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 Electrodynamic shaker systems are an essential tool in shock and vibration testing of 

dynamic environments. However, the specific performance capability of these systems is difficult 

to characterize. The dynamics of the shaker itself, the device under test and the specific test 

configuration used all couple to create a dynamic response unique to each test. Poorly predicted 

limitations in shaker capability affect the ability to achieve test specifications, delay testing 

schedules, and create difficulties for choosing test equipment. To predict shaker capability for a 

specific test configuration prior to setup, a lumped parameter model of the shaker system and a 

modal model of a device under test was developed. These models were then analytically coupled 

using LaGrange multiplier frequency based substructuring to estimate their coupled frequency 

response functions. The coupled frequency response functions were used to predict electrical 

inputs required to meet a given test specification. These input requirements were finally compared 



xv 

to a validation test using the specification and setup. Input requirements estimated using the 

substructuring estimated frequency response functions showed significant error. However, results 

using an ideal frequency response function showed very little error. These results indicate that with 

a better method of experimental dynamic substructuring employed it would be possible to 

accurately predict shaker capability for a given test configuration prior to setup.  
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1.0 INTRODUCTION 

Historically, equipment for vibration testing of assemblies has been selected based on past 

tests, engineering judgement, and simple calculations using Newton’s second law of physics. 

Electrodynamic shaker manufacturers provide data sheets with general limits to shaker capability 

regarding peak force, maximum velocity, and maximum stroke outputs. Performance curves in the 

frequency spectrum that show how these different output limits affect performance may also 

accompany shakers. However, these systems have complicated dynamics, and the standards for 

testing them do not capture the full dynamic range they may be operated in. Further, these limits 

only account for the capabilities of the shaker, and not the amplifier being used to run it. The 

dynamics of the shaker may cause antiresonances that absorb the energy input to the system, 

resulting in bands where the amplifier is overloaded before the maximum force output of the shaker 

is achieved. Conversely, resonances in the shaker system may cause difficulty in control as small 

electrical inputs result in large mechanical responses. Further, the device under test, its various 

orientations being tested, the fixturing required for testing, and even the software used to control 

the system all influence the dynamics of the shaker system.  

A more detailed understanding of these systems can be achieved through modeling of the 

shaker. Updating the model with experimentally collected data further ensures an accurate 

characterization of its performance. Lumped parameter models have been shown to capture the 

dynamics of electrodynamic shakers and predict the outcomes of random vibration tests. These 

models are effective at predicting test outcomes for simple test articles, but further information is 

needed still. More complex test articles and setups on the shaker may strongly influence the 

dynamics of the now coupled system. These coupled dynamics are easily determined once the test 

has been setup on the shaker, but limitations before this point are difficult to predict, often resulting 
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in testing delays and lost time on the shaker. Further, understanding the coupled dynamics of article 

with multiple shakers allows better selection of the testing equipment available. 

Experimental dynamic substructuring is a class of methods for estimating the dynamics of 

an assembly based on the dynamics of the individual components. LaGrange multiplier, frequency-

based substructuring is a particular technique that utilizes the frequency response functions of the 

individual components to estimate their coupled dynamics. This coupling is achieved through 

equations developed based on the interface boundary conditions between the components. These 

conditions are defined by a signed Boolean matrix which localizes the interfaces and uses 

LaGrange multipliers to represent the magnitudes of the internal forces at these interfaces.  

Frequency response functions are estimated from the updated shaker model, and modal 

impact testing offers a convenient means of experimentally measuring the frequency response 

functions on a test article. LaGrange-multiplier frequency based substructuring is then used to 

couple these two sets of FRFs together and analytically determine the coupled dynamics of the 

two prior to physical test setup. The estimate of these dynamics is then used to assess the required 

electrical inputs from the amplifier to achieve a test specification given in the form of a power 

spectral density. This coupling may even be performed with multiple shaker models to determine 

the best equipment for the test. The goal of this work is to estimate the frequency response 

functions relating the acceleration responses of potential control locations to the electrical inputs 

of an electrodynamic shaker in order to predict the feasibility of a test, without the need for 

physically setting up the test. 
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2.0 BACKGROUND AND LITERATURE REVIEW 

2.1 Domains of Representation for Linear Dynamics 

 

Figure 2.1.1 Domains of representation and how they are related. 

 

When modeling linear dynamic systems there are many domains of representation that can 

be used. These include the physical, modal, time, Laplace, frequency, and state space domains, 

among others. Three main domains of representation are used in this work: the physical domain, 

the modal domain, and the frequency domain. The final section utilizes the time domain as well. 

Ref. [1] discusses the different domains of representation for dynamic systems, and specifically 

their uses in dynamic substructuring, more thoroughly. Figure 2.1.1 shows how the different 

domains of representation utilized in this work are related to one other. 

2.1.1 The Physical Domain 

In the physical domain, linear dynamic systems may be represented by mass, stiffness, and 

damping matrices. These properties are continuously distributed throughout a body but are often 
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discretized for analytical models. In this work these properties are discretized into lumped mass 

elements which are connected by springs and dampers to represent an electrodynamic shaker.  

 

 

Figure 2.1.2 Discretization of a beam into a 3-DOF system of masses, springs, and dampers. 

 

Consider a beam as an example, shown in figure 2.1.2. The beam is discretized into 3 

lumped masses connected by springs and dampers. The mass, damping and stiffness matrices in 

the physical domain are then 

𝐌𝐌 = �
m1 0 0
0 m2 0
0 0 m3

� ,𝐂𝐂 = �
c12 −c12 0
−c12 c12 + c23 −c23

0 −c23 c23
� ,𝐊𝐊 = �

k12 −k12 0
−k12 k12 + k23 −k23

0 −k23 k23
�. 

The matrices are then assembled via Newton’s 2nd law into the equations of motion for the system, 

 𝐌𝐌𝐮̈𝐮 + 𝐂𝐂𝐮̇𝐮 + 𝐊𝐊𝐊𝐊 = 𝐟𝐟, (2.1) 

where u is the vector of responses at the degrees of freedom (DOFs), and f is the vector of input 

forces to the system. These equations can be used to calculate the response of the system given 

an input, but the coupling between the different equations makes it difficult. Instead, modal 

analysis is often used. 

2.1.2 Modal Analysis and the Modal Domain 

Modal analysis is a method of decoupling the relationships between the different masses, 

stiffness values, and damping values in the physical representation of a system. The matrices are 

decoupled by diagonalization using the eigenvalue decomposition. Ref. [2] provides more depth 
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on the eigenvalue decomposition and other linear algebra fundamentals. The eigenvalue 

decomposition solves the characteristic equation, 

 𝐀𝐀𝐀𝐀 = 𝛌𝛌𝛌𝛌. (2.2) 

Solving Equation 2.2 gives a diagonal matrix of eigenvalues Λ and a matrix V of column 

eigenvectors v, each of which have the property described in Eq. 2.2. These eigenvectors and 

eigenvalues can then be used to make a diagonal representation of A. The eigenvectors are used to 

diagonalize the matrix A by projecting it into a new space,  

 𝚲𝚲 = 𝐕𝐕−𝟏𝟏𝐀𝐀𝐀𝐀. (2.3) 

When applied to the mass and stiffness matrices of a dynamic system, the stiffness matrix 

is decomposed with respect to the mass matrix to establish the analogous eigenvalue problem 

 𝐊𝐊𝐊𝐊 = 𝐌𝐌𝐌𝐌𝐌𝐌. (2.4) 

The equation is often rewritten as 

 (𝐊𝐊−𝐌𝐌𝐌𝐌)𝐯𝐯 = 𝟎𝟎. (2.5) 

The solution of the decomposition yields the diagonal matrix of eigenvalues, which are 

interpretable as the squares of the system’s natural frequencies, and the matrix of column 

eigenvectors, which are interpretable as the mode shapes associated with those natural frequencies. 

The matrix of eigenvectors is referred to as the modal matrix. Typical dynamic systems are 

reciprocal, yielding symmetric mass and stiffness matrices, so the modal matrix is an orthogonal 

matrix and has the property that its transpose is its inverse, 

 
𝚲𝚲 = �

𝜔𝜔1
2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜔𝜔𝑛𝑛2

� ,𝚽𝚽 = [𝐯𝐯1, … , 𝐯𝐯n].  

The modal matrix is then used to transform the equations of motion in Equation 2.1 into 

the modal domain. In the modal domain the set of equations is generally uncoupled as the M and 
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K matrices have been diagonalized and are instead represented by the modal mass matrix M̂ and 

the modal stiffness matrix, K̂. In some cases repeated roots exist, coupling together equations, 

forming a block diagonalization instead. Typically, the mode shape vectors are normalized by the 

square roots of the modal masses, so the modal mass matrix is simply the identity, I. When this is 

done, the modal stiffness matrix is then equivalent to the eigenvalue matrix. Note that the damping 

matrix C was not diagonalized in the modal decomposition. Instead damping ratios, ζ, are 

estimated to approximate the damping matrix. Often this is done by a proportional damping model, 

where the C matrix is approximated as a linear combination of the K and M matrices, allowing it 

to be diagonalized. The equations of motion may now be written as a set of decoupled equations, 

 𝜂̈𝜂 + 2𝜁𝜁𝑛𝑛𝜔𝜔𝑛𝑛𝜂̇𝜂 + 𝜔𝜔𝑛𝑛2𝜂𝜂 = f̂𝑛𝑛, (2.6) 

where the number of equations n is equal to the number of modes. The modal coordinate η, and 

the modal force, f̂, can be determined by transforming the force and response vectors f and u [3], 

 𝐮𝐮 = 𝚽𝚽𝚽𝚽 and 𝐟𝐟 = 𝚽𝚽𝐟𝐟. (2.7) 

Using these equations, the response of the system to a force may be calculated to get the time-

domain response.  

2.1.3 The Fourier Transform and the Frequency Domain 

The modal and physical domains are time-domain representations of systems, as the 

equations are time-dependent. Just as the modal domain decomposes the spatial representation into 

independent components, the frequency domain decomposes time signals into independent 

frequency components, or sinusoidal components, using the Fourier transform. Given a continuous 

time-domain signal x(t), the continuous Fourier transform X(ω) is 

 
X(ω) =  � 𝑥𝑥(𝑡𝑡)𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗

∞

−∞
𝑑𝑑𝑑𝑑, (2.8) 
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where ω is frequency in radians per second. The Fourier transform is a widely used method of 

analyzing time signals to understand their spectral content. In addition, certain operations, such as 

convolution, are more conveniently performed in the frequency domain. Filtering of time-domain 

signals is often performed in the frequency domain because of this convenience. When measured, 

time domain signals are discretized for digital representation on computers. When analyzing a 

discretized time signal x[n] of length N, the discrete Fourier transform is used, 

 
X𝑘𝑘 =

1
𝑁𝑁
� 𝑥𝑥[𝑛𝑛]𝑒𝑒−𝑗𝑗�

2𝜋𝜋
𝑁𝑁 �𝑘𝑘𝑛𝑛

𝑁𝑁−1

𝑛𝑛=0

, (2.9) 

where Xk is the sequence of Fourier coefficients representing the signal in the frequency domain. 

The frequencies at which the Fourier coefficients are calculated depends on the length of the signal 

and the time resolution at which the signal is sampled [4]. These concepts will be discussed further 

in the next section. 

In the frequency domain dynamic systems are modeled by their FRFs. These functions 

describe how a dynamic system will respond to an excitation on a frequency basis. FRFs can be 

calculated from either set of equations of motion in the previous subsections, Equations 2.1 and 

2.6. When using the matrix representations from the physical domain, the direct frequency 

response method can be employed, 

 𝐇𝐇(ω) = (−ω2𝐌𝐌 + jω𝐂𝐂 + 𝐊𝐊)−1, (2.10) 

where H(ω) is the frequency response function matrix of the system. H(ω) is calculated on a 

frequency line basis, with ω being the frequency, in radians per second, at that line. Alternatively, 

the FRFs of a system may be determined based on the modal parameters described previously,  

 𝐇𝐇(ω) = 𝚽𝚽(𝛀𝛀2 + 2iω𝛀𝛀𝛀𝛀 − ω2𝐈𝐈)−1𝚽𝚽T, (2.11) 
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where H(ω) is again the frequency response function matrix, Ω is a diagonal matrix of the natural 

frequencies, ωn, ε is a diagonal matrix of the damping ratios, ζn, and I is the identity matrix. As 

with equation 2.10, H(ω) is calculated on a frequency line basis, with ω being the frequency, in 

radians per second, at each line [1]. These FRF calculations will later be used to determine FRFs 

from the lumped-parameter shaker model and the DUT modal model. FRFs may also be calculated 

from experimental data, which will be discussed in the next section.  

 

2.2 Testing and Test Analyses 

Modal testing and analysis are essential tools for shock and vibration testing. Modal testing 

and analysis are used to characterize the DUT, while random vibration testing is used to 

characterize the shaker’s dynamics. Many concepts and analyses apply to both techniques. Ref. 

[3] provides comprehensive guide for modal testing and analysis, while [5] is an extensive guide 

to vibration testing concepts. Modal impact testing is used to characterize a dynamic system by 

inputting a force on the system with an impact hammer. The impact hammer contains a load cell 

to measure the force imparted, and accelerometers measure the response acceleration. For modal 

shaker testing, a stinger attached to a load cell is used to avoid cross-axis input and to measure the 

force imparted. In vibration and mechanical shock shaker testing, an electrodynamic shaker is used 

to impart a force on a test article, and accelerometers are again used to measure the response. The 

force is typically not measured, but instead the test is controlled to a response acceleration in order 

to approximate a previously characterized service environment. In both types of testing sampling 

requirements, power spectrum calculations, and frequency response function calculations play a 

large role in the acquisition and analysis of data. 
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2.2.1 Sampling Theory 

In testing, data is collected using a data acquisition unit (DAQ) with an analog to digital 

converter (ADC). An ADC converts continuous analog signals into discretized digital signals for 

storage, analysis, and reporting on computers. The parameters of this conversion are paramount to 

collecting usable data from a test. The first test parameter to be determined is the sampling rate. 

This is the rate at which the analog signal is discretized in time. The Nyquist-Shannon sampling 

theorem dictates that the highest resolvable frequency of a sampled signal is at half the sample 

rate, referred to as the Nyquist frequency,  

 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 <
𝐹𝐹𝑠𝑠
2

. (2.12) 

Frequencies in the signal above the Nyquist frequency are unable to be resolved and will 

erroneously appear as lower frequencies in a phenomenon called aliasing. Therefore, the sampling 

frequency should be high enough to capture the highest frequency of interest, and the signal should 

be low pass filtered at or below the Nyquist frequency to prevent aliasing errors. The sampling 

frequency is the inverse of the time resolution, 

 

 
∆𝑡𝑡 =

1
𝐹𝐹𝑠𝑠

. (2.13) 

The next parameter to consider is the desired frequency resolution of the analyzed signal 

in the frequency domain. The frequency resolution is the inverse of the time-length of the 

acquisition,  

 ∆𝑓𝑓 =
1
𝑇𝑇

. (2.14) 

Time-domain acquisition must be long enough to reach the desired frequency resolution, but not 

so long that the dataset is unmanageable by the processing software. This leads to the final 
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sampling parameter, block length, or the number of samples acquired. Block length increases with 

finer time and frequency resolutions,  

 𝑁𝑁 =
𝑇𝑇
∆𝑡𝑡

. (2.15) 

Choosing two of these sampling parameters determines the remaining parameters, so 

engineering choices must be made to balance resolutions, dataset sizes, and time lengths of 

acquisition [3][4].  

 

2.2.2 Power Spectra and Power Spectral Density Estimations 

The autopower spectrum estimation is one of the most common analyses performed in 

vibration testing. Power spectra are calculated to understand the distribution of a signal’s energy 

in the frequency domain. For broadband random signals the power spectrum is often normalized 

by the frequency resolution used. This normalization is needed to compare signals to one another, 

as the power spectrum amplitude will increase with decrease in frequency resolution, just as the 

amplitude of a histogram increases when fewer bins are used. Normalizing by frequency resolution 

results in a power spectral density (PSD) estimate that removes this effect and allows different 

signals to be more easily compared. In modal testing, PSDs are used to understand the energy input 

to the system as well as the measured response, and power spectra are used to calculate frequency 

response functions [3]. In vibration testing, PSDs are used to specify tests as well as to understand 

the response of the test article [5].  

The autopower spectrum is the Fourier transform of the autocorrelation function of a signal. 

It may be calculated either by convolving the signal with itself in the time domain, or equivalently 

taking the discrete Fourier transform (DFT) of the signal and multiplying by its complex conjugate,  
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 𝐺𝐺𝑥𝑥𝑥𝑥 = 𝑆𝑆𝑥𝑥𝑆𝑆𝑥𝑥∗, (2.16) 

where Gxx is the autopower spectrum, Sx is the DFT of the signal, or linear spectrum, and Sx
* is 

the complex conjugate of the linear spectrum. Note the autopower spectrum will be positive and 

real-valued. Alternatively, multiplying by the conjugate of a different signal gives the cross-power 

spectrum,  

 𝐺𝐺𝑥𝑥𝑥𝑥 = 𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦∗ . (2.17) 

From here the PSD may be calculated by normalizing by the frequency resolution, the inverse of 

the total period measured. 

These calculations are accurate when a signal is either entirely captured by the sampling 

window or is perfectly periodic within it. In modal testing, impact excitation and burst random 

excitation are two methods used to meet this condition. However, these conditions are not always 

met, especially in vibration testing, where tests may last anywhere between minutes and days. 

When these conditions are not met, errors are introduced into the spectral estimate called 

“leakage,” where energy is spread across multiple bins, reducing the true magnitude in a particular 

bin and transferring that information into the surrounding frequency bins. To reduce leakage, lag 

weighting window functions are often applied to signals to force them to meet the requirements of 

the DFT. An overview of common window functions and their effects on spectral estimates can 

be found in Ref. [3]. 

The most common method for estimating the PSD of a random signal is Welch’s method 

because it is asymptotically unbiased [4]. The signal is broken up into smaller samples and 

windowed. Usually, segments are chosen with a 50% overlap to maximize the number of segments 

and reduce the loss of information from windowing. Then the DFT of each segment is calculated 

and multiplied by its conjugate to estimate the power spectrum for that segment. These estimates 



12 

are called periodograms. The set of periodograms is then averaged together to estimate the 

autopower spectrum. The PSD is finally found by normalizing by the frequency resolution [4]. 

Figure 2.2.1 gives a visual representation of the method. 

 

 

Figure 2.2.1 Visualization of Welch’s method for estimating power spectral density. 

 

2.2.3 Frequency Response Function Estimation 

Frequency response functions are functions that describe the behaviors of dynamic systems 

in the frequency domain. FRFs relate the input force to a system at a given location to the response 

at another location. FRFs are organized into three-dimensional matrices, with dimensions of 

reference, or input, locations, response locations, and frequency line. In modal testing FRFs are 

used to characterize systems and for modal parameter estimation. In shock and vibration testing, 
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FRFs are used to estimate required excitation inputs for test specifications, assess control locations, 

and to transform test specifications to change control locations that might be difficult to control 

successfully. 

 Ideally, no noise exists on measurements, and the FRF is just the ratio of the measured 

input and output linear spectra from a system, 

 𝑆𝑆𝑦𝑦 = 𝐻𝐻𝑆𝑆𝑥𝑥. (2.18) 

However, noise exists on all measurements made and must be accounted for. A noise model of 

measurements is shown in figure 2.2.2. 

 

 

Figure 2.2.2 Visual representation of the noise model for dynamic system measurements. 

 

In testing there are two common methods of FRF estimation, H1 and H2, used to minimize 

the effects of measurement noise. The H1 estimator assumes no noise is present on the input (Sn = 

0) and minimizes noise on the output, 

 𝐻𝐻1 =
𝐺𝐺𝑦𝑦𝑦𝑦 + 𝐺𝐺𝑚𝑚𝑚𝑚

𝐺𝐺𝑥𝑥𝑥𝑥
→ 𝐻𝐻1 =

𝐺𝐺𝑦𝑦𝑦𝑦
𝐺𝐺𝑥𝑥𝑥𝑥

. (2.19) 

If the noise on the output measurement is uncorrelated to the input, Gmx will go to zero as the 

number of averages of the spectrum goes to infinity. While this formulation minimizes the effect 

of output noise, the assumption that no noise exists on the input results in a bias toward 
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underestimating the true FRF. When using transient inputs, a force-exponential window is often 

applied to the input signal to minimize the noise on the channel after the excitation has completed. 

The H2 estimator assumes no noise is present on the output (Sm = 0) and minimizes noise 

on the input,  

 𝐻𝐻2 =
𝐺𝐺𝑦𝑦𝑦𝑦

𝐺𝐺𝑥𝑥𝑥𝑥 + 𝐺𝐺𝑛𝑛𝑛𝑛
→ 𝐻𝐻2 =

𝐺𝐺𝑦𝑦𝑦𝑦
𝐺𝐺𝑥𝑥𝑥𝑥

. (2.20) 

Similarly, if the noise on the input is uncorrelated to the output, Gny will go to zero as the number 

of averages of the spectrum goes to infinity. This formulation minimizes the effect of input noise, 

but again, the assumption that no noise exists on the output results in a bias toward overestimating 

the FRF [3]. 

There are three forms of FRF, depending on the response type measured. The FRF relating 

displacement to force input is referred to as receptance, velocity response as mobility, and 

acceleration response as accelerance. Accelerance is the most common type of FRF measured 

experimentally, while receptance is easily calculated from models. Differentiating FRFs in the 

frequency domain is performed by multiplying by jω on a frequency line, ω, basis, while 

integrating is performed by dividing by jω [5].  

 

2.2.4 Modal Parameter Estimation 

Modal parameter estimation refers to a class of techniques used to identify the mode 

shapes, natural frequencies, and damping of a dynamic system based on measured FRFs. Modal 

parameter estimation can be achieved with many algorithms, but the PolyMAX algorithms 

developed by LMS and implemented in Siemens LMS Testlab, and others like it, have become the 

standard for estimation [3]. This work utilized the ATA Engineering package IMAT’s orthogonal 

polyreference, or OPoly, algorithm for modal parameter estimation. These algorithms are often 
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proprietary and utilize various procedures and processes for estimating the poles, which contain 

information about the natural frequencies and damping ratios of the system, and the residues, 

which contain information about the mode shapes. Modal parameter estimation is often performed 

only in a frequency band of interest, with the effects of modes outside the band of interest estimated 

as upper and lower residual terms. 

 

2.3 Stationary Random Processes 

Many of the analyses and processes in modal testing and random vibration testing come 

from probability and statistics, particularly from the theories of random variables and processes. 

Random vibrations are usually represented as stationary random processes. Mechanical shocks are 

also represented as random processes but are nonstationary.  

 

2.3.1 Wide-sense Stationary 

A random process is considered wide-sense stationary if its mean and variance are 

independent of sample, or in the case of random vibrations, time, and its autocorrelation is only 

dependent on difference in sample (time), also called lag. In this definition, the independence of 

time does not mean any time during a single realization of the process. Instead, it means that the 

mean and variance of N numbers of realizations of the process should be the same regardless of 

the time the realizations are sampled at. If the mean and variance are represented by any time-

window sample of a single realization of the process, it is called ergodic. Figure 2.3.1 visually 

represents this difference. When stationary and ergodic signals are transformed by linear, time 

invariant systems, the resulting signals retain these properties [4]. 
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Figure 2.3.1 A visual representation of the difference between stationary and ergodic. 

 

2.3.2 Generating Realizations of Stationary Random Processes 

Commercial control software generates stationary random vibrations which satisfy given 

test profiles. This work creates realizations of such signals for performing capability estimation of 

shakers using representative signals. The method used in this work is derived from [6], originally 

described for FORTRAN, but adapted to MATLAB. The algorithm generates the desired 

amplitude spectrum for the signal, associates randomized phase, and then uses the inverse discrete 

Fourier transform to create a real signal in the time domain. 

First, the power spectral density is defined at all frequency lines. The PSD must be 0 at the 

zero-frequency line and Nyquist line to generate a zero-mean realization. The number of spectral 

lines will be N/2+1 for a desired length N time signal. Generally, the PSD is defined at a limited 

number of break points, so the desired PSD between those points must be interpolated.  
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Now a linear spectrum with this PSD must be generated. First, the PSD is “unnormalized” 

to find the power spectrum by multiplying by the frequency resolution. The frequency resolution 

is defined by the desired length of the time signal and the required sample rate, at least 2 times the 

maximum frequency. The PSD is usually defined as a single-sided spectrum, and if so, the power 

spectrum must be divided by 2 at all points except the zero-frequency line and Nyquist line, as a 

two-sided linear spectrum is being formed. For a zero mean signal these should be zero anyway. 

Next, because the magnitude of the power spectrum is the square of the amplitude of the linear 

spectrum, the square root of the magnitudes is taken. These amplitudes are then assigned a 

randomized phase component. In this work this was achieved using the randn function in 

MATLAB, a pseudorandom, gaussian distributed noise generator. This completes generating the 

linear spectrum for the positive frequencies. For the signal to be real when inverse discrete Fourier 

transformed into the time domain, the signal must be Hermitian. A Hermitian signal is even on the 

real line, and odd on the imaginary line, so this is done by assigning the negative frequencies as 

the complex conjugates of the real frequencies just developed. 

Finally, the inverse discrete Fourier transform is taken to calculate the signal in the time 

domain. Figure 2.3.2 shows a visualization of the process.  
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Figure 2.3.2 Visualization of stationary random signal generation process. 

 

2.4 Optimization 

Optimization is a rich and complex field with a long history and constantly evolving future. 

There are many periodic journals dedicated to the topic with new research published each year. 

This work just lightly touches on the topic. 

 

2.4.1 Objective Functions 

Optimization methods seek to maximize or minimize some objective function subject to 

given constraints. The objective function is often an error quantification, and the goal is to 

minimize that function. The choice and design of the objective function is dictated by the problem 

being solved. Multiple objective functions may successfully achieve the same desired solution, so 

the design of the function requires engineering judgement and decisions. Certain algorithms for 

optimization have requirements for the formulation of the objective function, such as 
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differentiability. Often, tradeoffs are made between desired outcomes which must be captured and 

balanced in the objective function. This balance may be achieved by creating a multiobjective 

function, the summation of two functions weighted by their importance to the solution. Finally, 

constraints are applied to the problem which bound the solution to some reasonable set of 

outcomes. Constraints are necessary because sometimes the global minimum of the objective 

function may result in a solution that is not physically realizable. In this work, optimization is used 

to update a shaker model, so the optimal solution is constrained to having positive parameters, as 

negative mass, stiffness, or damping is not representative of the usual physical properties of 

dynamic systems [7].  

 

2.4.2 Algorithms for Optimization 

There are many algorithms for optimization with new methods proposed all the time.  

Traditional techniques use calculus, statistical methods, and stochastic processes to find minima 

within the solution space of the objective function. First order algorithms, such as the gradient 

descent, use the first derivative of the objective function to choose how to search within the space. 

Second order algorithms, such as the secant method, use the second derivative. More modern 

techniques use a variety of approaches to search for the global minimum in the solution space. 

These techniques have similar features, such as the use of stochastic and probabilistic methods, 

utilization of trial and error and other heuristic approaches, and often are modeled after the 

behaviors of grouping and swarming species. Examples of such techniques are particle swarm 

optimization and genetic algorithms [7]. 
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2.5 Electrodynamic Shaker Physics 

Electrodynamic shakers are among the most common machines used for shock and 

vibration testing. The operating principle of an electrodynamic shaker is like that of a loudspeaker, 

though heavier and more robust. A coil of wire is suspended in a fixed magnetic field, and a current 

is passed through the coil. The current in the coil creates an electromagnetic field. The interaction 

between the two fields causes an axial force on the coil, resulting in motion. When an alternating 

current is used, oscillating motions can be generated. The fixed magnetic field can be generated 

by a permanent magnet or an electromagnet. 

 

Figure 2.5.1 Diagram of an electrodynamic shaker. 

A typical shaker design is shown in Figure 2.5.1. The armature is formed by the load table 

and the voice coil. The table is the location where a device under test is attached to the shaker.  

The voice coil forms the electromagnet. The force produced by the shaker is proportional to the 

current in the coil, and the velocity proportional to the voltage. The wires that form the coil are 

made of heavy conductors to allow high currents to flow through, achieving higher force outputs.  
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The armature is suspended in a radial magnetic field using a suspension system, or flexures, 

that allow axial motion, but prevent moments and cross-axis motion at the table. These flexures 

also keep the voice coil centered in the field. The radial magnetic field is achieved by using either 

an axial permanent magnet or DC electromagnet, referred to as field coils, connected to a magnetic 

circuit. The inner pole of the circuit will be connected to one pole of the axial magnet, while the 

outer pole the other. The circuit is made of permeable materials that creates, in the case of the 

diagram shown, a south-polarized magnetic disk. The inner pole is north-south polarized, thus 

achieving a radial field. The gap between the inner and outer poles are minimized to maximize the 

intensity of the magnetic field. The voice coil must be larger than the thickness of the outer pole 

to ensure the coils stay within the field throughout the entire stroke of the shaker.  

The proximity of the coils to the magnetic pole pieces creates an inductive component to 

the electronic behavior of the shaker, resulting in a complex impedance. The resistance, R, of the 

coil represents the minimum impedance of the shaker, and the inductance, I, results in an increasing 

impedance with frequency. In addition to the inductive component, the motion of the coil within 

the field generates a voltage across it that is proportional to the velocity. This voltage is referred 

to as a back emf in the electrical domain. Therefore, the mechanical and electrical portions of the 

shaker are coupled to one another through both the electrical inputs to the system as well as its 

mechanical motion [8][9]. For small displacements this coupling can be described by a single 

coefficient multiplied by the relative velocity of the coil and shaker body for the back EMF and 

multiplied by the current to represent the force. 

Finally, shakers are often isolated from the surrounding environment through the use of 

isolation mounts. These mounts prevent the transfer of energy from the shaker into the 
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environment which may cause excessive noise and vibration. However, it also adds a degree of 

freedom to the dynamics of the system.  

 

Figure 2.5.2 Illustrations of the shaker’s vibration modes. 

An isolated shaker system typically displays three main modes of vibration, illustrated in 

Figure 2.5.2. The first of these modes is referred to as the isolation mode. In this mode, the entire 

shaker moves almost as a rigid body on its isolation mounts, with very little relative motion 

between the different components. This mode typically occurs outside the effective frequency 

operating range of the shaker. The second mode of vibration usually occurs in the low range of the 

shaker’s operating range and is called the suspension mode. In this mode the armature moves 

rigidly with relation to the body of the shaker. The final mode of vibration is the coil mode, in the 

high end of the shaker’s operating range. In this mode the coil and table move out of phase with 

one another, has the potential to break the shaker, and often creates difficulty in controlling 

vibration at that frequency [9]. 

 

2.6 Electrodynamic Shaker Modeling 

Almost all approaches to modeling electrodynamic shakers attempt to capture the dynamics 

of the three main modes of the shaker previously discussed. Many shaker models developed are 
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lumped parameter electro-mechanical models. These models are convenient because they 

discretize systems into simple elements that approximate the real system and can be solved with 

ordinary differential equations. These types of models are used for both modeling electrical circuits 

and mechanical systems, which lends itself to modeling these electro-mechanical machines. Other 

modeling approaches model the shakers as purely electrical systems.  

 

2.6.1 Electro-Mechanical Models 

In their work on virtual shaker testing Martino and Harri [10] modeled an electrodynamic 

modal shaker by treating the body and the armature as vertically translating mechanical degrees of 

freedom coupled to an electrical degree of freedom. This model type captures the isolation mode 

and suspension mode, but not the coil mode. The smaller modal shakers being modeled often have 

a coil mode outside of typical testing ranges unless a relatively large mass is attached to the shaker. 

The model parameters were estimated using experimental modal analysis of the shaker and then 

using modal parameter estimation to estimate the mass and stiffnesses of each degree of freedom. 

Next the coupling coefficient of the shaker was determined by fixing the armature from moving 

and measuring the force output and dividing it by the current input to the shaker. Finally, the 

electrical parameters—resistance and inductance—were measured using an RLC meter. Martino 

and Harri then applied their model to virtual shaker testing, where the shaker, controller and DUT 

are all modeled, and a time-domain simulation of a vibration test is performed to assess its viability. 

While this method proves useful, it requires full time-step simulations of the test, modeling of the 

controller, and typically uses a finite element model of the DUT. This work only explored the 

shaker itself, with no DUT attached. 
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Figure 2.6.1 2-DoF shaker model capturing the isolation and suspension modes of the [10]. 

 

The majority of electrodynamic shaker models found in the literature are lumped parameter 

electro-mechanical models with three mechanical degrees of freedom, and one electrical degree of 

freedom. This model type was used by both Schultz [11] and Mayes [12] when modeling modal 

shakers with a test mass attached at the end of a stinger. Their models consisted of the body DOF, 

representing all the stationary components of the shaker, the armature DOF, representing the 

moving portion of the shaker, the stinger mass DOF, and finally the current in the shaker 

electronics. Schultz calibrated their model using a Monte Carlo random search to find the best 

model parameters to match data collected on the shaker itself. The data collected was measured 

using an accelerometer on the table and on the stinger mass, and a voltage divider and current 

probe to measure the electrical supply to the shaker. The chosen parameter set minimized the 

average of the L2 norm of the real and imaginary components of the shaker’s impedance. Mayes 

performed two tests on the shaker, first utilizing a “zero-impedance” test with nothing attached to 

the armature, and then a “high-impedance” test where the armature was attached to a large steel 
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plate. The model parameters were then chosen based on the resonances of the shaker impedance 

curves from the two configurations. These models are useful in characterizing the smaller modal 

shakers and capturing the dynamics that are important to their application, but do not translate to 

larger shaker systems, which do not utilize stingers, and whose coil resonances are low enough to 

be in the frequency range of interest when testing. 

 

 

Figure 2.6.2 3-DoF shaker model with the body, armature, and stinger as the mechanical degrees 
of freedom [11]. 

 

When characterizing shakers for fixed-base testing, where the DUT is bolted to an armature 

table on the shaker, a different set of mechanical DOFs are commonly chosen. The body is still its 

own DOF, but the armature is treated as two elastically connected components, namely the table 

and the voice coil. This modeling approach directly captures the three modes discussed in the 

previous section and was used by Ricci et al [13] and Manzato et al [14]. These works also applied 

their models to virtual shaker testing. Both took a modal parameter estimation approach for model 

updating. These approaches utilized calibrated masses on the shaker table to measure the FRFs of 

the table acceleration over the input voltage and then performing the modal parameter estimation 
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on these FRFs. Acceleration was measured on the table, and the current and voltage supplied to 

the shaker were measured by a voltage divider and a current probe. The modes of the shaker were 

then fit individually and the modal parameters estimated used for the model. 

 

 

Figure 2.6.3 3-DoF shaker model with the body, armature table and voice coil as the mechanical 
degrees of freedom [14]. 

 

Hoffait et al [15] used a similar model to Ricci et al and Manzato et al but expanded the 

degrees of freedom of the three masses to also allow rotational motion in order to capture the out-

of-axis motion of the shaker table. This results in 6 mechanical DOFs coupled to again a single 

electrical DOF. The mechanical DOFs were then connected not just by linear springs, but 

rotational springs as well. Impact testing was conducted on the shaker to characterize the dynamics 

of the system. Then, a manual fit of the model parameters was performed. From there an 

optimization method was used to minimize the least-square difference between the measured and 

computed frequency response functions (FRFs) to update the model.  

 



27 

 

Figure 2.6.4 6-DoF shaker model that captures out of axis motion of the shaker using rotational 
degrees of freedom [15]. 

 

Others, such as Varoto and Oliveira [16] and McConnell [5] ignored the body DOF, as 

some shakers are rigidly attached to the ground or large seismic masses that cause the isolation 

mode to be very low frequency, below any frequency range of interest. Instead, a two mechanical 

DOF model was used, modeling just the armature table and voice coil as attached to the ground. 

These models capture only the suspension and coil modes. Importantly Varoto and Oliveira 

demonstrated the DUT and the shaker dynamics couple and interact with one another when a test 

is set up. This work confirms a need for a DUT model in order to fully understand and predict the 

outcome of a shock or vibration test.  
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Figure 2.6.5 2-DoF model of the shaker armature, assuming the shaker body dynamics are 
negligible [16]. 

 

2.6.2 Equivalent Electrical Models 

While electro-mechanical models of the shakers are the most common model types, some 

work approached shaker modeling as purely electrical systems. Tiwari et al [17] achieved this by 

utilizing the impedance analogy to develop a representative circuit of the shaker system that 

captured both the mechanical and electrical portions. This began as a lumped parameter 

mechanical model of the shaker which was converted to an equivalent circuit using the impedance 

analogy, and then coupled to the electrical system through the inductance of the voice coil. Four 

separate models were developed for each of the frequency regimes the shaker may operate in. 

Doing so allowed simplification of the models in the different ranges. The models were updated 

and validated in each of the ranges utilizing similar techniques to those mentioned before.  
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Figure 2.6.6 Equivalent electrical circuit shaker models for different frequency ranges of 
operation [17]. 

 

Lastly, Smallwood [18] utilized a two-port impedance model approach to modeling the 

shaker. The two-port network approach models the shaker as an impedance matrix which relates 

the voltage and current inputs supplied to the shaker to the acceleration and force outputs of the 

shaker. The acceleration was made analogous to the current and the voltage to the force. A 2x2 

complex-valued matrix was developed based on measurements from the amplifier and 

accelerations on the shaker. This modeling approach is common in electrical modeling.  
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Figure 2.6.7 Two-port network model of a shaker [18]. 

 

2.7 Experimental Dynamic Substructuring Background 

Dynamic substructuring is the set of techniques used by structural engineers to break down 

a large, complex dynamic system into subcomponents for higher fidelity modeling and analysis, 

while still preserving the overall dynamical properties of the system. These techniques are 

commonly applied to finite element analysis models to save time by modeling subcomponents 

separately and reassembling the results later. In experimental analysis it is used to test 

subcomponents separately and characterize local dynamics and assessing their contributions to 

system-level dynamics. One of the most powerful applications of dynamic substructuring is the 

ability to combine analytical and experimental analyses of subcomponents into a full model 

together [19]. This is the goal of dynamic substructuring for this project, to combine the analytical 

lumped parameter models discussed in the previous section with an experimentally developed 

model of a device under test to estimate the capability of a shaker system testing that DUT. 
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2.7.1 Substructuring Domains 

Dynamic substructuring can be represented and applied in many domains, most commonly 

the physical, modal, and frequency domains. In the physical domain, subcomponents are coupled 

together via their mass, stiffness, and damping components. In the modal domain these system 

matrices are utilized and considered in a modal basis, representing the responses of the structure. 

In the frequency domain, substructuring is performed using the frequency response functions 

(FRFs), and is the domain utilized for this work [19].  

 

2.7.2 Frequency Based Substructuring 

Substructuring is not a new concept, and frequency-based-substructuring (FBS) has been 

explored and developed since the 1960s, when Rubin [20] represented mechanical structures 

through impedance and admittance matrices, showing these matrices could be used to simulate the 

joining of two mechanical systems. Crowley et al. [21] further developed the idea of using FRFs 

to simulate structural modifications when developing their “Structural Modification Using 

Response Functions” or SMURF method. Jetmundsen [22] then developed the classical form of 

FBS in 1988, which De Klerk et al. simplified [23] into the method used for this thesis, Lagrange-

Multiplier Frequency-Based-Substructuring (LM-FBS). While mathematically equivalent, the use 

of two Boolean localization matrices in LM-FBS significantly reduces the complexity of 

“organizing” the degrees-of-freedom on each substructure when assembling [24].  

FBS is commonly applied in the automotive, naval, and aerospace industries, where large 

systems are analyzed for noise and vibration. The full-scale structural dynamics of such large 

systems are difficult and expensive characterize. However, using experimental dynamic 

substructuring, individual components can be tested, analyzed, and coupled together to obtain full-
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scale dynamics, as shown by Steenhoek et al [25]. Alternatively, smaller components can be 

experimentally characterized and coupled with large-scale models. This method has been applied 

for vehicle axle noise analysis [26], assessment of machinery isolation on ships [27], and for 

modifications to helicopter components [28].  

 

2.7.3 Dynamic Equilibrium and Interface Conditions in the Frequency Domain 

FBS begins with the conditions of substructure assembly. This derivation is common in the 

dynamic substructuring literature, but [24] is a detailed source on the topic. Consider two 

substructures, R and S, shown in Figure 2.7.1.  

 

Figure 2.7.1 Assembly of two substructures R and S, at boundary nodes, ub. 

 

First, the dynamic equilibrium equation is considered, 

 𝐙𝐙(𝑠𝑠)𝐮𝐮�(s) =  𝐟𝐟(̅s) + 𝐠𝐠� (s) for s = 1,…,𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 , (2.21) 
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where Z(s) is the impedance, dynamic stiffness, or dynamic mass of the substructure. While any of 

these system matrices may be used, the responses used, u(s) (displacement, velocity, or 

acceleration) must be consistent with the Z used. For this formulation let us assume Z(s) is the 

dynamic stiffness matrix. Therefore u(s) is the vector of displacement responses in the substructure 

to the sum of the external forces f(s)
 and the internal forces g(s) on the substructure. To couple one 

substructure s, to another substructure r, to create a single system, two interface conditions need 

to be satisfied: interface equilibrium and compatibility.  

Interface equilibrium requires that the internal forces, or interface forces, between the two 

substructures must sum to zero when assembled,  

 𝒈𝒈�𝒃𝒃
(𝒔𝒔) + 𝒈𝒈�𝒃𝒃

(𝒓𝒓) = 𝟎𝟎 𝒐𝒐𝒐𝒐 𝜞𝜞(𝒓𝒓𝒓𝒓), (2.22) 

where gb
(s) is the interface force on the boundary DOFs on substructure s, gb

(r) is the interface force 

on the boundary DOFs on substructure r, and Γ(rs)is the interface between the two substructures. 

The boundary DOF locations can be collected into a Boolean matrix L(s)T with dimension n×ns 

that combines the forces on either side of the interface. This matrix acts as a localization matrix 

which maps the local DOFs of the substructure to a unique set of global DOFs within the assembly. 

The interface equilibrium condition can then be written as 

 
� 𝑳𝑳(𝒔𝒔)𝑻𝑻𝒈𝒈�(𝒔𝒔) = 𝟎𝟎
𝑵𝑵𝒔𝒔𝒔𝒔𝒔𝒔

𝒔𝒔=𝟏𝟏

. (2.23) 

The interface compatibility condition requires that the response at the DOFs on both sides 

of the interface must be equal,  

 𝒖𝒖�𝒃𝒃
(𝒔𝒔) − 𝒖𝒖�𝒃𝒃

(𝒓𝒓) = 𝟎𝟎 𝒐𝒐𝒐𝒐 𝜞𝜞(𝒓𝒓𝒓𝒓). (2.24) 

Like equation 2.22, here ub
(s)

 is the response on the boundary DOFs of substructure s, ub
(r) is the 

response of the boundary DOFs of substructure r, and Γ(rs) is the interface between the two 
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substructures. Similarly, the boundary DOF locations for the interface compatibility can be 

collected into a signed Boolean matrix B(s). This matrix extracts the interface DOFs and gives them 

opposite signs on each side of the interface. Using this matrix, the interface compatibility condition 

can be written as 

 
�𝑩𝑩(𝒔𝒔)𝒖𝒖�(𝒔𝒔) = 𝟎𝟎
𝑵𝑵𝒔𝒔𝒔𝒔𝒔𝒔

𝒔𝒔=𝟏𝟏

. (2.25) 

The set of equations laid out by equations 2.21, 2.23 and 2.25 defines the assembly of two 

substructures r, and s. This set of equations can be condensed into a block matrix form,  

 
�
𝐙𝐙𝐮𝐮� = 𝐟𝐟̅+ 𝐠𝐠�
𝐁𝐁𝐮𝐮� = 𝟎𝟎
𝐋𝐋𝐓𝐓𝐠𝐠� = 𝟎𝟎

, (2.26) 

 where 𝐋𝐋T = �𝐋𝐋(1)T , … , 𝐋𝐋(𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠)T�, 𝐁𝐁 = �𝐁𝐁(1), … ,𝐁𝐁(𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠)� 

and 𝐙𝐙 = �
𝐙𝐙1 ⋯ 𝟎𝟎
⋮ ⋱ ⋮
𝟎𝟎 ⋯ 𝐙𝐙(𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠)

�. 
 

B and L have been defined in such a way that  

 𝐋𝐋 = null(𝐁𝐁), therefore 𝐁𝐁𝐁𝐁 = 𝟎𝟎. (2.27) 

This will be a useful relationship later. 

The system of equations 2.26 has two sets of unknowns, the responses, u, or “primal 

unknowns” and the internal forces, g, or “dual unknowns.” The set of unknowns can be reduced 

to simplify the problem by introducing unique interface displacements, referred to as “primal 

assembly,” Alternatively, one can introduce interface forces that satisfy the interface equilibrium, 

referred to as “dual assembly.” 
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2.7.4 Primal Assembly 

The primal assembly method is commonly used in finite element modeling [19]. The 

Boolean matrix LT maps the DOFs of each substructure to a unique set of global DOFs. This matrix 

can then be used to transform the global responses ug to the local response DOFs u,  

 𝐮𝐮 = 𝐋𝐋𝐮𝐮g. (2.28) 

Using the global response DOFs then defines the responses ug as compatible. In the 

example of figure 2.7.1, it maps ub
S and ub

R to a single response DOF, ub. We can then substitute 

this definition of u into the compatibility equation and find it is satisfied because of the relationship 

between B and L noted in Equation 2.27,  

 𝐁𝐁𝐁𝐁𝐮𝐮g = 𝟎𝟎 ∀𝐮𝐮g. (2.29) 

Using the global DOFs, the set of equations 2.26 can be simplified to just two equations, 

 
�
𝐙𝐙𝐙𝐙𝐮𝐮g = 𝐟𝐟̅+ 𝐠𝐠�
𝐋𝐋𝐓𝐓𝐠𝐠� = 𝟎𝟎.

 (2.30) 

Pre-multiplying the dynamic equilibrium by LT in equation 2.30 then removes the internal forces 

term, as the equilibrium condition below defines LTg = 0. The equation then simplifies to 

 𝐋𝐋T𝐙𝐙𝐙𝐙𝐮𝐮g = 𝐋𝐋T𝐟𝐟. (2.31) 

LTZL is then the primal assembled impedance matrix of the coupled system.  

 

2.7.5 Dual Assembly 

The dual assembly approach lends itself to experimental substructuring because 

substructures are typically characterized by the FRFs of the system, which determine the 

component’s response to excitations [19]. In dual assembly a set of interface forces, g, are chosen 

such that the interface equilibrium condition is satisfied,  
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 𝐠𝐠 = −𝐁𝐁T𝒍𝒍 (2.32) 

The l term in Equation 2.32 is the interface force intensities and are equal in number to the 

number of interface conditions. From equation 2.27 we know BL = 0, therefore LTBT = 0, so the 

interface equilibrium will be satisfied by this definition of g,  

 𝐋𝐋𝐓𝐓𝐁𝐁𝐓𝐓𝒍𝒍 = 𝟎𝟎 ∀𝒍𝒍. (2.33) 

The dual assembly form of the problem is then 

 

⎩
⎨

⎧𝒁𝒁
(𝒔𝒔)𝒖𝒖�(𝒔𝒔) =  𝒇𝒇�(𝒔𝒔) − 𝑩𝑩(𝒔𝒔)𝑻𝑻𝒍𝒍 for s = 1,…,𝑵𝑵𝒔𝒔𝒔𝒔𝒔𝒔  

�𝑩𝑩(𝒔𝒔)𝒖𝒖�(𝒔𝒔) = 𝟎𝟎
𝑵𝑵𝒔𝒔𝒔𝒔𝒔𝒔

𝒔𝒔=𝟏𝟏

,
 (2.34) 

which can be rewritten in block matrix form  

 �𝒁𝒁 𝑩𝑩𝑻𝑻

𝑩𝑩 𝟎𝟎
� �𝒖𝒖�𝒍𝒍 � = �𝒇𝒇

�
𝟎𝟎
�. (2.35) 

In this form, the l term can then be interpreted as the Lagrange multipliers associated with the 

equilibrium constraint. 

2.7.6 Lagrange Multiplier Frequency Based Substructuring 

The derivation of LM-FBS uses the dual assembly approach and begins with the dynamic 

equilibrium equation, the first in the set of equations 2.35. The equation can be rewritten to isolate 

the responses u,  

 𝐮𝐮�(s) = 𝐇𝐇(s)�𝐟𝐟̅(s) − 𝐁𝐁(s)T𝒍𝒍� where 𝐇𝐇(s) = 𝐙𝐙(s)−1 , (2.36) 

where H is the frequency response matrix of the substructure, s. The compatibility condition, the 

second equation in 2.35, may then be substituted into equation 2.36 and simplified,  

 
𝐁𝐁�𝐇𝐇(𝐟𝐟 − 𝐁𝐁T𝒍𝒍)� = 𝟎𝟎 

𝐁𝐁𝐁𝐁𝐁𝐁 − 𝐁𝐁𝐁𝐁𝐁𝐁T𝒍𝒍 = 𝟎𝟎 
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(𝐁𝐁𝐁𝐁𝐁𝐁T)𝒍𝒍 = 𝐁𝐁𝐁𝐁𝐁𝐁. (2.37) 

Equation 2.37 can then be solved for l, 

 𝒍𝒍 = (𝐁𝐁𝐁𝐁𝐁𝐁T)−1𝐁𝐁𝐁𝐁𝐁𝐁. (2.38) 

This definition of l can be substituted into the dynamic equilibrium equation 2.36 and simplified 

again, 

 𝐮𝐮 = 𝐇𝐇(𝐟𝐟 − 𝐁𝐁𝐓𝐓𝒍𝒍) 

𝐮𝐮 = 𝐇𝐇�𝐟𝐟 − 𝐁𝐁𝐓𝐓((𝐁𝐁𝐁𝐁𝐁𝐁𝐓𝐓)−𝟏𝟏𝐁𝐁𝐁𝐁𝐁𝐁)� 

𝐮𝐮 = 𝐇𝐇𝐇𝐇 − 𝐇𝐇𝐁𝐁𝐓𝐓(𝐁𝐁𝐁𝐁𝐁𝐁𝐓𝐓)−𝟏𝟏𝐁𝐁𝐁𝐁𝐁𝐁 

𝐮𝐮 = (𝐇𝐇 − 𝐇𝐇𝐁𝐁𝐓𝐓(𝐁𝐁𝐁𝐁𝐁𝐁𝐓𝐓)−𝟏𝟏𝐁𝐁𝐁𝐁)𝐟𝐟. (2.39) 

Equation 2.39 defines the dynamic equilibrium of the fully coupled system. The FRF matrix Hdual 

can then be defined,  

 𝐇𝐇𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜,𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝 = 𝐇𝐇 − 𝐇𝐇𝐁𝐁𝐓𝐓(𝐁𝐁𝐁𝐁𝐁𝐁𝐓𝐓)−𝟏𝟏𝐁𝐁𝐁𝐁. (2.40) 

Equation 2.40 is the formula for LM-FBS and defines the FRF matrix of the fully coupled 

system. Hdual is defined for all the local DOFs on all the structures, and therefore contains 

redundant information at the interface DOFs.  

 

2.7.7 Challenges to Frequency Based Substructuring 

While FBS offers a convenient means of characterizing large systems and directly utilizing 

experimental data, the method does have drawbacks. These include matrix inversions, propagation 

and magnification of measurement noise, the need to measure rotational degrees-of-freedom, and 

the need to measure directly at the interface degrees of freedom [19]. In the FBS calculation the 

matrix of FRFs is inverted, drastically magnifying measurement noise, and the matrix must be 

well-conditioned [29]. A common method of reducing FRF noise is by performing a modal 
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parameter estimation on the measured data and utilizing the synthesized FRFs from the results 

instead [30].  

The rotational DOFs of a structure make up three quarters of the FRF matrix and therefore 

neglecting to include them can result in very poor estimates of the coupled dynamics of the 

assembly. Two common methods of addressing both the measurement location and rotational DOF 

issues are the virtual point method and the transmission simulator. The virtual point method uses 

measurements around the true connection point to extrapolate the dynamics to a virtual point 

between them. This method is an extension of the equivalent multi-point connection method 

(EMPC), which estimated connections by making three 3-DoF translational measurements on a 

connection surface and filtering the motion to the 6 rigid body modes of the surfaces, which were 

then used for coupling [31]. The virtual point transformation then further reduces the 9-DoF 

connections of EMPC to an estimate of the 6-DOF motion at a single connection point. These 

virtual points can then be made collocated for the two substructures being coupled to fully satisfy 

the assumptions of FBS [32]. 

While the virtual point transformation provides improvements to single point connections, 

it is still not feasible for surface connections, as it is difficult to excite even the three translational 

DOFs required on surfaces. Instead, the transmission simulator method provides a means of 

estimating the rotational DOFs and the surface contact of the connection and is typically applied 

to substructure coupling of a physical substructure to a finite element model. The transmission 

simulator is a physical fabrication of the interface between two substructures that is then modeled 

analytically. The transmission simulator is attached to the substructure of interest, and analytically 

attached to the model of interest. The motions of the model and the physical substructure are then 

constrained to be the same, coupling the two substructures together capturing the dynamics at all 
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connection locations, and estimating the rotational degrees of freedom from the analytical model. 

The mass and stiffness of the transmission simulator are then subtracted from the system to remove 

its effects [33]. Drawbacks of this method are the need to both model and fabricate the transmission 

simulator.  
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3.0 EXPERIMENTATION AND ANALYSES 

3.1 Electrodynamic Shaker Model Development 

A 4-DOF, lumped parameter model was chosen for modeling the electrodynamic shaker. 

This 4-DOF model appeared multiple times in the literature and proved to capture the dominant 

dynamics of most electrodynamic shaker systems. The model consists of three mechanical DOFs, 

the body of the shaker, the armature table, and the armature coil. These are elastically connected 

to one another with springs and dampers. The fourth DOF is the charge in the electrical component 

of the system. The circuit consists of a source EMF, the only input to the system, an inductor, and 

a resistor. The two models are connected by the force imparted on the mechanical system, between 

the body and the coil, and the corresponding back EMF on the electrical system, which is 

proportional to the relative velocity of the body and coil. A diagram of the model is shown in figure 

3.1.1.  

 

Figure 3.1.1 Shaker electromechanical model diagram. 
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3.1.1 Model Parameters 

The model consists of 12 parameters. The mechanical side contains the three masses, mb, 

mt and mc, the three springs, kb, kt, and kc, and the three dampers cb, ct, cc. The electrical model 

contains the resistance of the coil R, and the inductance, L. Lastly, the two systems are coupled 

together by the coupling factor Bl, which is replaced with a single constant K. This constant is 

only equal on both sides of the model if SI units are used. Of these 12 parameters, 5 were 

determined from the specification sheet provided by the shaker manufacturer and measurements 

made on the system. The shaker’s body mass and armature mass, the sum of both the table and 

coil, as well as the flexure stiffness, kt, were available. The resistance of the coil was measurable 

directly on the shaker input terminal. The remaining parameters must be estimated through 

measurements on the system itself. 

 

3.1.2 Equations of Motion 

The end-use of this model is ultimately frequency-based substructuring, which couples 

together the frequency response functions of two different components to determine their coupled 

dynamics. Therefore, the FRFs of interest for this model must be calculated from it. First the 

equations of motion of the system were assembled based on the model. The mechanical system of 

equations can easily be assembled in matrix form, 

 

�
𝑚𝑚𝑏𝑏 0 0
0 𝑚𝑚𝑡𝑡 0
0 0 𝑚𝑚𝑐𝑐

� �
𝑢̈𝑢𝑏𝑏
𝑢̈𝑢𝑡𝑡
𝑢̈𝑢𝑐𝑐
� + �

𝑐𝑐𝑏𝑏 + 𝑐𝑐𝑡𝑡 −𝑐𝑐𝑡𝑡 0
−𝑐𝑐𝑡𝑡 𝑐𝑐𝑡𝑡 + 𝑐𝑐𝑐𝑐 −𝑐𝑐𝑐𝑐

0 −𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐
� �
𝑢̇𝑢𝑏𝑏
𝑢̇𝑢𝑡𝑡
𝑢̇𝑢𝑐𝑐
�

+ �
𝑘𝑘 + 𝑘𝑘𝑡𝑡 −𝑘𝑘𝑡𝑡 0
−𝑘𝑘𝑡𝑡 𝑘𝑘𝑡𝑡 + 𝑘𝑘𝑐𝑐 −𝑘𝑘𝑐𝑐

0 −𝑘𝑘𝑐𝑐 𝑘𝑘𝑐𝑐
� �
𝑢𝑢𝑏𝑏
𝑢𝑢𝑡𝑡
𝑢𝑢𝑐𝑐
� = �

𝑓𝑓𝑏𝑏
𝑓𝑓𝑡𝑡
𝑓𝑓𝑐𝑐
�. 

(3.1) 
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In this system of equations, the forces, f, are shown but will be zero in practice. Now the 

electrical equation can be written, as it is just a single degree of freedom. Because the mechanical 

system is written in terms of displacement, it makes most sense to write the electrical equation in 

terms of charge, q, so the time-derivatives of the two systems will be consistent when combined, 

 𝐿𝐿𝑞̈𝑞 + 𝑅𝑅𝑞̇𝑞 = 𝐸𝐸. (3.2) 

In this equation, the input is the source voltage E, and will be the only input to the full system.  

Now the two equations may be coupled together using the coupling coefficient K,  

 

�

𝑚𝑚𝑏𝑏 0 0 0
0 𝑚𝑚𝑡𝑡 0 0
0 0 𝑚𝑚𝑐𝑐 0
0 0 0 𝐿𝐿

� �

𝑢̈𝑢𝑏𝑏
𝑢̈𝑢𝑡𝑡
𝑢𝑢𝑐𝑐
𝑞̈𝑞

� + �

𝑐𝑐𝑏𝑏 + 𝑐𝑐𝑡𝑡 −𝑐𝑐𝑡𝑡 0 −𝐾𝐾
−𝑐𝑐𝑡𝑡 𝑐𝑐𝑡𝑡 + 𝑐𝑐𝑐𝑐 −𝑐𝑐𝑐𝑐 0

0 −𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐 𝐾𝐾
𝐾𝐾 0 −𝐾𝐾 𝑅𝑅

��

𝑢̇𝑢𝑏𝑏
𝑢̇𝑢𝑡𝑡
𝑢𝑢𝑐𝑐
𝑞̇𝑞

�

+ �

𝑘𝑘𝑏𝑏 + 𝑘𝑘𝑡𝑡 −𝑘𝑘𝑡𝑡 0 0
−𝑘𝑘𝑡𝑡 𝑘𝑘𝑡𝑡 + 𝑘𝑘𝑐𝑐 −𝑘𝑘𝑐𝑐 0

0 −𝑘𝑘𝑐𝑐 𝑘𝑘𝑐𝑐 0
0 0 0 0

� �

𝑢𝑢𝑏𝑏
𝑢𝑢𝑡𝑡
𝑢𝑢𝑐𝑐
𝑞𝑞
� = �

𝑓𝑓𝑏𝑏
𝑓𝑓𝑡𝑡
𝑓𝑓𝑐𝑐
𝐸𝐸

�. 

(3.3) 

 

If the matrices are then denoted M̃, C̃, and K̃ respectively, the vector of response DoFs denoted u, 

and the vector of input forces be f, the system can efficiently be written in a familiar form, 

 𝐌𝐌�𝐮̈𝐮 + 𝐂𝐂�𝐮̇𝐮 + 𝐊𝐊�𝐮𝐮 = 𝐟𝐟. (3.4) 

 

3.1.3 Frequency Response Functions 

From equation 3.3 and its restatement as equation 3.4, the FRFs of the system can be easily 

calculated using the direct frequency response method [11],  

 𝐇𝐇 = �−ω2𝐌𝐌� + jω𝐂𝐂� + 𝐊𝐊��
−1

. (3.5) 

Where H is the frequency response function matrix of the full system. H is calculated on a 

frequency line basis, with ω being the frequency, in radians per second, at that line. The result is 
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4x4xn matrix, where n is the number of frequency lines calculated. As stated previously, there are 

no input forces on the mechanical degrees of freedom, so only the fourth column of FRFs is 

needed, which are the responses to a voltage input, E. More specifically, the relationship between 

the mechanical response of the table to the electrical input to the shaker system is desired. This is 

the FRF in row 2, column 4 but must first be differentiated twice from its current form, receptance, 

to the accelerance form which will match measured acceleration data collected for updating the 

model. Also of interest is the response of the table to the current input to the system and the 

electrical impedance. The impedance is the inverse of the row 4 column 4 FRF, while the 

acceleration-current FRF will be the ratio of the row 2, column 4 FRF and the row 4, column 4 

FRF.  

The three FRFs of interest are affected by each of the parameters in the model. A parameter 

sensitivity study was performed to understand how changes in these parameters manifest in the 

FRFs. A baseline value was chosen for each of the parameters and held constant throughout. Then, 

one parameter at a time was subjected to an upward and downward perturbation. Plots of the 

baseline and each perturbation were made to visualize the effects the parameter has on the model 

results. Figure 3.1.2 shows an example of the effects of changing the mass on the table. After 

completing the perturbations for each of the parameters, the effects were assembled into Table 3.1, 

as well as the expected source for that parameter value. While the effects on all three FRFs were 

viewed, the effects in Table 3.1 focus on the shaker’s impedance.  
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Figure 3.1.2 Effects of changing the table mass on the three FRFs of interest. 
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Table 3.1.1 Model parameter sensitivities 

Parameter Source Effect on impedance 

Mb – Shaker body mass Spec Sheet Shift frequency of isolation 
mode 

Mt – Table mass Spec Sheet, Estimate 
Mt + Mc = Marmature 

Shift frequency of isolation 
mode and suspension mode 

Mc – Coil mass Spec Sheet, Estimate 
Mt + Mc = Marmature 

Shifts frequency of isolation 
mode and coil mode 

Cb – Isolation mount damping Estimate Shifts amplitude of isolation 
mode 

Ct – Flexure damping Estimate Shifts amplitude of suspension 
mode 

Cc – Coil damping Estimate Shifts amplitude of suspension 
mode and coil mode 

Kb – Isolation mount stiffness Estimate Shifts frequency of isolation 
mode 

Kt – Flexure Stiffness Spec Sheet Shifts frequency of suspension 
mode 

Kc – Coil stiffness Estimate Shifts frequency of suspension 
mode, slightly coil mode 

R – Coil resistance Measure 
Shifts overall amplitude 
slightly, significantly shifts coil 
mode amplitude. 

L – Coil inductance Estimate Shifts coil mode frequency 
 

3.1.4 Shaker Model Validation Test setup 

The model developed must be validated using data from the shaker itself. This is especially 

important, as only 5 of the 12 parameters are known before updating. To capture the behavior of 

the shaker, a test was setup to measure the three FRFs of interest. The shaker characterized is a 

Modal Shop (TMS) K2075E dual-purpose 75 lbf shaker. This small shaker has an armature table 

and voice coil similar to large shaker systems used for ground and flight testing. Two triaxial 

accelerometers were placed on the shaker, with one on the armature table and one on the body of 

the shaker. Figure 3.1.3 shows the setup of the test. The body accelerometer was placed on the 

underside of the black housing of the shaker but is obscured by the slip table trunnion in the figure. 

The amplifier’s built-in current monitor was used to measure the current supplied to the shaker, 
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and a voltage probe was attached to the amplifier output terminal to measure the voltage. In 

addition to the voltage from the amplifier, the drive voltage from the DAQ was measured. This 

setup captures nearly all the degrees of freedom in the model, but the armature coil is inaccessible 

for direct measurement.  

 

 

Figure 3.1.3 Shaker model validation test setup. The body accelerometer is behind the slip table 
housing. 

 

The test profile used was a flat 1 gRMS PSD from 1 Hz to 6500Hz with a 1 Hz frequency 

spacing to characterize the full range of the shaker’s dynamics. The full level was run for 90 

seconds. The frequency limits were based on the limitations of the equipment used, the expected 

dynamics of the system, and the controllability of the profile. The test was controlled using the 
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Siemens LMS Testlab 2021.1 software’s random control module. The test was run both open loop 

and closed loop to observe any effects of the controller on the FRFs. For the closed loop control 

the test was controlled on the Z-axis of the table accelerometer. The data was collected in the time-

domain using a sample rate of 25.6 kHz.  

 

3.1.5 Test Results 

The results from the characterization test closely matched the shape of the expected curves 

from the literature. The three FRFs were calculated from the time data collected using a two second 

Hanning window with a 50% overlap. Figures 3.1.4 through 3.1.6 show the results of the analysis. 

The shaker impedance, which is the measured voltage over the measured current across the 

frequency range, is shown in the real-imaginary form, while the other two FRFs are displayed in 

magnitude-phase form.  The impedance sees virtually no difference between using an open loop 

or a closed loop control. The other two FRFs show a slight difference in magnitude just at the 1 

Hz frequency line. This difference is accentuated by the log-log format used, and there is a 

maximum of 5% difference between the two signals at all other frequencies. These results show 

that the control algorithm does not significantly influence these FRFs. Two modes, the suspension 

and coil modes, are clearly visible on the plots, but the isolation mode is not. It is possible that 

either the mode is out of the range excited or does not have sufficient amplitude to be viewed. In 

either case, this indicates the model may be successful without including the body degree of 

freedom.  
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Figure 3.1.4 Shaker measured impedance. 

 

 

Figure 3.1.5 Shaker measured acceleration over voltage FRF. 
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Figure 3.1.6 Shaker measured acceleration over current FRF. 

3.1.6 Model Updating 

The data collected in the characterization test was then used for updating the model. First 

the model was updated by hand to get an approximate fit of the data and provide a starting point 

for an optimization that would determine the final fit of the model.  Using the results of the 

parameter sensitivity study, model parameters were chosen by trial and error and compared to the 

data. In accordance with the literature, an imaginary component was added to the inductance, as 

some amplifiers display a fixed phase difference between the current and voltage. This phase 

difference results in a real component of the impedance that increases proportional with frequency. 

While making the inductance complex compensates for this, it is not indicative of the physical 

phenomenon occurring [11][12]. Figures 3.1.7 through 3.1.9 show the manual fit compared to the 

data from the test, and Table 3.2 contains the parameter values chosen. 
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Figure 3.1.7 Comparison of the modelled and measured impedance of the small shaker. 

 

Figure 3.1.8 Comparison of the modelled and measured table acceleration over amplifier voltage 
FRF of the small shaker. 
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Figure 3.1.9 Comparison of the modelled and measured table acceleration over amplifier current 
FRF of the small shaker. 

 

The hand fit model was then used as the initial state for the optimization to make the final 

model fit. MATLAB’s fmincon algorithm was used for the optimization. fmincon is a gradient-

based nonlinear constrained optimization algorithm. The algorithm assumes that the objective 

function used as well as its derivative are continuous. The objective function used was a weighted 

sum of the root mean square (RMS) errors of the real and imaginary parts of each FRF across all 

frequency lines, 

 

𝑒𝑒𝐹𝐹𝐹𝐹𝐹𝐹 = �∑ ∑�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(ℎ𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(ℎ𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)�
2𝑁𝑁

𝑛𝑛=1

𝑁𝑁

+ �∑ ∑�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(ℎ𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(ℎ𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)�
2𝑁𝑁

𝑛𝑛=1

𝑁𝑁
, 

(3.6) 
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 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑎𝑎1𝑒𝑒𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑎𝑎2𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 + 𝑎𝑎3𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. (3.7) 

In these equations hn is the value of the FRF at the nth frequency line, N is the total number 

of frequency lines, and ai is the weight assigned to the RMS error of that FRF. The default step, 

constraint, and optimality tolerances were used. The five model parameters that could be 

determined from the specification sheet of the shaker and measurements (body mass, table mass, 

coil mass, flexure stiffness, and resistance) were held fixed while the remaining 8 parameters were 

allowed to vary. The only constraint used was that parameters must be nonnegative. Weights were 

applied to normalize the magnitudes of the FRFs. Without them, the acceleration-current FRF 

dominates the error calculation purely because of its magnitude. While relative error may also be 

an option, the zero crossings in the imaginary parts of the FRFs tend to dominate the calculation, 

resulting in a poor fit. Table 3.2 also shows the parameter values determined from the optimization, 

and figures 3.1.10 through 3.1.12 compare the calculated FRFs from these parameters to the 

measured data. The optimization algorithm reduced the error in the model by only 5%. Most of 

the model parameters were not drastically changed. The body and damping stiffnesses showed 

almost no change at all. This is likely because the isolation mode is not clearly seen in the measured 

data and had little impact on the value of the objective function. In addition, the imaginary portion 

of the inductance approaches machine precision zero, indicating the amplifier used did not display 

the phase-difference issue seen in the literature. Lastly the coil stiffness showed very little change, 

likely because of its large magnitude, and confounding influences from the coupling coefficient. 

  



53 

Table 3.1.2 Chosen model parameters 

Parameter Hand Fit Value Updated Value Units 
Body Mass 15.55 15.55 (fixed) kg 
Table Mass 0.37 0.37 (fixed) kg 
Coil Mass 0.08 0.08 (fixed) kg 
Body Damping 100 99.99 N/(m/s) 
Flexure Damping 20 23.22 N/(m/s) 
Coil Damping 40 43.90 N/(m/s) 
Body Stiffness 10000 10000 N/m 
Flexure Stiffness 10500 10500 (fixed) N/m 
Coil Stiffness 6.500e7 6.5000e7 N/m 
Resistance 1.00 1.00 (fixed) Ω 
Real (Inductance) 1.200E-04 1.195E-04 H 
Imag (Inductance) 2.00E-05 5.010E-10 H 
Coupling Coefficient 12 15.11 - 

 

 

Figure 3.1.10 Comparison of the updated model and measured impedance of the small shaker. 
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Figure 3.1.11 Comparison of the updated model and measured table acceleration over amplifier 
voltage FRF of the small shaker. 

 

Figure 3.1.12 Comparison of the updated model and measured table acceleration over amplifier 
current FRF of the small shaker. 
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3.2 Experimental Dynamic Substructuring Implementation 

A generic DUT was needed for assessing the effectiveness of using experimental dynamic 

substructuring for shaker capability estimation. The base of the Box Assembly and Removable 

Component (BARC) was chosen as the DUT. The BARC is a common challenge testbed used 

within the structural dynamics and dynamic environments testing community. The base of the 

BARC, i.e., without the removable component, was used because it does not contain any bolted 

joints, which are dynamically complex and difficult to characterize. Figure 3.2.1 shows the BARC 

base that was used.  

3.2.1 Substructure Modal Testing 

A multi-reference impact test (MRIT) was performed to develop a modal model of the 

BARC base. The test was performed with the BARC suspended from a modal test stand using 

fishing wire to approximate a free-free boundary condition. A combination of uniaxial and triaxial 

accelerometers were used, totaling twelve sensors and 24 reference channels. A modal impact 

hammer was used for excitation. All data was collected using a Siemens LMS SCADAS Mobile 

DAQ and Siemens Simcenter Testlab 2021.1 Impact Testing software. Sensor channel ranges were 

selected to maximize the input to the ADC. A bandwidth of 8192 Hz with 16384 spectral lines was 

used, resulting in a two second acquisition window. The structure is very lightly damped and 

continued to resonate after the acquisition window ended, causing low-frequency leakage, so a 

30% exponential decay window was applied to the data collected. A 5% force-exponential window 

was used on the input. Five averages were collected for each FRF. Figure 3.2.1 shows the test 

setup. 
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Figure 3.2.1 Modal impact test setup. 

 

A driving point measurement is needed at each of the connection points for substructure 

coupling. In addition, each “point of interest” anywhere else on the structure also requires a driving 

point. These points could be potential control points that must be evaluated for estimating shaker 

capability. The results of the driving point measurements are a 24×24×16384 FRF matrix that was 

used for modal parameter estimation.  

Modal parameter estimation was performed using the orthogonal polyreference, or OPoly, 

algorithm in the third-party MATLAB toolbox, IMAT 7.9.0, developed by ATA Engineering. First 

the full range of interest, from 1 Hz up to 6500 Hz was attempted for modal parameter estimation. 

However, the parameter estimation algorithm struggled with fitting such a large frequency range. 

This difficulty is likely because the test conducted did not well characterize the rigid body modes 

which occurred between 0 Hz and 10 Hz. Additionally, the input spectrum achieved by the hammer 
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begins to roll off significantly after 6000 Hz. Instead, a shorter range was fit, from 1 Hz to 2800 

Hz, which spanned from the rigid body modes up to the fifteenth elastic mode. Figure 3.2.2 shows 

a sample FRF from point number 17, located offset from the center of the bottom plate on the 

BARC base and was used as a connection point in the substructuring analysis. Figure 3.2.3 shows 

a sample FRF from point number 129, located on the top of the BARC base structure, and used as 

a “point of interest.”  

 

Figure 3.2.2 FRF measured and synthesized from modal parameters at point 17 of the BARC 
base. 
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Figure 3.2.3 FRF measured and synthesized from modal parameters at point 129 of the BARC 
base. 

 

The modal parameter estimation best fits the data below 1000 Hz but is an adequate fit 

overall. In both locations the frequencies of the antiresonances are overestimated and their 

magnitudes underestimated. Point 17 sits along the width centerline of the BARC base, so fewer 

modes are seen, as it cannot measure torsional modes, or modes occurring on the upper faces. Point 

129 sees 14 of the 15 elastic modes fit.  

 

3.2.2 Substructuring Analysis 

The experimental model of the BARC base was coupled to the analytical model of the 

shaker using Equation 2.40. The synthesized FRFs of the BARC base are the data used for the 

substructure coupling analysis, because they are analytically derived from the estimated modal 

parameters and are less noisy. Similarly, the FRFs calculated from the model of the small shaker 
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are used. Points 17 and 19 were chosen as the coupling points on the BARC base and were coupled 

with the table DOF of the shaker model. This creates two interface conditions. 

First the B matrix is developed for each substructure,  

𝐁𝐁(shaker) = �0 1 0 0
0 1 0 0� ,𝐁𝐁(BARC) = �0 … −1 0 … 0

0 … 0 −1 … 0 �. 

The nonzero elements of the BARC B matrix are in columns 9 and 10. The two matrices are then 

concatenated horizontally. Next the FRF matrix, Huncoup, is assembled block-wise, similarly to the 

B matrix, 

𝐇𝐇 = �𝐇𝐇shaker 𝟎𝟎
𝟎𝟎 𝐇𝐇BARC

�. 

The B and H here are put into Equation 2.40, and the coupled FRF matrix Hcoup is then calculated 

on a frequency line basis. The frequency range of the modal parameter estimation, 1 Hz to 2800 

Hz, with a 1 Hz spacing was used. The results of the analysis are seen in Figures 3.2.8 through 

3.2.12.  

 

3.2.3 DUT-Shaker Coupling Validation Test 

The substructuring analysis must be experimentally validated, so a random vibration test 

of the BARC base attached to the shaker was conducted. This test utilized the same instrumentation 

setup on the BARC base as in the modal test, but also measured the current and voltage supplied 

by the amplifier to the shaker, like the test conducted for validating the shaker model. The test was 

run using the random vibration control module of Siemens Simcenter Testlab 2021.1. The test 

specification was a flat 1.5 gRMS PSD from 10 Hz to 6000 Hz with a 2 Hz frequency resolution. 

The full level was run for 90 seconds. The test was average controlled from Points 17 and 19, and 

a sample rate of 25.6 kHz was used. Figure 3.2.4 shows a setup of the test.  
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Figure 3.2.4 Setup of the substructure coupling validation test. 

 

As with the test analysis performed for the shaker model validation, the impedance, 

acceleration over voltage, and acceleration over current FRFs were calculated from the time 

history data collected. Figures 3.2.5 through 3.2.7 show the FRFs calculated using the acceleration 

measurements at Point 17. This is a similar location to the table measurements made on the table, 

which was obscured by the test article. These FRFs clearly show the interaction of the BARC 

base’s dynamics with the dynamics of the shaker. Not only are some of the modes from the BARC 

base seen, but the modes of the shaker have also been shifted by the change in mass of the system. 
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These results will be compared to the results of the substructure coupling analysis in the next 

section.  

 

Figure 3.2.5 Comparison of the impedance with the shaker alone vs when coupled with the 
BARC base. 
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Figure 3.2.6 Comparison of the table acceleration over current FRF with the point 17 
acceleration over current FRF. 

 

Figure 3.2.7 Comparison of the table acceleration over voltage FRF with the point 17 
acceleration over current FRF. 
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3.2.4 Substructuring Analysis Results 

The results of the coupling are shown in figures 3.2.8 through 3.2.12 and are compared to 

the validation testing results.  

 

Figure 3.2.8 Impedance estimated from substructure coupling compared to measured impedance. 
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Figure 3.2.9  Acceleration over voltage FRF at Point 17 estimated from substructure coupling 
compared to measured acceleration over voltage FRF at Point 17. 

 

Figure 3.2.10  Acceleration over current FRF at Point 17 estimated from substructure coupling 
compared to measured acceleration over current FRF at Point 17. 
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Figure 3.2.11  Acceleration over voltage FRF at Point 129 estimated from substructure coupling 
compared to measured acceleration over voltage FRF at Point 129. 

 

Figure 3.2.12  Acceleration over current FRF at Point 129 estimated from substructure coupling 
compared to measured acceleration over current FRF at Point 129. 
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The results of the substructuring analysis are not perfect but indicate, with improvement, 

the method could be used for predicting shaker capability. Points 17 and 129 are both uniaxial 

accelerometers measuring in the vertical direction. Point 17 was a coupling point between the 

modal model of the BARC base and shaker model, while point 129 is located on top of the BARC 

base. The frequency of the suspension mode, seen in the impedance and acceleration FRF, is 

overestimated. However, the remainder of the peaks seen are underestimated in frequency for all 

three FRFs. This underestimation indicates the substructure coupling is not as stiff as the true 

system. The substructure coupling is modeled through two rigid connections, while the physical 

structure is attached via four bolted connections. Further, the connections are only constrained in 

the vertical direction, while the bolted connections constrain all motion. The modeled motion is 

not representative of the number of constraints on the physical structure, resulting in a softer 

estimation of the coupled dynamics. However, the bolted connections are not truly rigid either, 

making an accurate representation of the physical coupling difficult. The errors seen could be 

improved by connecting the two substructures at the physical connection points, and by estimating 

the 6-DOF motion at those connection points. This could be achieved through the virtual point 

transformation or the transmission simulator. 

 

3.3 Shaker Capability Estimation 

The FRFs calculated in the previous section can be utilized to transform electrical inputs 

to the shaker into mechanical responses at the measured driving points, or vice versa. It is this 

relationship that will be used to perform shaker capability estimation. The inverses of the FRFs 

can be used as filters on acceleration test specifications to determine the electrical inputs required 

to meet those specifications. Alternatively, random acceleration signals satisfying the test 
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specifications can be generated and transformed by the FRFs to estimate the expected electrical 

input signals. 

3.3.1 Transforming the Test Specification 

The test specification used in the substructuring analysis validation test, a 1.5 gRMS flat-

band PSD controlled at Points 17 and 19, is considered. For this example, the specification is 

trimmed to the maximum range of the modal parameter estimation, 10 Hz to 2800 Hz. The 

trimming of the spectrum results in approximately a 1 gRMS specification. This is representative 

of a typical diagnostic random test profile used in vibration testing. The goal is to determine the 

electrical requirements to achieve the acceleration profile, so the inverse of the acceleration FRFs 

estimated from the substructuring analysis are taken, shown in Figure 3.3.1. The inverse FRF 

calculated from the test data is also shown and will continue to be used to illustrate the success of 

the capability estimation method when a well-estimated FRF is used. Because this FRF was 

calculated based on the test data itself, it represents the ideal case. 

The test specification is given as a PSD, so the square of the norm of the FRF must be used 

to filter the specification back to the electrical inputs required to achieve it, 

 𝐑𝐑V = �𝐇𝐇V/a �
𝟐𝟐
𝐑𝐑a, (3.8) 

where Rv is the estimated voltage input PSD, HV/a is the voltage over acceleration FRF from Figure 

3.3.1a, and Ra is the acceleration test specification PSD. The test specification and FRF are 

multiplied on a frequency-line bases in the frequency domain to filter the specification by the 

norm-square FRF. In order to perform this filtering, the FRF must first be interpolated to the same 

frequency lines as the test specification. A linear interpolation was used. 
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(a) 

 

(b) 

Figure 3.3.1 Inverse FRFs to use for transforming test specification to electrical requirements. 
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The results of the transformation are shown in Figure 3.3.2. Because the specification used 

for this calculation was actually tested, it may be directly compared to the actual voltage input for 

the test, filtered to the same 10 Hz to 2800 Hz limits. 

 

Figure 3.3.2 Estimate of the voltage input spectrum required for a random vibration test 
compared to the measured voltage input of a test using the same specification. 

 

The same analysis can be performed using the acceleration-current FRF, or by using the 

impedance to transform the voltage input estimate into an estimate of the current input. The results 

of using the acceleration-current FRF following the same process are shown in Figure 3.3.3. 
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Figure 3.3.3 Estimate of the current input spectrum required for a random vibration test 
compared to the measured current input of a test using the same specification. 

 

The errors in the FRF from the substructuring analysis propagate through this analysis. The 

underestimation of the natural frequencies in the FRFs result in an underestimation of the peaks 

seen in the input power spectra. However, the FRF calculated from the test data, as expected, 

makes a very accurate estimate of the spectra. 

These PSDs can be integrated to find the expected RMS of the electrical input signals and 

compared to the specification sheet for the amplifier being used. Estimates of the peak value may 

also be calculated based on simple statistics of signals. The RMS of a zero-mean, gaussian 

distributed signal is equivalent to the standard deviation, so the RMS estimate from the PSDs 

calculated can be used to determine the statistical distributions of the signals. Many control 

softwares offer “sigma limiting” capabilities, where the controller attempts to prevent any 

instantaneous accelerations beyond a user-specified standard deviation. The validation test 
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conducted utilized a sigma limiting level of five standard deviations, so one may assume a peak 

value of 5-sigma. Assuming the entire transformation is linear, the maximum allowable value for 

the electrical inputs would also be at a 5-sigma level, as gaussian random processes remain 

gaussian after a linear transformation.  

Table 3.3 shows the estimated RMS and peak values of the electrical inputs from the 

substructuring analysis, the values estimated from the test data FRF, and the actual values from 

the measured signals. 

 

Table 3.3.1 RMS and Peak Value Estimates Comparison for Test Specification Transformation 

 Substructuring Analysis 
FRF Estimate 

Test Data FRF 
Estimate Measured 

Type RMS Peak RMS Peak RMS Peak 
Voltage (V) 3.431 17.15 5.807 29.03 5.613 23.39 

Error  
(%) -38.87 -26.65 3.452 24.13 - - 

Current 
(A) 3.220 16.10 2.819 14.09 2.786 10.82 

Error  
(%) 15.56 48.78 1.172 30.25 - - 

 
 

The RMS and peak values from the substructuring analysis severely underestimate the 

voltage input required, while slightly overestimating the current input required. The FRF 

developed from the test data makes an accurate estimate of the RMS but overestimates the peak 

value. The sigma limiting of the software attempts to set a maximum threshold of the “peak value” 

estimated here, therefore it is somewhat unsurprising that the 5-sigma estimate definition of “peak 

value” is too high, as it represents more of an upper bound. Both measured maximum values occur 

at approximately four standard deviations, rather than five. In addition, any overestimation of the 
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RMS results in an overestimation of the peak value. The limitations specified for the amplifier 

used, a 2050E05 Linear Amplifier from the modal shop, are 25 VRMS and 20 ARMS. The 

substructuring analysis correctly labels this test as feasible with the given equipment but may 

incorrectly predict a higher level as feasible because of the underconservative estimate of input 

voltage. 

 

3.3.2 Transforming the Time Domain Signal 

Rather than transforming the test specification itself, a realization of a random time signal 

satisfying the test specification may be generated and similarly filtered by the inverted frequency 

response function. Figure 3.3.4a shows a realization of a random time signal satisfying the 1 

gRMS, 10 Hz to 2800 Hz specification compared to the measured acceleration time data from the 

validation test, again filtered to a range of 10 Hz to 2800 Hz for consistency. Figure 3.3.4b shows 

an overlayed histogram of the two signals, indicating they are from very similar distributions. 

  



73 

 
(a) 

 
(b) 

Figure 3.3.4 Comparison of a synthesized time signal satisfying the test specification vs the 
measured acceleration achieved from that specification. 
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This time signal can then be filtered by the FRFs to estimate the input time histories for the 

current and voltage that must be supplied by the amplifier. This is best achieved in the frequency 

domain. First the discrete Fourier transform of the time signal is taken. Then it is multiplied on a 

frequency-line basis with the FRF,  

 𝐒𝐒V = 𝐇𝐇V/a 𝐒𝐒a. (3.9) 

SV is the DFT of the voltage input signal, HV/a is the voltage-amplitude FRF, and Sa is the DFT of 

the acceleration output signal. Finally, the inverse discrete Fourier transform of the filtered signal 

is calculated to estimate the input time history. Figures 3.3.5 and 3.3.6 show the time histories and 

histograms of the estimated input signals from the two FRFs compared to the measured input 

signals. Table 3.4 contains the estimated RMS and peak values from the estimated input signals.  

 

Table 3.3.2 RMS and Peak Value Estimates Comparison for Time Domain Signal 
Transformation 

 Substructuring 
Analysis FRF Estimate 

Test Data FRF 
Estimate Measured 

Type RMS Peak RMS Peak RMS Peak 
Voltage 

(V) 3.178 15.89 5.725 28.62 5.613 23.39 

Error 
(%) -43.38 -32.06 1.992 22.38 - - 

Current 
(A) 2.972 14.86 2.776 13.88 2.786 10.82 

Error 
(%) 6.88 37.35 -0.3633 28.27 - - 
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(a) 

 

(b) 

Figure 3.3.5 Comparison of estimates for the input voltage signal to the measured input voltage 
signal. 
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(a) 

 

(b) 

Figure 3.3.6 Comparison of estimates for the input current signal to the measured input current 
signal. 
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Again, the RMS and peak values of the input voltage signal are underestimated, while the 

current RMS and peak values are slightly overestimated. However, the transformation of a 

representative time domain signal does offer slightly better estimates of the RMS and peak value 

of the signal in the ideal case. The time domain signals appear similar but are difficult to interpret 

visually. The histograms provide a clearer understanding of the time data and show that while the 

test data FRF performed better at estimating the input signals using this method, the distribution 

of the input signals is not completely captured. The distribution of the measured signal has a lower 

peak, despite the same tail distribution. A fit of a normal probability density function (PDF) to the 

measured data, seen in figure 3.6.7, shows it is not quite normally distributed, indicating the actual 

relationship between the electrical inputs and acceleration response is not linear, which is an 

assumption that was made for this analysis.  

This method of transforming a time domain signal using the measured FRF is the same 

method utilized by many commercial control software packages in order to estimate the feasibility 

of a test. It can also be used to estimate input signals for mechanical shock testing when a time 

waveform is specified. However, it is more difficult to execute, as it requires the generation of 

random signals to satisfy the test specification, as well as transforming those signals using the 

FRFs. 
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(a) 

 
(b) 

Figure 3.3.7 Synthesized and measured (a) voltage and (b) current data histograms compared to 
their normal distribution fits.  
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4.0 DISCUSSION AND CONCLUSIONS 

4.1 Discussion 

4.1.1 Shaker Modeling 

The results of the shaker model adequately matched the dynamics of the 75 lbf dual-

purpose shaker used for this work. However, the model could both be simplified and at the same 

time made more complex. The inclusion of the body DOF does not appear to be necessary in the 

frequency range that was tested. The isolation mode most associated with this DOF was not 

observed in the test data collected and did not improve the performance of the model. The model 

assumed the mass of the body of the shaker at just 15.55 kg, which is the mass provided by the 

manufacturer in the specification sheet. This mass is just for the black body housing seen in Figure 

3.1.1, but the shaker is nearly rigidly assembled into a fixture containing a slip-table. The 

combination of the fixture, slip table, and body together constitute a much larger mass than 15.55 

kg, pushing the actual expected frequency much lower than was modeled. Second, the shaker was 

placed on a layer of foam in an attempt to isolate it from the floor and reduce disturbances to 

neighboring work in the testing area. The foam used is program material for drop tower testing 

and is very dissipative, significantly damping energy that would be seen in the isolation mode. 

Removing the mode would both simplify the model and reduce the solution space for the 

optimization algorithm used when updating the model.  

In addition to removing the body degree-of-freedom from the model, further improvements 

should be made to the optimization used for model updating. More work must be done to identify 

confounding parameters, such as the coil stiffness and the coupling coefficient, and further 

constraints implemented to prevent these factors from compensating for one another. Six 
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parameters remains a large solution space, so combining parameters that are not independent 

would further reduce the solution space and likely improve updating results results.  

The model may benefit from increasing complexity by adding in other DOFs to capture 

more detailed motion of the shaker, as was done by Hoffait et al [15]. Including a rotational DOF 

or a second translational DOF could begin to capture out-of-axis motion of the shaker and possibly 

improve the results of the substructure coupling analysis. While the armature moves predominantly 

in the vertical direction, there is certainly some motion in other directions that influences the results 

of a test.  

4.1.2 Experimental Dynamic Substructuring Implementation 

The results of the experimental dynamic substructuring implementation were not as 

successful as the shaker modeling. While the BARC base was well-characterized in the range 

tested it wasn’t possible to get a fit of the full range of interest, which would include the shaker’s 

coil resonance at about 5300 Hz. The coil resonance and beyond is the area of most interest because 

the resonance creates control difficulties, and the more complicated dynamics beyond it present 

more limitations than the flat region below it. Substructuring also requires a strong characterization 

of the rigid body modes, as they describe most of the motion occurring at interfaces. Exciting such 

a wide range of dynamics is difficult to do with impact testing, but shaker modal testing is not 

feasible with the number of driving points needed.  

Beyond modal testing, experimental FBS is well-documented as difficult to implement. 

The LaGrange-Multiplier Frequency-Based-Substructuring method used is the most basic 

approach to FBS and has a number of drawbacks discussed in section 2.7. The issue of 

measurement noise was successfully dealt with by utilizing synthesized frequency response 

functions from the modal parameter estimation of the data, but other issues remained. No rotational 
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degrees of freedom were estimated, and the two connection points used, 17 and 19, while in the 

vicinity of the interface, were not collocated with the physical connections. As a result, the 

torsional modes, not clearly seen in Point 17 but clearly seen in Point 129, were poorly estimated. 

At point 129, the modes seen near 1000 Hz are estimated in the wrong order in the substructure 

coupling, with a bending mode 900 Hz, where torsion mode was measured. The following mode 

estimated was a torsion mode near 1500 Hz, when a bending mode was measured at lower 

frequency. Overall, the substructure coupling underestimated the stiffness of the coupling between 

the shaker and the BARC base, resulting in natural frequency estimates that were too low. It is 

likely this is because of the coupling approach chosen. Four physical connections coupled the two 

substructures together, but only two were used analytically. The analytical coupling also only used 

the vertical DOFs. The shaker model only contained vertical motion at the table, but all of the 6-

DOF motion at each physical connection is constrained by the bolts, making the connection stiffer 

than was modeled. 

Some approaches that may alleviate these issues would be the use of the virtual point 

transformation or the transmission simulator. Both methods present a different set of challenges 

from those of the LM-FBS method used. The virtual point method suggests using three triaxial 

accelerometers around each virtual point to estimate the 6-DOF motion at that point. The 9-DOF 

measurements are projected to the 6-DOF space via interface displacement modes that are 

determined based on the rigid body modes. This projection then estimates the 6-DOF motion in a 

least squares sense, averaging out measurement errors. Several issues with the test article chosen 

occurred when attempting this method. First, the rigid body modes need to be well-characterized, 

which was not achieved in the modal test conducted. Second, the plate-like structure on the bottom 

of the article makes it difficult to achieve driving points in all three translational directions. At the 
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corners of the plate, all three translations may be measured, but at the edge, only two, and in the 

middle, just one. Tapping blocks may be used to excite these other translations, but at the risk of 

mass-loading the test article because of its small size. So, only six DOFs are measurable. While 

theoretically enough to estimate the 6-DOF motion at each of the necessary virtual points, the 

least-squares estimation of the motion is lost, leaving it more susceptible to measurement errors 

and poor matrix conditioning. Lastly, a balance must be made between the distance from the virtual 

point and the measurement locations. Sensors further away offer better estimations of the dynamics 

at the virtual point, but the method assumes rigid translation between the sensors and the virtual 

point. This assumption is valid up to the frequency where elastic motion between the sensors and 

virtual point begins to occur, which decreases with increases in distance. The spacing of the sensors 

on the plate would likely not allow an adequate dynamic range to be characterized before the 

assumption is no longer valid.  

A transmission simulator (TS) method may also improve the results of the substructuring. 

This method utilizes a fabricated interface that is analytically modeled and physically tested. The 

model is then coupled to the modeled substructure and the physical object to the experimentally 

characterized substructure. The two substructures are then joined by constraining the motion of 

the transmission simulator in the model and from the experiment to be the same. This then 

estimates the 6-DOF motion using the model and estimates the physical motion at the interface 

from the test. This is an attractive method of substructuring for this particular problem because the 

interfaces of the shaker tables and slip tables will not change, so a single TS may be fabricated for 

any and all shakers of interest and reused for multiple tests. The difficulties with this method, 

beyond having to fabricate the TS for each shaker, are with modeling and the properties of the 

interface. The model used for this work contained just one vertically translating DOF for the table, 
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which may oversimplify the motion on the model side of the interface and no longer help the 

method. A more complex model could be developed to alleviate this issue. The TS method is 

ideally suited for continuous interfaces between substructures, while the virtual point method is 

ideal for discrete connections. However, the inserts of the armature table are essentially raised 

washers embedded in the table, creating an interface somewhere in-between a series of discrete 

connection points and a continuous surface. Creating a TS to represent this interface accurately 

could be difficult.  

4.1.3 Shaker Capability Estimation 

The errors in the substructuring results propagate through the method of estimating shaker 

capability, resulting in an underestimate of the voltage and an overestimate of the current. These 

two inputs are related by the impedance of the system, so a better estimate of the impedance is 

needed. However, the estimates using the test data were very accurate, especially when 

transforming representative time-domain signals. This shows the estimates are very dependent on 

the FRF used, so it is imperative to accurately characterize the system. The method of transforming 

the test specification showed slightly more error than transforming time-domain signals, likely 

because the transformation uses the norm-squared FRF, which accentuates any errors in the 

function. However, it is a simpler technique, because time-domain signals representative of that 

test specification do not need to be generated. Transforming the time-domain signals offered 

slightly better results for estimating shaker capability, and is also applicable to mechanical shock 

testing, but requires the generation of time signals that satisfy the specification.  

A number of assumptions were made in these estimations that may not always be true 

depending on the test control software used and the specific test setup. First, assumptions of 

linearity were made throughout this entire work, but many complex test articles show strong 
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nonlinearity. Normal PDF fits of the measured data indicated the simple system tested here was 

not quite linear. Second, assumptions were made that the desired acceleration output is normally 

distributed, which may or may not be true depending on how the signal is generated. If the signal 

is not gaussian, estimates of the peak value are more difficult to achieve and the RMS is not as 

descriptive of the signal. Lastly, not all control software may implement sigma limiting, or allow 

the user to choose the level of sigma limiting. This again makes it difficult to estimate what the 

peak value seen may be.  

4.2 Conclusions and Recommendations 

This work explored concepts of shaker modeling, modal testing, and experimental dynamic 

substructuring and applied them to develop a process for estimating shaker capability with more 

detail. Portions of this process were achieved with success, such as the shaker modeling, while 

others need improvement, such as the experimental dynamic substructuring. The results show that 

the process is possible but highly dependent on the ability to accurately characterize the frequency 

response functions relating the acceleration response at the control location to the electrical inputs 

to the shaker. When these FRFs are accurately characterized, the RMS and peak value of the inputs 

required can be estimated within 3.5% and 30% error respectively. However, when the estimation 

of the FRFs is not accurate, the method sees much larger error. The use of unmodified LaGrange-

Multiplier Frequency-Based-Substructuring is not recommended, as it is difficult to accurately 

couple the shaker model to the DUT, resulting in a poor estimation of the FRFs. Other methods, 

such as the virtual point transformation or transmission simulator should be explored to improve 

these estimations and achieve better results for capability estimation. While this work focused on 

random vibration testing, these same methods may be applied to mechanical shock testing using 
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electrodynamic shakers. Further work should be conducted to explore applying these methods to 

shaker shock and the fidelity with which shock capability can be estimated.  

 

This thesis, in portion, is a reprint of material as it appears in the Conference Proceedings 

of the 41st International Modal Analysis conference, 2023. Peter H. Fickenwirth, Michael D. Todd, 
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and author of this paper. 
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