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Abstract—Due to the veracity and heterogeneity in network
traffic, detecting anomalous events is challenging. The computa-
tional load on global servers is a significant challenge in terms of
efficiency, accuracy, and scalability. Our primary motivation is to
introduce a robust and scalable framework that enables efficient
network anomaly detection. We address the issue of scalability
and efficiency for network anomaly detection by leveraging
federated learning, in which multiple participants train a global
model jointly. Unlike centralized training architectures, federated
learning does not require participants to upload their training
data to the server, preventing attackers from exploiting the train-
ing data. Moreover, most prior works have focused on traditional
centralized machine learning, making federated machine learning
under-explored in network anomaly detection. Therefore, we pro-
pose a deep neural network framework that could work on low to
mid-end devices detecting network anomalies while checking if a
request from a specific IP address is malicious or not. Compared
to multiple traditional centralized machine learning models, the
deep neural federated model reduces training time overhead.
The proposed method performs better than baseline machine
learning techniques on the UNSW-NB15 data set as measured
by experiments conducted with an accuracy of 97.21% and a
faster computation time.

Index Terms—Federated Learning, Artificial Intelligence, Ma-
chine Learning, Deep Learning, Networks, Anomaly Detection,
Security Attacks

I. INTRODUCTION

The internet is turning out to be an integral part of every-
one’s lives as more and more devices are being connected
to serve societal needs. Our work is motivated by two ma-
jor observations. Firstly, one drawback of connecting to the
network is the threat of network attacks that can compromise
users’ private information, leading to data loss and adversely
affecting productivity. There are several traditional security
mechanisms to defend against these attacks, such as firewalls,
virtual private networks (VPNs), demilitarized zones (DMZs),
and vulnerability scanners. One way to prevent these attacks
is early detection and prevention. However, these kinds of
architecture do not scale very well because of their centralized
nature. Secondly, we observe from heuristics and data set
distributions that the majority of the requests made to a server
are innocuous. Therefore, almost all server request data sets
are highly imbalanced, weighted highly towards the harmless
requests [1], [2].
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To solve these issues, we propose a federated deep learning
model that keeps track of session requests from different
devices by using their IP addresses and port numbers to
determine whether the request seems anomalous. Network
anomaly detection using machine learning (ML) helps by
analyzing different features of the request to verify if a request
coming from a device is anomalous or not [3]. Further, as we
use a federated approach, we have no single point of failure,
making our approach scalable and more robust.

With its scalability, federated learning (FL) helps tackle
this problem. Since FL is not centralized, it removes depen-
dence on a central server that plagues the scalability of large
networks’ cores. The workload is distributed by delegating
the learning to edge servers from the singleton global server.
Besides having the benefit of higher efficiency in the system,
the ensemble of the independent edge servers also contributes
to higher accuracy. We demonstrate both benefits in our results
in Sec. IV.

Our FL architecture uses a hierarchical approach in which
edge servers are added between clients and global servers
to reduce the workload on the global server and the failure
rates. In FL, only models with trainable weights parameters
can be aggregated without a drop in their performance. For
our network anomaly detection experiments, we propose using
artificial neural networks (ANN) as it not only performs well in
comparison to other models but is also an excellent candidate
to be used in the federated learning environment due to their
flexible nature [4].

The contributions of this paper can be summarized as
follows.

e We present a hierarchical federated learning architecture
(HFL) to increase the scalability of FL for network
anomaly detection.

e We propose an HFL framework for network anomaly
detection on the UNSW-NB15 dataset, which is the first
on this dataset in literature to the best of our knowledge.
[1].

e« We conduct and report comprehensive experiments to
show the performance improvements of our federated
learning model over the traditional centralized models
that were trained individually on local data of clients.
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The rest of this paper is organized as follows: Section 2
introduces background knowledge about federated learning
and network anomaly detection. Section 3 details our proposed
architecture for network anomaly detection using HFL. Exper-
imental data and results are given in Section 4. In Section 5,
we provide a summary and discuss future works.

II. BACKGROUND

Network anomaly detection using FL is an application
of ML in cybersecurity. This section discusses the concepts
of federated learning, network anomaly detection, and some
current work in these domains.

A. Federated Learning

Presently, the trend of using applications based on client-
server architecture, such as cloud computing and web or
mobile applications, is increasing [4]. Also, with technological
advancement, the use and trust of artificial intelligence (AI)-
based applications are increasing. FL is a valuable technique
for performing Al-based tasks using ML or deep learning (DL)
applications based on client-server architecture [5]. In FL,
ML/DL models are trained in a distributed and collaborative
environment by ensuring the privacy of sensitive data of
clients and the performance of the ML/DL models. In order
to preserve the privacy of sensitive data and the model’s
performance, two types of models are used in federated
learning, including local and global models. The client’s data
is not moved directly from one client’s device to the server
in federated learning. Instead, local models are trained on
each client’s local devices, and only the parameters of models
trained on the client’s devices are sent to a server, where
the parameters of global models are updated using these
parameters from the local models. In this way, not only is the
user’s privacy preserved, but it also causes less overhead on
a server, reducing the computational resources and cost. Due
to additional computational overhead on the global server, we
can only add new devices to a limited scale. Also, vertical
scaling is an expensive thing to do. Most of these issues
are resolved using a hierarchical architecture in a federated
learning environment.

In [6], the researchers used the same data set as ours
and used ANN-based learning in a centralized fashion. The
primary novelty of that work was feature selection. They
achieved accuracy between 88.13 and 90.85%. We show that
our FL model outperforms this accuracy more efficiently and
quickly.

Moreover, FL. methods have been proposed for intrusion
detection in various applications, including large-scale cyber-
physical systems, Wi-Fi networks, and others. Researchers in
[11] adopted a deep neural network to learn the hierarchical
representations of private network data and achieved an accu-
racy of 99.27% for intrusion detection with a focus on edge
nodes and a cloud server. With a suitable dataset, one can get
the best precision for the ML techniques used in FL learning.
The authors in [12] introduced a study on several past methods
applied for intrusion detection using FL learning. The datasets

used had 5,874,010 trainable parameters where they utilized
the framework to achieve better communication-computation
trade-offs in a client-edge-cloud HFL system.

Authors in [13], [14] used an FL framework to train a deep
learning model in IoT heterogeneous systems and reduced
communication overhead by 75-85%. In [15], researchers
proposed an FL framework to optimize user assignment and
allocate resources to provide a scalable production system
based on Tensorflow.

In our HFL, edge servers are added as intermediate servers
between clients and global servers. Edge servers are parameter
servers that add more distribution to the FL architecture.
Multiple clients are connected to a single-edge server based
on availability. The edge server receives the parameters of
local models from clients, performs aggregations, and passes
these parameters to global servers. Due to this computational
distribution, overhead on the global server is reduced. As edge
servers are connected to a relatively smaller number of clients,
edge servers are also more efficient. In case of failure of an
edge server, a client can connect to other edge servers, which
also increases the reliability of our FL architecture.

As discussed in the introduction, this problem is biased in
one class. Therefore, studies have been done in this context
to tackle the class imbalance problem. In [7], the authors
used the same data set as ours and applied oversampling
method (SMOTE) to handle the class imbalance problem, and
used Random Forest (RF) classifier for the classification task
and achieved 95.1% accuracy. Our method not only aims to
outperform this in accuracy but also makes a more robust
model as FL is distributed while addressing the issue of class
imbalance.

B. Network Anomaly Detection

Devices connected to networks are vulnerable to attacks
from other malicious devices. Network anomaly detection
is used to identify requests from such malicious devices as
anomalies considering that the requests from normal devices
will have different characteristics than those from malicious
devices. The idea is to have an early detection and prevention
system that can identify if a request from a device deviates
from the usual trend and deny the request if the algorithm
identifies it as such. In ML, many techniques exist for anomaly
detection based on available data, and classification algorithms
can be used if data is labeled [8]-[10]; however, unsupervised
algorithms such as clustering or autoencoders are used in
the case of unlabeled data [10]. In our experiments, we use
the labeled UNSW-NB15 dataset [1] to verify if a request is
anomalous or not, and we tackle the problem as a classification
task in an HFL environment.

III. PROPOSED APPROACH

Our DL-based ANN model is trained in an HFL envi-
ronment to detect anomalous requests from different devices
on the connected network. In this section, we discuss our
approach in two parts. In the first part, we discuss the structure
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of our HFL environment as well as the architecture of the ANN
model we used for anomaly detection in the second part.

Global Server

Edge Server (N)

Fig. 1. Hierarchical Federated Learning Architecture (in the flow, the “raw
data” is network traffic, whereas the “weights” are learned parameters).

A. Hierarchical Federated Learning Architecture

Our HFL environment has three main components: clients,
edge servers, and a global server. In the following, we discuss
each component briefly. Fig.1 shows the overall architecture
of HFL architecture.

1. Client: The client is a device/machine that owns the data.
Each client’s data does not move directly from one client to
another or even to the edge or global server to preserve privacy.
Each client also has local models (independent copies of the
same DL models at the client level). Every client can connect
to one or multiple edge servers based on availability. The local
model on each client gets trained for one or a few epochs,
and all clients’ updated parameters (trainable weights) of local
models are passed to the connected edge servers. The edge
servers aggregate the parameters received from the clients and
pass them to the global server, where it aggregates all the
parameters from edge servers and updates the global model.
We then evaluate the global model, which is passed back to the
client, where the parameters of the local model are updated.
We can have any number of clients in our architecture. Let
us assume we have ¢ number of clients symbolized as ¢ and
each client has its data X.; and a local model f.;, here X.; €
R"™*9 where n are the number of samples, and d shows the
number of features in each sample. After training f. on m,
epochs on X data we pass updated parameters wy. of local
fe model to the connected edge server e;.

2. Edge server: The edge server is an intermediate between
the client and the global server. The edge server is used to
add another level of distribution in FL to reduce the load of
the global server. The updated weights are passed to the edge
server after a few training epochs on local models on client
devices. On edge servers, those parameters are aggregated
using the selected aggregation function. The aggregation helps
reduce the global server load as it has to aggregate thousands
or millions of clients, but now the load is distributed among
edge servers. We can have any number of edge servers in
our architecture. Assume an edge server e receives parameters
from m connected clients; it will aggregate all those param-

eters by taking the average as given in equation (1) and pass
those aggregated parameters w,; to global server g.

1 &
Wej = — chj (1
my; =

3. Global server: The global server resides where the global
model resides, and all edge servers are connected to the global
server. The parameters of the global model are relayed to all
clients after the performance evaluation of the global model.
Aggregated parameters on each edge server are passed to the
global server, where they are again aggregated based on the
same aggregation function. Let us assume global server g is
connected to k edge servers; the global server will aggregate
all aggregated parameters that it received from edge servers as
wg as shown in equation (2) and will update the parameters
of its global model h.

k
1
Wy = 7= Y Wi @)
i=1

Algorithm 1 HFL Training
Input: training data X, on each client
Procedure:
1: Initiate local and global models
2: Load and preprocess data on local devices
3: for ¢ = 0 to itrs do
4:  get parameters of global models and update local mod-
els on clients
Train local models on clients for e epochs
Find and connect available edge server and pass param-
eters to edge server
Aggregate parameters from all clients on edge server
Pass aggregated parameters to global server
9:  Aggregate parameters from all edge servers and update
parameters of global model
10:  Evaluate performance of global model
11: end for
12: return parameters

Termination condition/epochs in Alg. 1: The number of
epochs will determine how frequently the weights in the neural
network will be updated. In order to increase the generalization
capabilities of the neural network, the training should occur
on an optimal number of epochs.

In general, there is no fixed number of epochs for improving
a model’s performance. The number of epochs is not specif-
ically relevant as long as a desired accuracy or performance
can be achieved. Moreover, the training and validation loss
(i.e., errors) better determine the termination and progress of
training. As long as these losses decrease, learning happens
successfully.

We use ‘early stopping’ to determine when to stop the
training. The early stopping method is used to overcome
overfitting, where the model performs well on the training data
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but not on test data. We pass the validation data into the fit()
method while fitting our model to the training data. The early
stopping technique helps by defining a large number of epochs
to train the model and halts the training once the performance
stops improving on the validation data.

B. Model Architecture

Hidden
Layer 2

Hidden

Fig. 2. Artificial Neural Networks

Our system uses fully-connected ANN as local and global
models. ANN is a powerful model inspired by the human
brain’s architecture. ANNs are widely used for supervised
learning tasks involving network anomaly detection. We train
an ANN on our tabular data. A perceptron is a basic unit in
an ANN that takes the dot product of data/input with a weight
matrix. The weight matrix contains trainable parameters of the
perceptron that learns the basic patterns in data. There can be
multiple hidden layers in an ANN, and each layer may have
multiple perceptrons. After each layer, a non-linear activation
function is used for different non-linearly separable classes. In
our model, we use two hidden layers; in each hidden layer, we
use 256 hidden units (perceptrons). After each hidden layer,
we use ReLLU as an activation function (o). In contrast, at the
output layer of an ANN, we use a sigmoid activation function
that predicts the probabilities of different classes for the given
sample. Fig.2 shows the architecture of the ANN model used
in our experiments. Let us assume a data sample X is passed
to the [** layer of the model here X; € R'*9, where d shows
the number of features in the given sample the model will
work as follows:

T
o =o(w; . X; +by). 3)
IV. EXPERIMENTATION AND EVALUATION

A. Data background

In this research, we used the UNSW-NB15 dataset [1], and
all experiments were conducted with TensorFlow Federated
(TFF) in Google Colab with NVIDIA Tesla P100 and 16 GB
RAM. UNSW-NBI5 is a network intrusion dataset containing
records from raw network packets. The raw network packets
of the UNSW-NB 15 dataset were created by the IXIA
PerfectStorm tool in the Cyber Range Lab of UNSW Canberra,
Australia, for generating a hybrid of real modern normal
activities and synthetic recent attack behaviors. The tcpdump
tool captured 100 GB of the raw traffic (e.g., Pcap files). This
dataset has nine types of attacks: Fuzzers, Analysis, Back-
doors, DoS, Exploits, Generic, Reconnaissance, Shellcode, and

Worms. The Argus and Bro-IDS tools are used, and twelve
algorithms are developed to generate 49 features [1] with the
class label. We used this tabular dataset to detect anomalous
network traffic. The dataset contains 2,540,043 samples, and
the label column is binary, showing an attack/anomaly if a
label is one; otherwise, 0.

1) Preprocessing of our data set: In our experiments, we
dropped the null value columns during the preprocessing stage
for columns containing null values in more than 50% samples.
After that, we ended up with 45 features, excluding the last
four features in [1]. Then we converted the categorical data
into numerical data. We split our data into training and testing
data based on a 90-10 ratio and ended with 2,286,038 training
and 254,005 testing samples. We used all testing data for the
global model evaluation, but we split training data into 4 splits
(as we had four clients, so one split for each client), resulting
in an equal number of samples. In each training split for each
client, we had 571,509 samples, with an 87.5: 12.5 ratio of
positive and negative samples in each split.

B. Performance and evaluation metrics

Performance and evaluation metrics are used to evaluate
the performance of ML models. Mostly in supervised learning
techniques involving network anomaly detection, the model’s
performance is evaluated by comparing the model’s prediction
with the actual ground truth. The evaluation metrics for our
experiments include accuracy, precision, recall, and F1-Score.

Precision represents how precise/accurate each model is
out of those data points that are predicted as anomalous and
how many of them are actually anomalous. A high precision
(seen in our deep neural network model) is a good measure
considering an unbalanced data set and is robust against false
positives. (False positives occur when a model mispredicts the
positive outcome. An incorrectly predicted negative class is
referred to as a false negative). The recall represents how many
of the actual network anomalies the models captured through
predicting it as anomalous. Fl-score is a balance of both
precision and recall, given as F'1 score = 2 x %‘
Thus, it ensures that high precision or recall alone cannot bias
the metric. Finally, accuracy is the simple mean of correctness
derived from the difference in predictions from the labeled
ground truth data.
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Fig. 3. Accuracy of ML techniques (network anomaly detection)
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C. Performance evaluation

This sub-section discusses the performance evaluation re-
sults on different models and experimental settings. Here we
can see that the performance of local models improves when
they are trained in an HFL environment. In Fig.3, we have
shown that the ANN model trained in HFL has the best
performance with an accuracy of 97.21% and a training time of
1,500 seconds (please see Fig.5). Even though the performance
of ANN trained in a traditional centralized ML environment
came close, it took longer to train under the same conditions.
Support vector machine (SVM) and random forests models
had accuracies of 90.01% and 89.01%, respectively, in the
centralized ML approaches. Furthermore, Table I shows dif-
ferent experiments’ evaluation scores for accuracy, precision,
recall, and Fl-scores. An illustrative comparison is shown in
Fig. 4.

100

Accuracy
E=®W Precision
B2 Recall

Centralized SVM Centralized RF Centralized ANN Global HFL (ANN)

Fig. 4. ML algorithms performance measures for UNSW-NB15 dataset.

Centralized SYM  Centralized RF  Centralized ANN Global HFL (ANN)

Fig. 5. Training time cost of ML algorithms

D. Experimental results

This section discusses other experiments we performed to
develop an efficient and accurate network anomaly detection
algorithm. In this work, we performed the following types of
experiments:

1. Experiments of model selection:

We used all the data, including training and testing splits
of the data set, to select the suitable ML model. For this
purpose, we compared the performance of SVM, Random
Forest, and ANN on the test data. Table I shows that the
ANNs performed well compared to SVM and Random Forest

in these experiments; that is why we used ANNs in further
experiments. It further reinforces the higher accuracy gains in
HFL over individual clients.

2. Network anomaly detection on individual clients:

In these experiments, we divided our data set into 4 parts
with the same positive and negative sample ratio. These
splits of the data set have different distributions of different
types of attacks. We then trained ANN models for each data
split separately and evaluated the performance using selected
evaluation metrics. In Table I, we can see that the performance
of different individual models trained with different splits of
data varies (for example, on client/split 1, accuracy is about
90% whereas, on client 3, it is about 91%). We can also see
that the overall performance of individually trained models is
inferior to those of the same data splits when models were
trained in the FL environment. From the learning curves in
Fig.6, we can see that initially, the learning of all models was
slow (e.g., iterations 1 through 5), but after several iterations
(please see Fig.6), it speeds up as global models start to
learn patterns learned by the local models from local data.

TABLE I
PERFORMANCE EVALUATION
Experiment Accuracy | Precision | Recall | FI Score
Client 1 (Individual) 90.12 91.89 91.42 | 91.65
Client 1 (HFL) 96.41 98.46 97.65 | 98.05
Client 2 (Individual) 90.98 91.63 92.03 | 91.82
Client 2 (HFL) 96.39 98.5 97.82 | 98.15
Client 3 (Individual) 91.01 91.58 92.07 | 91.82
Client 3 (HFL) 96.58 98.58 97.79 | 98.18
Client 4 (Individual) 90.92 92.03 91.51 91.76
Client 4 (HFL) 96.42 98.57 97.8 98.18
Centralized SVM 90.01 89.10 88.19 | 90.28
Centralized RF 89.01 87.21 88.32 | 89.11
Centralized ANN 92.01 90.10 90.40 | 92.15
Global HFL (ANN) (ours) | 97.21 98.09 97.18 | 97.63
TABLE II
PERFORMANCE EVALUATION

Experiment Accuracy | Precision | Recall | F1 Score
4 Clients / 4 Edge Servers 96.02 98.12 97.32 97.71
6 Clients / 3 Edge Servers 96.19 98.25 97.52 97.88
10 Clients / 3 Edge Servers | 96.39 98.53 97.81 98.15
10 Clients / 4 Edge Servers | 96.37 98.49 97.82 98.14
10 Clients / 5 Edge Servers | 97.38 98.51 97.81 98.15

3. Network anomaly detection in FL environment:

In these experiments, we explored the effect on the perfor-
mance of the network anomaly detection models if we increase
or decrease the number of clients. We experimented using 4,
6, and 10 clients, keeping the count of edge servers constant
(3), and then we changed the number of edge servers to 4
and 5, keeping the number of clients constant (10). In these
experiments, we first created 10 splits of the dataset, and when
we used only s number of splits for experiments having the
same number of clients. The results show that the edge servers
increase the federated learning architectures’ scalability while
retaining the model’s performance in the system.
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Fig. 6. Learning curve of the local and global models in 50 iterations.

Notably, aggregations are done first on edge servers before
passing them to the global server; this reduces the load on the
global server and makes communication faster. In literature,
trade-offs have been reported between the communication cost
and training time depending on the communication frequency
with the servers, e.g., in the investigation presented in [12].
We delegate a further investigation on bandwidth vs. accu-
racy/efficiency as future work.

In our experiments, the highest accuracy we achieved with
10 clients was 97.38%; meanwhile, the training time more than
doubled from that of 4 clients. Table II shows the performance
of global models trained on a different number of clients and
edge servers. We can see that increasing the number of clients
enhances the performance of the models; however, there is no
significant impact on performance if we change the number
of edge servers, but the training time increases, on the other
hand.

Another salient point is that centralized ANN and HFL had
similar performances in terms of accuracy. However, the only
difference was the training time, as the HFL trained much
faster due to the inclusion of the edge servers that reduced the
load on the global model. Therefore, with time kept constant,
the HFL method could train itself much more than centralized
ANN. This explains the accuracy gains of the HFL method
besides only efficiency.

V. CONCLUSION

In contemporary times, not only computers or mobile de-
vices but also many IoT-based home appliances are connected
to private or public networks. Besides many advantages, there
is always a threat of network attacks on the devices connected
to networks, especially the internet. In this work, we proposed
to use ANN in an HFL environment to detect if the requests
from a device are anomalous or not.

HFL helps with scalability issues, makes global models
more efficient, and reduces the training load on global servers.
Results of our experiments on the UNSW-NB15 dataset have
shown the improvement in the performance of ANNs on
client devices to detect anomalous requests when trained in
the federated learning environment in comparison to when
they were trained on the data of individual devices as it
only contains the information about attacks they were being
targeted. In future work, we will hone in on optimizing the

data imbalance problem inherent to biased datasets to further
improve the accuracy, and propose to use pre-selection for
faster training.
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