 after every fully-connected layer,
and adopt the mean squared error as the loss function. We use
the Adam [28] optimizer with 8; = 0.9, S = 0.999, and
€ = 1078 and a linear learning-rate decay schedule which
leads to 0.01x of the initial rate in 100 epochs. We perform
grid search to tune initial learning rate (®) for each network.

To compare with prior work and study the impact of data
volume, we synthesize two datasets with data volumes of size
1283 and 2563, by splitting each 5123 cube into 64 and 8
sub-volumes, respectively. This is analogous to the partitioning
method used in the original work. The intuition behind this was
that the data volumes should be sufficiently large to contain
galaxy clusters, which are sensitive cosmological probes.

Training the largest network needs 4 GPUs to store
the 52.7 GiB of memory required (Table [). When batch
normalization layers are introduced, memory requirements
double, necessitating at least 8§ GPUs (2 nodes) per sample.

V. EVALUATION

In this section, we first evaluate the computational perfor-
mance of our hybrid-parallel implementation for CosmoFlow

and the 3D U-Net in both strong scaling (fixed global mini-
batch size) and weak scaling (fixed mini-batch size on each
GPU) regimes. Then, we demonstrate the importance of
increasing the input data resolution of the CosmoFlow network
to improve its prediction accuracy. To our knowledge, this
work is the first attempt to train the CosmoFlow network with
the full-resolution universe data instead of partitioning them
into small sub-volumes.

A. Evaluation environment

We use Lassen, a GPU supercomputer at Lawrence
Livermore National Laboratory composed of 792 nodes. Each
node has two IBM POWERY9 CPUs with 256 GB memory and
four NVIDIA V100 GPUs with 16 GB memory and NVLink2.
Each CPU has two GPUs directly connected to it via NVLink,
and the two GPUs on each socket are also directly connected
via NVLink. The network is dual-rail EDR InfiniBand.

We use GCC 7.3.1, CUDA 10.1, cuDNN 7.6.4, NCCL 2.4.2
and IBM Spectrum MPI 10.2.0.11rtm2. We use auto-tuning
to select cuDNN convolution algorithms. We use FP32 for
computation throughout the experiments. We do not use FP16
mixed-precision training (or Tensor Cores), as the impact of
applying low-precision training to CosmoFlow has not yet
been evaluated.

For the 3D U-Net, we use the original network architecture
proposed in the paper [2], but increase the input/output size
to 2562. As mentioned in Section [I=C] the network consumes
much more memory than the CosmoFlow network for the same
input data size, so we use a smaller size to keep the number
of GPUs per sample the same as the CosmoFlow experiments.

B. Strong scaling

Training neural networks with strong scaling increases
the number of compute resources brought to bear without
perturbing the learning behavior of the model. In conjunction
with hybrid-parallelism this technique allows us to use an
unprecedented number of GPUs per data sample. Figure M
shows the strong scaling performance of the CosmoFlow
network with the 5123 dataset. We use global mini-batch sizes
(N) of 1, 2, 4, 16 and 64, and split the network in the depth
dimension. We run the framework for 4 epochs with a 128-
sample subset of the dataset (if the mini-batch size is smaller
than 128), or the full dataset, and show the median iteration
time except for the first epoch. We also show predicted
times by our performance model, which largely match with
the actual measured times, confirming our implementation
performed as expected.

As shown in the figure, when the mini-batch size, N, is 16
and 64, we achieve speedups of 1.98x with 512 GPUs (128
nodes) compared to 128 GPUs (32 nodes), and 1.77x with
2048 GPUs (512 nodes) compared to 512 GPUs (128 nodes),
respectively. We note that for 16 samples the performance gain
for going to 1024 GPUs falls off, as the problem becomes
over-decomposed. However, the computational performance in
terms of throughput can still be scaled further by increasing
the batch size to 64. As shown in Section[V-D] this mini-batch

512 T A 2011 sis
1024 316.7 s/s (1.43x)
2048 3922 s/s (1.77x)

128 | T 1 62.1 s/s
] A

b 80.5 /s (130x)
32 L T

1157 sls

18.0 s/s

Number of GPUs
(o)
wn
>N

/0
Update

F. Comm.
F. Shuffle
F. Comp.
B. Comm.
B. Shuffle
B. AR

B. Comp.

4.1 sis

OO EEDEm

\ \ \ \ \
200 300 400

Time [ms]

Fig. 4: Strong scaling of CosmoFlow. Shaded bars show time
predicted by the performance model. “F.” and “B.” are forward
and backward passes, resp. N is the mini-batch size. Bars are
annotated with throughput (samples/s) and speedup relative to
the minimum setting with the same N.

32 709.7 sis
- 64 7110 /s (1.13x)
[128 122 s/ (1.25%)
Z 2 256 12.3 s/s (1.27x)
E 512 = 7] 10.5 s/s (1.08x)
~(O 16 N\ 77777 5.1 sfs
= 32 \\Vlllllllllllllllllll 5.5 /s (1.09x)
e 2 o4 78 5 %1159
Z o 128 \' 3 s/s (1.25x)
£ 256 5.7 s/s (1.11x)
= 8 A 2.7 sls
| Z 16 28 s (Losx| B 1O
[32 3 0's/s (1.12x) Update
2, 64 % 2 s/s (1.18x) Forward
128 ///// 2.9 s/s (1.09x) | @ Backward
T \ \
0 100 200 300 400 500 600

Time [ms]

Fig. 5: Strong scaling of CosmoFlow without spatial-parallel
I/O, using only distributed caching with Conduit.

size is a reasonable choice for actual training, and thus we
prove that we successfully scale the training of the CosmoFlow
network to thousands of GPUs. Furthermore, the I/O time is
almost invisible in the figure since it is almost completely
overlapped with computations in our optimized I/O pipeline.
This makes a significant contrast to conventional I/O methods
in terms of strong scaling performance, as their I/O parallelism
is limited by the mini-batch size. In fact, without our spatially-
parallel I/O approach, the iteration time does not scale due to
the I/O overhead, as indicated in Figure 5] which visualizes

Forward Backward Update
§ Allreduce S | N \ \
SHalo xchg || areoam e el]

Main (LS 1
[I I I I I
0 50 100 150 200 250
Time [ms]
(a) N =4, 5123, 8-way, 32 GPUs
| Forward _ Backward Update
g Allreduce (ST L] | - .
ZHalo xchg (I AIL0I W11 | 7 s s
Main AR O Y B Main
[I I I I I
0 50 100 150 200 250

Time [ms]
(b) N =4, 5123, 16-way, 64 GPUs

Fig. 6: Single-GPU execution timelines for training the 5123
dataset with mini-batch size 4. Top: 8 GPUs/sample (32 total).
Bottom: 16 GPUs/sample (64 total). We show one iteration of
the root process’s GPU of each run.

the impact of the I/O overhead when the spatial-parallel I/O is
disabled. This demonstrates the necessity of strong-scaling I/0
along with compute in order to efficiently parallelize training.

To understand the parallel efficiency of the implementation
and identify potential bottlenecks, Figure (6] shows the GPU
execution timeline of a mini-batch iteration when 32 and
64 GPUs are used to train the 512% model with a mini-
batch size of 4. A speedup of approximately 1.66x is
achieved using 2x the number of GPUs. The “Main” row
corresponds to the CUDA stream where compute kernels are
launched; the “Halo xchg” row is an asynchronous stream to
perform on-device halo exchanges; and the “Allreduce” row
corresponds to a stream used by the asynchronous allreduce
operations by NCCL. From the beginning of back propagation,
NCCL starts to communicate computed parameter gradients
among processes asynchronously to the main computation
stream. Since the communication of gradient updates is done
asynchronously, this does not block the compute kernels. In
both cases, the main streams are nearly fully packed, indicating
the GPU compute units are fully occupied. Similarly, the
timelines indicate that the cost of our optimized halo
exchanges is almost negligible in these scenarios. Overall, we
see that the speedup from the 8-way to 16-way parallelization
is mostly determined by the speedups of the individual
convolution kernels in the cuDNN library. In this work, we
have exclusively relied on cuDNN for optimized convolution
kernels. These results indicate that they may not be well-tuned
for non-cube domains, as we only achieved 1.66x speedup
going from 8-way to 16-way parallelization. Identifying the
local compute kernels as the bottleneck to better scaling is also
corroborated by our performance model, shown in Figure (4]
which was generated by profiling cuDNN.

© [
— 256 1 L 200
I 1 '
= . 512 H. T 1] 32.0 /s (1.60x)
< =} T]
”{ % 64 T 50 /s = 1o
=\ 5 128 8.5 s/s (1.70x) B Update
B F. Comm.
T{ E 32 E : T 1 :]24s/s | @ F Shuffle
g] A @ F. Comp.
2, 2 64 ”. T] 41 /s (1.69%) B B Comm.
— 16 I T T 1 1 1.2 sls @ B. Shuffle
I { O B. AR
2, 32 2.1 /s (1.72x) @ B. Comp.
T T T T T T
0 200 400 600 800 1000 1200
Time [ms]

Fig. 7: Strong scaling of the 3D U-Net. Shaded bars show
iteration time predicted by the performance model.

TABLE II: Achieved performance of CosmoFlow convolution
layers compared to peak performance of cuDNN.

Time Perf. Peak Rel.
Depth N ‘ Layer [ms] [TFlop/s] (%]
8-way 64 All 1429 226 23.6 956
32-way 64 All 48.8 899 109.1 824
8-way 64 | convl 73.9 12.2 13.0 93.8
32-way 64 | convl 23.5 346 534 647

The ability to strong scale the performance of the 3D U-
Net with an input size of 2562 is shown in Figure [71 With
this network, we have to use at least 16 GPUs per sample due
to the memory requirements. We achieve good strong scaling
performance between 16-way and 32-way partitioning, such
as 1.42x on 512 GPUs over 256 GPUs with a mini-batch size
of 16. As shown in Figure [/} similarly to the CosmoFlow
network, most of the iteration time is spent in computation,
implying that we achieve near-peak performance, despite the
communication overheads of hybrid-parallelism compared to
data-parallelism.

To better characterize our performance and scaling
efficiency, we compare the performance of our distributed
convolution layers in the 5123 CosmoFlow network to the
peak achievable performance of cuDNN in Table[[ll The Time
and Perf columns give the measured performance of our code
(including halo communication, etc.), measured with nvprof.
In the Peak column, we report the TFlop/s achieved by running
only the local cuDNN kernel for that configuration. This gives
an effective upper bound on the performance we can achieve
using cuDNN in our configuration. Finally, we report the
achieved percent of this peak in the Rel column.

We observe that for CosmoFlow, we achieve 95.6%
and 82.4% of this peak performance for 8- and 32-way
partitioning, respectively. This indicates that the overhead
of our distributed convolution is relatively small. We also
observe another benefit of strong scaling: the potential peak
performances exhibit super-linear scaling, albeit fairly slightly.

This is due to a larger, aggregated memory space available
with a larger number of GPUs, allowing cuDNN to use more
efficient convolution algorithms.

We also examined which layer dominates runtime, and
for CosmoFlow we find that the convl layer accounts for
almost half of the entire network runtime. This is due to
the layer processing the largest spatial dimensions. For §-way
partitioning, we achieve excellent scaling efficiency; for 32-
way partitioning, communication overheads limit gains, but
still enable overall performance improvements.

While these results show good scaling efficiency with
respect to the achievable peak with cuDNN, the TFlops/s
achieved is relatively low compared to the theoretical peak of
the hardware. This indicates that there is significant potential
for further optimizing 3D convolution kernels.

C. Weak scaling

The second component of our hybrid-parallelism approach
is to exploit data parallelism in conjunction with spatial
parallelism. This allows us to explore the impact of weak
scaling by increasing the global mini-batch size while tuning
the learning rate. Figure[8]shows the weak scaling performance
of the two 3D CNNs with different input sizes. For the
CosmoFlow network with 1283 cubes, the data size used in
the previous work, we use per-GPU batch sizes of 8 and
increase the global mini-batch size as we increase the number
of GPUs. We evaluate the performance using 4-way and §-way
partitioning for reference. In the 5123 case, we only evaluate
hybrid parallelization where each data sample is partitioned
among 8, 16 or 32 GPUs as nearly 53 GB of memory is
required per sample as shown in Table [l While it is smaller
than the aggregate capacity of 4 GPUs, we found that it results
in an out-of-memory error as additional auxiliary data need to
be allocated. We measure performance as in Section

In the case of CosmoFlow with 1283 cubes, our imple-
mentation achieves nearly linear speedup up to 512 GPUs
(128 compute nodes), in part because of the asynchronous
overlapped communication engine of Aluminum and also
because of the relatively high compute-to-communication
ratio in 3D CNNs. We achieve a 65.4x speedup on 512
GPUs compared to 4 GPUs with the 1283 cubes. In this
case, the highest efficiency is achieved with the data-parallel
scheme since the hybrid parallelization involves additional
communications due to halo exchanges.

With 5123, however, hybrid parallelization is required as
the model is too large to fit into the device memory of a
single GPU. Thus, we evaluate three configurations, §-way,
16-way and 32-way, and the global mini-batch size is linearly
increased as the number of GPUs is increased, resulting in
147.31x, 71.32x, and 37.2x of speedup on 2048 GPUs over
8, 16, 32 GPUs (where the mini-batch size is 1) respectively.
With the 3D U-Net, we achieve good weak scalability (28.4x
on 1024 GPUs over 32 GPUs with 32-way partitioning) as
well.

In all cases, increasing the spatial parallelism results
in lower throughput due to the additional communication

overhead as well as the decreased compute efficiency of the
cuDNN kernel library. However, we note that the hybrid
parallelization enables further speedups for a given fixed mini-
batch size as it is also shown in Section

D. CosmoFlow model accuracy improvement with 5123
universe cubes

This experiment set out to test if training on entire data
samples would improve the quality of the model learned by
the network. Figure [0 shows training results of the CosmoFlow
network with the full-resolution dataset (5123) and split
versions (128 and 256%). We swept the initial learning rate
from 10~* to 102 logarithmically and show the results with
the best. We train for 130 epochs with a mini-batch size of
64 in every configuration, and use the 4-way partitioning (256
GPUs in total) for the networks without batch normalization
layers, or 8-way (512 GPUs in total) for networks with batch
normalization, due to the increased memory requirements. To
account for training variance, we show the median result of
five trials with different initial random seeds.

We observe that the test loss decreases significantly as we
increase the dataset size to 0.0169 MSE with 2562 and 0.00727
MSE with 5123 data. Adding batch normalization improves
this result further, to 0.00445 MSE, achieving an order-of-
magnitude improvement compared to the baseline 128° data.
At the same time, we get 2.79x of speedup from 1282 to 5123
with the same number of GPUs and the same mini-batch size.
This result implies that the CNN can be trained with the same
computing resources and dataset size, but with a smaller mini-
batch and small overheads (see Section [V-C). This brings an
opportunity to keep mini-batch sizes fixed and strong-scale
onto more GPUs for speedup.

Figure [10] shows the correlation between the predicted and
actual cosmological parameters and the associated residuals
for our networks on each dataset. We clearly demonstrate
improvements in the quality of predictions with increasing data
volume; and the benefit of batch normalization. In particular,
we observe that prediction of Hy (the Hubble constant)
shows the most improvement in accuracy with increasing data
volume. This makes intuitive sense, as it is related to the large-
scale expansion of the universe. As cosmological simulations
move to sub-percent measurements, being able to test the
quality of the surrogates via a greatly improved Cosmoflow
network, with an order of magnitude improvement in the
measurement of the cosmological parameters, is the only way
to quickly validate the quality and precision of the models.

VI. RELATED WORK

Scalable training and model-parallelism has a long history
in deep learning; Ben-Nun & Hoefler [29] provide a
comprehensive overview. We discuss the most relevant.
Early work on models such as AlexNet incorporated model-
parallelism using grouped convolution or partitioning fully-
connected layers [3], [30]]. Coates et al. [31] applied spatial
partitioning to locally-connected layers. Gholami et al. [32]]
consider spatial parallelism, but provide only simulated

10°

ﬁ 104 —{—°— Data-parallel % —<— Hybrid (8-way) ﬁ 102 —{—*— Hybrid (16-way)
= —&— Hybrid (4-way) = —e— Hybrid (16-way) = Hybrid (32-way)
=] ~&— Hybrid (8-way) =] Hybrid (32-way) =] 7
. g 10% 3
< 107 5 = = 10! .
2 2. 2 o«
= = 1 = /'
e z 100 S -
g 107 3 g g -
g £ £10° 5
T T
4 8 16 32 64 128 256 512 8 16 32 64 128 256 512 1024 2048 16 32 64 128 256 512 1024
Number of GPUs Number of GPUs Number of GPUs
(a) CosmoFlow, 1283 (b) CosmoFlow, 5123, BN layers (c) U-Net, 2563
Fig. 8: Weak scaling of the two different 3D CNNs. We increase the global mini-batch size as we increase the number of
GPUs. In the hybrid results, we partition a single sample by multiple GPUs in its spatial domain.
101 T
| IV‘VW —— 128%, © = 5.0 x 10~* (min.) 1 - MSE=0.028_9‘ MSE=0.0237 /| MSE=0.0230 /| MSE=0.0872 ¢
Al —a— 2565, ® = 1.0 x 10~3 (min.) 2 RS o -k
100 o i o~ 5128, 7 = 1.0x 103 o ; A e
‘w’l;"\)}”,“().()lﬁ.i —e— 5123, BN, y(® = 1.0 x 103 a0 . - o
F— . s o
2 101 | 0.0441 1 Al .
= 1 — 5.99 h
= o % 1 - MSE=0.0094 /| MSE=0.0103 /| MSE=0.0101 /| MSE=0.0364.
0.0075 &% 2 0 S
0.0044 >
1073 I T T T T 3 -
g -
0 1 2 3 4 5 6 B 1 -{MSE=0.0050,| MSE=0.0056 ,/|MSE=0.0061 /| MSE=0.0147.
Time [h] A ; o
a0 4 ’
0 [
Fig. 9: Training/validation losses (solid/dashed lines respec- -1+ i
tively) and the smallest validation losses (points) of the 1 |MSE=0.0018 | MSE=0.0031 0~ MSE=0.0032,," MSE=0.0092
CosmoFlow network with four different configurations. For % ’
1283 and 2563, we show the minimum loss values at each % 0 L
point in time for visibility. 14
T T T T T T T T T T T T
40 1 -1 0 11 0 1-1 0 1
Q' g’ n' Hy'
results. FlexFlow [33] presents an automated system for True
identifying model- and hybrid-parallelism. Frameworks such 15
as DistBelief [34], Project Adam [35], Mesh-TensorFlow , o ;ggj
and TF-Replicator also support limited forms of £ 107 o o512
. . e . s 5193
model-parallelism, but do not do spatial partitioning. The & 5 c e
Distconv library [18] provides the basis for our 3D hybrid é
parallelism, but is limited to 2D CNNs. Extending this to 0=
efficiently support 3D CNNs requires significant novel work 0.5 QO, 05 -05 005 -05 0 05 -05 ;, 05
. . . m os Ns 0
(Section [I=A). Further, this work does not consider I/O, Residual

which is a key bottleneck for scaling 3D CNNs, nor does
it demonstrate improved learning. Similarly, channel and filter
parallelism [19] provides another method for partitioning data,
primarily targeting wide CNNs. It also only considers only
2D data and neglects I/O. Further, channel/filter parallelism
requires communication of entire activation tensors, instead
of only halo regions, so the communication overheads will
be significantly greater for the large, 3D data we consider.
In general, these prior approaches have not considered the
extreme strong scaling regime required for training 3D CNNss.
Further, with CosmoFlow, we have demonstrated that training

10

Fig. 10: True/predicted cosmological parameters (normalized
to [—1,1]) from four different configurations (top) and the
distribution of the residuals (bottom). In the top figure, we
show 200 randomly chosen data points for visibility.

on full-resolution input data actually produces better results.

Many approaches, such as pipelining [38]]-[41] and micro-
batching [42] are orthogonal to our 3D spatial partitioning.
Others directly target memory pressure during training,

but perform additional computation, including gradient
accumulation [43], out-of-core algorithms [44]-[46], and
recomputation [47], [48].

I/O performance has also been a recent focus, particularly
for data sets with many or large samples. This has typically
involved optimizing I/O pipelines with data staging and
asynchronous I/0 [1]], [3l], [20], [49]-[52]. We build upon these
to handle the case where I/O for even a single sample is a
bottleneck by partitioning and scaling I/O spatially, adapting
collective I/O techniques developed for large-scale parallel
scientific workloads [S3]]—[I55]].

3D CNNs have been widely used for 3D volume
datasets, including medical imagery [2], [16], [56] and
video action recognition [57], [S8]]. These typically extend
a 2D CNN architecture by replacing the 2D convolutions
with 3D operations [2]. While 3D convolutional layers
enjoy similar learning properties to 2D ones and are more
parameter-efficient than fully-connected layers for extracting
spatial features, the memory requirements have made them
challenging to use [S6]-[58]. In particular, this has limited
many works to small mini-batches, low-resolution data, or
CNN architecture tradeoffs [S6], [58]. We demonstrate that
tackling these problems enables further improvements in
prediction accuracy.

VII. CONCLUSIONS

Parallel training of DNNs is now considered a common
practice rather than an art thanks to the wide availability
of parallelized software stacks for deep learning. However,
as shown in this paper, addressing the computational
requirements in applying deep learning to scientific problems
on 3D data sets necessitates finer-grained scalable parallel
algorithms both in compute and I/O. We demonstrated
the ability to spatially partition the training over many
GPU-accelerated HPC nodes, enabling the traditional strong
scaling that other HPC applications enjoy: accelerated time
to solution without a compromise in the quality of the
learned model. Further, we have demonstrated this with two
networks that differ significantly in task, architecture, and
performance characteristics, so we expect our work to be
broadly applicable. As a result, we have created a scalable
framework that can tackle the 3D CNNs that are rapidly
emerging at the forefront of scientific machine learning.

Another hypothesis of this work was that learning on
full-resolution data would allow models to learn better
representations of long-range features present in the data.
Our work with CosmoFlow demonstrated the strength of this
hypothesis, where the extended CosmoFlow model achieved
an order-of-magnitude improvement in prediction quality
while significantly reducing training time by exploiting a
larger-scale system.

ACKNOWLEDGMENTS

Prepared by LLNL under Contract DE-AC52-07NA27344
(LLNL-JRNL-812691). This research was supported by JSPS
KAKENHI Grant Number JP18J22858, Japan and by the

11

Exascale Computing Project (17-SC-20-SC). Experiments
were performed at the Livermore Computing facility. This
research used resources of the National Energy Research
Scientific Computing Center (NERSC), a U.S. Department
of Energy Office of Science User Facility operated under
Contract No. DE-AC02-05CH11231.

REFERENCES
[1]
[2]

A. Mathuriya et al., “CosmoFlow: Using deep learning to learn the
universe at scale,” in SC, 2018.

0. Cigek et al., “3D U-Net: Learning dense volumetric segmentation
from sparse annotation,” in MICCAI, 2016.

T. Kurth er al., “Exascale deep learning for climate analytics,” in SC,
2018.

K. Duraisamy, Z. J. Zhang, and A. P. Singh, “New approaches in
turbulence and transition modeling using data-driven techniques,” in
53rd AIAA Aerospace Sciences Meeting, 2015.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in NeurIPS, 2012.

D. Amodei et al., “Deep speech 2: End-to-end speech recognition in
english and mandarin,” in ICML, 2016.

D. Silver et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, 2016.

J. Devlin et al., “BERT: Pre-training of deep bidirectional transformers
for language understanding,” in NAACL, 2019.

N. S. Keskar et al, “On large-batch training for deep learning:
Generalization gap and sharp minima,” in /CLR, 2017.

B. Van Essen et al., “LBANN: Livermore big artificial neural network
HPC toolkit,” in MLHPC, 2015.

P. Goyal et al., “Accurate, Large Minibatch SGD: Training ImageNet
in 1 Hour,” arXiv preprint arXiv:1706.02677, 2017.

T. Akiba et al., “PFDet: 2nd Place Solution to Open Images Challenge
2018 Object Detection Track,” arXiv preprint arXiv:1809.00778, 2018.
M. Yamazaki et al., “Yet Another Accelerated SGD: ResNet-50 Training
on ImageNet in 74.7 seconds,” arXiv preprint arXiv:1903.12650, 2019.
National Energy Research Scientific Computing Center, “CosmoFlow
datasets,” https://portal.nersc.gov/project/m3363, 2019.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
networks for biomedical image segmentation,” in MICCAI, 2015.

L. Hou et al., “High resolution medical image analysis with spatial
partitioning,” 2019.

P. Bilic et al., “The liver tumor segmentation benchmark (LiTS),” CoRR,
vol. abs/1901.04056, 2019.

N. Dryden et al, “Improving strong-scaling of CNN training by
exploiting finer-grained parallelism,” in /PDPS, 2019.

——, “Channel and filter parallelism for large-scale CNN training,” in
SC, 2019.

S. A. Jacobs et al., “Parallelizing training of deep generative models on
massive scientific datasets,” in CLUSTER, 2019.
Lawrence Livermore National Laboratory,
https://github.com/LLNL/conduit, 2019.

S. Chetlur et al., “cuDNN: Efficient Primitives for Deep Learning,” arXiv
preprint arXiv:1410.0759, 2014.

R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of Collective
Communication Operations in MPICH,” IJHPCA, Feb. 2005.

Y. Oyama et al., “Predicting Statistics of Asynchronous SGD Parameters
for a Large-Scale Distributed Deep Learning System on GPU
Supercomputers,” in BigData, 2016.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in /CML, 2015.
S. Ravanbakhsh et al., “Estimating cosmological parameters from the
dark matter distribution,” in ICML, 2016.

A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in in ICML Workshop on
Deep Learning for Audio, Speech and Language Processing, 2013.

D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
in ICLR, 2015.

T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep
learning: An in-depth concurrency analysis,” CSUR, vol. 52, no. 4, 2019.
A. Krizhevsky, “One weird trick for parallelizing convolutional neural
networks,” arXiv preprint arXiv:1404.5997, 2014.

[3]
[4]

[5]

[6]

[7]

[8]

[9]
[10]
(1]
[12]
[13]
[14]
[15]
[16]
(171
(18]
[19]
[20]
[21] “Conduit,”
[22]
(23]

[24]

[25]
[26]

(271

[28]
[29]

[30]

https://portal.nersc.gov/project/m3363
https://github.com/LLNL/conduit

[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]

[43]

[44]
[45]
[46]
(471
[48]
[49]
[50]
[51]
[52]

[53]

(541
[55]

[56]

(571

[58]

A. Coates et al., “Deep learning with COTS HPC systems,” in /CML,
2013.

A. Gholami et al., “Integrated model, batch and domain parallelism in
training neural networks,” in SPAA, 2018.

Z. Jia, M. Zaharia, and A. Aiken, “Beyond data and model parallelism
for deep neural networks,” in MLSys, 2019.

J. Dean et al., “Large scale distributed deep networks,” in NeurIPS,
2012.

T. M. Chilimbi et al., “Project Adam: Building an efficient and scalable
deep learning training system.” in OSDI, vol. 14, 2014.

N. Shazeer et al., “Mesh-TensorFlow: Deep learning for supercomput-
ers,” in NeurIPS, 2018.

P. Buchlovsky et al., “TF-Replicator: Distributed machine learning for
researchers,” arXiv preprint arXiv:1902.00465, 2019.

X. Chen et al., “Pipelined back-propagation for context-dependent deep
neural networks,” in INTERSPEECH, 2012.

Y. Li et al., “Pipe-SGD: A decentralized pipelined SGD framework for
distributed deep net training,” in NeurIPS, 2018.

Y. Huang et al., “GPipe: Efficient training of giant neural networks using
pipeline parallelism,” in NeurIPS, 2019.

D. Narayanan et al., “PipeDream: generalized pipeline parallelism for
dnn training,” in SOSP, 2019.

Y. Oyama et al., “Accelerating deep learning frameworks with micro-
batches,” in CLUSTER, 2018.

Y. Ito, R. Matsumiya, and T. Endo, “ooc_cuDNN: Accommodating
convolutional neural networks over GPU memory capacity,” in Big Data,
2017.

M. Rhu et al., “vDNN: Virtualized deep neural networks for scalable,
memory-efficient neural network design,” in MICRO, 2016.

C. Meng et al., “Training deeper models by GPU memory optimization
on TensorFlow,” in ML Systems Workshop @ NeurIPS, 2017.

L. Wang et al., “Superneurons: dynamic GPU memory management for
training deep neural networks,” in PPoPP, 2018.

T. Chen et al., “Training deep nets with sublinear memory cost,” arXiv
preprint arXiv:1604.06174, 2016.

P. Jain et al., “Checkmate: Breaking the memory wall with optimal
tensor rematerialization,” in MLSys, 2020.

S. Pumma et al., “Towards scalable deep learning via I/O analysis and
optimization,” in HPCC, 2017.

S. W. Chien et al.,, “Characterizing deep-learning I/O workloads in
TensorFlow,” in PDSW-DISCS, 2018.

Y. Zhu et al., “Entropy-aware 1/O pipelining for large-scale deep learning
on HPC systems,” in MASCOTS, 2018.

F. Chowdhury et al., “I/O characterization and performance evaluation
of BeeGFS for deep learning,” in /CPP, 2019.

R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective I/O in
ROMIO,” in Seventh Symposium on the Frontiers of Massively Parallel
Computation, 1999.

Jianwei Li et al., “Parallel netCDF: A high-performance scientific /O
interface,” in SC, 2003.

M. Howison et al., “Tuning hdf5 for lustre file systems,” in JASDSI0,
2010.

F. Milletari, N. Navab, and S.-A. Ahmadi, “V-Net: Fully convolutional
neural networks for volumetric medical image segmentation,” in 3DV,
2016.

D. Tran et al., “Learning spatiotemporal features with 3D convolutional
networks,” in ICCV, 2015.

J. Carreira and A. Zisserman, “Quo vadis, action recognition? A new
model and the kinetics dataset,” in CVPR, 2017.

12

