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We report neutron-diffraction results on single-crystal CaMn,Ps containing corrugated Mn hon-
eycomb layers and determine its ground-state magnetic structure. The diffraction patterns consist
of prominent (1/6, 1/6, L) reciprocal lattice unit (r.l.u.; L = integer) magnetic Bragg reflections,
whose temperature-dependent intensities are consistent with a first-order antiferromagnetic phase
transition at the Néel temperature T = 70(1) K. Our analysis of the diffraction patterns reveals
an in-plane 6 x 6 magnetic unit cell with ordered spins that in the principal-axis directions rotate
by 60-degree steps between nearest neighbors on each sublattice that forms the honeycomb struc-
ture, consistent with the Pac magnetic space group. We find that a few other magnetic subgroup
symmetries (Pa2/c, Pc2/m, Psl, Pc2, Pem, Ps1) of the paramagnetic P3m11’ crystal symmetry
are consistent with the observed diffraction pattern. We relate our findings to frustrated Ji-Js-
J3 Heisenberg honeycomb antiferromagnets with single-ion anisotropy and the emergence of Potts

nematicity.

INTRODUCTION

Magnetic materials with local moments arranged on a
honeycomb lattice are known to exhibit a variety of com-
plex magnetic states in the presence of frustrated spin ex-
change interactions. Recent examples are the honeycomb
iridates [1, 2], the nickelate NigMozOg [3], transition
metal oxides InCuy/3Vy /303 [4, 5], BisMnyO12(NO3) [6]
and verdazyl-based salts [7]. Often the complex behav-
ior of these systems can be rationalized using quantum
spin models such as the Kitaev-Heisenberg honeycomb
model [8-11] or the Ji-Jo-J3 Heisenberg honeycomb
model [12-23]. The former exhibits various complex
magnetically-ordered phases and a quantum-spin-liquid
ground state when Kitaev interactions are dominant and
the local moments have low spin S = 1/2,1,3/2 [8, 24,
25]. The latter hosts different collinear and non-collinear
magnetic states, including complex spirals, already in
the classical limit, and its phase diagram also includes
magnetically-disordered regions with intriguing valence-
bond crystal correlations for S = 1/2 [16]. Specifically,
for J3 = 0, the classical J;-J; Heisenberg honeycomb an-
tiferromagnet exhibits a Néel-ordered ground state for
Jy < Ji/6 and degenerate single-Q spiral states for
Jy > J1/6 [12-15]. Nonzero J3 or, alternatively, quantum
and thermal fluctuations [15] lift this continuous degen-
eracy and select six symmetry-related wavevectors out of
the degenerate manifold.

Another rich experimental platform for frustrated
honeycomb magnets consist of the trigonal com-
pounds CaMnsPy, CaMnsAsy, CaMnsShe, CaMnsBis,
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SrMnyPo, SrMngAss, SrMnyAs, and with space group
P3ml (no. 164) [26-32] and associated point group
D3y.  As shown in Fig. 1, these systems contain the
transition-metal element Mn in a corrugated honeycomb
structure, which is formed by two adjacent trigonal lay-
ers (or sublattices) that are stacked in an A-B type fash-
ion. The Mn atoms occupy Wyckhoff positions 2d with
site symmetry 3m. There are two Mn atoms per unit
cell, which form the A, B sublattice sites of the honey-
comb lattice. The transition-metal bilayer magnetic mo-
ments have no intervening binding atoms, as shown in
Fig. 1(a), so that the major magnetic coupling between
nearest neighbors is likely a direct Mn-Mn coupling, and
couplings among next-nearest neighbors (NNN) are likely
due to Mn-Pn-Mn superexchange. Neutron diffraction
measurements of Mn compounds with Pn = As, Sb, or
Bi have revealed a simple Néel-type magnetic structure
in SrMnyAsy, CaMnsShe, and CaMnyBis [28, 30, 32, 33].
This Néel magnetic structure is shown schematically in
Fig. 1(b). For CaMnaSbs, it has been suggested that
the moments are slightly canted towards the c-axis [31].
These observations are consistent with a dominant NN
interaction J; > Js for these materials.

It has recently been concluded that the superexchange
within an Mn-Pn-Mn moiety increases as the atomic
number of Pn is reduced, thereby increasing the mag-
netic frustration in the system. Thus, NNN are expected
to be stronger for Pn = P than for Pn = Bi, for simi-
lar bond configurations [34]. We thus expect CaMnyPs
to experience a sizable NNN coupling J5 and thus sub-
stantial magnetic frustration, which is one of the main
motivations for this work.

Here, we report neutron-diffraction results on single-
crystals of CaMnyPs, and determine its ground-state
magnetic structure. Recent 3'P NMR measurements
[26] indicate that the magnetic structure of CaMnyPs
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FIG. 1. (a) Chemical structure of AMn,Pny (A = Sr, Ca;
Pn = P, As, Sb, Bi) showing the Mn trigonal bilayer with-
out intervening elements. (b) Projection of the two trigonal
Mn sublattices onto the ab-plane, shown with red and green
shades. The A and B layers are stacked with two atoms per
unit cell (the dotted rhombus shows the basal unit cell). The
Mn bilayer forms a corrugated honeycomb lattice, where the
nearest-neighbor (NN) interactions (J1) and the next-nearest-
neighbor (NNN) interactions (J2) are indicated. The mag-
netic structure shown is typical for the AMnaPns compounds
with Pn = As, Sb, Bi, for which the first-neighbor interac-
tions are dominant and antiferromagnetic: Ji1 > J2,Js. In
contrast, here we report that CaMnsP2 exhibits a different
magnetic structure that emerges mainly due to frustrated cou-
plings J1/2 &~ Jo. (Although implied in the figure, SrMn2Bis
has not yet been synthesized or discussed in the literature.)

is commensurate with the lattice. This is in con-
trast to SrMnsPs that was found to experience an in-
commensurate magnetic order [26]. These observations
are consistent with neutron-diffraction measurements of
SrMnyPs that indicate a complex and so far undeter-
mined magnetic structure [35]. Interestingly, CaMnyPs
and SrMnyP5 have recently been reported to undergo an
unusual first-order antiferromagnetic (AFM) transition
at Ty = 70(3) and 53(1) K, respectively [26]. By con-
trast, the isostructural CaMnsAsy and SrMnsAss com-
pounds undergo second-order AFM transitions [27]. Be-
low, we relate the observed first-order magnetic transi-
tion in CaMnyPs with its more complex spiral magnetic
order that breaks threefold rotation symmetry and pro-
motes the emergence of a Potts-nematic order parame-
ter [15, 36, 37].

We note that AMnyPngs (A = Ca or Sr and Pn =
P, As, Sb) compounds display strong two-dimensional
(2D) magnetic fluctuations as manifested in magnetic
susceptibility () measurements that do not show Curie-
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FIG. 2. (a) Diffraction patterns along (H, H,1) at T' = 6 and
100 K showing the emergence of a prominent peak at H = 1/6
r.l.u. (b) The difference between the (H, H, 1) patterns at 6 K
and 100 K showing that the observed magnetic Bragg reflec-
tions in this direction are (n,7n,1) and (1 —n,1 —n,1), where
n = 1/6. Al peaks (originating from the sample holder) in
the difference pattern show both positive and negative sig-
nals due to the thermal shift in peak positions. The peaks
with asterisks originate from a twin of CaMnyP2 oriented in
a different direction.

Weiss behavior at temperatures much higher than Ty
[26, 30-33]. In addition, the x(T') with applied magnetic
field along the ab-plane for all these compounds hardly
shows any anomaly at Txn. This 2D behavior is also
manifested in the magnetic order parameter in neutron-
diffraction measurements of SrMngAsy [30]. These char-
acteristics indicate that the dominant in-plane NN cou-
pling J; is AFM and is likely much larger than the in-
terlayer couplings between honeycomb planes, leading to
sizable 2D AFM correlations above Tx. Interestingly,
inelastic neutron-scattering measurements that were an-
alyzed using spin-wave theory for the J; — Jo Heisenberg
model determined a ratio of J2/J; &= 1/6 for CaMnaSba.
This places the system in proximity to a tricritical point
that separates a Néel ordered phase and two different
spiral magnetic phases [14, 18, 38].
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FIG. 3. Difference between scans at low and high tempera-
ture, as indicated, along (a) (—1/6, —1/6, L) showing peaks at
integer values of L between —3 and 3 (except for L = 0); (b)
(1/6,1/6, L) showing peaks at the integer values of L between
1 and 3 (scans with negative L were not accessible due to the
experimental setup); and (c) (H, 0,0) showing a weak peak at
the nuclear (1,0, 0) position and possibly another at (2,0, 0).
Signals from the Al sample holder are marked on the figures.
As indicated in (c), a minute inclusion of ferromagnetic MnP
crystals gives rise to weak peaks.

EXPERIMENTAL RESULTS AND ANALYSIS
Experimental results

Diffraction scans along the (H, H,1) direction at T' = 6
and 100 K in Fig. 2(a) show the emergence of a promi-
nent peak at H = 1/6 rlu. (reciprocal lattice units)
at low temperatures. As shown in Fig. 2(b), the differ-
ence between these scans at 6 and 100 K displays mag-
netic Bragg peaks at (n,7,1) and (1 —n,1—1,1), where
n =1/6. Figure 3(a) shows the difference between scans
at 6 and 100 K along (-7, —n, L), indicating magnetic
Bragg peaks at L = —3,-2,—1,1,2, and 3. Figure 3(b)
shows similar observations of magnetic Bragg peaks at L
=1, 2, and 3 in the direction of (n,7n,L). Scans along
(H, H,0) do not show any newly-emerging peaks at low
temperatures (not shown). Figure 3(c) shows the differ-
ence of scans along (H,0,0) at 6 and 100 K with a weak
peak at the nuclear (1,0,0) reflection and possibly an-
other very weak one at (2,0,0) [39]. The other signals
that have a negative intensity originate from the Al sam-
ple holder. Also, magnetic peaks from a small amount of
MnP in the crystal are present in the scan, as indicated.
The temperature dependence of (1,0,0) does not exhibit
a transition at Ty. This implies that that splitting is not
significantly related to the observed magnetic structure.

T T
1200 ==L 2L ¢ J
T LT =1 —
IT~~..7
-~
2 *&
1000} L ¢ Iy -
T L LT
[ v
3 L
: 200
< I ) ]
S 800 b =% |
z ~150 I T-100KJ]
& g |
g 600f< ]
= 2100 1
— 17}
£ |
400F= 50 ! ]
1/ \
i ' e, — { ‘
%16 0165 0.7 0175 018 =
200 Hin[HH 1] (tlu.) Pelfwp I
0 20 40 60 80 100

T (K)

FIG. 4. Integrated intensity as a function of temperature T’
of the (1/6,1/6,1) magnetic peak showing a sharp transition
at T = 70 K, consistent with specific-heat measurements in
Ref. [26], which reveal a first-order transition at Tn = 70 K.
This indicates that the first-order transition in the heat ca-
pacity is associated with the magnetic transition. The dashed
line is a guide to the eye. The data near Ty = 70 K also in-
dicate a first-order magnetic transition. The inset shows the
(1/6,1/6,1) peak at T' = 5 and 100 K. The weak minimum
below Tn at =~ 50 K does not appear in the specific-heat mea-
surements and is currently not understood.



The temperature dependence of the integrated inten-
sity of the (n,m7,1) reflections in Fig. 4 shows a very
sharp transition at 7' = 70(1) K that coincides with a
previous report indicating a strong first-order magnetic
phase transition at this temperature [26]. The fact that
the peak intensities of the (£n, +n, L) reflections fall off
for larger L, as expected from the magnetic form fac-
tor of Mn2*, is further evidence that these newly ob-
served Bragg peaks are magnetic in origin. Below, we
propose various related magnetic structures that are con-
sistent with the experimental observations assuming the
magnetic propagation vector is 7 = (n,7,0) rlu. with

n=1/6.

Analysis of experimental results

The observed (n,7,0) propagation vector indicates
that the magnetic structure consists of a 6 x 6 nuclear
basal unit cell. Figure 5(a) is a compilation of the mag-
netic reflections observed in the (H, H, L) plane, where
the sizes of the circles (i.e., peaks) approximate the ob-
served intensities. A systematic analysis reveals that
there are seven magnetic space groups (MSGs) that are
consistent with the observed magnetic-diffraction pat-
terns. These are Pa2/c, Pc2/m, Pac, Psl, Pc2, Pcm,
and Pgl (See Fig. 6). The first two have higher sym-
metry and Pac, Pc2 are descendants of P42/c, while
Ps1, Pc2, and Pcm are descendants of Po2/m, and the
group Ps1 has the lowest symmetry (see Fig. 3 and the
Supplemental Material (SM) [39] for details).

We now describe an intuitive approach to the mag-
netic model structure (corresponding to P4c), which is
constructed by creating a 6 X 6 in-plane nuclear unit
cell that spans the corrugated honeycomb structure, i.e.,
the bilayer magnetic structure stacked along the c-axis
[Fig. 5(b)]. Throughout, the red sites correspond to one
trigonal magnetic sublattice and the green sites to the
other magnetic sublattice. A magnetic model is con-
structed by assigning a moment along a high symme-
try direction at an origin, for instance, at the lower-left
corner, and then successively rotating the spin on the
nearest neighbors on the same sublattice clockwise by
60°. The other sublattice is constructed similarly and
stacked with anti-parallel spins with respect to the first
sublattice. See more details on the construction of the
magnetic structure in the SM [39]. Note that along the
[1,0,0] and [0, 1,0] directions, the magnetic structure of
each sublattice is a cycloid with a 60° turn angle. Thus,
for each sublattice, the overall structure is a cycloid with
propagation vector (n,7,0), with n = 1/6. Inspection of
Figure 5b shows that each hexagon consists of two NN
antiparallel pairs and one antiparallel NNN pair, such
that the net magnetic moment in each hexagon is zero.
Also, note that in this model all NN spins along the long
diagonal are antiparallel.

To model the intensities of the magnetic peaks, I, we

use the following equation:

2

k
I=Clf@QP D e ¥mQx (myx Q)| , (1)

Jj=1

where C' is a scale factor, Q is the scattering vector, r;
and m; are the position of Mn moment and the unit
vector of the magnetic moment, respectively. f(Q) is
the magnetic form factor of Mn?*. Using Eq. (1), the
calculated magnetic intensities shown in Fig. 5(c) are in
good agreement with the experimental results shown in
Fig. 5(a).

The intensity calculations [Eq. (1)] allow us to estimate
the average ordered magnetic moment, (gS), where g = 2
is the spectroscopic-splitting factor, S is the spin quan-
tum number, and pp is the Bohr magneton. By compar-
ing nuclear-peak intensities and their structure factors
to the observed magnetic-peak intensities, we estimate
(9S)up = 4.2(5)us, typical for Mn?* moments.

THEORETICAL DISCUSSION
Modeling in terms of a Heisenberg Hamiltonian

We interpret the experimental results in the framework
of a two-dimensional J;-J5-J3 Heisenberg model includ-
ing local anisotropy terms on the honeycomb lattice. We
find that this model adequately describes the moments
on the puckered-honeycomb Mn?T ions in a single layer
of CaMnyP5. Since moments in different layers order fer-
romagnetically in the three-dimensional crystal, we focus
on a single layer in the following. Our model includes NN
interactions Ji, NNN J5, and third neighbor interactions
J3. We also include single-ion anisotropies D, and Dy,
that force the moments to lie within the lattice xy plane
(D, > 0) and introduce a sixfold in-plane anisotropy
(Dgy), in agreement with the crystalline (point group 3m
or Dsg) and time-reversal symmetries. Since the orbital
moment of Mn?* vanishes according to Hund’s rules, the
sixfold anisotropy D, in CaMnyP; is expected to be
small. We model the spins classically, which is well justi-
fied given our experimental observation that (gS) ~ 4.3.
The Hamiltonian reads

H=J1 > Su:Sm+J2 > Su-Sm

(n,m)1 (n,m)2
+J5 > Su-Sm+ DY (S5)?
(n,m)s n
4 Day > [(S‘” +1i8¥)0 + c.c.} (2)
2 " n n )
where S; are vectors normalized to |S;| = S, and n,m

denote lattice sites of the honeycomb lattice. The sum-
mation over (n,m), runs over each v-th-neighbor bond
once. The honeycomb lattice is generated by the tri-
angular Bravais lattice vectors R; = i1a; + i2as with
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FIG. 5. (a) A compilation of the magnetic reflections observed in the (H, H, L) planes, where the sizes of the spheres roughly
reflect observed intensities. The regions in which the neutron-diffraction experiment was performed are shown by solid black
lines. (b) Pac magnetic model structures [40]. The model structures are constructed by creating a 6 x 6 in-plane unit cell
consisting of the corrugated honeycomb structure. The sites in green correspond to one trigonal layer (magnetic sublattice) and
those in red to the other sublattice. More details on the construction of the magnetic structure are provided in the SM [39].
(c) Color map of the calculated structure factor based on the magnetic structure shown in (b), which is consistent with the

experimental results shown in (a).

P3ml1l'
0

P2l P2lc P2 /m P2/m
1 3

Pe P2, Pl PI P2 Pam

\\Pl/"’/

11

FIG. 6. Allowed magnetic space groups under the crystallo-
graphic space group P3m11’. Magnetic space groups shaded
in green are the ones that are consistent with our experimen-
tally observed diffraction patterns [40].

1,92 € Z, a; = (1,0) and ay = (—%, @) Here, we set
the Bravais lattice constant a;, = 1. The basis sites are
54 = (0,0) and 65 = (0,1/+/3) such that the compos-
ite index in Eq. (2) reads n = (4, «) with & = A, B. The
reciprocal-lattice vectors are given by Gy = (2, %) and
G2 = (0, %), and the first Brillouin zone is depicted in
Fig. 7(a). To connect to our experimental notation, we
write a vector in momentum space as k = HG; + KGo
such that the K-point is located at (H, K) = (3, %) (cor-
ners of the BZ) and one of the M-points is located at
(H,K) = (0, 3) (at the center of the BZ edges).

Next, we analyze the classical ground states of Eq. (2)
assuming coplanar magnetic order. The ground state
phase diagram of the Ji-Js-J3 Heisenberg model was

derived in Refs. [12-14]. A coplanar ground state is in

agreement with our experimental data and findings in the
literature for the Jy-Jo-J3 model [12-14]. It can always
be favored by a sufficiently-large single-ion anisotropy
D,. In the following we assume D, > 0, correspond-
ing to easy-plane anisotropy, forcing the spins to lie in
the ab plane. Following Ref. [15], we parameterize the
coplanar spin configuration on the two sublattices as

Sa(R;) = S(sin(Q- R;),cos(Q - R;)) (3a)
Sp(R;) = —S(sin(Q - R; + ¢),cos(Q-R; + ¢)) . (3b)

Here, ¢ + m describes the phase difference between the
spins on the A and B sublattices in the same unit cell
R;. Note that Eq. (3b) contains an explicit minus sign
such that ¢ = 0 corresponds to an antiferromagnetic ar-
rangement of A and B spins in the same unit cell. Using
this spin parametrization, the classical energy per spin
(N = number of spins) reads

E Ji

N~ [cos(Qb — @) +cos(Qq +Qp — @) — COS(@}

+ Jy [COS(QQ) + cos(Qp) + cos(Qq + Qb)]

D [cos(@u + 21— 0) + cos(Qu)cos(6)] . (4)

Here, ), = Q - a; and Q, = Q - as such that Q =
HG1+KGy = 4Gy + £ Gy. We can analytically find
the classical ground state energy from the conditions
OE _0E _0E _
0Qa 0Qy 09
Let us first discuss the case of J3 = Dy, = 0. Then, the

ground state exhibits a continuous degeneracy of spiral
states with wavevectors Q = (Qq, Qp) that fulfill [15]

2
c0s(Qa) + cos(Qp) + cos(Qq + Qp) = ;(4{}122 _ ) . (6)

0. (5)
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FIG. 7. (a) Manifold of wavevectors (kz, ky) of spiral magnetic ground-states in the J1-J2-J3 Heisenberg model for J>/J1 = 0.25.
Different colors correspond to different values of Js: J3 = 0 (yellow), AFM J3/J1 = 0.05 (red hexagons) and FM J3/J1 = —0.05
(blue dots). Sixfold anisotropy Dgy favors wavevectors shown as purple squares (as well as symmetry related ones). (b) Upper
panel shows sixfold anisotropy energy Ep,, of single-Q magnetic spirals with H = K along a path from the origin to K
(shown in inset). Anisotropy favors spirals with H = K = 0 (Néel order), H = K = ¢, and H = K = . Lower panel shows
Ep,, of single-Q magnetic spirals along yellow circle in (a) as a function of polar angle. Anisotropy favors H = K = % and
symmetry-related wavevectors obtained by 60° rotations. (c) Magnetic ground-state phase diagram of Ji-J2-D5, Heisenberg
model as a function of J2 and D,y for fixed J; = 1 and J3 = 0. The solid and dashed lines denote critical Dgry“ that favor

commensurate states with (H,K) = (0,0) (blue), (H,K) = (4, %) (vellow) and (H,K) = (1/3,1/3) (red) over spirals with
other wavevectors. The experimentally observed (H, K) = (g, é) spiral phase extends from 0.2 < J>/J; < 0.5 and the critical
value of Dy, exhibits a minimum of zero at J»/J1 = 0.25. (d) Critical value of the sixfold anisotropy Dg,® as a function of
Js required to favor a commensurate spirals with (H, K) = (£, 1) (solid) or (H,K) = (0,0) (dashed). Nonzero Js moves the

(5:8)

otonously decreasmg dashed lines. Dgy* for (H,K) =
and increases otherwise (see Jy/J; = 0,1/4).

ground state wavevector ) closer to the origin, resulting in mono
(solid) decreases if J3 moves Q closer to (g, &) (see Jo/J1 = 1/3),

results. In CaMnyPy we find the propagation vector
(H,K) = (%, ¢), which lies along the I'-K direction and
corresponds to one of the degenerate states for Jo/J;
0.25. This regime of large frustration is thus relevant for
CaMnyP5 and will be our focus in the following.

The phase difference ¢ is determined by
sin(@) = 2J; [sin(Qv) + sin(Qa + Qv) (7)

For ¢ < J3/Ji < 3, the manifold of degenerate wavevec-
tors forms a circle around the I' point, as shown in

Fig. 7(a) for Jo/J1 = 0.25. The radius of the circle in-
creases continuously with increasing Jo. For Jy/J; > 0.5,
the degenerate states are located around the K and K’
points, which they approach in the large Jy limit [15].
We refer to the SM for a detailed derivation of these

Nonzero J3 selects a discrete subset of six wavevectors
for the ground state spin configuration. For AFM J3 > 0
these lie along the I'-K (and symmetry related) directions
in the Brillouin zone [see red hexagons in Fig. 7(a)]. In
contrast, for FM Js < 0 these lie along the I'-M direction



for Jo/J1 < 1/2 [see blue dots in Fig. 7(a)] and along
the K-M line for 1/2 < J3/J; < 1 (not shown). The
wavevectors shown in Fig. 7(a) are for AFM J3/J; = 0.05
(red hexagons) and for FM J3/J; = —0.05 (blue circles).
Since AFM J3 favors Néel order, which is described by
(H,K) = (0,0) and ¢ = 0, the red wavevectors move
towards the I' point with increasing AFM Js. In con-
trast, with increasing FM Js3 < 0 (i.e. more negative
values), they move towards the M point. We note that
quantum and thermal fluctuations also select six discrete
wavevectors, which correspond to the ones favored by FM
J3 [15]. We therefore conclude that the experimentally-
observed wavevector (H,K) = (g, #) is consistent with
AFM J; > 0. In contrast, it is not favored by FM J;3
and it is also not selected via an order-by-disorder mech-
anism.

We now analyze the effect of a local sixfold single-ion
anisotropy term whose strength is parametrized by D,
[see Eq. (2)]. As shown in Fig. 7(b), nonzero D, favors a
discrete number of spiral states, which are consistent with
an alignment of spins along one of the six high symme-
try directions on every site. Moving along the direction
H = K in the Brillouin zone, we find that D,, equally
favors Néel order (H = K = 0), the experimentally ob-
served spiral order with H = K = % and a shorter spiral
with wavevector H = K = § (K-point). These three
wavevectors are also highlighted in Fig. 7(a) as purple
squares. In addition to these three wavevectors, D,
also favors symmetry-related wavevectors as shown in the
lower panel of Fig. 7(b), which are obtained by 60° rota-
tions. In Fig. 7(c), we show that a magnetic spiral with
the experimentally-observed wavevector (H,K) = (3, ¢)
is stabilized over a wide region of Jo/J; and Dy,. Specif-
ically, for 0.2 < Jo/J; < 0.5 and J3 = 0, the system will
enter a magnetic spiral with H = K = é at a critical
value of DSt (yellow region). The critical value DZi* is
a convex function of J5/J; and exhibits a minimum of
zero at Jo/Jp = 0.25. For smaller values of Jo/J; < 0.2,
the sixfold anisotropy will drive the system into a Néel-
ordered phase instead (gray region), while for larger val-
ues of Jy/J; > 0.5, it will transition into a magnetic
spiral with H = K = 3 (red region). For nonzero AFM
Js the Néel phase extends until larger values of Jo/J1,

which sets a limit to the size of J5/J; in CaMnaPs.

To study the dependence on J3/J; more systemati-
cally, we plot in Fig. 7(d) the evolution of D' as a
function of AFM J3/.J; for several fixed values of J5/.J;.
We focus on the region of Jy/J; < 0.5, where the Néel-
ordered phase competes with the H = K = % phase.

First, we find that the behavior of D;rylt’l/ 6 (solid lines)
depends on the value of Jy/J;. Since increasing Js3
moves the minimum-energy spiral wavevector towards
the I" point, Js reduces D;Zt’l/ﬁ for Jo/J1 > 1/4, but
increases it for Jo/J; < 1/4. Second, since J; favors the
Néel ordered state over the spiral, we observe that in-
creasing J3 generally reduces the critical value D;’gt’ Neéel
needed to stabilize the Néel phase (dashed lines). The

dashed lines are thus monotonously decreasing as a func-
tion of J3. For a given value of Jo/J1, we thus find that
Dgit-Neel - peut /6 for sufficiently large J3 such that
the sixfold anisotropy drives the system into the Néel
phase. The position of the crossing point between solid
and dashed lines in Fig. 7(d) increases with increasing
Jo/J1, which is a result of the minimum-energy wavevec-
tor lying closer to H = K = % than to the origin [see
Fig. 7(a)].

We conclude from this analysis that when 0.2 <
Ja/J1 < 0.5, the presence of a sixfold anisotropy Dy,
is sufficient to stabilize the H = K = % spiral order
even without a third-neighbor interaction term Js. The
required value of Dy, to drive the system from an incom-
mensurate spiral into the commensurate H = K = % spi-
ral phase vanishes at Jy/J; = 0.25 and remains small in
the vicinity of this point. Regarding the effect of nonzero
Js3, we find that AFM J3 selects a wavevector along the
observed H = K direction while FM J3 selects different
wavevectors that are at 30°-rotated directions in the Bril-
louin zone. An AFM third-neighbor interaction is thus
more consistent with our experimental findings than a
FM one. Since AFM J3 also favors the Néel state, the
minimum-energy spiral wavevector Q moves towards the
origin with increasing J5. For large J»/J; > 0.5, where
the wavevector lies between the (%, 1) and the K point,

6°6

this moves Q closer to (%, ¢) and thus reduces the value
of D, necessary to enter the commensurate H = K = %
spiral phase [see blue line in Fig. 7(d)]. For smaller val-
ues of Jo/Jy, a larger value of Js drives the system into
the Néel phase and can thus be excluded for CaMnyPs.
To summarize, the most likely parameter range describ-
ing CaMnsPy is Jo/J; = 0.25 — 0.4, J3/J; < 0.1 and
Dyy > DSt~ 0—0.1J;.

Emergent Potts-nematic order and first-order phase
transition

The frustration-induced spiral magnetic order that we
observe in CaMnyPs leads to the emergence of a Potts-
nematic order parameter. This composite order parame-
ter is bilinear in the spins and involves their scalar prod-
uct on nearest-neighbor sites:

Y(R) =Sa(R)-Sp(R) +e FS4(R)-Sp(R — ap)
+e 5 S4(R)-Sp(R—a; —a,). (8)

This complex bond order parameter is finite and
translationally invariant in any of the three spiral
magnetic states with (H,K) = {Q1,Q2,Q3z} =
(3, 4),(—%,%),(%,—-%). In Fig. 8, we show the three
degenerate ground states of the Ji-Jy-J3-D,, Heisen-
berg model in the regime where Dy, > Dgy it and
0.2 < Jo/Jy < 0.5 [see Fig. 7(c)]. When placed on the Mn
ions in CaMnyP5, this magnetic structure corresponds to
magnetic space group (MSG) Psl, which is one of the
MSGs that are consistent with experiment (see Fig. 6).



(@) Qi=(H, K)=(1/6, 1/6)

FIG. 8. The panels (a,b,c) show the three degenerate ground
states (H,K) = (+,2),(=%,%),(5,—3) of the Ji-Jo-Dy,
Heisenberg model for D, > 0. In each panel, the bond order
parameter 1(R) is invariant under translations, but different
panels describe different bond orders: the antiparallel nearest-
neighbor spin pair occurs along three different bonds in the
three panels (a-c). The complex argument of 1 is given by
the polar angle of the corresponding wavevector Q; in the
Brillouin zone (see red hexagons in Fig. 7).

The related magnetic structure for D,, < 0, for which
the spin at the origin (yellow circle) is rotated by 7, lies in
the MSG Pgm that is also consistent with the experimen-
tal data. The three panels in Fig. 8 depict the symmetry-
related states with propagation vectors Q; and the insets
show the value of the spatially homogeneous complex
Potts-nematic order parameter, whose argument follows

the direction of the ordering wavevector. It is a general-
ization of the Ising nematic bond order parameter known
to underlie the tetragonal to orthorhombic transition via
magneto-elastic couplings that is observed in tetragonal
iron-based arsenides such as CaFeyAsy [41, 42].

Under a threefold rotation around an A site, the Potts-

. C .
nematic order parameter transforms as 1) —> exp(%)w.
Under a mirror operation m,, that sends x — —z, it

transforms as MCEN 1*. Its finite temperature behav-
ior is thus described by the Landau-Ginzburg free energy
functional of a three-state Potts model [15]. In three di-
mensions this analysis predicts a first-order phase tran-
sition into a state with long-range Potts order due to a
symmetry-allowed third-order term. This is also in agree-
ment with Monte-Carlo simulations [43]. The emergence
of long-range Potts-nematic order can therefore naturally
account for the experimentally-observed first-order mag-
netic phase transition in CaMnsPs. Note that differ-
ent honeycomb layers are ordered ferromagnetically along
the ¢ direction in CaMnyPy, corresponding to an order-
ing wavevector with integer L, where Q = (H,K,L).
Since 1 is a composite magnetic order parameter, it is
strongly intertwined with magnetism, and the discontin-
uous development of long-range Potts order at the first-
order transition can thus uplift the magnetic transition
to occur as a joint first-order transition. The system
then simultaneously develops long-range Potts-nematic
and magnetic order. Such a behavior is known to oc-
cur, for example, in the triangular lattice antiferromagnet
Fe;/3NbSe; [36]. This can also explain why the related
compounds CaMnyPny with Pn = Sb, Bi that exhibit
Néel order, for which such a 3-state Potts-nematic order
is absent, develop magnetic order via a continuous phase
transition.

Since long-range Potts-nematic order breaks the three-
fold rotation symmetry of the lattice, we predict the
emergence of three lattice distortion domains due to a
finite magneto-elastic coupling. The domains are char-
acterized by different values of the Potts-nematic order
parameter v, as shown in Fig. 8. However, the cou-
pling between magnetic and lattice degrees of freedom
is expected to be small in this system, since the orbital
moment of the magnetic ions Mn?" vanishes according
to the Hund’s rules and spin-orbit coupling is therefore
small. This could be the reason why lattice distortion and
crystal symmetry lowering could not be detected in pre-
vious x-ray diffraction studies [26]. An alternative expla-
nation is the emergence of a complex multi-Q magnetic
order that preserves all lattice symmetries. It is worth
noting, however, that Raman scattering studies have re-
ported the appearance of additional peaks when going
from the paramagnetic phase at room temperature to the
magnetic phase at T < T [44]. Further investigations
of the effects of magnetic ordering on the lattice and its
excitations are needed to address these open questions.
We emphasize that magnetic spiral-Q) order with a sin-
gle finite-momentum wavevector breaks threefold rota-
tion symmetry via selection of one of the three symmetry-



equivalent propagation vectors Q;. In the single-Q) spiral
state we thus expect the appearance of three magnetic
domains characterized by different magnetic propagation
vectors in the magnetically ordered state.

CONCLUSIONS

Using neutron-diffraction measurements, we find that
CaMnsPs undergoes a first-order antiferromagnetic tran-
sition at Ty = 70 K into a state with a 6 x 6 times en-
larged magnetic unit cell. The average ordered magnetic
moment is (gS)up = 4.2(5) up. The integrated intensity
of the major (H,K,L) = (g,%,1) magnetic peak ver-
sus temperature shows an abrupt decrease in intensity at
Ty that is a characteristic of a first-order phase transi-
tion. Focusing on the experimentally discovered ground-
state, we interpret these results using a frustrated Ji-
Jo-J3 Heisenberg model with easy-plane anisotropy D,
and a sixfold in-plane anisotropy D, and show that this
propagation wavevector signals the presence of a substan-
tial degree of frustration. We relate the appearance of the
first-order magnetic transition to a composite three-state
Potts-nematic bond order parameter that simultaneously
develops long-range order and drives the magnetic tran-
sition to become first-order. Based on our analysis we
predict the emergence of three symmetry related mag-
netic and lattice distortion domains that deserve further
studies.

METHODS
Crystal Growth

Single crystals of CaMnyPy were grown in Sn flux, as
described previously [26], and the crystal used in this
study is from the same growth batch.

Neutron Diffraction

Single-crystal neutron-diffraction experiments were
performed in zero applied magnetic field using the
TRIAX triple-axis spectrometer at the University of Mis-
souri Research Reactor (MURR). An incident neutron
beam of energy 14.7 meV was directed at the sample us-
ing a pyrolytic-graphite (PG) monochromator. A PG an-
alyzer was used to reduce the background. Shorter neu-
tron wavelengths were removed from the primary-beam
using PG filters placed before the monochromator and in
between the sample and analyzer. Beam divergence was
limited using collimators before the monochromator; be-
tween the monochromator and sample; sample and ana-
lyzer; and analyzer and detector of 60" — 60" — 40" — 40/,
respectively. A 40 mg CaMnyP4 crystal was mounted on
the cold tip of an Advanced Research Systems closed-
cycle refrigerator with a base temperature of approxi-
mately 5 K. The crystal was mounted in the (H,0, L)
and (H,H, L) scattering planes. We measured the lat-
tice parameters to be a = 4.096(1) and ¢ = 6.848(2) A at
base temperature. We also note that our sample consists
of at least two twins that are disoriented with respect to
each other, as indicated in Fig. 2. Our diffraction pat-
terns here and below also show Bragg reflections from
the polycrystalline Al sample holder.
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