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Outline

* Carrier dynamics measurements and modeling with small-signal EL
* c-Plane wavelength series on commercial epitaxy

 c-Plane growth quality (defect density) series on commercial epitaxy
 Crystal orientation series

e Core-shell nanostructure-based LEDs
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Motivation for Carrier Dynamics/Modulation Studiesﬂ]}l
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Small-Area GaN-Based LEDs

* Small area reduces RC parasitics
* 50 -100 um diameter
e Can be driven at high current density
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RF Measurement System I{J}I
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Rate Equation Modeling of LED Carrier Dynamics NI

N,
é %d"L‘ D Considered carrier processes:
...‘.‘.‘..-@-} ........... Y Conduction band

Carrier injection

Carrier diffusion and capture
Recombination in QW
Carrier leakage
Recombination in cladding
and overshoot
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Associated lifetimes
A. Rashidi, et al., J. of Appl. Phys. 122, 3 (2017)

A. Rashidi et al., Appl. Phys. Lett., 112, 031101 (2018)

Tpesc = ReCy Tao = RcCrot
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Fitting Equivalent Circuit Model

GV
W1

Simultaneous fitting of optical frequency response and impedance yields various carrier lifetimes

Optical response:

Vout

Rw

Input impedance:

Zian
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Wavelength Series on Lumileds Epitaxy % LUMILEDS N1

Color Description * Study of simplified commercial LED designs

Blue 3 QWs, 3 nm, wavelength 470 nm * Representative of recombination behavior in “real” designs
Cyan 3 QWs, 3 nm, wavelength 500 nm P g
Green 3 QWs, 3 nm, wavelength 530 nm * Design simplification restricts emission to one QW

*LED mesa diameter = 100 um
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Internal Quantum, Injection, and Radiative Efficiencylil,\"l
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* Longer wavelength — lower IQE, lower injection efficiency, and lower radiative efficiency

* How much of the change in efficiency from blue to green is due to intrinsic effects (e.g., wave-
function overlap and phase-space filling) vs. extrinsic effects (e.g., material degradation)?
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Radiative and Non-Radiative Lifetimes
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* The total recombination lifetime is obtained by integrating the differential lifetime
* Radiative lifetime and non-radiative lifetime are separated using total lifetime and radiative efficiency
* Longer wavelength — longer total lifetime, longer radiative and non-radiative lifetimes

* Longer lifetimes at longer wavelengths expected from smaller wave function overlap
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Role of Carrier Density vs. Current Density I@S‘I

I 2 3
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Radiative and Non-Radiative Recombination Rates Iil)"l
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* Longer wavelength — stronger polarization in QWs — lower wave function overlap — smaller 4, B, and C*

At longer wavelength, n is higher, but B and C are lower

R,,.(530 nm) > R,,,.(470 nm) but R,.(530 nm) < R,(470 nm) since R, < n?, while R,,, « n3

In addition to increased Auger, reduction in radiative rate is an important factor for green gap
*E. Kioupakis et al ., Appl. Phys. Lett., 101.23 (2012): 231107.
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ABC Parameters

I,
W1

10%F| o 470 nm P
500 nm oF &
o © 530 nm| .. C@i&
4, e © &

G /n
nr
®
)
°¢
2
Q)

10 O.,.® : Oéﬁy

—

e
-
N

r

-—_
S
pat %
N

G /n? [cm*s™
i
48 ()
; g

—_

S
w
o

nr

(G_-An)/n® [cm®*s™]

P N
<
w
g

1019
Carrier density [cm’3]

—_

o
P
o]

Mechanisms that affect A(n), B(n), and C(n): QCSE (field screening), phase-space
filling (PSF), and Coulomb enhancement/screening

G,,./n doesn’t converge at low n, so can only bracket A(n)
Increase of G, /n? and (G, — An)/n3 at low n attributed to Coulomb enhancement
Strong field screening not observed in these 3-nm-thick QWs

Difficult to decouple the different effects but ratios can provide insight

Optical differential lifetime (ODL) method
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A. David et al., Phys. Rev. Appl., 12.4 (2019): 044059.

16 17 18 19
log,, n (em™3)

Daniel Feezell 13



n, B(n), and C(n) Compared to Blue at 40 A/cm? NI

Scale factor compared to blue Definition of B(n) & C(n)
0.7 L Y T T |2_5 T
BE:;-C R, = B(n) * n?
” 822%2 R, =~ C(n) =n® (athighn)
o n-G
s Normalized to blue:

Carrier density [a.u.]

O—’ *B(n)-G: ratio of B(n) m 1 1 1

SRH neglected (hlgh n) . for green to B(n) for cyan 0 0 1.16 0.48 0.55
g m ” 50 100 Dlueatagiven
Current density [A/cm2] m 0.60 1.34 @
* Blue — Green: R, decreases but R,,,- increases
. L B(n)n? .
* Blue — Green: Carrier density increases by 2X N, =~ (at high n)

B(n)n? + C(n)n3
* Blue — Green: B(n) and C(n) both decrease by 7X

* Efficiency reduction for high n in longer wavelength LEDs not
dominated by large relative increase in C(n) compared to B(n)
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Scaling Law Between C(n) & B(n) at High n

Simulations by N. Pant and E. Kioupakis, Univ. of Michigan Optical differential lifetime (ODL) method
* Blue-Experiment 7 * —4nnm/f11%
Cyan-Experiment . —3nm/11%

« Green-Experiment . 7’
- * Blue-1D calculation P 31 2.5 nm/11%
> Cyan-1D calculation o, L —5nm/11%
.1 O1 - Green-1D calculation .:k& \;m —a4nm /9%
= © Blue-3D calculatiqn p(k £ 4nm/13% 1
) Green-3D calculatléﬁ OM L — 4nm f 15% nr ~ at h|gh N
2 & - 1+ (C(m)/B(n)) xn
@ o 7
SO : (=1]
Q &0 (=]
x ‘C( - -32

. C(n) « B(n) C(n) < B(n)+1?
Relative B(n) [a.u.] log,, B [cm3s™]

A. David et al., Appl. Phys. Lett., 115.19 (2019): 193502.

C(n) < B(n)! at high n from experimental data and Schrédinger-Poisson simulations from Univ. of Michigan

Simulations capture variations in QCSE, PSF, and alloy disorder
Same power law obeyed for all wavelengths at high n under varied polarization fields and PSF

Variations in C(n) and B(n) due to QCSE (field screening) and PSF cancel out at high n if we consider C(n)/B(n)

Whatever differences exist in C(n)/B(n) should mainly capture any material-quality differences
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C(n)/B(n) Approaches Similar Value at High n

I,
W1

0.5

* (C(n)/B(n) approaches a similar value at high n for all wavelengths = effects of material degradation are small

» Differences in C(n)/B(n) between blue, cyan, and green consistent with differences in Cp;;(n) from DFT
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1018
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* Decrease of n,- for longer wavelength is mostly from the increase of corresponding n at a given J

* Radiative efficiency is similar for a given n for all wavelengths

* Target green LED designs that reduce n (multiple QWSs) and increase overlap (thin QWs, semipolar, stepped profiles)

Daniel Feezell
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Growth Quality

Series on Lumileds Epitaxy ™ LUMILEDs Iﬁ?l

Sample Growth | Peak Wavelength @ | Deep-Level Defect Density
Description 2 AJcm? [10%° cm ™3]
Good 534 nm 0.44
Middle 532 nm 0.78
Bad 532 nm 1.50

LED mesa diameter = 100 um
Active region: 3 QWSs, 3 nm each
Deep-level defect density (N;) acquired from DLOS

5 0.08
4 F
10.06
.3t
)
g 10.04
22
10.02
1F
On-wafer, good growth
0 . . . . 0
0 10 20 30 40 50
Current [mA]

Light output power [mW]
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(&)} (&)}
N w
(&)} =1
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N
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e Study of simplified commercial LED designs

* Design simplification restricts emission to one QW
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\_&\ N
\\\‘
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y N\

© Good growth L

©  Middle growth ™

© Bad growth ‘61'3

10° 10’ 102

Current density [A/cmz]

* Representative of recombination behavior in “real” designs

Daniel Feezell
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Internal Quantum,

Injection, and Radiative Efficiency I4Y1

=510 . T — 100 - — ~d) 08@
60 F . o o Good growth | fI nammidl Q@@ "a, o Good growth
S © Middle growth 95 inj = 0 1Ainj g@@ *** 0.7 "O..‘. ©  Middle growth |-
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50 F - O~ < Q - & 0.9
<Ok o NOr £ 0.6 u“@@@
S 3, g 8 S 0004 OB
w 40 oo ek o T R £ 85f S, 0.5 DosL
c et } o R ch = G@ 5,
" Ys = @é, B R R ™ 8.
30} S 3 80} J o | 0. Mg
O, = (o} © Goodgrowth | (T &gy
NN = 75|10 © Middle growth| - 03—t O Qg i
20 : ;L \\;8 0"'0 © Bad growth = 9888 \
Based on known extraction efficiency Nioe = Ninj * Nr ' 8&5
1 1 1 70 1 02 i i i PR S | i PR Y
10° 10 102 10 102 10 102

Current density [A/cm2] Current density [A/cm2] Current density [A/cm2]

Lower growth quality is associated with lower IQE at low current (carrier) density
The three wafers approach a similar value at high current density
The injection efficiencies are very close for the three wafers

Lower growth quality has lower radiative efficiency, especially at low J

Daniel Feezell 18



Radiative and Non-Radiative Lifetimes

-8 i
8 x10° —— — 4 x10
® = G90d growth ® "r Good growth
w | © © Middle growth Y -
g 6'3 ‘QQQ o Bad growth |4 3} ‘\\ nr Good growth
O
< O¢ _ Q\ "t Middle growth _ Tnr
2 @ \ : L —
c = Q nr Middle growth nr ' 'r
:‘g 4 = 2(;~ ‘\ T %k
2 o3 i & r Bad growth _ T * 1y
= 1y LN o e —
= &“O\gg "nr Bad growth nr_r
32} 1 :
)
4
0 0
Current density [A/cm2] Current density [A/cm2]
* Lower growth quality has shorter total recombination lifetime (7,..) at low current density
* Radiative lifetime (7,) is similar for all samples
* Non-radiative lifetime (7,,,-) only shows large differences at low current density
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Carrier Density (n) vs. Current Density (/) N1

e '_ﬁ@»@"” ] x A(n)n + B(n)n? + C(n)n®
|| w = g Axd j;) NainjTarecdl _ﬂz____ﬁ;@’:"
- L
5 @_,53@:@' * Larger A(n) coefficient for lower growth quality is
2 19 B _ expected
S B | . . .
ko gqg ‘ * Lower growth quality has lower carrier density (n) at a
® GO ‘ © Good growth | | - :
O | @90 growtn |
5o o Middle growth given current density (J)
¢ o Bad th .
0 =9 - Differences between samples are most pronounced at
10" 102 low current density

Current density [A/cm2]
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Radiative and Non-Radiative Recombination Rates
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* R, issimilar for the three growth as expected
R, is higher for bad growth at low n

 Small change is R,,,- at high n is inconsistent with an n3 process for TAAR

r Good growth
nr Good growth
r Middle growth
nr Middle growth

r Bad growth

A X0 X0V _ X0V _AO0_AD

nr Bad growth

R J‘"W dn,,
rec =
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ABC Coefficients: G,,./n, G,/n*, and G,,,./n°>

© Good growth
© Middle growth
O Bad growth

[s™]

nr

G /n

10 ®-

Carrier density [cm'3]

1019

Y

G /n? [cm3*s'1]

-12
10
4 QG o Good growth |3
3.5 " © Middle growth |3
3F : \ © Bad growth
2'5F , ;
®,
of !
1.5 \
1 -

10"
Carrier density [cm'3]

* A can be estimated from G,,,-/n using the bad sample at low n

1 0-30 !

G /n® [cm6*5'1]
nr

10-31 s

© Good growth
© Middle growth| |
© Bad growth

Carrier density [cm'3]

« B(n) = G,/n? does not depend on growth quality in the wafers that were studied, as expected

* G,,/n3 depends on growth quality, with higher growth quality having a lower recombination rate
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Trap-Assisted Auger Recombination (TAAR) N1

* TAAR is a form of non-radiative Auger recombination that is
Schematic for TAAR (or TAAM) [1] assisted by point defects

fffffffffff

e MPE processes * The existence of TAAR has been experimentally observed
[2,3,4]

* TAAR is suggested as one of the reasons for efficiency decline
at high current density

* The carrier density dependence for TAAR has been suggested
to be n? [1,4] or n3 [3]

* TAAR is considered to scale linearly with the trap density (/V;)

Zhao, Fangzhou, et al. arXiv preprint arXiv:2211.08642 (2022).
Myers, Daniel J., et al. Applied Physics Letters 116.9 (2020): 091102.
David, Aurelien, et al. Physical Review Applied 11.3 (2019): 031001.
Liu, W., et al. Applied Physics Letters 116.22 (2020): 222106.

PwNPR

Daniel Feezell 23



Change in Non-Radiative Recombination

I,
W1

Assuming the recombination rates for SRH and TAAR are proportional to the deep-level defect density (N;) and

scales with n? [1, 2]

—_ —_ 3 2 _ 3 2 —
Rypyr = Rsry + Rintrinsic Auger T Rrgar = An+ C(m)n° + Dn”® = C(n)n° + A(n + kn*) D=kxA
26
2.5 x10 o
/
nr-middle ~ ' nr-good o]
. . . L - /
Assuming Ryntrinsic auger 1S independent of N; 21 |_°_"nr-bad ~ "nr-good
< jo)
<‘?m 15 B ®)
The difference in non-radiative recombination (AR,,;-) for different 13 “
growth qualities is: o 1} /d
< » o8 _V
O i;ﬁ‘x,_:‘fl&l.:*;f: AN | { {
0 05 1 1.5 2 25
Carrier density [cm'3] x10"°
1. Espenlaub, Andrew C., et al. Journal of Applied Physics 126.18 (2019): 184502.
2. Zhao, Fangzhou, et al. arXiv preprint arXiv:2211.08642 (2022).
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Change in SRH — Small-Signal vs. DLOS )4

1026
25F = _ _
o R misate” Roraood @; Deep-level defect density (N;) acquired from DLOS
i R -R S
- 9"'
o 15} - Deep-level defect
e R prieve deteet 044 0.78 1.50
S, AAp, =5.82x10°s P Ry density [10*° cm™?]
= g -1 8
c 1 ”,
5 o1 |2
...... g O
05} & O o
e S P s I by From DLOS measurements:
o® i 6 «—1
0 1’, . AAmg .: 91 Xllo S Nt_bad _ Nt_good B 150 _ 044 N 3 12
0 0.5 1 15 g . 12;'5 Nt miadaie — Nt good 0.78 — 0.44 .
Carrier density [cm™] x10 - -
* AR,, is a combination of additional SRH and ASRH < AA < AN,
additional TAAR from decrease in growth
quality From small-signal carrier dynamics:
. AA A — A
« AA can be approximated from the slope of AAbg = bad :‘Zl""d ~ 3.05
AR,, at low n as SRH dominates R, mg  “middle — “igood

(ASRH = AA  n)
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Change in TAAR

GV
W1

Fitting of AR,,,- between good and bad growth

AR,, = aAN,(n + k * n?)

25F

nr

AR [cm3s]

0.5}

1.5}

x 1026
o Experiment data ™
---SRH 5
L |——SRH + TAAR
°
o .-
o 3 _ _ > - -
0 0.5 1 1.5 2
Carrier density [cm'3] 21019

Deep-level defect density (N;) acquired from DLOS and

corresponding A and D parameters.

oty L _coms L visse |_sws

Deep-level defect
density [101° cm ™3]

Als™1]

D [em3s™1]

1.95e6
8.42e-14

For good growth, TAAR ~ 10% of R,,. TAAR
would be same order as intrinsic Auger if deep-
level defect density increased to ~1016 cm 3.

At high n, SRH follows the same order as TAAR
and cannot be ignored, especially in green LEDs.

TAAR is not a major contributor to efficiency
loss in these samples

3.46e6

[1]

1.50

6.65e6

1.49e-13 2.87e-13

=
S

(=]
£

A coefficient (s™)

lOm_(a) ' '—__110.10

o| sample I
sample [| = eee--
sample [[| =——— ===-

Aterm: D term:

D coefficient (cm’s™)

- K

10" 10"
Carrier density (cm '2)

[1] Liu, W., et al. Applied Physics Letters 116.22 (2020): 222106.

Xuefeng Li
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Orientation Series: Blue LEDs

I,
W1

Carrier recombination lifetime (rate) influenced by orientation (f345 «< 1/7):

Polar (0001) Semipolar (2021) Nonpolar (1010)
20 — —
(0001) 100 A/cm? (20271) 100 A/cm? (1010) 100 A/cm?
1.0
0.0 S
< -1.0 =
> ¢ —
3 ’ «—FE,, 10001] ’ €—E,, [2021]—> E. = B
820 | " —>E, > —> E, pz = [1010] —>
E o - > Ep;
-3.0 3@; —
XVL _y |
-4.0 A4
5.0 n-GaN InGaN p-GaN n-GaN InGaN p-GaN n-GaN InGaN p-GaN
500 505 510 515 520 525 500 510 515 520 525 500 510 515 520 525
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Goal: Investigate the effects of orientation on modulation bandwidth

D. Feezell, J. Disp. Technol. 9, 190-198 (2013)
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Orientation Dependence of Bandwidth NI
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 Compared 450 nm LEDs on polar, semipolar (2021), and nonpolar orientations

* Bandwidth trends follow wavefunction overlap trends

* deB—nonpolar > f3dB—semipolar > deB—polar

M. Monavarian, et al., Appl. Phys. Lett. 112, 041104 (2018)
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Orientation Dependence of Bandwidth
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* Nonpolar and semipolar bandwidth is significantly higher at low current densities

 Polar LED experiences screening of the internal electric fields above 500 A/cm?

e Large bandwidth at low current density important to maximize efficiency

M. Monavarian, et al., Appl. Phys. Lett. 112, 041104 (2018)

Daniel Feezell

29



Differential Carrier Lifetime and Carrier Density
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e Carrier density for a given current density always lower on nonpolar and semipolar

M. Monavarian, et al., Appl. Phys. Lett. 112, 041104 (2018)
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Effect of Wave Function Overlap I{J}I

* Recombination rate (An + Bn? + Cn3) is roughly proportional to the square of the wave
function overlap for a given carrier density (n)

* Overlap is higher in nonpolar/semipolar, increasing the recombination rate and bandwidth
* With higher recombination coefficients (4, B, C), n is lower for a given |

* Lower n at a given | reduces the impact of the Cn> term

A,B,C o [(FF)P " ot | nonpoar semipolar

[(Fy|F)|? J 4

] < An + Bn? + Cn’ AB,C 0 "
Bn? n @ given J T N2

Ny ] @ givenn J T

:An+Bn2 + Cn3
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Nonpolar LED with 1.5 GHz Modulation Bandwidth I}
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Similar modulation bandwidth to highest reported GaAs-based LED

A. Rashidi, et al., Elect. Dev. Lett. (2018)
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(a)

GaN template
Sapphire

AlGaN
underlayer o

Potential Advantages:

Bottom-up selective-area growth

4 X 2.5-nm-thick QWs

AlGaN underlayer and electron blocking layer
Peak IQE ~ 62%

60 um x 60 um area of NWs

* Polarization-free active regions

* Large effective active region area

* Elimination of threading dislocations

* Strain relaxed structures possible

* Monolithic integration of multi-color LEDs

M. Nami, et al., Sci. Reports 8,501 (2018)
M. Nami, et al., Nanotechnology 28 , 025202 (2017)
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Frequency Response and Lifetimes
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M. Nami, et al., ACS Photonics 6, 1618 (2019)
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Comparison of Bandwidth for Various Orientations

3dB bandwidth (MHZz)
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c-plane bandwidth is fundamentally lower due to internal electric fields (QCSE)

M. Monavarian, et al., Appl. Phys. Lett. 112, 041104 (2018)

Daniel Feezell

35



I GV
Conclusions Y1

* Small-signal electroluminescence measurements used to study carrier dynamics
in polar, semipolar, and nonpolar LEDs under real operating conditions

* Analysis of an LED wavelength series on commercial epitaxy shows decrease in
|IQE for longer wavelength is mostly from the increase of corresponding n at a
given J

* Analysis of a green LED growth quality series on commercial epitaxy shows TAAR
is not @ major contributor to efficiency loss

* Nonpolar and semipolar orientations are fundamentally faster than c-plane, as
expected from increased wave function overlap

e Core-shell nanowire LEDs showed >1 GHz 3dB bandwidth
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