
1

1. Report Title: AOI-2, A Novel Access Control Blockchain Paradigm for

Cybersecure Sensor Infrastructure in Fossil Power

Generation Systems

2. Report Type: Final Technical

3. Reporting Period: Start Date: 09/01/2019

 End Date: 09/30/2022

4. Federal Agency: Department of Energy

5. Principal Author(s): Rahul Panat (PI)

 Russell V. Trader Associate Professor

Department of Mechanical Engineering

 Carnegie Mellon University

 Pittsburgh, PA

 Tel: 412-268-2501; Fax: 412-268-3348
 E-mail: rpanat@andrew.cmu.edu

 Vipul Goyal (co-PI)

 Associate Professor

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA

 E-mail: vipul@cmu.edu

6. Date of Report: Jan 30, 2023

7. DOE Award Number: DE-FOA-0001991

8. Name and Address of Submitting Organization:

 Carnegie Mellon University

Room 8113 Wean Hall,

5000 Forbes Avenue,

Pittsburgh, PA 15213
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of their employees,

makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

that its use would not infringe privately owned rights. Reference herein to any specific commercial

product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily

constitute or imply its endorsement, recommendation, or favoring by the United States Government or

any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect

those of the United States Government or any agency thereof.

mailto:rpanat@andrew.cmu.edu
mailto:vipul@cmu.edu

2

ABSTRACT

Fossil power generation systems are increasingly vulnerable to attack from both

cybercriminals as well as internal threats. These vulnerabilities demand that emerging

technologies such as blockchains be utilized to secure the data involved in the information flows

within the Supervisory Control and Data Acquisition (SCADA) systems of the fossil power

generation plants. The publicly accessible blockchain protocols, although secure, are visible to

everyone. Even private blockchains currently are unable to support different levels of access to

different participants, which is a critical requirement for the existing SCADA systems running

the power plants. In light of the above, novel blockchain protocols that are specifically adapted

to fossil power generation environments need to be developed in order to achieve the goal of

cybersecure sensor networks.

In this work, we address this question by creating a novel blockchain technology, namely

smart private ledger, for cybersecure communication within the fossil power generation systems.

A lab-scale sensor network consisting of strain and temperature sensors is constructed to

develop the ledger. The technology has hierarchical access control which is compatible with the

existing SCADA systems in fossil power plants. The sensor data is used with cryptographic

digital signatures and secret sharing protocols within the nodes of the blockchain technology.

The research results will lead to cybersecurity for machine-to-machine interactions,

infrastructure for secure data logging for sensors, decentralized data storage, and second-layer

technologies for high volume machine-to-machine interactions in the power plants. The work

aims to largely address the concerns for the security of distributed sensor networks in such

systems that can be compromised by insider threats and by cybercriminals. The research has led

to the training of the next generation of engineers and scientists in the important areas of sensor

engineering and blockchain technology.

1

TABLE OF CONTENTS

Page

ABSTRACT .. 2

EXECUTIVE SUMMARY .. 4

CHAPTER ONE INTRODUCTION ... 5

1.1Background and Research Need .. 5
1.2 Significance of the Work .. 6
1.3 Report Organization .. 6

CHAPTER TWO LAB-SCALE SENSOR NETWORK FOR BLOCKCHAIN

DEVELOPMENT ... 7

2.1 Strain Sensors.. 8
2.2 Temperature Sensors .. 9
2.3 Transmission Module.. 9

CHAPTER THREE BLOCKCHAIN FOR ENCRYPTION ... 11

3.1 DPSS... 13
3.1.1 DPSS Background.. 13
3.1.1.1 Adversary Model ... 14
3.1.1.2 DPSS Security Definition .. 14
3.1.2 Overview: Our DPSS Construction .. 14
3.1.2.1 Our Construction: Semi-honest Case ... 15
3.1.2.2 Moving to a Fully Malicious Setting .. 16
3.1.2.3 DPSS Setup Phase .. 19
3.1.2.4 DPSS Reconstruction Phase ... 19
3.1.2.5 Security of Our Construction ... 19
3.2 Defining eWEB .. 19
3.2.1 Syntax ... 20
3.2.2 Security Game Definition .. 21
3.3 Our eWEB Protocol Design ... 23
3.3.1 Assumptions ... 23
3.3.2 Our eWEB Construction .. 24
3.3.2.1 Subtleties of Point-to-Point Channels .. 25
3.3.2.2 Storage Identifiers ... 26
3.3.2.3 Handling Large Secrets .. 26
3.3.3 Security Proof Intuition ... 27

2

3.4 Application Examples ... 28
3.4.1 Voting Protocol ... 31
3.5 Implementation .. 32
3.6 Experimental Evaluation .. 32
3.6.1 eWEB Performance... 33
3.6.2 DPSS Comparison.. 34
3.6.3 Applicaitons .. 34
3.6.4 Microbenchmarks ... 35
3.7 Related Work .. 36
3.7.1 Prior Work on DPSS .. 36
3.7.2 Extractable Witness Encryption and Conditional Secret Release ... 37
3.8 Conclusion ... 38

CHAPTER FOUR SECURITY POLICIES AND TWO-FACTOR AUTHENTICATION 39

4.0.1 System Architecture.. 39
4.0.2 Two-Factor Authentication Mechanisms ... 40
4.0.3 Security Policies .. 41
4.0.4 Our Contribution ... 42
4.1 Technical Overview ... 42
4.1.1 A Generic Solution .. 42
4.1.2 A Flawed Attempt ... 43
4.1.3 Bilinear Maps at Rescue ... 44
4.1.4 Additional Challenges ... 45
4.2 Related Work .. 46
4.3 Preliminaries ... 47
4.3.1 Bilinear Groups ... 47
4.3.2 Non-Interactive Zero-Knowledge ... 48
4.3.3 Secret Sharing ... 49
4.4 Definitions ... 49
4.4.1 Overview ... 49
4.4.2 Syntax and Security Properties ... 50
4.5 Construction of Distributed Zero-Tester .. 53
4.5.1 Efficient Non-Interactive Zero Knowledge .. 57
4.5.2 Implementation in Ethereum ... 58
4.6 Experimental Evaluations ... 60
4.6.1 Security Policies .. 61
4.6.2 Performance Evaluation ... 62
4.7 A Solution Based on U2F Tokens .. 63
4.7.1 U2F on Ethereum .. 63
4.8 Conclusions.. 64

CHAPTER FIVE BLOCKCHAINS ENABLE NON-INTERACTIVE MULTIPARTY

COMPUTATION .. 65

3

5.0.1 Our Results ... 66
5.0.2 Technical Overview ... 68
5.0.3 Related Work .. 74
5.1. Preliminaries .. 76
5.1.1 MPC .. 76
5.1.2 Yao’s Grabled Circuits ... 78
5.1.3 Append-only Bulletin Boards .. 80
5.1.4 CSaRs .. 81
5.1.5 MPC in the Presence of Contributors and Evaluators .. 82
5.1.6 Multi-Key FHE with Distributed Setup .. 83
5.2 Our Non-Interactive MPC Construction ... 85
5.2.1 Construction Overview ... 86
5.3. Optimizations ... 92
5.4. Optimizing Communication and State Complexity in MPC .. 94
5.4.1. Step 1: MPC with semi-malicious security ... 94
5.4.2. Step 2: MPC with fully malicious security .. 95
5.4.3 Properties of the resulting MPC construction .. 97
5.5. Guaranteed Output Delivery ... 100

CHAPTER SIX BLOCKCHAIN PROTOCOL FOR SENSOR NETWORK 106

6.1 Access Control ... 108
6.2 Security and Availability Guarantees of Protocol ... 109
6.3 Implementation .. 109
6.4 Simulation Results .. 109
6.5 Simulated Cyberattacks .. 111

CHAPTER SEVEN CONCLUSIONS AND IMPACT .. 112

REFERENCES .. 113

4

EXECUTIVE SUMMARY

Fossil power generation systems are increasingly vulnerable to attack from both

cybercriminals as well as internal threats. These vulnerabilities demand that emerging

technologies such as blockchains be utilized to secure the data involved in the information flows

within the Supervisory Control and Data Acquisition (SCADA) systems of the fossil power

generation plants. The publicly accessible blockchain protocols, although secure, are visible to

everyone. Even private blockchains currently are unable to support different level of access to

different participants, which is a critical requirement for the existing SCADA systems running

the power plants. In light of the above, novel blockchain protocols that are specifically adapted

to fossil power generation environments need to be developed in order to achieve the goal of

cybersecure sensor networks. To address this important problem, we created a novel blockchain

technology, namely smart private ledger, for cybersecure communication within the fossil power

generation systems. The technology has hierarchical access control which is compatible with the

existing SCADA systems in fossil power plants. The sensor data was used with cryptographic

digital signatures and secret sharing protocols within the nodes of the blockchain technology.

The research generates cybersecurity for machine-to-machine interactions, infrastructure for

secure data logging for sensors, decentralized data storage, and second-layer technologies for

high volume machine-to-machine interactions in the power plants. The work has addressed the

concerns for the security of distributed sensor networks in such systems that can be compromised

by insider threats and by cybercriminals. The project starts with a conceptual phase (TRL 2) and

involves creating a sensor infrastructure and a prototype private blockchain structure; and also

concludes with a laboratory scale test (TRL 3) such that it is ready for implementation in the

field. The project also integrates research into education and prepares next generation of

scientists and engineers as relevant to the mission and goals of the Department of Energy (DOE).

5

CHAPTER ONE

Introduction

1.1 Background and Research Need

Cyberattacks against power grids, gas pipelines, and other critical infrastructure are increasing

in frequency and severity.[1-4] These threats come from both national and international

cybercriminals as well as stakeholders operating within the networks (insider threats). In addition

to damaging the physical infrastructure, such attacks can cause widespread disruption in essential

services, leading to a detrimental economic and social impact and in some cases, the loss of human

lives. These vulnerabilities demand the use of emerging technologies such as blockchains to secure

the data involved in the information flows of the individual infrastructure nodes.

Blockchains are shared and distributed data structures or ledgers that can securely store data

and digital transactions without using a central point of authority. In distributed systems, each node

has the same capabilities and levels of access to complete information. Since the data is stored on

all the nodes of the system, there is no single point of failure in the event of a cyber-attack. A

blockchain instance can be public or private depending on who is granted access to the ledger and

is authorized to maintain it.

The publicly accessible blockchain protocols (e.g. Ethereum [5]), although secure, are visible

to everyone. For data in critical infrastructure nodes such as power plants, such public access to

data is impractical. Even current private blockchains are unable to support different levels of access

to different participants, which is a critical requirement for existing systems that monitor and

control field devices at remote sites (e.g., Supervisory Control and Data Acquisition, or SCADA

system). In addition, energy transactions are typically stored in a centralized database and managed

by a single entity. For example, a third-party operator manages all financial and energy

transactions in the wholesale energy market (Gestore dei Mercati Energetici SpA or GME in Italy,

Commission de régulation de l’énergie or CRE in France, etc). Cyberattacks could also

compromise the trust and safety of such energy transactions. We note that blockchain technology

needs to prove that it can offer the scalability, speed, and security required for the proposed use

cases. They also face additional risks such as possible malfunctions at early stages of development

due to lack of experience with large-scale applications.

Another important challenge is that blockchain systems currently have high development costs.

For example, although the information in blockchain systems can be transferred for very low costs,

the validation and verification of data requires considerable hardware and energy costs. Further,

significant regulatory and legal barriers exist in the adoption of blockchain technology. Standards

for blockchain architectures need to be developed to allow interoperability between the technology

solutions.

6

Blockchain-based smart contracts have been adopted in the recent past for different use-cases

in the heavily regulated power industry such as in automation of supplier roles, data aggregation,

and data protection.[6] Aitzhan and Svetinovic [7] describe a token-based peer-to-peer system for

anonymous negotiation of energy prices and Horta et al. [9] describe ongoing work on a

blockchain-based distributed energy market test system [8]. LO3Energy’s Brooklyn microgrid

project has demonstrated electricity metering using smart contracts. Ponton has claimed the first

blockchain-based energy trade in Europe [10]. There is therefore an urgent need to develop the

next generation of blockchain technology for critical infrastructure to overcome the limitations of

current blockchain protocols.

The research work in this report was undertaken with two clear aims in mind. First, we wanted

to create a private blockchain architecture with cryptographic digital signatures and hierarchical

access control with the ability to securely process signal data and other information flows within

distributed sensor networks. Our focus was on enabling low-cost, commercially available laptops

and personal computers to function as the blockchain nodes. The second aim was to create a lab-

scale front-end system for the blockchain, consisting of a sensor network with secure data

transmission that would test this protocol. The focus was on modelling the SCADA systems of

commercial power plants in the lab-scale network and carrying out simulated cyberattacks on the

blockchain network and testing its resilience.

1.2 Significance of the Work

Our protocol addresses security concerns for cyberattacks on distributed sensor networks that are

vulnerable to threats from a given machine in the network. This is achieved by integrating the

Smart Private Ledger into SCADA systems of the sensor networks that ensures strong security

guarantees on sensor data using fundamental ideas from secret sharing and cryptographic digital

signature schemes. The use of ordinary laptops and desktops as the nodes of the Smart Private

Ledger leads to a blockchain network with minimal cost, lowering the barrier to access this

important security technology for underserved areas/regions. This work thus establishes Smart

Private Ledger as the next generation of blockchain technology for cybersecure sensor network

compatible with existing SCADA systems and easily deployable for decentralized data storage

and retrieval required for various applications.

1.3 Report Organization

The report is organized as follows. Chapter two describes the lab-scale sensor infrastructure

created for the blockchain development. Chapters three to five describe the blockchain

development. Chapter six provides a summary of the approach, while chapter seven describes the

future directions.

7

CHAPTER TWO

Lab-scale Sensor Network for Blockchain Development

Operation of critical infrastructure such as smart grids, gas pipelines, and power plants

depends upon the collection and analysis of a large amount of sensor data for their regular

operation. This process involves the transfer of information within and across the networks

through their Supervisory Control and Data Acquisition (SCADA) systems. Such systems,

however, are increasingly vulnerable to malicious attacks from both, cybercriminals, and

insider threats. In this paper, we develop a new blockchain protocol, namely, Smart Private

Ledger, to realize cyber-secure sensor networks. The proposed technology securely transmits

sensor data to the blockchain nodes using cryptographic digital signatures and secret sharing

protocols. The protocol is a private blockchain network with hierarchical access control for data

storage and retrieval to address the potential security risks associated with typical SCADA

systems. Simulated cyber-attacks are performed on the system which establish the Smart

Private Ledger as a highly secure, tamper-proof, and yet, simple decentralized data storage

system. Given the concepts introduced in the past three chapters, the demonstration of the

blockchain sensor network is shown in this chapter.

To simulate the information flows in infrastructure nodes such as power plants, we created a

lab-scale sensor network with secure data transmission to the Smart Private Ledger blockchain.

Two types of sensors pertaining to fossil energy power plants were chosen, namely, strain and

temperature sensors.

8

Figure 2.1: CAD model of high temperature strain sensing setup

2.1 Strain Sensors

The strain sensing apparatus consisted of a cantilever beam integrated with a high-

temperature oven (Ney Vulcan 3-550 oven, Degussa-Ney Dental, Inc., Bloomfield, CT) as

shown in Figure 1a. The components for this set-up consisted of a stepper motor, a driver to

command the motor, cantilever base made of high temperature Inconel alloy, a ceramic pushrod

driven by a CAM that deflected the cantilever beam. A stepper motor (HT34-490, Applied

Motion, Watsonville, CA) was mounted onto the oven that drove the CAM. The motor was

controlled by a driver (STAC6-Q, Applied Motion, Watsonville, CA) using a PC with the Q-

programmer software. The CAM and the driver motor were mounted on the oven while the

ceramic pushrod entered the oven and pushed down on the free end of the cantilever beam with

the strain sensor. The base of the cantilever was clamped onto the Inconel base and the sensor

assembly was placed inside the oven. The system was designed to provide a strain of 1000 µε

and a temperature range of up to 350 °C (or the maximum allowed by the sensor rather than the

apparatus). Figure 1b shows a commercial strain sensor attached to the cantilever beam with

wires connected to a transmission module to be described later. This strain sensor attachment

procedure is similar to that described in our earlier work [11] and has been calibrated using

commercial sensors. To measure strain, we installed a commercial strain sensor (VY4

Shear/Torsion full bridge strain gauge, HBM, Marlborough, MA, USA).

9

Figure 2.2: Image of the strain sensing setup integrated with an oven

2.2 Temperature Sensors

To integrate temperature measurement into our sensor network, we installed a commercial

temperature sensor (100 Ohm RTD with a temperature range of 0 to 900 ºF, Grainger, USA) and

connected it with the same transmitter as that used for the strain sensors. RTD (Resistance

Temperature Detector) element consisted of a length of wire typically made up of platinum,

wrapped around by a glass core. Electrical current is transmitted through the RTD element and

the resistance value of the RTD element is measured. This resistance value is then correlated to

temperature based upon the known resistance characteristics of the RTD element. Due to higher

accuracy and repeatability of RTDs, they are slowly replacing thermocouples in industrial

applications below 600 °C. Figure 2 shows an image of the temperature sensor attached to the

transmission module

2.3 Transmission Module

The sensors were integrated with a commercially available transmitter and a base station to

securely transfer the data to the blockchain. Figure 3a shows the transmitter module (T24

module, Mantracourt Plc, UK) connected with the sensor and the base station, and a portable

USB device connected to a laptop computer configured to act as a blockchain node. In this set-

up, a single receiver could obtain data from up to 8 transmitters at once (each on a dedicated

transmission channel). Furthermore, the transmitter and the receiver could be up to 800 meters

10

apart, which is sufficient in power plants or similar use-cases. We note that the base station can

transmit signals over a secure wireless network to a receiving SCADA system as necessary.

We used a license-free 2.4 GHz direct sequence spread spectrum (DSSS) radio technology

provided by Mantracourt, UK for data transmission between the transmitter to the base station.

This technology uses a proprietary protocol based on 802.15.4 chip, allowing T24 range to co-

exist with Bluetooth, Zigbee & Wi-Fi devices without conflicts. The system also had 128-bit

AES data encryption for complete security during transmission. Other commercial systems can

also be used to transmit data from the sensors to the blockchain.

We also note that the transmission frequency can be reduced (current value is 3Hz) to

improve the battery life of the transmitter module. The data transmitted through the transmitter

module is in a CSV format (Figure 3b), which is required for running the encryption algorithms

on the blockchain. Note that the data is converted to a byte array format on the blockchain node.

Figure 2.3: Image of transmission module connected with temperature sensor

Figure 2.4: Schematic of secure wireless data transmission for the blockchain (left) and the data output

from the transmission system in CSV format and later converted to a byte array format. This data format

enables the encryption algorithm to be implemented on the blockchain. (right)

11

CHAPTER THREE

Blockchain for Encryption

In recent years, new blockchain-based cryptographic constructions have (theoretically)

enabled exciting applications thought to be impossible to achieve in the standard model. For

example, Liu et al. [11] propose a time-lock encryption scheme that allows one to encrypt a

message such that it can only be decrypted once a certain deadline has passed, without relying on

trusted third parties or imposing high computational overhead on the receiver. The construction

of Choudhuri et al. [12] achieves fairness in multi-party computation against a dishonest

majority. Goyal and Goyal [13] present the first construction for one-time programs (that run

only once and then “self-destruct”) that does not use tamper-proof hardware.

These exciting constructions have something in common — they all rely on blockchains and

the notion of extractable witness encryption. Indeed, the combination of blockchains and witness

encryption has proven remarkably powerful. Introduced by Garg et al. [14], a witness encryption

scheme is, roughly, a primitive that allows one to encrypt a message with respect to a problem

instance. Such a problem instance could be a sudoku puzzle in a newspaper or an allegedly bug-

free program, or more generally, any NP search problem. If the decryptor knows a valid witness

for the corresponding problem instance, such as a sudoku solution or a bug in the program, she

can decrypt the ciphertext. Extractable security is a strong notion of security for witness

encryption. If a witness encryption scheme is extractable, then an adversary who is able to learn

any non-trivial information about the encrypted message is also able to provide a witness for the

corresponding problem instance.

Unfortunately, extractable witness encryption typically relies on a strong and expensive form

of obfuscation, the differing-inputs obfuscation [14, 15]. Indeed currently, there are no known

practical extractable witness encryption schemes. In fact, there are no schemes based on standard

assumptions, and Garg et al. [16] suggest that it may be impossible to achieve extractable witness

encryption when the adversary has access to arbitrary auxiliary inputs.

In this work, we use a blockchain to achieve a functionality that is essentially equivalent to

extractable witness encryption. Roughly, we allow users to encode a secret along with a release

condition. A predefined set of n blockchain users (in the following, miners) jointly and securely

store the encoding and later privately release the secret to the user who satisfies the release

condition. We introduce a formal definition for extractable Witness Encryption on a Blockchain

(eWEB) and a protocol that can augment existing blockchains with this functionality. By making

only small changes to the code run by miners, it is now possible to easily implement the many

applications that use extractable witness encryption as a building block. Conveniently, many such

schemes [11-13] already rely on the guarantees provided by a blockchain, so building extractable

witness encryption into the blockchain does not change their assumptions.

12

We formally prove our construction secure, relying on the guarantees provided by the

blockchain setting. Specifically, we select a set (or rather, a multiset) of miners such that the

majority of the selected miners are honest. As pointed out by Goyal and Goyal [13], one way to

select such set of miners is by selecting miners who were responsible for mining the last n blocks

(where n is large enough). Indeed, a single miner might mine multiple blocks and if so, appear

multiple times in the set. For proof of work blockchains such as Bitcoin, the probability of

successful mining is proportional to the amount of computational power, and hence if a majority

of the computing power is honest, the majority of the selected miners can be expected to be honest.

For proof of stake blockchains, where the probability of successful mining is proportional to the

amount of currency possessed by the miner, this property follows from the assumption that honest

miners possess the majority of stake in the system.

To ensure that dishonest miners cannot leak the user’s secret, our eWEB scheme is built on top

of a secret sharing scheme. A secret sharing scheme enables one party to distribute shares of a

secret to n parties and ensures that an adversary in control of t out of n parties will learn no

information about the secret. In our protocol, the miners hold the shares of the secret. Since we

assume that the majority of the selected miners are honest, using a threshold of 1 enables

us to securely store the secret.

However, traditional secret sharing schemes are insufficient for eWEB, since the set of parties

(miners) who hold secret shares is constantly changing. To achieve security in this case, dynamic

proactive secret sharing (DPSS) is required ([17-22]). DPSS schemes proactively update the secret

shares held by the parties and allow changes to the set of parties holding the secrets.

Figure 3.1: Comparison of PSS Schemes. The Comm. columns show the communication cost/secret in a

hand-off round.

Part of our work is a new and highly optimized batched DPSS scheme. Batched setting is

crucial for eWEB as there might be thousands of secrets stored in the system at any given time,

and we need an efficient way to update all of those secrets in parallel. In contrast to previous work

on batched DPSS [20], which focused on a single client submitting a batch of secrets and does not

allow storing and releasing secrets independently, we allow multiple different clients to

dynamically share and release secrets. Our protocol is the most efficient DPSS scheme that allows

13

the highest-possible adversarial threshold of (Figure 3.1). We have formally proven secure and

implemented our scheme and believe that it is of independent interest.

We demonstrate the concrete practicality of our scheme, with all operations completing in

seconds.

We outperform a prior state-of-the-art DPSS scheme by over 6×. In summary, we make the

following contributions:

• We propose a new cryptographic primitive - extractable witness encryption on a

blockchain.

• We design and formally prove secure a protocol which satisfies the notion of

extractable witness encryption on blockchain.

• We present and formally prove secure a highly efficient batched dynamic proactive

secret sharing scheme.

• We implement and evaluate several applications built atop eWEB.

3.1 DPSS

We start by discussing dynamic proactive secret sharing (DPSS), the key building block in

eWEB. We informally explain the DPSS process and give an overview of our scheme and security

proof.

3.1.1 DPSS Background

A DPSS scheme allows a client to distribute shares of a secret to 𝑛 parties, so that an adversary

in control of some threshold number of parties 𝑡 learns no information about the secret. The set of

parties holding secrets is constantly changing, and the adversary can “release” some parties (users

regain control of their systems) and corrupt new ones.

A DPSS scheme consists of the following three phases.

Setup. In each setup phase, one or more independent clients secret- share a total of 𝑚 secrets

to a set of 𝑛 parties, known as a committee, denoted by C = {𝑃1, . . . , 𝑃𝑛 }-. After each setup

phase, each commit- tee member holds one share for each secret 𝑠 distributed during this phase.

Hand-off. As the protocol runs, the hand-off phase is periodically invoked to provide the new

committee with updated shares in such a way that the adversary cannot use information from

multiple committees to learn anything about the secret. This process reflects parties leaving and

joining the committee. After the hand-off phase, all parties in the old committee delete their shares,

and all parties in the new committee hold a sharing for each secret 𝑠. The hand-off phase is

particularly challenging, since during the hand-off a total of 2𝑡 parties may be corrupted (𝑡 parties

in the old committee and 𝑡 parties in the new committee).

14

3.1.1.1 Adversary Model

We consider a computationally bounded fully malicious adversary A with the power to

adaptively choose parties to corrupt at any time. A can corrupt any number of clients distributing

secrets and learn the secrets held by the corrupted clients. For each committee C with a threshold

𝑡 < |C|/2, A can corrupt at most 𝑡 parties in C. When a party 𝑃𝑖 is corrupted by A, A fully controls

the behavior of 𝑃𝑖 and can modify 𝑃𝑖 ’s memory state. Even if A releases its control of 𝑃𝑖, its

memory may have already been modified, e.g., 𝑃𝑖 ’s share might have been erased.

For a party 𝑃𝑖 in both the old committee C and the new commit- tee C′, if A has the control of

𝑃𝑖 during the hand-off phase, then 𝑃𝑖 is considered to be corrupted in both committees. If A

releases its control before the hand-off phase in which the secret sharing is passed from C to C′,

then 𝑃𝑖 is only considered corrupted in the old committee C. If A only corrupts 𝑃𝑖 after the hand-

off phase, 𝑃𝑖 is only considered corrupted in the new committee C′.

For simplicity, in the following, we assume that there exist secure point-to-point channels

between the parties and the corruption threshold is a fixed value 𝑡. Our protocol can be easily

adapted to allow different thresholds for different committees.

3.1.1.2 DPSS Security Definition

A dynamic proactive secret-sharing scheme is required to satisfy two security properties: (1)

it should always be possible to recover the secret, and (2) an adversary should not learn any further

information about the secret beyond what has been learned before running the protocol. While our

formal definition is slightly different from the original PSS definition [23], we can easily satisfy

this definition as well. Our definition is most similar to the one used by Baron et al. [24]. However,

we consider not only the scenario of one client submitting secrets, but many different clients

submitting (and requesting the release of) secrets independently at different points in time.

Additionally, we allow secret release not only to a single public, but also to the public.

3.1.2 Overview: Our DPSS Construction

We now outline our DPSS scheme. We first discuss the hand-off phase of our scheme in the

semi-honest case and then explain how it can be modified for the fully malicious case. In a nutshell,

the semi-honest case is solved primarily through the careful use of ideas from the MPC literature

[21]. For the fully malicious case, unlike in the MPC world, we must marry these techniques with

polynomial commitment schemes. We present the setup phase as a special case of our hand-off

phase, summarize our reconstruction phase, and provide intuition for our construction’s security

proof.

In the following, we assume the corruption threshold for each committee is fixed to 𝑡. The

scheme is based on Shamir Secret Sharing [25]. We use [𝑥]𝑑 to denote a degree-𝑑 sharing, i.e., (𝑑

+ 1)-out-of-𝑛 Shamir sharing. It requires at least 𝑑 + 1 shares to reconstruct the secret, any 𝑑 or

fewer shares do not leak any information about the secret. Note that Shamir’s scheme is additively

homomorphic.

15

3.1.2.1 Our Construction: Semi-honest Case

We first explain the high-level idea of our protocol in the semi-honest setting, i.e., all parties

honestly follow the protocol. The crux of our construction is that both the old and the new

committee hold a sharing of a random value. While the sharing is different for the two committees,

the value this sharing corresponds to is the same. Let ([𝑟]𝑡, [𝑟˜]𝑡) denote these two sharings, where

[𝑟]𝑡 is held by the old committee, [𝑟˜]𝑡 is held by the new committee, and 𝑟 = 𝑟˜. Suppose the secret

sharing we want to refresh is [𝑠]𝑡 , held by the old committee. Then the old committee will compute

the sharing [𝑠 + 𝑟]𝑡 = [𝑠]𝑡 + [𝑟]𝑡 and reconstruct the secret 𝑠 + 𝑟. Since 𝑟 is a uniform element, 𝑠 +

𝑟 does not leak any information about 𝑠. Now, the new committee can compute [𝑠˜]𝑡 = (𝑠 + 𝑟) −

[𝑟˜]𝑡 . Since 𝑟˜ = 𝑟, we have 𝑠˜ = 𝑠. This whole process is split into preparation and refresh phases:

• In the preparation phase, parties in the new committee prepare two degree-𝑡 sharings of

the same random value 𝑟 (= 𝑟˜), denoted by [𝑟]𝑡 and [𝑟˜]𝑡 . The old committee receives the

shares of [𝑟]𝑡 and the new committee holds the shares of [𝑟˜]𝑡 . We refer to these two

sharings as a coupled sharing.

• In the refresh phase, the old committee reconstructs the sharing [𝑠]𝑡 + [𝑟]𝑡 and publishes

the result. The new committee sets [𝑠˜]𝑡 = (𝑠 + 𝑟) − [𝑟˜]𝑡 .

We start by explaining the preparation phase with the goal of generating a coupled sharing of

a random value. In the following, let C denote the old committee and C′ denote the new committee.

Intuitively, the new committee can prepare a coupled sharing as follows:

(1) Each party 𝑃′ ∈ C′ prepares a coupled sharing ([𝑢(𝑖)]𝑡, [𝑢˜(𝑖)]𝑡) of a random value

and distributes [𝑢(𝑖)]𝑡 to the old committee and [𝑢˜(𝑖)]𝑡 to the new committee.

(2) All parties in the old committee compute [𝑟]𝑡 = Í𝑛𝑖=1[𝑢(𝑖)]𝑡 . All parties in the new

committee compute [𝑟˜] = Í𝑛𝑖=1[𝑢˜(𝑖)]𝑡 .

Since for each 𝑖, 𝑢(𝑖) = 𝑢˜(𝑖), we have 𝑟 = 𝑟˜.

However, this way of preparing coupled sharings is wasteful since at least (𝑛 − 𝑡) coupled

sharings are generated by honest parties, which appear uniformly random to corrupted parties. In

order to get (𝑛 − 𝑡) random coupled sharings instead of just 1, we borrow an idea from Damgård

and Nielsen [21].

In their work, parties need to prepare a batch of random sharings which will be used in an

MPC protocol. All parties first agree on a fixed and public Vandermonde matrix 𝑴T of size 𝑛 ×

(𝑛 − 𝑡). An important property of a Vandermonde matrix is that any (𝑛 − 𝑡) × (𝑛 − 𝑡) submatrix

of 𝑴T is invertible. To prepare a batch of random sharings, each party 𝑃𝑖 generates and

distributes a random sharing [𝑢(𝑖)]𝑡 . Next, all parties compute

16

and take [𝑟(1)]𝑡, [𝑟(2)]𝑡, . . ., [𝑟(𝑛−𝑡)]𝑡 as output. Since any (𝑛 − 𝑡) × (𝑛 − 𝑡) submatrix of 𝑴 is

invertible, given the sharings provided by corrupted parties, there is a one-to-one map from the

output sharings to the sharings distributed by honest parties. Since the input sharings of the

honest parties are uniformly random, the one-to-one map ensures that the output sharings are

uniformly random as well [21].

Note that any linear combination of a set of coupled sharings is also a valid coupled sharing.

Thus, in our protocol, instead of computing , parties in the old

committee can compute

and parties in the new committee can compute

Now all parties get (𝑛 − 𝑡) random coupled sharings. The amortized communication cost per

such sharing is 𝑂(𝑛).

We now describe the refresh phase. For each sharing [𝑠]𝑡 of a client secret which needs to be

refreshed, one random coupled sharing ([𝑟]𝑡, [𝑟˜]𝑡) is consumed. Parties in the old committee

first select a special party 𝑃king. To reconstruct [𝑠]𝑡 + [𝑟]𝑡 , parties in the old committee locally

compute their shares of [𝑠]𝑡 + [𝑟]𝑡 , and then send the shares to 𝑃king. Then, 𝑃king uses these

shares to reconstruct 𝑠 + 𝑟 and publishes the result. Finally, parties in the new committee can

compute [𝑠˜]𝑡 = (𝑠 + 𝑟) − [𝑟˜]𝑡 .

3.1.2.2 Moving to a Fully Malicious Setting

In a fully malicious setting, three problems might arise.

• During preparation, a party distributes an inconsistent degree-𝑡 sharing or incorrect

coupled sharing.

• During refresh, a party provides an incorrect share to 𝑃king, causing a reconstruction

failure.

• 𝑃king provides an incorrectly reconstructed value.

We address these problems by checking the correctness of coupled sharings in the

preparation phase and relying on polynomial commitments to transform a plain Shamir secret

sharing into a verifiable one.

Checking the Correctness of Coupled Sharings. Recall that any linear combination of

coupled sharings is also a valid coupled sharing. Thus, to increase efficiency, instead of checking

the correctness of each coupled sharing, it is possible to check a random linear combination of

the coupled sharings distributed by each party.

17

To protect the privacy of the coupled sharing ([𝑢(𝑖)]𝑡, [𝑢˜(𝑖)]𝑡) generated by 𝑃𝑖′ , 𝑃𝑖′ will

generate one additional random coupled sharing as a random mask, which is denoted by ([𝜇(𝑖)]𝑡,

[𝜇˜(𝑖)]𝑡).

Consider the following two sharings of polynomials of degree-(2𝑛 − 1):

If all coupled sharings are correct, then ([𝐹 (𝜆)]𝑡, [𝐹˜(𝜆)]𝑡) is also a coupled sharing for any 𝜆.

Otherwise, the number of 𝜆 such that ([𝐹 (𝜆)]𝑡, [𝐹˜(𝜆)]𝑡) is a coupled sharing is bounded by 2𝑛 −

1. Thus, it is sufficient to test ([𝐹 (𝜆)]𝑡, [𝐹˜(𝜆)]𝑡) at a random evaluation point 𝜆. Since each

individual coupled sharing ([𝑢(𝑖)]𝑡, [𝑢˜(𝑖)]𝑡) is masked by ([𝜇(𝑖)]𝑡, [𝜇˜(𝑖)]𝑡), revealing ([𝐹 (𝜆)]𝑡,

[𝐹˜(𝜆)]𝑡) does not leak any information about the individual coupled sharings.

Therefore, all parties first generate a random challenge 𝜆. Parties in the old committee

compute [𝐹 (𝜆)]𝑡 and publish their shares. Parties in the new committee compute [𝐹˜(𝜆)]𝑡 and

publish their shares. Finally, all parties check whether ([𝐹 (𝜆)]𝑡, [𝐹˜(𝜆)]𝑡) is a valid coupled

sharing.

If the check fails, we need to pinpoint the parties who distributed incorrect coupled

sharings. Each coupled sharing ([𝑢(𝑖)]𝑡, [𝑢˜(𝑖)]𝑡) is masked by ([𝜇(𝑖)]𝑡, [𝜇˜(𝑖)]𝑡). Therefore it is

safe to open the whole sharing ([𝜇(𝑖)]𝑡 + [𝑢(𝑖)]𝑡 · 𝜆, [𝜇˜(𝑖)]𝑡 + [𝑢˜(𝑖)]𝑡 · 𝜆) and check whether it is a

valid coupled sharing. For each 𝑖, parties in the old committee compute [𝜇(𝑖)]𝑡 + [𝑢(𝑖)]𝑡 · 𝜆 and

publish their shares, and parties in the new committee compute [𝜇˜(𝑖)]𝑡 + [𝑢˜(𝑖)]𝑡 · 𝜆 and publish

their shares. This way, we can tell which coupled sharings are inconsistent. This

inconsistency in the coupled sharing distributed by some party 𝑃𝑖′ (in the following, dealer)

has two possible causes:

• The dealer 𝑃𝑖′ distributed an invalid coupled sharing (either the secrets were not the same

or one of the 𝑡-sharings was invalid).

• Some corrupted party 𝑃𝑗 ∈ 𝐶 ∪ 𝐶′ provided an incorrect share during the verification of

the sharing distributed by the dealer 𝑃𝑖′.

The first case implies that the dealer is a corrupted party. To distinguish the first case from

the second, we will rely on polynomial commitments, which can be used to transform a plain

Shamir secret sharing into a verifiable one so that an incorrect share (e.g., in case 2) can be

identified and rejected by all parties.

Relying on Polynomial Commitments. A degree-𝑡 Shamir secret sharing corresponds to a

degree-𝑡 polynomial 𝑓 (·) such that: (a) the secret is 𝑓 (0), and (b) the 𝑖-th share is 𝑓 (𝑖). Thus,

each dealer can commit to 𝑓 by using a polynomial commitment scheme to add verifiability.

18

A polynomial commitment scheme allows the dealer to open one evaluation of 𝑓 (which

corresponds to one share of the Shamir secret sharing) and the receiver can verify the

correctness of this evaluation value. Essentially, whenever a dealer distributes a share it also

provides a witness which can be used to verify this share. Informally, a polynomial

commitment scheme should satisfy three properties:

• Polynomial Binding: A commitment cannot be opened to two different polynomials.

• Evaluation Binding: A commitment cannot be opened to two different values at the same

evaluation point.

• Hiding: A commitment should not leak any information about the committed polynomial.

We use polynomial commitments as follows: in the beginning, each dealer first commits to

the sharings it generated and opens the shares to corresponding parties. To ensure that each

party is satisfied with the shares it received, there is a following accusation-and-response

phase:

(1) Each party publishes (accuse, 𝑃𝑖′) if the share received from 𝑃𝑖′ does not pass

the KZG verification algorithm.

(2) For each accusation made by 𝑃𝑗 , 𝑃𝑖′ opens the 𝑗-th share to all parties, and 𝑃𝑗

uses the new share published by 𝑃𝑖′ if it passes the verification. Otherwise, 𝑃𝑖′ is regarded

as a corrupted party by everyone else.

Note that an honest party will never accuse another honest party. Also, if a malicious party

accuses an honest party, no more information is revealed to the adversary than what the

adversary knew already. Thus, it is safe to reveal the share sent from 𝑃𝑖′ to 𝑃𝑗 . After this step, all

𝑖 parties should always be able to provide valid witnesses for their shares.

Recall that parties need to do various linear operations on the shares. In our protocol we

use the KZG commitment scheme [26], which is linearly homomorphic. Thus, even if a share

is a result of a number of linear operations, it is still possible for a party to compute the

witness for this share. From now on, each time a party sends or publishes a share, this party

also provides the associated witness to allow other parties verify the correctness of the share.

Since honest parties will always provide shares with valid witnesses and there are at least 𝑛 −

𝑡 ≥ 𝑡 + 1 honest parties, all parties will only use shares that pass verification. Intuitively, this

solves the problem of incorrect shares provided by corrupted parties since corrupted parties

cannot provide valid witnesses for those shares. Similarly, it should solve the problem of a

malicious 𝑃king, since he cannot provide a valid witness for the incorrectly reconstructed value.

However, due to a subtle limitation of the KZG commitment scheme, we actually need to add

an additional minor verification step (see Appendix C for details).

19

3.1.2.3 DPSS Setup Phase

The setup phase uses a similar approach to the hand-off phase. First, the committee

prepares random sharings. As in the hand-off phase, the validity of the distributed shares is

verified using the KZG commitment scheme. For each secret 𝑠 distributed by a client, one

random sharing [𝑟]𝑡 is consumed. The client receives the whole sharing [𝑟]𝑡 from the

committee and reconstructs the value 𝑟.

Finally, the client publishes 𝑠 + 𝑟. The committee then computes [𝑠]𝑡 = 𝑠 + 𝑟 − [𝑟]𝑡 .

3.1.2.4 DPSS Reconstruction Phase

When a client asks for the reconstruction of some secret 𝑠★, all parties in the current

committee simply send their shares of [𝑠★]𝑡 and the associated witnesses to the client. The client

then reconstructs the secret using the first 𝑡 + 1 shares that pass the verification checks.

3.1.2.5 Security of Our Construction

We give a high-level idea of our proof. The goal is to construct a simulator to simulate the

behaviors of honest parties. For each sharing, corrupted parties receive at most 𝑡 shares, which

are independent of the secret. Thus, when an honest party needs to distribute a random sharing,

the simulator can send random elements to corrupted parties as their shares without fixing the

shares of honest parties. Since we use the perfectly hiding variant of the KZG commitment, the

commitment is independent of the secret, and can be generated using the trapdoor of the KZG

scheme. Furthermore, we can adaptively open 𝑡 shares chosen by the adversary after the

commitment is generated. This makes our scheme secure against adaptive corruptions.

3.2 Defining eWEB

Witness encryption [14] allows a party to encrypt a message to an instance 𝑥 of an NP

language. Another party can then decrypt the ciphertext using a witness that 𝑥 is in the

language. The traditional notion of security for witness encryption, introduced by Garg et al.

[14], is soundness security and states that if a message was encrypted to some instance 𝑥 that

is not in the language, then no adversary can learn any non-trivial information about the

message. However, this is often insufficient. Many constructions [11, 13, 27] consider the

case where the instance 𝑥 is in the language, and must rely on a stronger notion of extractable

security. Informally, if an adversary is able to distinguish between two different ciphertexts

encrypted to the same problem instance, then he is also able to provide a witness to this

problem instance.

In our work we use a permissioned blockchain to achieve a similar goal. Although they

may overlap in practice, for ease of exposition, we distinguish between users who deposit

secrets (depositors), users who request that a secret be released (requesters), and a changing set

of blockchain nodes (miners) who are executing these requests. A depositor who wishes to

securely store a secret until some condition is satisfied will distribute the encoded secret

20

among the miners and specify the release condition. When a requester wishes to learn the

secret, they must provide a witness for the release condition. The miners will check the

witness, and if it is valid, securely provide the secret to the requester (the secret is not released

publicly). In addition to storing and releasing secrets, we require a hand-off procedure to be

periodically executed by the miners, since the set of miners is constantly changing. During the

hand-off, all the deposited secrets are handed from the old set of miners (old committee) to the

new set of miners (new committee). The full process is depicted in Figure 2. Intuitively, no

adversary should learn any non-trivial information about a user’s secret unless he knows a

witness for the corresponding release condition. Further, no one should be able to change

stored secrets.

We provide formal syntax for the primitive. Using this syntax, we define the security of

extractable witness encryption on a blockchain (eWEB) via a security game then presents our

eWEB protocol.

Figure 3.2: High-level overview of eWEB

3.2.1 Syntax

An eWEB system consists of the following, possibly randomized and interactive,

subroutines:

A depositor stores a secret 𝑀 which can be

released to a requester who knows a witness 𝑤 s.t. 𝐹 (𝑤) is true. After interacting with the

depositor, each of the 𝑛 miners obtains a “fragment”, frag 𝑖, of the secret that is associated with

𝑖 the secret storage request with the identifier 𝑖𝑑.

Miners periodically execute the SecretsHandoff function to hand over all 𝑚 stored secrets

from the old committee to the new committee. Each miner 𝑖 of the old committee possesses 𝑚

fragments (one for each secret) frag , .., frag at the end of the protocol.

SecretRelease(𝑖𝑑,𝑤) → 𝑀 or ⊥ : A requester uses this function to request the release of the

secret with the identifier 𝑖𝑑. The requester specifies the witness 𝑤 to the release condition.

Miners check whether the requester holds a valid witness and if so, as a result of the interaction

21

with the miners, the requester obtains the secret 𝑀. Otherwise, the function returns ⊥ (i.e.,

attempt failed).

3.2.2 Security Game Definition

We define security via a game.

Definition 3.1 (Security Game). The game is played between the adversary, A, and a

challenger, C. A is a probabilistic, polynomial-time adversary who controls 𝑡 parties of the old

committee and 𝑡 parties of the new committee during each handoff round. The game is

parametrized by the number of parties 𝑛 participating in each round as well as the number of

rounds 𝑑. The challenger creates a set of (𝑛 − 𝑡) ∗ 𝑑 unique party identifiers and a corresponding

set PK𝐻 of the public keys for the honest parties. These IDs and keys are known to A. The

decryption condition 𝐹 is public information as well. The game takes as input a list 𝑊 of

witnesses for 𝐹 such that ∀𝑤 ∈ 𝑊: 𝐹 (𝑤) = 𝑡𝑟𝑢𝑒. Our security game is quantified over all choices

of this list. Note that the same witness can occur multiple times in this list, and so if there exists

at least one witness for 𝐹 we assume w.l.o.g. that 𝑊 is of length 𝑑. If no witness for 𝐹 exists, the

list is empty. One can iterate through the list using the 𝑛𝑒𝑥𝑡 () function, which returns the next

witness in the list or ⊥, if no such witness exists. Whenever messages are exchanged between

parties, the adversary sees them (including messages sent between honest parties).

(1) A chooses two strings 𝑀1 and 𝑀2 of the same length and submits both to the challenger.

(2) The challenger flips a coin, 𝑏 ∈ {0, 1}, uniformly at random, which is fixed for the

duration of the game.

(3) In each round, until A finishes the game:

A new committee is chosen, and secrets (if any exist) are handed over

• A chooses a set 𝑇 of 𝑡 indices for the adversarial parties of the new committee and

generates a public key 𝑝𝑘𝑖 for each adversarial member of this committee. Then, A sends 𝑇

and the public keys {𝑝𝑘𝑖 }𝑖∈𝑇 to C.

• A chooses a set 𝐻 of 𝑛 − 𝑡 public keys from the set PK𝐻 for the honest parties of the new

committee and sends 𝐻 to C.

• If at least one secret is stored on the blockchain, C carries out SecretsHandoff for each

honest member of the old and the new committee.

(4) Additionally, until A finishes the game, one of the following can happen in each round:

(a) A may ask the challenger to create a secret storage request for the challenge (only

once)

• If this is the first time A makes such a request, the challenger carries out SecretStore for

the secret 𝑀𝑏 and the secret release condition 𝐹.

22

(b) If the challenge secret storage request was executed, A may ask the challenger to

have an honest party (with identifier 𝑝𝑖𝑑) create a release request for the challenge.

• C executes SecretRelease for the challenge using the public key 𝑝𝑘 of the party with

the identifier 𝑝𝑖𝑑 and a witness 𝑤 = 𝑊 .𝑛𝑒𝑥𝑡 (). If 𝑤 = ⊥, A loses.

(c) A may create new secret deposits

• C carries out SecretStore for the new request for each honest member of the committee

using the information supplied by the adversary.

(d) A may create new release requests for any number of storage requests with IDs 𝑖𝑑𝑖

• C carries out SecretRelease for each request 𝑖𝑑𝑖 for each honest member of the

committee using the information supplied by the adversary.

(e) A may end the game with its guess, 𝑏′, for 𝑏.

Definition 3.2. (Secrecy) For a security parameter 𝜆, number of parties participating in each

round 𝑛, number of rounds 𝑑, corruption threshold 𝑡, decryption condition 𝐹, and list of

witnesses 𝑊 of size 𝑑 (or 0 if no witness for 𝐹 exists) s.t. ∀𝑤 ∈ 𝑊 : 𝐹 (𝑤) = 𝑡𝑟𝑢𝑒, let the

advantage Adv[A, 1𝜆,𝑛,𝑑,𝑡, 𝐹,𝑊] of the adversary A in the game introduced above be defined

as follows:

The system provides secrecy if for any polynomial-time probabilistic adversary A and any

predicate function 𝐹 that is verifiable in PPT, there exists a PPT extractor E that uses A as an

oracle such that:

where 𝑝𝑜𝑙𝑦(𝑛), 𝑝𝑜𝑙𝑦′(𝑛) are polynomials.

Practically, this definition means that if an adversary is able to distinguish between the

protocol executed with secret 𝑀0 and the protocol executed with secret 𝑀1, then we can extract

a valid witness for the release condition 𝐹 using this adversary. Note that 𝐸 does not get access

to the list of witnesses. Intuitively, this notion is quite similar to the extractable security of

witness encryption, which states that if an adversary can distinguish between two ciphertexts,

then he can also extract a witness from the corresponding problem instance.

We define the robustness of an eWEB scheme as follows:

Definition 3.3. (Robustness) For any PPT adversary A with corruption threshold 𝑡, it holds

that after SecretStore(𝑀, 𝐹), there exists a fixed secret (identified by 𝑖𝑑) for the distributed

23

fragmentation {frag1, .., frag𝑛}. In particular, the fragmentation dealt by an honest depositor has

the same secret 𝑀 as the one chosen by this depositor. When at some point a requester executes

SecretRelease(𝑖𝑑,𝑤), where 𝐹 (𝑤) = true, the requester reconstructs the correct secret 𝑀.

Remark 3.1. Removing step (4b) in the game above produces a slightly relaxed security

notion we dub Public Witness security. Here, the secret is made public after a single successful

secret release. As shown, this notion proves quite useful in a number of applications.

3.3 Our eWEB Protocol Design

In this section, we introduce our construction. First, we provide an overview of the

assumptions that we rely on in our scheme. Then, we describe our eWEB construction. Finally,

we provide a security proof sketch, with a formal proof.

In we provide a PublicWitness scheme that is similar to our eWEB protocol, but targets the

use case in which the secret is made public after a single successful release request (rather than

released privately only to requesters with valid witness as in eWEB).

3.3.1 Assumptions

Adversary model. We assume that the adversary is able to control a polynomial number of

users and miners, subject to the constraint that at any time the majority of the miners who are

eligible to participate in the protocol are honest. We rely on permissioned blockchains and

assume that eWEB is a core functionality, which allows us to focus on the fundamental

construction without worrying about selfish mining or bribery attacks. Honest majority

assumptions are very common in the blockchain space [13, 22, 27-29]. Especially permissioned

blockchains often rely on BFT replication protocols, which in turn usually assume honest

supermajority[30].

We assume that once an adversary corrupts a party it remains corrupted. The adversary

cannot adaptively corrupt previously honest parties. When a party is corrupted by the adversary,

the adversary fully controls this party’s behaviour and internal memory state. We do not

distinguish between adversarial and honest parties who behave maliciously unintentionally;

e.g., those who have connection issues and cannot access the blockchain to participate.

Infrastructure model. It is common for public keys to be known in blockchains. We require

that additionally each party 𝑝𝑖 has a unique identifier, denoted by 𝑝𝑖𝑑𝑖, that is known to all other

parties. In practice, this identifier can be the hash of the party’s public key. For simplicity, we

present the scheme as if there were authenticated channels between all parties in the system. In

practice, these channels can be realized using standard techniques such as signatures.

Communication model. Our DPSS scheme assumes secure point-to-point communication

channels. In the decentralized blockchain setting of eWEB we prefer not to make such an

assumption, since using point-to-point channels could compromise nodes’ anonymity and lead

to targeted attacks [22] . Instead, we assume that parties communicate via an existing

24

blockchain. We distinguish between posting a message on the blockchain (expensive) and

using the blockchain’s peer-to-peer network for broadcast (cheap). Point-to-point channels can

be simulated using IND-CCA secure encryption and broadcasting the ciphertexts.

Storage. We assume that, in addition to parties’ internal storage, there exists some publicly

accessible off-chain storage that is cheaper than on-chain one. Thus, we store data off-chain

and save only data hashes on-chain. Our system’s robustness depends on the robustness of the

off-chain storage. Thus, storage systems with a reputation for high availability should be

chosen. However malicious off-chain storage does not impact the secrecy properties of our

system. Alternatively, at a higher cost, we can simply use on-chain storage for everything.

Permissionless setting. In future our work could be extended to permissionless blockchains

that have the chain quality, meaning that for each 𝑛 or more continuous blocks mined in the

system, more than half were mined by honest parties. The committees are then formed by the

miners that mined the most recent 𝑛 blocks. The chain quality is particularly easy to achieve in

fair blockchains such as Fruitchains [31], where the fraction of honestly mined blocks is close to

the fraction of honest work or stake. For fair proof-of-work blockchains, where the probability of

successful mining is proportional to the amount of computational power,chain quality follows

from the assumption that honest miners possess the majority of the computational power in the

system [13]. For fair proof-of-stake blockchains, where the probability of successful mining is

proportional to the amount of coins possessed by the miner, it follows from the assumption that

honest miners possess the majority of stake in the system.

Miners that behave honestly w.r.t the blockchain protocol might need further

incentivization to behave honestly w.r.t. eWEB; otherwise they might try to disrupt the

execution of the eWEB protocol or leak their secret shares. Our DPSS scheme has numerous

checks that identify parties disrupting correct protocol execution, which could translate to

economic disincentivization. Traitor-tracing secret sharing as well as trusted hardware that can

verify correct share deletion could be used as mechanisms that ensure that miners are punished

for leaking secrets entrusted to them. We leave exploring these directions for future work.

3.3.2 Our eWEB Construction

We now describe our eWEB scheme. Its key building block is a DPSS scheme used in a

black-box way. The initial committee are miners currently eligible to participate in the

permissioned blockchain we are building upon.

Given a secret message 𝑀 and a release condition 𝐹, the depositor stores the release

condition 𝐹 on the blockchain and secret-shares 𝑀 among the miners using the secret storage

(setup) algorithm of the DPSS scheme.

Whenever the set of miners eligible to participate in the blockchain protocol changes, the

hand-off phase is executed and the secrets are passed from the miners of the old committee to

the miners of the new committee using the DPSS hand-off algorithm. Note that our DPSS

25

scheme supports changes in the committee sizes as long as the honest majority assumption is

satisfied

To retrieve a stored secret, a requester 𝑈 needs to prove that they are eligible to do so.

This poses a challenge. An insecure solution is to just send a valid witness 𝑤 (𝐹 (𝑤) = 𝑡𝑟𝑢𝑒)

to the miners. One obvious problem with this solution is that a malicious miner can use the

provided witness to construct a new secret release request and retrieve the secret himself. To

solve this problem, instead of sending the witness in clear, the user proves that they know a

valid witness. Thus, while the committee members are able to check the validity of the request

and privately release the secret to 𝑈 , the witness remains hidden. In our scheme we rely on

non-interactive zero knowledge proofs (NIZKs) [13]. Such proofs allow one party (the

prover) to prove validity of some statement to another party (the verifier), such that nothing

except for the validity of the statement is revealed. In eWEB we specifically use simulation

extractable non-interactive zero knowledge proofs of knowledge, which allow the prover

convince the verifier that they know a witness to some statement. Note that extractability can

be added to any NIZK [32, 33]. We use NIZKs for relation 𝑅 = {(𝑝𝑘,𝑤) | 𝐹 (𝑤) = 𝑡𝑟𝑢𝑒 and 𝑝𝑘

= 𝑝𝑘}, where 𝐹 (·) is the release condition specified by the depositor and 𝑝𝑘 is the public key

of user 𝑈 and is used to identify the user eligible to receive the secret. After the miners verify

the validity of the request, they engage in the DPSS’s secret reconstruction with requester 𝑈

to release the secret to 𝑈 .

We provide the full secret storage protocol in Figure 3. The hand-off protocol is given in

Figure 4. The secret release protocol is in Figure 5. The full construction is given in Figure 6.

Note that the asymptotics of eWEB match those of our underlying DPSS scheme. Below, we

elaborate on additional details of our construction.

3.3.2.1 Subtleties of Point-to-Point Channels

As mentioned, while our DPSS protocol assumes secure point-to-point channels, we do not

make such an assumption in eWEB. Instead, we rely on authenticated encryption and Protocols 1

and 2, executed whenever a message needs to be securely sent from one party to another. It is

used for all messages exchanged in eWEB, including the underlying DPSS protocol. Whenever a

party receives an encrypted message, it performs an authentication check via Protocol 2 to ensure

that a ciphertext received from some party was generated by that party. This prevents the

following malleability issue - a malicious user desiring to learn a secret with the identifier 𝑖𝑑

could generate a new secret storage request with a function 𝐹˜ for which he knows a witness,

copy the DPSS messages sent by the user who created the storage request 𝑖𝑑 to the miners and

later on prove his knowledge of a witness for 𝐹˜ to release the corresponding secret. Without the

authentication check our scheme would be insecure, and our security proof would not go

through.

26

3.3.2.2 Storage Identifiers

Each storage request has a unique identifier 𝑖𝑑. This can be, e.g., the address of this particular

transaction in the blockchain. It is used for practical reasons, and is not relevant for the security

of our construction.

3.3.2.3 Handling Large Secrets

Since the secret itself might be very large, it is also possible to first encrypt the secret using a

symmetric encryption scheme, store the ciphertext publicly off chain and then secret-share the

symmetric key instead. Also, we store request parameters (such as release conditions or proofs)

off-chain, saving only the hash of the message on-chain.

27

3.3.3 Security Proof Intuition

We provide a formal proof of security in Appendix G, showing that our scheme satisfies the

security definition for eWEB given. In this proof, we rely on the zero-knowledge and simulation-

sound extractability properties of the NIZK scheme to switch from providing honest proofs to

using simulated proofs. Next, we rely on the collision-resistance of the hash function to show

that any modification of the data stored offchain will be detected. Then, we rely on the multi-

message IND-CCA security of the encryption scheme to change all encrypted messages

exchanged between honest parties to encryptions of zero. Finally, we rely on the secrecy

property of our DPSS scheme to switch from honestly executing the DPSS protocol to using a

DPSS simulator. At this point, we can show that either the adversary was able to provide a valid

secret release request for the challenge’s secret-release function, in which case we are able to

extract a witness from the provided NIZK proof (relying on the NIZK’s proof-of-knowledge

property), or the adversary did not provide a valid secret release request and in this case we are

able to “forget” the secret altogether, since it is never used.

28

Finally, we rely on the secrecy property of our DPSS scheme to switch from honestly

executing the DPSS protocol to using a DPSS simulator. At this point, we can show that either

the adversary was able to provide a valid secret release request for the challenge’s secret-release

function, in which case we are able to extract a witness from the provided NIZK proof (relying

on the NIZK’s proof-of-knowledge property), or the adversary did not provide a valid secret

release request and in this case we are able to “forget” the secret altogether, since it is never

used.

3.4 Application Examples

In this section, we present some motivational application examples and briefly explain the

key ideas behind implementing each of them using our construction.

Time-lock Encryption. Time-lock encryption, related to timed-release encryption introduced

by Rivest et al. [34], allows one to encrypt a message such that it can only be decrypted after a

certain deadline has passed. Time-lock encryption must satisfy a number of properties [11], such

as the encrypter needs not be available for decryption and trusted parties are not allowed. Time-

lock encryption can be easily implemented using the PublicWitness scheme. Using this scheme,

the encrypter executes SecretStore with a secret release condition 𝐹 specifying the time 𝑡 when

the data can be released. Once the time has passed, a user who wishes to see the message submits

a SecretRelease request with the witness “The deadline has passed”. Miners check whether the

time is indeed past 𝑡 and if so, release their fragments of the secret. With a slight modification to

our scheme, it is also possible to enable automatic decryption - upon receiving a secret storage

request with an “automatic” tag, miners would place the identifier in a list and periodically check

whether the release condition holds for any request in this list.

Note that our scheme evades the issue that some time-lock encryption schemes [11] have:

even if the adversary becomes computationally more powerful, it does not allow him to receive

29

the secret message earlier. Additionally, we avoid the computational waste of timed-release

30

encryption schemes [34], which often require the decrypter to, say, compute a long series of

repeated modular squarings.

Dead-man’s Switch. A dead-man’s switch is designed to be activated when the human

operator becomes incapacitated. Software versions of the dead-man’s switch typically trigger a

process such as making public (or deleting) some data. The triggering event, for centralized

software versions, can be a user failing to log in for three days, a GPS-enabled mobile phone that

does not move for a period of time, or a user failing to respond to an automated email. A dead-

man’s switch can be seen as insurance for journalists and whistleblowers.

A dead-man’s switch can use our PublicWitness protocol as follows: the user who wishes to

setup the switch generates a SecretStore request with the desired release condition. Such

condition can be failing to post a signed message on the blockchain for several days or anything

publicly verifiable. As in the time-lock example, we can either use the standard scheme where a

person (e.g., a relative or a friend) proves to the miners that the release condition has been

satisfied or define an “automatic” request where the miners periodically check the release

condition.

Fairness. eWEB can be used to support fair exchange, which ensures that two parties receive

each other’s inputs atomically. Using eWEB, Alice specifies a release condition that requires a

signature from her and from Bob, while Bob’s release condition requires only a signature from

Bob. Once both secrets are posted, Alice verifies Bob’s release condition and posts her signature.

When Bob posts his signature, the committee releases both their secrets atomically. Fair

exchange can be used to build fair MPC [19, 35].

Multi-party computation (MPC) is considered fair if it ensures that either all parties receive

the output of the protocol, or none. In the standard model, fair MPC was proven to be impossible

to achieve for general functions when a majority of the parties are dishonest [36]. However, we

can achieve it by simply adapting the construction of Choudhuri et al. [27] to use our eWEB

protocol, instead of traditional witness encryption. Conveniently, Choudhuri et al.’s scheme

relies on a public bulletin board, which is most readily realized in practice via a blockchain-

based ledger. Thus, by replacing witness encryption with our blockchain-based scheme, we do

not add any extra assumptions to Choudhuri et al.’s construction.

One-time Programs. A one-time program is a program that runs only once and then “self-

destructs”. This notion was introduced by Goldwasser et al. [37]. In the same work they

presented a proof-of-concept construction that relies on tamper-proof hardware. Considerable

work on one-time programs followed [15, 38-40], but all such schemes relied on tamper-proof

hardware. Goyal and Goyal [13], however, present the first construction for one-time programs

that does not rely on tamper-proof hardware (but does rely on extractable witness encryption).

As with fair MPC and Choudhuri et al.’s construction, by replacing the witness encryption

scheme with our eWEB protocol in the Goyal and Goyal’s one-time program construction with

public inputs, we are not adding any extra assumptions since they already rely on blockchains.

31

Note that since eWEB reveals whether a secret was retrieved, additional mechanisms are needed

in the case where the inputs submitted to the one-time program must be kept private.

Non-repudiation/Proof of Receipt. A protocol allows repudiation if one of the entities

involved can deny participating in all or part of the communication. With eWEB, it is easy to

provide a proof that a person received certain data. In this case, the user providing the data stores

it using the SecretStore protocol. To satisfy the release condition 𝐹, a user with public identifier

𝑝𝑖𝑑 publishes a signed message “User 𝑝𝑖𝑑 requests the message”. The miners then securely

release a secret to the user 𝑝𝑖𝑑 as specified by SecretRelease. The publicly verifiable signature

on the message “User 𝑝𝑖𝑑 requests the message” then serves as a proof that party 𝑝𝑖𝑑 indeed

received the data.

3.4.1 Voting Protocol

As a more detailed example, we show how eWEB can support a “yes-no” voting application.

Specifically, using eWEB, each voter can independently and asynchronously cast their vote by

secret sharing a −1 for a “no” or a 1 for a “yes” (note that (0, 1) voting can be supported as well).

When voting closes, the miners release an aggregate of the votes. The vote of any specific client

must be kept private (guaranteed by eWEB’s secrecy), and no client should be able to manipulate

the result more than with his own vote.

To prevent improper votes, the committee must verify the correctness of the secrets shared

by the clients, i.e., that each 𝑠 ∈ {−1, 1}. Our key idea is to let each client first commit to its

secret and then prove its correctness to the miners. However, this requires the client to prove that

the committed value is the same as the value the client shared to the committee. To avoid this

expensive check, committee members will instead compute the necessary commitment using the

secret shares they receive from the client (guaranteeing consistency by construction).

We show that the committee members can prepare Pedersen commitments [41] for all of the

clients with constant amortized cost.

For a client’s secret 𝑠, the resulting commitment is of the form 𝑐 = 𝑔𝑠ℎ𝑧, where 𝑧 is a random

value (known to the client) and 𝑔,ℎ are publicly known generators with ℎ = 𝑔𝛽 for some

unknown 𝛽.

With such a commitment, the user can prove 𝑠 ∈ {−1, 1} by proving 𝑠2 = 1. To prove that 𝑠2

= 1, the client (who knows 𝑠 and 𝑧) computes 𝑤 = 𝑔2szℎz2 and publishes 𝑤 to all parties. To

check that 𝑠2 = 1, anyone can check that:

Correctness. To show correctness, note that

32

Therefore, if the equation holds, then we have 𝑠 = 1 and thus the vote submitted by the client

is valid.

To compute the voting result the committee computes the sharing of the result relying on the

linear homomorphism of KZG commitments and Shamir’s secret sharing, and then follows the

usual SecretRelease procedure.

3.5 Implementation

We implement both our eWEB scheme and our new DPSS scheme in about 2000 lines of

Python code. To perform the underlying field and curve operations, we add Python wrappers

around the C++ code of the Ate-Pairings library. For networking, we rely on gRPC, and for

hashing, we use SHA256. For our NIZK scheme, we currently use Schnorr’s proof of knowledge.

We make it non-interactive via the Fiat-Shamir heuristic, thus simultaneously making it

simulation extractable.

Polynomial arithmetic is done over the polynomial ring F𝑝 [𝑋] for a 254-bit prime 𝑝. For the

KZG commitment scheme, we use an ate pairing over Barreto-Naehrig curves of the form 𝑦 = 𝑥

+ 𝑏 for constant 𝑏 over F𝑝 with a 254-bit prime 𝑝. We implement polynomial interpolation for

polynomials of degree 𝑛 in time 𝑂(𝑛 log2 𝑛) using an algorithm presented by Aho et al..

3.6 Experimental Evaluation

Our eWEB scheme offers a practical option for extractable witness encryption. We evaluate

its costs and show that:

Figure 3.3: Time required for high-level eWEB steps on a LAN. Non-DPSS operations are too small

to see.

Our eWEB prototype’s performance matches the expected asymptotics with small

constants, making it practical to integrate with existing blockchains.

eWEB’s performance is dominated by our new DPSS scheme, which outperforms the state-

of-the-art.

33

Setup. We run experiments using CloudLab [20], an NSF-sponsored testbed that provides

compute nodes along with a configurable networking substrate. We run experiments in both a

LAN setting (∼0.2 ms ping) to focus on the CPU overhead of our cryptography and a WAN

setting (∼40 ms ping) to demonstrate the networking overhead. In the LAN setting we use up to

128 machines each with 8-core 2.00GHz CPUs and 4 GB RAM. In the WAN setting we use up

to 128 machines split between Salt Lake City, Utah and Madison, Wisconsin. These machines

have 8–10 cores and 2.00–2.4GHz CPUs with 2–4GB RAM.

Since eWEB is compatible with a wide range of blockchains, we abstract away the

blockchain and simulate it via a single trusted node. In practice, writes to the blockchain will

incur additional blockchain-specific latency.

3.6.1 eWEB Performance

Figure 3.4: Handoff Times for our DPSS vs. CHURP. Error bars represent 95% confidence interval.

Our first experiment measures the costs of eWEB’s three top-level operations (SecretStore,

SecretsHandoff , and SecretRelease) for the minimal Schnorr identification application over an

increasing number of committee members. In particular, given a public key, committee members

release the secret if a client proves (in zero-knowledge) that they possess the associated secret

key.

Figure 3.3 summarizes the average time for 150 runs (note the log-log scale). Each bar shows

the split between eWEB operations (e.g., preparing the NIZK proof) and the underlying DPSS

operations. Note that the time for SecretsHandoff includes the amortized cost for the preparation

phase that produces coupled sharings of random value used during the refresh phase. Similiarly

the time for SecretStore includes the amortized cost for the preparation phase that produces

sharings for random values used to distribute the initial secret.

Unsurprisingly, the DPSS costs dominate, to the point where the time for eWEB operations

cannot be seen. Note that the performance results match our expectation of linear asymptotic

growth, and concretely costs ∼7.3 milliseconds/node, ∼10.7 milliseconds/node, and ∼3.0

milliseconds/node for the store, refresh, and release secret operations respectively. This suggests

if CloudLab allowed us to scale beyond 64 nodes per committee, we would expect eWEB to

34

store, refresh, release secrets in 7.3 s, 10.7 s, and 3.0 s respectively, even with a 1000-node

committee.

3.6.2 DPSS Comparison

As discusses, the most efficient prior DPSS schemes are CHURP and that of Baron et al.

Since CHURP reports that their performance dominates that of Baron et al., we focus our

comparison on CHURP.

In our experiment, we measure the time required for each scheme to handoff secrets to a

new committee in the optimistic case where parties behave honestly. Both schemes have a

fallback path for when malfeasance is detected; it adds an 𝑂(𝑛) factor to both schemes.

Figure 3.4 summarizes the average time for 50 runs. As expected from our asymptotic

analysis, our DPSS scheme increasingly out-performs CHURP as the number of nodes

increases, to the point where our scheme is ∼7× faster than CHURP with 64 nodes. Naturally,

the absolute difference will increase as committee sizes grow.

Note that the additional networking overhead in the WAN setting (∼40 ms latency) only

significantly affects the end-to-end latency for committees with less than 8 members for both

our DPSS scheme and CHURP. For larger committees, computation dominates networking

costs even with realistic latencies.

3.6.3 Applicaitons

We implement several applications on top of our eWEB protocol in order to demonstrate

practicality and efficiency for common use cases. As a baseline we implement the minimal

Schorr identification application: Given a public key, committee members release a secret when

provided a (zero-knowledge) proof that a client possess the associated private key. Because the

Schnorr identification protocol only requires a few additional group operations for both the

client and committee members, this gives us the best view of the core eWEB operational cost.

We additionally implement time-lock encryption and dead-man’s switch as described. In

both applications, a claim that the prescribed amount of time has passed is treated as the

“witness”. In the latter application, we additionally implement an update functionality that

allows an operator to extend the secret-release timeout if they provide a valid signature.

We implement the fair exchange protocol as described. In particular, given valid signatures

from two clients, the committee releases both their secrets atomically.

35

Table 3.1: Cost of eWEB applications. End-to-end latency including secret store, a single handoff, and

secret release. (50 trials)

3.6.4 Microbenchmarks

To better understand the sources of overhead in our protocol, we measure the costs of the

underlying primitives (Table 3.1). Because EC operations on the “twist” curve are about twice

as expensive as on the base curve, we perform most of the protocol operations over the latter.

Ultimately, a party only needs to perform 2𝑛 operations on the twist curve whenever a

shared secret needs to be reconstructed.

Table 3.2: Cost of Field & Curve Operations. (500 trials)

Table 3.3: Cost of KZG Commitment Scheme. eWEB uses KZG to verify share corrections (500 trials)

We also measure and report the costs of the core operations in our implementation of the

KZG commitment scheme (Table 3.2). Setup refers to the time required to generate a public key

for a polynomial with a given degree. This is a one-time cost across all committed polynomials.

36

3.7 Related Work

3.7.1 Prior Work on DPSS

Since the introduction of proactive secret sharing by Herzberg et al., many PSS schemes

have been developed. These schemes vary in terms of security guarantees, network

assumptions (synchronous or asynchronous), communication complexity and whether they can

handle dynamic changes in the committee membership. In Figure 1 we provide a comparison of

PSS schemes.

Below, we compare our DPSS construction in detail with the two constructions (CHURP,

Baron et al.) that are most closely related to our protocol, as they are also the most efficient

DPSS schemes to date.

In the best case, CHURP achieves communication complexity 𝑂(𝑛2) plus 𝑂(𝑛) · B to

refresh each secret in the hand-off phase, where 𝑛 is the number of parties and B denotes the

cost of broadcasting a bit. In the worst case (where some corrupted party deviates from the

protocol), it requires 𝑂(𝑛2) · B communication per secret.

In the single-secret setting, our protocol achieves the same asymptotic communication

complexity as CHURP. However, our protocol achieves amortized communication complexity

𝑂(𝑛) plus 𝑂(1) · B per secret in the best case, and 𝑂(𝑛2) plus 𝑂(𝑛) · B per secret in the worst

case. Batching is crucially important in eWEB since there may be thousands of secrets stored at

any given time.

While CHURP uses asymmetric bivariate polynomials to refresh a secret during hand-off,

we use a modified version of a technique of Damgård et al. to prepare a batch of random secret

sharings. Generating random secret sharings is much more efficient than generating bivariate

polynomials. Specifically, each bivariate polynomial requires 𝑂(𝑛) communication per party;

i.e., 𝑂(𝑛2) in total. On the other hand, we can prepare 𝑂(𝑛) random sharings with the same

communication cost as preparing one bivariate polynomial. To benefit from it, we use a entirely

different way to refresh secrets.

The work focuses on a slightly different setting from ours: they consider unconditionally

secure DPSS with a (1/2 − 𝜖) corruption threshold, where 𝜖 is a constant. Their scheme has

𝑂(1) amortized communication per secret. However, in the single-secret setting, it requires

𝑂(𝑛3) communication to refresh a secret.

Baron et al. use packed secret sharing (in contrast to our batched secret sharing), which

allows a client to store 𝑂(𝑛) secrets in one sharing by encoding multiple secrets as distinct

points of a single polynomial. Thus, refreshing each sharing effectively refreshes a batch of

𝑂(𝑛) secrets submitted by the same client at the same time. However, this means that secrets in

the same batch come from a single client and can only be refreshed or reconstructed together. It

is unclear if merging batches submitted by different clients is at all possible. Thus, even if in

eWEB some secrets submitted by different clients were to be released at the same time, Baron

37

et al.’s scheme would not allow us to join these secrets in one batch to profit from their low

amortized communication complexity. Our scheme has one secret per sharing: only

supplementary random sharings are generated in a batch. Then, each secret is refreshed (and

can be released) individually.

To reach 𝑂(1) amortized communication per secret, Baron et al. need a (1/2 − 𝜖) corruption

threshold. Our scheme does not suffer from this corruption threshold loss.

3.7.2 Extractable Witness Encryption and Conditional Secret Release

The notion of witness encryption was introduced by Garg et al. [14]. Extractable security

for witness encryption was proposed by Goldwasser et al. In their work a candidate

construction was introduced that requires very strong assumptions over multilinear maps.

According to Liu et al., existing witness encryption schemes have no efficient extraction

methods. Garg et al. suggest that it even might be impossible to achieve extractable witness

encryption with arbitrary auxiliary inputs.

Nevertheless, as mentioned in previous sections, the notion of extractable witness

encryption has been extensively used in various cryptographic protocols, especially in

conjunction with blockchains.

Benhamouda et al. recently published a manuscript that also proposes conditionally storing

secrets on a blockchain. Unlike eWEB, their work is specific to proof-of-stake blockchains.

Like us, they design a new DPSS scheme, but they target a very specific (albeit intriguing!) use

case — in their setting, the members of a committee must remain anonymous, even to the

previous committee. They consider a stronger adversary who can corrupt and uncorrupt

previously honest parties, but they only tolerate 25% corruption, versus 50% for our scheme.

Finally, they do not explain how to release secrets without revealing witnesses to the

miners, nor provide an implementation.

Kokoris-Kogias et al. proposed Calypso, a verifiable data-management solution that relies

on blockchains and threshold encryption. Calypso targets a different use case than our eWEB

system: it allows verifiable sharing of data to parties that are explicitly authorized (either by the

depositor or by a committee of authorized parties) to have access rather than specifying a

general secret release condition that allows anyone who is able to satisfy this condition to get

the data. Kokoris-Kogias et al. do not provide a formal security definition or formal security

proof of their system. A major part of their work focuses on the static committee of parties

holding the secrets, the dynamic committee setting is only discussed very briefly.

eWEB could be seen as a special case of proactive secure multi-party computation (PMPC)

[8, 22, 42]. However, while our DPSS scheme could be used for PMPC, eWEB targets a

different use case than general PMPC. This allows for a much more efficient and largely non-

interactive construction compared to PMPC protocols, which typically have very high round

complexity.

38

3.8 Conclusion

We have introduced a new cryptographic primitive: extractable witness encryption on a

blockchain, which allows the blockchain to store and release secrets. We designed a proof-of-

concept eWEB protocol and implemented it. A key building block of this protocol is a highly

efficient batched dynamic secret sharing scheme that may be of independent interest. This

framework is compatible with the data from the sensor network described in chapter 2.

39

CHAPTER FOUR

Security Policies and Two-Factor Authentication

Bitcoin and blockchain-based cryptocurrencies brought us at the brink of a technological

revolution: These systems allow us to bypass the need for centralized trusted entities to run

currencies on a large-scale. While their decentralized and borderless nature make them

appealing substitutes for Fiat currencies, a burning problem with this approach is the lack of a

recovery mechanism if something goes wrong. What happens if one user’s key is lost or stolen?

There is no bank to call and no authority to rely upon to get your funds back. Indeed, the

number of such high-profile attacks on cryptocurrencies has been rising steadily. Famous

incidents like the Mt. Gox hack [42], the coincheck hack, and the Parity Technology code

deletion saw funds upwards of several hundred million dollars being lost or stolen. The well-

known DAO hack [43] forced Ethereum to adopt a hard fork which created two version of the

currency: Ethereum and Ethereum classic. To deal with such problems in future, Ethereum

developers have proposed EIP 867. An ethereum improvement protocol (EIP) is the process by

which code changes get accepted onto the Ethereum platform. However, EIP 867 has proven to

be controversial since it will again bifurcate the currency into two versions, the very problem it

was trying to solve.

The problems of attackers stealing money or losing credentials are of course not unique to

blockchain-based cryptocurrencies. The (traditional) banking industry has been dealing with

such issues for decades where a number of mitigating approaches have worked pretty

effectively. Examples of common security policies to deal with such attacks include: A waiting

period (say 24 hours) for transferring money to a new recipient and an overall daily outgoing

transfer limit. Bypassing these restrictions could either require additional verifications (such as

two-factor authentication), or may not be allowed at all. Different banks could follow different

security policies which might also vary depending on the type of account (business vs personal)

and by the state/region and the local laws. This motivates the following question:

Can we take the lessons learnt in the traditional banking domain, and apply them fruitfully to

blockchain-based systems, without compromising their decentralized nature?

4.0.1 System Architecture

We propose a system where each user has the opportunity to delegate the custody of its

funds to a smart contract. The security policy (which can be specified by the user itself) is

hardwired in the smart contract and it governs its decision. All funds transfer will go through

the approval of such a smart contract, which has the power to accept or reject (or even set on

hold) each transaction, depending on the specified policy. In case of an exceptional event, such

as key theft, or as an additional security safeguard in case of particularly large transactions or

transactions to new addresses, the smart contract will require additional verification via two-

40

factor authentication (2FA). We stress that one does not need to authenticate all transactions but

only a carefully chosen set, at the discretion of the policy specified by the owner of the funds.

In this work we implement the above idea by developing solutions for 2FA mechanisms

that can coexist with the decentralized nature of blockchain-based currencies. To be aligned

with the philosophy of decentralized system, our solutions are guided by the following design

principles.

Distributed Trust. The 2FA must not rely on the existence of a trusted authority. Instead

we propose to leverage a hardware token or distribute the trust among a (reasonably-sized) set

of parties, which are asked to intervene in case of exceptional event. The members of such a

committee can be chosen by the users or can be selected through a consensus protocol (e.g., the

miners themselves can play this role). Security must be guaranteed even if a subset of the

committee members behaves maliciously.

Reliability and Guaranteed Output Delivery. We require the 2FA mechanism to be

resilient against (benign) disconnections and (malicious) denial of service attacks. That is, even

if part of the members of the committee go offline or become corrupted, one should still be able

to complete the authentication procedure (given that the set of online parties is large enough).

Low Latency. In distributed environments communication is typically expensive, as

messages have to be broadcasted to all users in the network. For this reason it is of central

importance to minimize the rounds of communication of a 2FA mechanism.

Computational Efficiency. General purpose cryptographic solutions are very powerful but

are often computationally intensive. We aim to build a solution based on well-established

cryptographic components which is efficient enough to be integrated in real-life systems.

4.0.2 Two-Factor Authentication Mechanisms

A popular approach to 2FA in the traditional banking system is that of security questions:

When the 2FA is triggered, the user is prompted to answer a personal question and the

verification process succeeds if the user’s answer is correct. If we were to import this idea to

the decentralized setting, the first question that arises is where to store the correct answers in

absence of a trusted authority. Clearly the smart contract cannot hardwire the correct answers as

otherwise they would be public knowledge (smart contracts do not offer any form of privacy).

Since answers typically come from a low-entropy distribution, storing the hash of them is also

not a good idea since it is vulnerable to off-line dictionary attacks, where an attacker recovers

the hash and tests locally his guesses until he succeeds.

Our idea to bypass this obstacle is to secret share the correct answers among a set of n

parties, in such a way that stealing the secret would require to corrupt at least t members of this

committee (for some threshold parameter t ≤ n). When the 2FA mechanism is triggered, the

user is asked to authenticate its transaction τ by providing the correct answers to a set of

predefined questions. The user then broadcasts a message to all committee members, who

41

perform some computation locally and output a partial response tied to the transaction τ. The

smart contract then collects sufficiently many responses and publicly checks whether the

authentication was successful. If this is the case the smart contract allows τ to go through,

otherwise it rejects it. In terms of security, we require that the above process does not reveal

anything beyond whether the user’s guess was correct or not, even if the attacker corrupts a

certain subset of committee members. Henceforth, we refer to this procedure as a distributed

zero-tester (DZT).

We also consider an alternative setup where we leverage a physical two-factor

authentication token. As an example, universal two-factor authentication (U2F) tokens allow a

user to sign any message by querying the token. With this tool at hand, authentication is done

as follows: The smart contract hardwires the verification key of the U2F token and, when the

2FA mechanism is invoked, sends the user a nonce. The authentication is successful if the user

provides a correct signature on the nonce.

4.0.3 Security Policies

Our system is completely flexible in the policy that is enforced by the smart contract, which

can be specified by the owner of the address. A more conservative usage of our system is just

as an additional safeguard mechanism: Suspicious transactions (e.g., unusually large amounts

or transactions to a new address) can trigger the 2FA mechanism and force the user to provide

(human-memorable) answers to some security questions or a signature from a physical token.

This gives an additional line of defense even against the catastrophic event where an attacker

steals a user signing key.

On the other side of the spectrum, one user may want to set the policy such that some

transactions are allowed given only the 2FA, i.e., they are not required to be digitally signed.

This can be useful in scenarios where a user has lost the signing key for an address and wants to

recover the funds: Answering some security questions allows him to transfer the coins to a

fresh address (with a newly sampled signing key). However this liberal usage of our system

requires careful thoughts. While on the one hand it improves the usability of the currency, on

the other hand it opens the doors to a new attack vector: instead of stealing a secret key, an

attacker can compromise the address by guessing the answers to some security questions (or

stealing a physical token), which is typically a much easier task. This risk can be mitigated by

rate-limiting the amount of attempts for unsigned transactions to, e.g., once per week. Since

each attempt requires the user to post a message over the blockchain, the query limit can be

enforced by the smart contract itself, without the need for the committee members to coordinate

or to update the code of the physical token.

In this work we mainly focus on the former case, where the 2FA mechanism is invoked in

addition to the standard digital signature check. An in-depth cost analysis of the security and

usability tradeoff of unsigned transactions is beyond the scope of this work.

42

4.0.4 Our Contribution

In this work we propose a new method to safeguard transactions on blockchain-based

cryptocurrencies, inspired by the solutions developed in the (traditional) banking domain. We

then develop 2FA mechanisms amenable to the decentralized nature of cryptocurrencies,

offering different trade-offs in terms of trust assumptions, physical capabilities, and

computational efficiency. Our technical contributions can be summarized as follows.

Definitions. We develop the notion of distributed zero-tester (DZT), the central

cryptographic building block that enables efficient 2FA in decentralized system. We give

formal definitions for this primitive and we characterize the security requirements with a game-

based definition.

Cryptographic Protocol. We propose a cryptographic instantiation of DZT from standard

assumptions on bilinear groups. The scheme is round optimal, has guaranteed output delivery,

and is concretely efficient. Along the way, we develop a new threshold homomorphic

encryption scheme for linear predicates from bilinear groups, which might be of independent

interest.

Implementation. We implement the DZT scheme as a smart contract in Ethereum. Our

performance evaluation shows that, for reasonably-size committee, the resulting 2FA

mechanism can be deployed by today’s users at minimal additional cost (around 1$ per

authenticated transaction). We also implement a U2F-based 2FA mechanism as a smart

contract in Ethereum, thus enabling 2FA with a hardware token already available to the public.

In terms of added cost, our scheme introduces (approximately) an additional 3¢to 28¢ per

transaction, depending on the choice of curve.

4.1 Technical Overview

In the following section we give an informal exposition of the techniques developed in this

work. We focus on the main goal of designing a crytpographic solution for a DZT: In a DZT a

client secret shares an answer α (the primitive naturally extends to the settings of multiple

answers) among a set of n parties. When the 2FA is invoked, the client (which has an attempt

α˜ in his head) crafts a single query q and sends q (together with the transaction identifier τ) to

all parties, who locally compute a response pi. Given a large enough set of responses {pi}i∈S,

for some set S of size |S| = t, anyone can publicly determine the outcome of the authentication

process. The transaction τ is successfully authenticated if and only if α = α˜ and the protocol

should not leak any information beyond whether the authentication process succeeded or not.

4.1.1 A Generic Solution

We first discuss a high-level idea of our solution and then we present an efficient

cryptographic instantiation. Threshold fully-homomorphic encryption [44], [45] allows us to

compute any function over encrypted data and offers a general solution to our problem: The

client can simply compute Enc(pk,α) and distribute the shares of the secret key (sk1,...,skn) to

43

the committee members. To authenticate a transaction, a user computes Enc(pk,α˜) and

broadcasts it to all parties. Then the committee members locally compute, using the

homomorphic properties of the scheme,

c = Enc

and compute and output the partial decryption using their share ski. The plaintext bit {0,1}

of c can be publicly reconstructed using a large enough set of decryption shares and the output

of the authentication is set to be this bit.

While this solution satisfies all of our security requirements, it introduces a prohibitively

high computational overhead. As of today, implementing a generic fully-homomorphic

encryption in an Ethereum smart contract is far off the reach of the current infrastructure. Thus,

developing a solution that can be used in today’s systems requires us to devise a different

strategy.

4.1.2 A Flawed Attempt

In order to understand our solution, it is instructive to iterate through a simple construction

and analyze its pitfalls. In the setup phase, the client samples an ElGamal [46] key pair (x,h =

gx) and encrypts the answer α under such a key, making the resulting ciphertext

(c0,c1) = (gr,hr · gα)

publicly available to all parties. The secret key x is then secret shared (using Shamir scheme

[47]) among n parties in such a way that any t shares are sufficient to reconstruct the secret. Let

(xi,i) be the i-th share. To authentication a transaction τ, a user can compute the encryption of

its attempt

(d0,d1) = (gs,hs · g−α˜)

and broadcast it to all members of the committee. Each party then computes and broadcasts

pi = (c0 · d0)xi. Given a set S of responses, the outcome of the authentication can be publicly

recovered by checking

where λi is the i-th Lagrange coefficient. Note that if α = α˜, then c1 · d1 = hr+s and indeed

the above equation holds true since the secret x is reconstructed in the exponent. Unfortunately,

this solution has multiple flaws. First of all, there is no mechanism that ties the transaction τ to

the authentication process so one can authenticate without the knowledge of α by simply

replaying a valid ciphertext (c0,c1) and swapping the corresponding transaction τ with a new τ˜.

Furthermore, even if a single member provides a malformed answer, the entire mechanism for

verification fails.

44

While these issues can be resolved using non-interactive zero-knowledge proofs (NIZK)

[48], there is a more serious problem: If the authentication is not successful, then the responses

of the committee members reveals the exact difference α − α˜. This is because

which means that the attacker can always guess the correct α with at most two queries. This

is a notorious issue in threshold cryptography, and current approaches to resolve this problem

(see, e.g., [49-51]) require one to add two rounds of interaction. This is not acceptable for us,

since we consider settings where communication is expensive (i.e., each message is posted on a

blockchain) and thus we aim at a completely non-interactive solution.

4.1.3 Bilinear Maps at Rescue

The above vulnerability comes from the fact that the threshold version of ElGamal

encryption does not satisfy the notion of simulation security for equality predicates, i.e., instead

of revealing whether two strings are equal or not it reveals the exact difference. This problem

can be bypassed by resorting to more powerful cryptographic machinery.

Our first observation is that the class of predicates that we need to evaluate is very

restricted, so there is hope to build a solution without the full power of fully-homomorphic

encryption. Our second observation is that the protocol is already secure if the authentication is

successful, so we only need to worry about the case where the answer is not correct, i.e., α ̸= α˜.

Our central idea is to revisit the ElGamal-based approach by adding a re-randomization

factor to the plaintext of the evaluated ciphertext, which cancels out only if α = α˜. This can be

done with the help of bilinear groups. In a bit more detail, in the setup phase, the client

publishes

where h = gx. The secret key x is secret shared as before. Note that (c0,c1) serves the same

role as before, except that there is an additional factor ρ multiplied by the answer α. The role of

(c2,c3) will be clear in a moment. The authentication begins with the user computing and

broadcasting the encryption

.

Note that the user does not know the factor ρ but can still compute a valid ciphertext for

−ρα˜ by obliviously raising (c2,c3) to the power of −α˜ and then re-randomizing the resulting

ciphertext.

Each committee member computes (c0 · d0)xi as before, except that it additionally samples

a fresh element k = gκ ∈ G2 using a random oracle and returns

45

as the decryption share. The outcome of the authentication process can be recovered by

checking

To see why security is preserved even in the case of a failed authentication, observe that

so in case α = α˜ the randomization factor κρ cancels out and the above equality is verified.

For the case case α ̸= α˜, the factor κρ completely masks the difference α − α˜ and prevents the

attack as described above. Since the value of k = gκ is freshly sampled upon each attempt, the

randomization factor is pseudorandom for each authentication query. Also note that k can be

sampled locally by each party, without the need of any additional interaction.

4.1.4 Additional Challenges

The above presentation glosses over many important aspects that need to be taken into

account when building an efficient protocol. As an example, the above protocol must be

augmented with NIZK proofs to make sure that a malicious player cannot deviate from the

specification of the protocol. However, using generic NIZK schemes for NP would vanish our

efforts to build a practical system. Fortunately we show that our scheme can be slightly

tweaked to allow us to implement the required NIZKs using exclusively Schnorr proofs for

discrete logarithm equality [52], which results in a concretely efficient scheme.

Another set of challenges arises when implementing the protocol as a smart contract in

Ethereum. In order to obtain an efficient protocol, we would like to leverage precompiled

instructions to perform bilinear group operations. However, the semantic of operations

supported by Solidity (the language of Ethereum smart contracts) is very limited: It only

supports group operations in the source G1 and pairing-product equation checks. This turns out

to be insufficient to implement the scheme as outlined above. To circumvent this issue, we

further modify our construction to make it fully compatible with precompiled instructions in

Solidity. This process is not hassle-free: The new scheme requires us to introduce a new (static)

assumption over bilinear groups, the dual Diffie-Hellman assumption. We then show that such

an assumption holds true in the generic group model.

Also, the integration of a U2F-based solution in Ethereum introduces some additional

complications. As an example, a smart contract cannot implement a randomized algorithm, but

we need to sample a random challenge to complete the U2F authentication protocol. Instead of

a truly random string, we use the hash of a unique identifier of the transaction (to prevent

replay attacks) to implement the challenge sampling procedure.

46

4.2 Related Work

In the following we survey some related work from the literature.

Multi-Sig Addresses. One of the most prominent approaches to safeguard accounts in

cryptocurrencies is the creation of multi-sig addresses: A secret key of a digital signature

scheme is secret shared among multiple parties using a threshold scheme [50, 53-55].

Approving transaction requires gathering a large enough set of users to jointly sign it. This

means that compromising a single device is no longer sufficient to steal coins.

Our approach complements this idea and adds two important features: (1) Multi-sig address

require to gather multiple parties to sign every transaction regardless of how small or big it is,

whereas in our system a smart security policy can decide when additional verification is

required. To the best of our knowledge, there has been no previous work which has this feature.

(2) Our system supports also low-entropy secrets (e.g., human-memorable passwords or

answers to security questions) that can be used as an additional verification, in case one of the

parties loses his credentials.

Password-Protected Wallets. Another approach to improve the usability of blockchain

systems is the so-called password-protected wallet[56], where the secret keys are encrypted

using a human-memorable password. Unfortunately, these systems are vulnerable to

exhaustive-search attacks where one can enumerate all plausible passwords and attempt to

recover the secret. A DZT can be used to overcome this limitation and to construct a form of

distributed password protected wallet across some committee members.

Vaults. Cryptocurrency vaults aim at disincentivizing key theft by delaying the acceptance

transactions: Once an illegitimate transaction is placed on the blockchain, the legitimate owner

has enough time to prevent the spending using an appropriate recovery key. The aim of this

mechanism is to reduce the incentive for an attacker to steal keys, as it will likely result in no

financial gain. However, it does not address the question of recovering access to an account, in

case of unintentional credential losses.

Password-Authenticated Key Exchange (PAKE). An area which is closely related to our

DZT is that of threshold PAKE [57, 58], where a human-memorable password is used to

authentication a user against a set of servers, who collectively know the password but can be

individually corrupted without compromising security. The main difference with respect to our

settings is that we do not require to exchange any key, instead we want to tie the authentication

process with a transaction chosen by the client. Additionally, we require that the outcome of the

authentication process is publicly verifiable even by external parties, which is typically not the

case for PAKE protocols.

Zero-Testing of ElGamal Ciphertexts. One of our main technical innovations is a new

protocol where parties can jointly test whether an ElGamal ciphertext is an encryption of 0,

without revealing any additional information. While this is a well-known problem in threshold

47

cryptography [59], known efficient solutions (see, e.g., [49-51]) are based on a commit-and-

prove approach and require at least three rounds of interaction. In contrast, our solution is

completely non-interactive: Each party broadcasts a single message, and the verification

procedure is public. This is particularly suitable for settings where communication is expensive,

e.g., where parties exchange messages by posting them on a blockchain.

Password-Protected Secret-Sharing (PPSS). A PPSS allows a user to share a secret that

can be reconstructed with the sole knowledge of a password. Recent efficient protocols can be

used as a substitute for DZT in our 2FA mechanism. However, PPSS would require at least one

more round of interaction between the committee members and the client. In contrast, the

shares in the DZT can be verified non-interactively and without the need to set up an off-chain

communication infrastructure.

Distributed Point Functions (DPF). A DPF (and its generalization to function secret

sharing) allows a set of parties to secret-share a point function f → (f1,...,fn) whose output can

be recovered by the output of the local evaluation of each parties, i.e., f(x) = f1(x)⊕···⊕fn(x).

A DZT can be thought as a threshold version of a DPF with a few important differences: (i) In a

DZT the output shares of the parties are publicly verifiable, which is in general not the case for

DPFs. Furthermore, (ii) in a DZT the output reconstruction is not restricted to be a linear

function. Finally, (iii) DZT supports the evaluation of encrypted queries, whereas in a DPF the

inputs are typically public.

4.3 Preliminaries

We denote by λ ∈ N the security parameter. We say that a function negl(·) is negligible if it

vanishes faster than any polynomial. Given a set S, we denote by s ←$ S the uniform sampling

from S. We say that an algorithm is PPT if it can be implemented by a probabilistic machine

running in time polynomial in the security parameter.

4.3.1 Bilinear Groups

Let (G1,G2,GT) be an asymmetric bilinear group of prime order p with an efficiently

computable pairing e : G1 ×G2 → GT and let G be the generator of such a group. We denote by

(g1,g2) the generators of the groups G1 and G2, respectively, and by gT = e(g1,g2) the

generator of GT. In the following we recall the eXternal Diffie-Hellman (XDH) [9] and the

Decisional Bilinear Diffie-Hellman (DBDH) problems over bilinear groups.

Assumption 1 (XDH). Let G be a bilinear group generator. G is XDH-hard if for all PPT

distinguishers it holds that the following distributions are computationally indistinguishable

(G1,G2,GT,p,g1,g2,g1x,g1y,g1xy) ≈

(G1,G2,GT,p,g1,g2,g1x,g1y,g1z)

where (G1,G2,GT,p,g1,g2) ←$ G(1λ) and .

48

Assumption 2 (DBDH). Let G be a bilinear group generator. G is DBDH-hard if for all PPT

distinguishers it holds that the following distributions are computationally indistinguishable

(G1,G2,GT,p,g1,g2,g2x,gTy ,gTxy) ≈

(G1,G2,GT,p,g1,g2,g2x,gTy ,gTz)

where (G1,G2,GT,p,g1,g2) ←$ G(1λ) and .

4.3.2 Non-Interactive Zero-Knowledge

A non-interactive zero-knowledge (NIZK) proof allows a prover to convince a verifier

about the validity of a certain statement without revealing anything beyond that. We recall the

syntax in the following.

Definition 1 (NIZK). Let L be an NP-language with relation R. A NIZK system for R

consists of the following efficient algorithms.

Setup(1λ) : On input the security parameter 1λ, the setup algorithm returns a common

reference string crs.

Prove(crs,stmt,wit) : On input the common reference string crs, a statement stmt, and a

witness wit, the prover algorithm returns a proof π.

Verify(crs,stmt,π) : On input the common reference string crs, a statement stmt, and a proof

π, the verifier algorithm returns a bit {0,1}.

Correctness requires that for all λ ∈ N and all pairs (stmt,wit) ∈ R it holds that

Pr[Verify(crs,stmt,Prove(crs,stmt,wit))] = 1

where crs ←$ Setup(1λ). We recall the definition of zero-knowledge in the following.

Definition 2 (Zero-Knowledge). A NIZK system for R is zero-knowledge if there exists a

PPT algorithm (Sim0,Sim1) such that for all pairs (stmt,wit) ∈ R and for all PPT distinguishers

the following distributions are computationally indistinguishable

(crs ← Setup(1λ),π ← Prove(crs,stmt,wit)) ≈ (crs∗,π ← Sim1(crs,stmt,td))

where Sim0(1λ).

We require that the protocol satisfies the strong notion of simulation extractability.

Definition 3 (Simulation Extractability). A NIZK system for R is simulation-extractable if

there exists a PPT algorithm

49

Ext and a negligible function negl(·) such that for all λ ∈ N and all PPT algorithms A it

holds that

 where O takes as input a (possibly false) statement stmt and returns Sim1(crs,stmt,td) and we

denote by Q the list of queries issued by A.

4.3.3 Secret Sharing

We recall the threshold secret sharing scheme from Shamir over a field F where a

randomized algorithm Share takes as input a field element s, a threshold t, and a number of

participants n and returns the evaluations of a random (t−1)-degree polynomial at the respective

points (1,s1),...,(n,sn). Then any subset S ⊆ {1,...,n} such that |S| = t can recover the secret s by

computing

over F, where λi is the i-th Lagrange coefficient.

4.4 Definitions

In the following we present the notion of a distributed zero-tester (DZT) and we provide

explicit security and privacy properties. Before delving into the formal definitions, we discuss

on a high level our design goals.

4.4.1 Overview

A DZT allows one to share a secret among a selected committee of users in such a way that

later on one can authenticate using the knowledge of such a secret, assuming that a large

enough portion of committee members is online. Our definition for a DZT is tailored to

distributed environments where communication is expensive and an arbitrary subset of parties

may decide not to comply with the protocol specifications. Our definitions (and consequently

the instantiation that we propose) are guided by the following design principles.

Round Optimality. For our applications of interest, the communication among committee

members happens over a blockchain. This makes communication costly in both financial and

efficiency terms: The rate of exchanged messages is bounded by the rate at which new blocks

appear, which can be in the order of minutes. For this reason we aim to minimize interaction as

much as possible. Ideally, an authentication attempt should consist of a single message from the

user to all committee members and of a single round of response, where the output of the

protocol can be recovered without any further interaction.

Guaranteed Output Delivery. As one cannot trust all committee members, a corrupted

user might decide at any point not to respond to any query. We want to guarantee that

50

authentication protocols can still take place even if an arbitrary subset of committee members

(up to some user-defined threshold) goes offline. This property is commonly known as

guaranteed output delivery.

Public Verifiability. We require that the outcome of the authentication process is publicly

verifiable by any external observer. This feature is needed to allow the smart contract to decide

whether the user transaction should take place or not.

Resilience Against Offline Dictionary Attacks. The secrets stored by the user typically

come from a low-entropy distribution (e.g., a human-memorable password or answer to some

security question). For this reason, it is important the information that an attacker can gather by

eavesdropping the communication does not allow it to launch bruteforce attacks where the

authentication process is run locally until it succeeds. Clearly the attacker can query the online

authentication mechanism, but an unusual number of attempts will trigger a rate-limiting

mechanism.

Resilience Against Replay Attacks. In our context authentication is tied to a specific

bitstring τ, e.g., we want to make sure that an unusual transaction τ is initiated by the legitimate

user. It is therefore important to ensure that previous successful authentications for a string τ

cannot be mauled into successful authentications for a different string τ′, without the knowledge

of the secret.

4.4.2 Syntax and Security Properties

In the following we present the syntax for a DZT protocol. To incorporate the fact that a

query is associated with some transaction trans we augment our scheme with tags τ, which we

assume to be λ-bit strings. This is without loss of generality since one can set τ = H(trans),

where H : {0,1}∗ → {0,1}λ is a collision resistant hash function.

Definition 4 (DZT). A DZT scheme consists of the following efficient algorithms.

Setup(1λ,t,n,α) : On input the security parameter 1λ, a threshold size t, a committee size n,

and a string α ∈ {0,1}∗, the setup algorithm returns a public key pk and a vector of secret keys

(sk1,...,skn).

Query(pk,β,τ) : On input the public key pk, a string β ∈ {0,1}∗, and a tag τ ∈ {0,1}λ, the

query algorithm returns a query q.

Response(pk,ski,q,τ,i) : On input the public key pk, a secret key ski, a query q, a tag τ, and

an index i, the response algorithm returns a partial response pi.

Verdict(pk,p1,...,pt˜,τ) : On input the public key pk, a set of partial responses (p1,...,pt˜), for

some t˜≤ n, and a tag τ, the verdict algorithm returns a bit {0,1}.

For correctness, we require that for all λ ∈ N, all polynomials n = n(λ), all t ≤ n, all sets S ⊆

{1,...,n} of size

51

|S| ≥ t, all strings α and τ, all (pk,sk1,...,skn) in the support of Setup(1λ,t,n,α) it holds that

Pr[Verdict(pk,{pi}i∈S,τ) = 1] = 1

where pi ← Response(pk,ski,Query(pk,α,τ),τ,i). Note that correctness is required to hold as

long as any set of committee members of size at least t participates in the response to the

queries. In other words, the protocol has guaranteed output delivery as long as at most n − t

parties are corrupted and may refuse to respond to queries or give an incorrect response.

Next we define the notion of security and we argue why it models the attackers capability in

a faithful way. Our definition are inspired by those of Bellare, Pointcheval, and Rogaway [6]

imported to our settings. We denote by D set of distinct strings from where the secret is chosen.

Our definition captures both the cases where D is small and exponentially large, as long as one

can efficiently sample an element from D.

Definition 5 (Security). A DZT is secure if there exists a negligible function negl(·) such

that for all λ ∈ N and all PPT algorithms A it holds that

Pr negl(λ)

where the experiment is defined in the following.

ExpA(1λ):

• (t,n) ← A(1λ)

• α ←$ D

• (pk,sk1,...,skn) ← Setup(1λ,t,n,α)

• S∗ ← A(pk)

where |S∗| = t − 1 and O gives the adversary access to the following interfaces:

1) Accept(τ) : On input a tag τ, the adversary is given q ← Query(pk,α,τ) and pi ←

Response(pk,ski,q,τ,i), for all i /∈ S∗.

2) Reject(τ,f) : On input a tag τ and a function f, the adversary is given q ← Query(pk,f(α),τ) together

with pi ← Response(pk,ski,q,τ,i), for all i /∈ S∗. We require that f is given as a polynomial-size

circuit and that it has no fixed point, i.e., there exists no x such that f(x) = x.

3) Malicious(q,τ) : On input a query q and a tag τ, the adversary is given pi ← Response(pk,ski,q,τ,i),

for all i /∈ S∗.

We define Q to be the set of queries to the Malicious interface and Q′ be the set of queries

to the Accept interface. The experiment returns 1 if and only if

Verdict and τ∗ ∈/ Q′.

52

We now discuss how the experiment defined above models the intuition for the security

properties that we want to ensure. First observe that the adversary is allowed to see arbitrarily

many accepting and rejecting queries from the honest users without affecting its success

probability. This means that no matter how many queries it eavesdrops, its advantage in guessing

α should not change. Instead, the Malicious interfaces allows the attacker to guess the value of α

exactly once per query and we require that nothing is revealed beyond whether his guess is

correct or not. This prevents offline attacks where the attacker locally tests for the correct value

of α and returns an accepting query without querying the Malicious interface.

Finally observe that the experiment captures replay attacks: If the adversary was able to maul

an honest accepting query into a query for a different tag, it could violate the above definition

with a single query to the Accept interface.

53

Figure 4.1 Our DZT protocol

4.5 Construction of Distributed Zero-Tester

In this section we present our DZT construction, and we show that it satisfies all of the

properties of interest. Let (G1,G2,GT,p,g1,g2) be an asymmetric bilinear group of prime order

p and let H : {0,1}∗ → G2 be a hash function modeled as a random oracle. We assume the

existence of NIZK scheme (NIZK.Setup,NIZK.Prove,NIZK.Verify) for NP. The scheme is

described in Figure 1. For completeness, we also present a self-contained version of the

underlying threshold homomorphic encryption scheme in Appendix A.

To see why the scheme is correct, note that

54

where and ψ = r + sα + r˜. Then we have that

and therefore, for all admissible sets S of size |S| = t we have

with probability 1. We now show that our DZT scheme satisfies the notion of security.

Theorem 1 (Security). If the XDH and the DBDH problems are hard over

(G1,G2,GT,p,g1,g2) then the DZT construction as described in Figure 1 is secure.

Proof. We assume without loss of generality that the adversary outputs a maximally

corrupted subset of parties S∗ of size |S| = t − 1. Then we gradually modify the experiment in

the following sequence of hybrids.

Hybrid 0: This is the original experiment ExpA(1λ).

Hybrid 1: In this hybrid all NIZK proof issued to the adversary on behalf of honest parties

are computed using the simulator instead of the real witness. This modification is

computationally indistinguishable by a standard hybrid argument against the zero-knowledge

property of the NIZK system.

Hybrid 2: In this hybrid all NIZK proof sent by the adversary are extracted using the Ext

algorithm, provided by the simulation extractability property of the NIZK system. If any of the

outputs of the extractor does not constitute a valid witness for the corresponding relation, then

the experiment aborts. A standard hybrid argument can be used to show that the probability that

an abort is triggered is bounded by a negligible function in the security parameter, by the

simulation extractability of the NIZK system.

Hybrid 3: In this hybrid we change how the responses of the honest parties are computed

for all queries of the adversary. Fix a query of the adversary (to any of the interfaces) and let

(b0,b1) be defined as in the Response algorithm. The output of the i-th honest party is identical

to the original experiment except for

55

 .

where , and α˜ depends on the type query that the adversary is asking:

(1) For queries to the Accept interface, α˜ is set to α.

(2) For queries to the Reject interface, α˜ is set to f(α).

(3) For queries to the Malicious interface, the values of (β0,...,βlog(p)) are read from the extracted

NIZK sent by the adversary, and the value of α˜ is set to .

Observe that such a response is correctly distributed since

for some adversarially chosen r˜. It follows that this modification is only syntactical and the

view of the adversary is identical to that of the previous hybrid.

Hybrid 4: In this hybrid the shares xi, for all i ∈ S∗, are sampled uniformly from Zp, instead

of being computed using the Share algorithm. Then the element hi corresponding to the i-th

honest party is computed as

 .

Since |S∗| < t it follows that the view of the adversary is identical to that induced by the

previous hybrid. Hybrid 5: In this hybrid we compute the ciphertexts (c0,c1) and (d0,d1) as

encryptions of zero, i.e.,

 and

where . Indistinguishability follows from two invocations of the XDH

assumption.

Hybrid 6: This hybrid is identical to the previous one, except that the responses of the

honest parties for all adversarial queries are computed as

 .

where is sampled freshly for each adversarial query and α˜ is defined as before.

56

Let Q be the set of queries issued by the adversary to the decryption oracle. For all i ∈

{1,...,|Q|} we define the following hybrid distribution

.

Note that on the one extreme we have that the distribution corresponds to the computation

done in in Hybrid 5

whereas on the other extreme the distribution is identical to the computation done in Hybrid

6

.

One can easily show that the distance between the i-th and the (i + 1)-th hybrids is

negligible by an invocation of the the DBDH assumption: Let be

the tuple taken as input by the distinguisher. The reduction sets gTρ = gTy and answers the

queries {1,...,i−1} as specified in Hybrid 5 and the queries {i+1,...,|Q|} as specified in Hybrid 6,

programming the random oracle to some value with known discrete logarithm κ. For the i-th

query the reduction programs the random oracle to and computes

 .

Observe that if z = xy then the view of the adversary is identical to that of the i-th hybrid

distribution, whereas if z is uniform in then the view of the adversary is identical to that of

the (i + 1)-th hybrid. This shows that the hybrid distributions must be computationally

indistinguishable.

Hybrid 7: In this hybrid we change the response of the honest parties to all adversarial

queries. Specifically, we compute

 .

where the bit ˜b is defined as follows:

(1) For queries to the Accept interface, we set
˜
b = 0.

(2) For queries to the Reject interface, we set
˜
b = 1.

(3) For queries to the Malicious interface, we set
 ˜

b = 0 if and only if , where

(β0,...,βlog(p)) is extracted from the NIZK produced by the adversary.

57

First observe that if α˜ = α, then the distribution is indentical as ˜b = α˜ − α = 0.

Furthermore, observe that for all constants c ̸= 0 and c′ ̸= 0 the following distributions

(c,c′,c · γ) ≡ (c,c′,c′ · γ)

where , are identical. It follows that the view of the adversary is unchanged.

Analysis: We are now in the position of analyzing the success probability of the adversary

in Hybrid 7. First observe that the public parameters of the scheme do not contain any

information about α. Furthermore, the responses of the queries to the Accept and Reject

interfaces are computed independently of α. On the other hand, each query to the Malicious

interface reveals a single bit of information, i.e., whether α˜ = α, for some adversarially chosen

α˜. Let Q be the set of queries to the Malicious interface, we can then bound the probability that

the adversary guesses the correct α by (|Q| + 1)/|D|.

It remains to analyze the success probability that the adversary has without guessing a

correct α, which is equivalent to the probability of producing a false proof for a (fresh) rejecting

statement and can be bounded to a negligible value by the simulation extractability of the NIZK

system. Thus, the success probability of the adversary against Hybrid 7 is bounded from above

by (|Q|+1)/|D|+negl(λ). By the above analysis, the same bound holds for an adversary playing

against the original experiment, up to a negligible additive factor in the security parameter.

4.5.1 Efficient Non-Interactive Zero Knowledge

In the following we discuss an efficient instantiation for the NIZK system, which will allow

us to scale the efficiency of our system to the regime of practicality. First observe that our

NIZK system must support proofs for discrete logarithm equality. This class of NIZKs can be

instantiated very efficiently with the classical protocol from Schnorr, which we recall in the

following. Let (g,h) be a pair of elements of a group of prime order p and let (g,˜ h˜) be two

group elements. We want to prove the existence of some w ∈ Zp such that gw = g˜ and hw = h˜.

The prover samples a uniform r ←$ Zp and computes the commitment (gr,hr), then the

challenge c ∈ Zp is computed by hashing the commitment together with the statement. In our

case the statement includes also the string τ, that is concatenated to the group elements and

hashed to compute the challenge c. The prover computes z = wc + r and returns π = (gr,hr,z).

The proof is considered valid if g˜c · gr = gz and h˜c · hr = hz. It is well known [34] that the

protocol is zero-knowledge and simulation sound2 in the random oracle model.

The above protocol can be extended to handle disjunctions (i.e., the OR-composition of

proofs) using a standard trick: For the case of two statements, the two proofs are computed in

parallel using the same algorithm as above, except that the prover is allowed to choose the

challenges c0 and c1 under the constraint that c0 +c1 = c where c is computed hashing both

statements and the corresponding commitments. The proof is considered valid if both of the

resulting proofs correctly verify.

58

Finally, we remark that Schnorr’s NIZKs have a so called transparent setup which is not

required to be generated by a trusted party, i.e., the setup consists of sampling the random

oracle.

4.5.2 Implementation in Ethereum

Implementing our construction as a smart contract in Ethereum entails a new set of

challenges: While in principle bilinear group operations and pairings are efficient enough to be

performed on commodity machines, the integration in Ethereum of our DZT requires one to

implement them in Solidity, the language of Ethereum smart contracts. Such a language

imposes a hard limit on the amount of computation that each smart contract can perform, which

makes implementation of cryptographic operations particularly challenging. Fortunately,

Solidity has precompiled instructions for the following (bilinear) group operations:

1) Group operations in G1.

2) Modular exponentiations in G1.

3) Checks of pairing product equations PPEq : of the form

 e(x1,y1)···e(xn,yn) = 1? .

However, this semantic turns out to be insufficient to implement our scheme. The reason is

that our smart contract (whose computational load consists mainly of calls to the Verdict

algorithm in Figure 1) requires us to compute group operations in the target group GT, which

are not natively supported by Solidity. One solution to circumvent this issue could be to

implement group operations in GT from scratch, without leveraging precompiled instructions.

Unfortunately, elliptic curve operations in the target group are notoriously expensive, and this

approach causes the smart contract to exceed the maximum amount of computation allowed by

the specifications of Ethereum.

To circumvent this issue, we modify our scheme to be compatible with precompiled

instructions in Solidity. Our solution is sketched in what follows. Recall that in our scheme

each committee member provides the smart contract with a target group element

b(i) = e(¯c,k)ski

(along with other information that is irrelevant for this overview). In our modified scheme,

each member publishes instead

c¯ski·ψ and k1/ψ,

2. While our DZT construction requires the stronger notion of simulation extractable NIZK, we settle for simulation soundness in favor of a

more efficient scheme, as commonly done in the literature.

59

Figure 4.2. Ethereum-compatible DZT protocol.

where ψ is a uniformly sampled integer in . Note that we can now compute the Verdict

algorithm with a precompiled instruction PPEq (3) and the newly introduced term ψ does not

affect the correctness of the scheme, since it cancels out with the pairing. To see why this is the

case, observe that

.

We stress that the presence of the randomness ψ is crucial to avoid mix-and-match attacks.

We proceed by presenting our modified scheme more formally.

Construction. We present our modified DZT construction. Let (G1,G2,GT,p,g1,g2) be an

asymmetric bilinear group of prime order p and let H : {0,1}∗ → G2 be a hash function

modeled as a random oracle. We assume the existence of a NIZK scheme

60

(NIZK.Setup,NIZK.Prove,NIZK.Verify) for NP. The scheme is described in Figure 2.

Correctness follows by a routine calculation.

Note that the modified statement that we need to prove in the response algorithm is again a

proof of discrete logarithm equality, except that the first equation involves the comparison of

target group elements, which is inefficient. To circumvent this issue, we run the Schnorr NIZK

over the source group G1 and we augment the verification with a pairing. More specifically, we

let the prover sample a uniform r ←$ Zp and compute the commitment . The challenge c

is obtained by hashing the commiment and the statement, then the prover computes z = xi · c +

r. The proof consists of . The verifier accepts if

and

where the challenge c is recomputed locally by the verifier. Since such a protocol is an

instance of Schnorr NIZK, zero-knowledge and simulation extractability are immediate.

Analysis. We now analyze the security of our new scheme. One downside of this

modification is that its security relies on a new (static) assumption over asymmetric bilinear

groups that we introduce in this work, which we refer to as the dual Diffie-Hellman (dDH)

assumption. As a positive evidence that the problem is likely to be intractable, we show that the

assumption holds in the generic group model.

Assumption 3 (dDH). Let G be a bilinear group generator. G is dDH-hard if for all PPT

distinguishers it holds that the following distributions are computationally indistinguishable

(G1,G2,GT,p,g1,g2,g1x,g1y,g1z,g1zy/x,g2v,g2xv,g2w,g2yw) ≈

(G1,G2,GT,p,g1,g2,g1x,g1y,g1z,g1u,g2v,g2xv,g2w,g2yw)

where (G1,G2,GT,p,g1,g2) ←$ G(1λ) and .

We are now ready to show that the scheme satisfies the security notion for a DZT, assuming

the hardness of the XDH and the dDH problems. Due to space constraints, the proof is deferred

to Appendix B.

Theorem 2 (Security). If the XDH and the dDH problems are hard over (G1,G2,GT,p,g1,g2)

then the DZT construction as described in Figure 2 is secure.

4.6 Experimental Evaluations

We implement the DZT-based solution as a smart contract on the Ethereum blockchain.

The smart contract is written in Solidity, an Ethereum specific language. Contracts written in

Solidity are compiled into bytecode for the Ethereum Virtual Machine (EVM). The code is

available. The runtime of programs on the EVM is limited by a unit called gas. Every operation

61

in the EVM costs gas and there is a hard limit as to how much gas a transaction can consume.

This gives a hard limit on how much computation can be done in one transaction. Since the

price of Ethereum and gas is fluctuating, all costs displayed in Dollars are calculated with a

fixed conversion rate of 1 gas costing 1 GWei and 1 Ether costing 180$. The non-blockchain

parts of the implementations use the JSON-RPC API of an Ethereum node to interact with the

smart contracts. A pictorial description of the system architecture is given in Figure 3.

4.6.1 Security Policies

The security policy of a smart contract determines when a transaction triggers the usage of a

second factor for authentication. In our implementation, the smart contract tracks the total flow

of money and the amounts transferred to specific addresses. This allows us to set fine-grained

security policies that depends on the history of transactions. We say that a transaction is flagged

if the security policy invokes the 2FA protocol for such a transaction. In our prototype, we

consider four types of security policies:

Flag every transaction to any new beneficiary.

Flag a transaction if the sum of all coins transferred (since the last flag) is above a

predefined threshold.

Flag a transaction if the sum of all funds that are transferred in a specific timeframe (a

sliding window) exceeds a predefined threshold.

Flag a transaction if the sum of all coins sent to a specific beneficiary (since the last flag)

exceeds a predefined threshold.

This list of policies is non-exclusive and multiple policies can coexist in the same smart

contract. If any security policy flags a transaction, the counter for such a policy is reset if and

only if the transaction is successfully authenticated.

Figure 4.3. Cost of the creation of a DZT group (blue) cost for a client querying the group (green) and

cost of submitting and verifying a query (red).

62

We measured the overhead that the implementation of each policy adds to processing

transactions. For policy (1), it cost 0.005$ for a user to set it up. If a transaction is flagged

because it is sent to a therefore unknown beneficiary, the user has to pay 0.008$ to now save

that the beneficiary is verified for further transactions. For policies (2) and (4), the setup cost is

0.009$ and each transaction costs an additional 0.006$ to sum up the coins transferred. If the

threshold is reached, the user has to spend 0.004$ (and 0.006$, respectively) to reset the sum of

all coins spent to 0. The cost of policy (3) varies with the size of the sliding window, which we

measure for values ranging from 0 to 100 transactions. The added cost does not exceed 0.5$, in

a non-optimized implementation.

4.6.2 Performance Evaluation

The steps of the 2FA mechanism are implemented as functions on a smart contract. The

smart contract notifies the committee members via Ethereum events if a new protocol step has

to be executed, i.e., this happens if a new query is submitted. The contract then runs the Verdict

algorithm, which internally verifies the NIZKs and checks whether the conditions dictated by

the algorithm are all verified. We stress that the worst-case runtime of the Verdict algorithm is

only proportional to t˜ (the number of partial responses fed as input). Recall that the Verdict

algorithm consist of two subroutines:

1) Checking the NIZKs: There are at most t˜ NIZKs, so this step can be done in time linear in t˜.

2) Partition the responses in sets with the same value of (b1,τ): This operation can also be done in time

proportional to t˜.

At this point we can check whether there exists a set with more than t elements where all

NIZKs verify. Note that, within such a set, any subset of the shares in this set is considered

valid (since all the NIZKs verify correctly), so the Verdict algorithm can just pick an arbitrary

one (e.g. the lexicographically smallest one).

We use the 256bit version of the Barreto-Naehrig (BN) curves to instantiate the pairings

[60]. This curve is especially suited for use in Ethereum, since an elements of its base field fits

into the 256bit wide registers of the EVM. We show the costs associated with all operations in

Figure 4. For our experiments, we set the threshold size (t) to be equal to the group size (n),

since decreasing the value of t only decreases the costs of each algorithm. For the client, the

cost of the setup phase grows linearly with the size of the committee. The cost of the queries

depends only on the threshold parameter t, i.e., the maximum size of parties that the attacker

can corrupt. The cost to verify a query is identical for all members of the committee and we

only display the cumulative cost (i.e. the sum of the costs for each committee member), which

grows linearly with t. We stress that a lower value of t implies a lower corruption threshold but

at the same time an increase in reliability, as only t parties need to be online in order to run

protocol.

63

4.7 A Solution Based on U2F Tokens

The Universal Second Factor (U2F) is a token-based authentication protocol specified by

the FIDO Alliance [61]. It is used to enhance the security of standard password-based

authentication with a cryptographic secret stored on a hardware token. This protocol is

supported by all major browser and by many web services (such as Gmail, Facebook, and

Dropbox). The U2F protocol consists of three interacting entities: (1) A hardware token, (2) a

client, and (3) a relying party, which guards access to the resources. The U2F protocol specifies

two subroutines, a one-time registration and and unbounded number of authentications, which

we briefly describe below.

Registration. The registration allows the relying party to bind a physical token to a user

account. The relying party is associated with some application identifier (e.g., the url of its

website) and begins the registration phase by sending a challenge to the token. The hardware

token generates a fresh ECDSA key pair (sk,vk) and sends back the verification key and a key-

handle to the relying party. At this point the relying party associates the key handle and vk with

the account of the user.

Authentication. Upon each authentication request, the relying party sends the key handle,

the identifier, and a challenge to the token. The key handle is used by the token to recover the

corresponding signing key, which is used to sign the challenge of the relying party. In addition

to the challenge, the token also signs a counter, which is maintained by the token locally and

increased upon each authentication run. The relaying party considers the authentication

successful if the signature correctly verifies against the verification key vk associated with the

user account and if the counter (also included in the signed message) increased from the

previous authentication.

Figure 4.4. Transaction registration, verification and creation costs on curve SECP256k (blue) and curve

SECP256r (red).

4.7.1 U2F on Ethereum

In the U2F token-based authentication protocol, the smart contract impersonates the relying

party. The authentication protocol for a transaction τ begins with the client querying the smart

64

contract for a challenge and receives a random nonce and a key handle that is used by the token

to specify the correct key to use. The client queries the token for a signature on the nonce and

on τ and sends it to the smart contract, which can publicly verify the validity of the signature. A

client can use the same token with multiple smart contracts, since U2F tokens allow one to

generate an arbitrary number of key pairs, each associated to a unique identifier. In our case,

the identifier consists of the address of the smart contract and the chain identity.

Nonce Sampling. A subtlety that needs to be addresses is that Ethereum smart contracts do

not support non-deterministic operation and therefore cannot sample truly random nonces. We

circumvent this limitation by setting the nonce to H(τ), where H is a hash function modeled as a

random oracle and τ is a unique identifier of the transaction. In Ethereum, a transaction can be

uniquely identified by the concatenation of the receiver and sender addresses and the value of a

counter, which denotes the number of the transaction from the sending address and can only

grow over time.

Implementation. U2F specifies curve SECP256r1 or P-256 as the basis for signature

creation and verification. On the other hand, Ethereum uses signatures over the curve

SECP256k1 internally and offers an EVM instruction to access the signature verification

capabilities that is part of the official standard [62]. To make the two choices compatible, we

design the smart contract to allow a user to decide at registration time which curve should be

used for verification.

The costs for authenticating transactions are shown in Figure 4.4. All measurements are

taken using a simulated token. The use of a soft token does not impact the messages that are

exchanged on the blockchain and the interaction between the smart contract and the user client,

so this change does not affect the costs. The measurements are taken as the average over 100

transactions. The cost of verifying signatures on the standard curve SECP256r of U2F is

significantly higher compared to verification on curve SECP256k: Standard U2F tokens have a

one-time registration fee of 0.31$ and a recurring fee of 0.28$ for verifying transaction

requests. For the costs over the SECP256k curve, the one-time registration costs 0.07$ and the

recurring transaction verification costs 0.03$. The evaluation shows that the usage of U2F in

the blockchain setting is feasible in terms of costs. There is a big cost benefit in switching the

standard U2F signature curve to one which can be natively verified by a smart contract;

however this also requires custom made tokens.

4.8 Conclusions

In this work we proposed a new system to safeguard users’ transactions, where a smart

contract is entitled to request for a two-factor authentication, in case of exceptional events. We

designed and implemented two 2FA protocols in Ethereum. Our performance evaluation shows

that augmenting Ethereum with 2FA comes at minimal additional cost.

65

CHAPTER FIVE

Blockchains Enable Non-Interactive Multiparty Computation

Secure Multiparty Computation (MPC) [19, 63] enables parties to evaluate an arbitrary

function in a secure manner, i.e., without revealing anything besides the outcome of the

computation. MPC is increasingly important in the modern world and allows people to securely

accomplish a number of difficult tasks. Obtaining efficient MPC protocols is thus a relevant

problem and it has indeed been extensively studied [19, 63, 64]. One important question is the

round complexity of MPC schemes. In the semi-honest case, in 1990, Beaver et al. [65] gave

the first constant-round MPC protocol for three or more parties. A number of works [66-68]

aiming to analyze and reduce round complexity followed, both in the semi-honest and fully

malicious models. In 2016, Garg et al. [64] proved that four rounds are necessary to achieve

secure MPC in the fully malicious case in the plain model. Four round MPC protocols have

been recently proposed [69-71], resolving the questions of round complexity.

Unfortunately, solutions that achieve even the optimal round complexity are still

problematic for many applications since these solutions typically require synchronous

communication from the participants. In this work, we rely on blockchains to achieve MPC that

does not require participants to be online at the same time or interact with each other.

Such non-interactive solutions advance the state of the art of secure multiparty computation,

opening up a whole new realm of possible applications. For example, passive data collection

for privacy preserving collaborative machine learning becomes possible. Federated learning is

already used to train machine learning models for the keyboards of mobile devices for the

purposes of autocorrect and predictive typing [72]. Unfortunately, using off-the-shelf MPC

protocols to perform such training securely is not straight-forward. Not all smartphones are

online at the same time and it might even be unknown how many devices will end up

participating. In contrast, off-the-shelf MPC protocols typically assume that all (honest)

participants are indeed online during some time period, and the number of participants is

known. This leads us to the following question:

Can we construct a secure MPC protocol which does not require the parties to be online at

the same time and guarantees privacy and correctness even if all but one of the parties are fully

malicious? Is it possible to design a protocol which requires only a single round of participation

from the parties supplying the inputs, and allows the parties to go offline after the first round if

they are not interested in learning the output?

Consider such a protocol in the use case outlined above – each smartphone could

independently send a single message to a server, and at the end of the collection period the

server would obtain the model trained on the submitted inputs, all while preserving the privacy

of the gathered inputs.

66

5.0.1 Our Results

In our work, we provide a solution for MPC which achieves the property that each MPC

participant who supplies inputs but does not wish to receive the output can go offline after the

first round. The participants are not required to interact with each other. We additionally

provide variations of our protocol that offer further desirable properties.

Before we provide the formal theorem statements, we discuss the protocol execution model

and the notation.

In our work, we assume the existence of append-only bulletin boards that allow parties to

publish data and receive an unforgeable confirmation that the data was published in return.

Furthermore, we assume a public key infrastructure (PKI). Finally, we rely on conditional

storage and retrieval systems (CSaRs,). Roughly, CSaR systems allow a user to submit a secret

along with a release condition. Later, if a (possibly different) user is able to satisfy this release

condition, the secret is privately sent to this user. Intuitively, during the process, the secrets

cannot be modified and no information is leaked about the secrets. We require that CSaRs are

used as ideal functionalities. We note that due to the fact that the existing CSaR system [73]

relies on blockchains, and bulletin boards can be realized using blockchains as well [13, 27,

74], relying on bulletin boards in our construction effectively does not add extra assumptions.

In the following, for simplicity, we will state that we design our protocols in the blockchain

model. Finally, we assume IND-CCA secure public key encryption, and digital signatures.

In our construction, we distinguish between parties who supply inputs (dubbed MPC

contributors) and parties who wish to receive outputs (dubbed evaluators).

Our construction is a protocol transforming an MPC scheme π into another scheme π′. The

contributors in π′ are exactly the participants in π. The evaluators can (but do not have to) be

entirely different parties from those who contribute inputs in π.

We are now ready to introduce our first result:

Theorem 1. (Informal) Any MPC protocol π secure against fully-malicious adversaries

can be transformed into another MPC protocol π′ in the blockchain model that provides security

with abort against fully-malicious adversaries and does not require participants to be online at

the same time. The MPC contributors are required to participate for only a single round (the

evaluators might be required to participate for multiple rounds). The adversary is allowed to

corrupt as many MPC contributors in π′ as it is allowed to corrupt participants in π. The

adversary is allowed to corrupt any number of evaluators.

In addition to this result, we discuss ways to optimize our construction. To this end, we

explain why the combined communication and state complexity (where state complexity is the

amount of data that parties maintain between the different rounds of the protocol execution) of

the underlying MPC protocol is of a particular importance in our construction. Briefly, both the

communication and state complexities of the underlying MPC translate directly into the number

67

of CSaR storage and retrieval requests in our overall construction. We describe a protocol in

the plain model which relies on multi-key fully homomorphic encryption (MFHE). Its

combined communication and state complexity is independent of the function that we are

computing. While optimizing communication complexity has received considerable attention in

the community in the past few years, optimizing internal state complexity has been largely

overlooked. We believe that this particular problem might be exciting on its own. In our

construction which optimizes the combined communication and state complexity, we assume

multi-key fully homomorphic encryption, and collision-resistant hash functions. The result that

we achieve here is the following:

Theorem 2. (Informal) Let f be an N-party function. Protocol 6 is an MPC protocol

computing f in the standard model and secure against fully malicious adversaries corrupting up

to t < N parties. Its combined communication and state complexity depends only on the security

parameter, number of parties, and input and output sizes. In particular, the combined

communication and state complexity is independent of the function f.

Using this MPC protocol in combination with our first construction, under the assumptions

that we rely on in our main construction and in the MPC construction with optimized

communication and state complexity, we achieve the following:

Corollary 1. (Informal) There exists an MPC protocol π′ in the blockchain model which

provides security with abort against fully-malicious adversaries and does not require

participants to be online at the same time. The MPC contributors are required to participate for

a single round (the evaluators might be required to participate for multiple rounds).

Furthermore, the number of calls to CSaR in this protocol is independent of the function that is

being computed using this MPC protocol 1.

Finally, we achieve an MPC protocol which requires only a single round of participation

from MPC contributors with the additional property of guaranteed output delivery, meaning

that adversarial parties cannot prevent honest parties from receiving the output. For this, we in

particular rely on the underlying protocol having guaranteed output delivery as well (and thus

requiring the majority of the MPC contributors to be honest). We rely on the same assumptions

(PKI, CSaRs, append-only bulletin boards etc.) as the ones used in our main construction. The

formal result that we achieve is the following:

Theorem 3. (Informal) Any MPC protocol π that is secure against fully malicious

adversaries and provides guaranteed output delivery can be transformed into another MPC

protocol π′ in the blockchain model that provides security with guaranteed output delivery

against fully malicious adversaries and does not require participants to be online at the same

time. The MPC contributors are required to participate for only a single round (the evaluators

1 A prior version of this paper erroneously stated that the communication complexity (instead of the
number of CSaR calls) is independent of the function being computed.

68

might be required to participate for multiple rounds). The adversary is allowed to corrupt as

many MPC contributors in π′ as it is allowed to corrupt participants in π. The adversary is

allowed to corrupt any number of evaluators.

5.0.2 Technical Overview

In this work, we propose an MPC protocol that does not require participants to be present at

the same time. In order to do so, we rely on the following cryptographic building blocks –

garbled circuits [19, 75, 76], a primitive which we dub conditional storage and retrieval systems

(CSaRs) and bulletin boards with certain properties. Before we introduce the construction idea,

we elaborate on each of these primitives.

Roughly, a garbling scheme allows one to “encrypt” (garble) a circuit and its inputs such

that when evaluating the garbled circuit only the output is revealed. In particular, no

information about the inputs of other parties or intermediate values is revealed by the garbled

circuit or during its evaluation. In our construction we use Yao’s garbled circuits [19, 76].

In our construction, we rely on bulletin boards which allow parties to publish strings on an

append-only log. It must be hard to modify or erase contents from this log. Additionally, we

require that parties receive a confirmation (“proof of publish”) that the string was published and

that other parties can verify this proof. Such bulletin boards have been extensively used in prior

works [13, 27, 74] and as pointed out by these works can be realized both from centralized

systems such as the Certificate Transparency project and decentralized systems such as proof-

of-stake or proof-of-work blockchains.

Finally, we define a primitive which we call conditional storage and retrieval systems

(CSaRs). Roughly, this primitive allows for the distributed and secure storage and retrieval of

secrets and realizes the following ideal functionality:

– Upon receiving a secret along with a release condition and an identifier, if the identifier

was not used before, the secret is stored, and all participants are notified of a valid secret

storage request. The release condition is simply an NP statement.

– Upon receiving an (identifier, witness) from a user, the ideal functionality checks whether

a secret with this identifier exists and if so, whether the given witness satisfies the release

condition of this secret record. If so, the secret is sent to the user who submitted the release

request.

While systems that provide a similar primitive has been proposed in the past [73, 77] we

provide a clean definition that captures the essence of this functionality. We instantiate the

CSaR with eWEB [77], which stands for “Extractable Witness Encryption on a Blockchain”.

Roughly, it allows users to encode a secret along with a release condition and store the secret

on a blockchain. Once a user proves that they are able to satisfy the release condition,

blockchain miners jointly and privately release the secret to this user. Along the way, no single

party is able to learn any information about the secret.

69

Our construction. By relying on bulletin boards, Yao’s garbled circuits and CSaRs, we are

able to transform any secure MPC protocol π into another secure MPC protocol π′ that provides

security with abort and does not require participants to be online at the same time. At a high

level, our idea is as follows: first, each contributor (party who supplies inputs in the protocol) P

in the MPC protocol π garbles the next-message function for each round of π. Then, P stores the

garbled circuits as well as the garbled keys with a CSaR using carefully designed release

conditions. Note that each party P is able to do so individually, without waiting for any

information from other parties and can go offline afterwards. Once all contributors have stored

their data with the CSaR, one or more “evaluators” (parties who wish to receive the output)

interact with the CSaR and use the information stored by the MPC contributors in order to

retrieve the garbled circuits and execute the original protocol π. The group of the contributors

and the group of evaluators do not need to be the same – in fact, these groups can even be

disjoint. The evaluators might change from round to round.

Note that while the high-level overview is simple, there are a number of technical

challenges that we must overcome in the actual construction due to its non-interactive nature.

For example, since the security of Yao’s construction relies on the fact that for each wire only a

single key is revealed, we must ensure that each honest garbled circuit is executed only on a

single set of inputs. The adversary also must not trick a garbled circuit of some honest party A

into thinking that a message broadcast by some party C is message m, and tricking a garbled

circuit of another honest party B into thinking that C in fact broadcast message m′ ̸= m.

Furthermore, we must ensure that it is hard to execute the protocol “out of order”, i.e., an

adversary cannot execute some round i prior to round j where i > j. Such issues do not come up

in the setting where parties are online during the protocol execution and able to witness

messages broadcast by other parties.

We solve these issues by utilizing bulletin boards, carefully constructing the release

conditions for the garbled circuits and the wire keys and modifying the next-message functions

which must be garbled by the contributors.

Note that the next-message functions from round two onward take as inputs messages

produced by the garbled circuits in prior rounds. At the time when the MPC contributors are

constructing their circuits, the inputs of other parties are not known, and thus it is not possible

to predict which wire key (the one corresponding to 0 or the one corresponding to 1) will be

needed during the protocol execution. At the same time, one cannot simply make both wire

keys public since the security of the garbled circuit crucially relies on the fact that for each wire

only a single wire key can be revealed. We solve this problem by storing both wire keys with

the CSaR, utilizing bulletin boards, and requiring the evaluators to publish the output of the

garbled circuits of each round. Then, (part of) the CSaR release condition for the wire key

corresponding to bit b on some wire w of some party’s garbled circuit for round i is that the

message from round i − 1 is published and contains bit b at position w. This way we ensure that

while both options for wire w are “obtainable”, only the wire key for bit b (the one that is

needed for the execution) is revealed.

70

Next, note that in our construction we specifically rely on Yao’s garbled circuits. Yao’s

construction satisfies the so-called “selective” notion of security, which requires the adversary

to choose its inputs before it sees the garbled circuit (in contrast to the stronger “adaptive”

notion of security which would allow the adversary to choose its inputs after seeing the garbled

circuits [38]). We ensure that the selective notion of security is sufficient for our construction

by requiring that not only the wire keys, but also the garbled circuits are stored with the CSaR.

The release conditions both for the garbled circuit for some round i and all its wire keys require

a proof that all messages for rounds 1 up to and including round i−1 are published by the

evaluators. This way, the evaluators are required to “commit” to the inputs before receiving the

selectively secure garbled circuits, which achieves the same effect as adaptive garbled circuits.

As outlined above, we must ensure that it is hard for the adversary to trick the garbled

circuit produced by some honest party A into accepting inputs from another honest party B that

were not produced by B’s circuits. We accomplish this by modifying the next-message function

of every party A as follows: in addition to every message m that is produced by some party B,

the next-message function takes as input a signature σ on m as well and verifies that the

signature is correct. If this is not the case for any of the input messages, the next-message

function outputs ⊥. Otherwise, the next-message function proceeds as usual and in addition to

outputting the resulting message it outputs the signature of party A on this message.

Our end goal is to reduce the security of our construction to the security of the underlying

MPC protocol π. While utilizing bulletin boards and introducing signatures is a good step

forward, we must be careful when designing the CSaR release conditions. The adversary could

sign multiple messages for each corrupted contributor in π, publish these messages on the

bulletin board and thus receive multiple keys for some wires. To prevent this, the CSaR release

condition must consider only the very first message published for round i − 1 on the bulletin

board. This way, we ensure that there is only a single instance of the MPC running (only a

single wire key is released for each circuit): even if the adversary is able to sign multiple

messages on behalf of various MPC contributors, only the very first message published on the

bulletin board for a specific round will be used by the CSaR system to release the wire keys for

the next round.

The ideas outlined above are the main ideas in our protocol. We now elaborate on a few

additional details:

The next-message function of the protocol typically outputs not only the message for the

next round, but also the state which is used in the next round. It is assumed that this state is kept

private by the party. In our case, the output of the next-message function will be output by the

garbled circuit and thus made available to the evaluator. To ensure that the state is kept private,

we further modify the next-message function to add an encryption step at the end: the state is

encrypted under the public key of the party who is executing this nextmessage function. To

ensure that the state can be used by the garbled circuit of the party in the next round, we add a

state decryption step at the beginning of the next-message function of that round. Similar to the

71

public output of the next-message function, we compute a signature on the encryption of the

state and verify this signature in the garbled circuit of the next round.

Note that in the construction outlined above, we use some secret information which does

not depend on the particular execution but still must be kept private (secret keys of the parties

used for the decryption of the state, signing keys used to sign the output of the next-message

function etc.). This information is hardcoded in the garbled circuits. We explain how this can

be done in a later section.

Finally, note that we require the following property from the underlying protocol π: given a

transcript of execution of π, the output of π can be publicly computed. As we note, this property

can be easily achieved by slightly modifying the original protocol π.

We provide all protocol details and outline optimizations in a later section and give the

formal construction in Protocols 1, 2 and 3. The formal security proof is done by providing a

simulator for the construction and proving that an interaction with the simulator in the ideal

world is indistinguishable from the interaction with an adversary in the real world.

To summarize, using the construction sketched above we achieve the following result:

Theorem 4. (Informal) Protocols 1, 2 and 3 transform any MPC protocol π secure against

fully malicious adversaries into another MPC protocol π′ in the blockchain model that provides

security with abort against fully-malicious adversaries and does not require participants to be

online at the same time. The MPC contributors are required to participate for only a single

round (the evaluators might be required to participate for multiple rounds). The adversary is

allowed to corrupt as many MPC contributors in π′ as it is allowed to corrupt participants in π.

The adversary is allowed to corrupt any number of evaluators.

In addition to our main protocol that requires only one message from the MPC contributors

and does not require any additional functionality from the CSaR participants apart from the

core CSaR functionality itself (storing and releasing secrets), we provide a number of variations

that have further desirable properties, such as guaranteed output delivery. We now outline these

further contributions.

Improving Efficiency: The efficiency of our construction is strongly tied to the efficiency of

the underlying MPC protocol π. Note that in our construction each input wire key of each

garbled circuit is stored with the CSaR, and the inputs of the garbled circuits are exactly

messages exchanged between the parties as well as the state information passed from previous

rounds. Thus, the communication and state complexities translate directly into the number of

CSaR store and release operations that the MPC contributors, as well as later the evaluators,

must make. In order to reduce the number of CSaR invocations, we describe an MPC protocol

which optimizes the combined communication and internal-state complexity. While

communication complexity is typically considered to be one of the most important properties of

an MPC protocol, state complexity receives relatively little attention. Our main construction

72

shows that there are indeed use cases where both the communication and the state complexity

matter, and we initiate a study of the combined state and communication complexity.

Specifically, we introduce an MPC protocol in which the combined communication and

state complexity is independent of the function we are computing. We achieve it in two steps:

we start with a protocol secure against semi-malicious adversaries 2 which at the same time has

communication and state complexity which is independent of the function that is being

computed. Then, we extend it to provide fully malicious security while taking care to retain the

attractive communication and state complexity properties in the process.

In more detail, we start with the MPC construction by Brakerski et al. [70] which is based

on multi-key fully homomorphic encryption (MFHE) and achieves semi-malicious security. We

note that the communication and state complexity of this construction depends only on the

security parameters, the number of parties, and the input and output sizes. In particular, note

that the construction’s combined communication and state complexity is independent of the

function we are computing.

Our next step is to extend this construction so that it provides security against malicious

adversaries. For this, we propose to use the zero-knowledge protocol proposed by Kilian [36]

that relies on probabilistically checkable proofs (PCPs) and allows a party P to prove the

correctness of some statement x to the prover V using a witness w. Along the way, we need to

make minor adjustments to Kilian’s construction because its state complexity is unfortunately

too high for our purposes – in particular, in the original construction, the entire PCP string is

stored by the prover to be used in later rounds. After making a minor adjustment – recomputing

the PCP instead of storing it – to the construction to address this issue, we use this scheme after

each round of the construction by Brakerski et al. in order to prove the correct execution of the

protocol by the parties. The resulting construction achieves fully malicious security, and its

communication and state complexities are still independent of the function that we are

computing.

We provide the details of the construction and analyse its security and communication/state

complexity properties with the formal protocol description in Protocol 6. In this protocol, we

assume the existence of an MFHE scheme with circular security and the existence of a

collision-resistant hash functions. We are able to achieve the following result which may be of

independent interest:

Lemma 1. (Informal) Let f be an N-party function. Protocol 6 is an MPC protocol

computing f in the plain (authenticated broadcast) model and secure against fully malicious

adversaries corrupting up to t < N parties. Its communication and state complexity depend only

2 Intuitively, semi-malicious adversaries can be viewed as semi-honest adversaries which are allowed to
freely choose their random tapes.

73

on security parameters, number of parties, and the input and output sizes. In particular, the

communication and state complexity of Protocol 6 is independent of the function f.

Using this MPC protocol in combination with our first construction, under the assumptions

that we rely on in our main construction and in the MPC construction with optimized

communication and state complexity, we achieve the following:

Corollary 2. (Informal) There exists an MPC protocol π′ in the blockchain model that has

adversarial threshold t < N, provides security with abort against fully-malicious adversaries and

does not require participants to be online at the same time. Only a single message is required

from the MPC contributors (the evaluators might be required to produce multiple messages).

Furthermore, the number of calls to CSaR of this protocol is independent of the function that is

being computed using this MPC protocol.

Non-Interactive MPC with Guaranteed Output Delivery (GoD). We need to modify our

construction in order to provide guaranteed output delivery. In order to achieve GoD, we

require the protocol π to have the GoD property as well, and thus the majority of the

participants in π (recall that these are exactly the contributors in π′) must be honest 3. While

making this change (in addition to a few minor adjustments) would be enough to guarantee

GoD in our construction in the setting with only a single evaluator, it is certainly not sufficient

when there are multiple evaluators, some of them dishonest. This is due to the following issue:

since we must prevent an adversary from executing honest garbled circuits on multiple different

inputs, we cannot simply allow each evaluator to execute garbled circuits on the inputs of its

choosing. In particular, the CSaR release conditions must ensure that for each wire only a

single key is revealed. In our first construction this results in the malicious evaluator being able

to prevent an honest evaluator from executing the garbled circuits as intended by submitting an

invalid first message for any round. Thus, to ensure guaranteed output delivery while

maintaining secrecy, we must ensure that a malicious evaluator posting a wrong message does

not prevent an honest evaluator from posting a correct message and using it for the key reveal.

In particular, we will ensure that only a correct (for a definition of “correctness” explained

below) message can be used for the wire key reveal.

Note that the inputs to the garbled circuits depend on the evaluators’ outputs from the

previous rounds. Checking the “correctness” of the evaluators’ outputs is not entirely straight-

forward since an honest execution of a garbled circuit which was submitted by a dishonest

party might produce outputs which look incorrect (for example, have invalid signatures). Thus,

simply letting the CSaR system check the signatures on the messages supplied by the

evaluators might result in an honest evaluator being denied the wire keys for the next round.

3 ′
Note that there is no such restriction on the evaluators in π .

74

In our GoD construction we overcome this issue largely using the following adjustments:

– all initial messages containing garbled circuits and wire keys are required to be posted

before some deadline.

– we use a CSaR with public release (whenever a secret is released, it is released publicly,

and the information can be viewed by anyone).

– we ensure that it is possible to distinguish between the case where the evaluator is being

dishonest, and the case where the evaluator is being honest, but the contributor in π

supplied invalid garbled circuits or keys or did not supply some required piece of

information.

We achieve the last point by designing the CSaR release condition in a way that it verifies

that the evaluator’s output can be explained by the information stored by the contributors in π.

In particular, as part of the CSaR’s release condition, we require a proof of correct execution

for the garbled circuit outputs. The relation that the CSaR system is required to check in this

case is roughly as follows: “The execution of the garbled circuit GC on the wire keys {ki}i∈I

result in the output provided by E. Here, the garbled circuit GC is the circuit, and {ki}i∈I are

the keys for this circuit reconstructed using the values published by the CSaR which are present

on the proof of publish supplied by E”. Note that due to the switch to the CSaR with public

release, the wire keys used for the computation are indeed accessible to the CSaR system after

their first release.

Similar to our first construction, we eventually reduce the security of the new protocol to

the security of the original protocol. In addition to our first construction however, since the

CSaR system is now able to verify messages submitted by the evaluators, honest evaluators are

always able to advance in the protocol execution. This insight allows us to ensure that honest

evaluators do not need to abort with more than a negligible probability along the way. Thus, if

the underlying protocol π achieves guaranteed output delivery, the protocol we propose

achieves guaranteed output delivery as well.

The statement about our GoD construction is given below.

Lemma 2. (Informal) Any MPC protocol π which is secure against fully malicious adversaries

and provides guaranteed output delivery can be transformed into another MPC protocol π′ in the

blockchain model that provides security with guaranteed output delivery against fully malicious

adversaries and does not require participants to be online at the same time. The MPC contributors

are required to participate for only a single round (the evaluators might be required to participate

for multiple rounds). The adversary is allowed to corrupt as many MPC contributors in π′ as it is

allowed to corrupt participants in π. The adversary is allowed to corrupt any number of evaluators.

5.0.3 Related Work

Closest to our work is the line of research that studies non-interactive multiparty

computation [78-80], initiated in 1994 by Feige et al. [78], in which a number of parties submit

75

a single message to a server (evaluator) that, upon receiving all of the messages, computes the

output of the function. In their work, Feige et al. allow the messages of the parties to be

dependent on some shared randomness that must be unknown to the evaluator. Unfortunately,

this means that if the evaluator is colluding with one or more of the participants, the scheme

becomes insecure. Overcoming this restriction, Halevi et al. [80] started a line of work on non-

interactive collusion-resistant MPC. Their model of computation required parties to interact

sequentially with the evaluator (in particular, the order in which the clients connect to the

evaluator is known beforehand). Beimel et al. [81] and Halevi et al. [82] subsequently removed

the requirement of sequential interaction. Further improving upon these results, the work of

Halevi et al. [79] removed the requirement of a complex correlated randomness setup that was

present in a number of previous works. Halevi et al. [79] work in a public-key infrastructure

(PKI) model in combination with a common random string. As the authors point out, PKI is the

minimal possible setup that allows one to achieve the best-possible security in this setting,

where the adversary is allowed to corrupt the evaluator and an arbitrary number of parties and

learn nothing more than the so-called “residual function”, which is the original function

restricted to the inputs of the honest parties. In particular, this means that the adversary is

allowed to learn the outcome of the original function on every possible choice of adversarial

inputs.

Our work differs from the line of work on non-interactive MPC described above in a

number of aspects. In contrast to those works, our construction is not susceptible to the

adversary learning the residual function – roughly because the adversary must effectively

“commit” to its input, and the CSaR system ensures that the adversary only receives a single set

of wire keys per honest garbled circuit (the set of wire keys that aligns with the adversarial

input). Additionally, in our work the parties do not need to directly communicate with the

evaluator. In fact, in our construction that ensures guaranteed output delivery, any party can

spontaneously decide to become an evaluator and still receive the result – there is no need to

rerun the protocol in this case.

Related to us are also the works on reusable non-interactive secure computation (NISC)

[83-87], initiated by Ishai et al. [88]. Intuitively, reusable NISC allows a receiver to publish a

reusable encoding of its input x in a way that allows any sender to let the receiver obtain f(x,y)

for any f by sending only a single message to the receiver. In our work, we focus on a multi-

party case, where a party that does not need the output is not required to wait for other parties

to submit their inputs.

Recently, Benhamouda and Lin [89] proposed a model called multiparty reusable Non-

Interactive Secure Computation (mrNISC) Market that beautifully extends reusable NISC to the

multiparty setting. In this model, parties first commit their inputs to a public bulletin board.

Later, the parties can compute a function on-the-fly by sending a public message to an

evaluator. An adversary who corrupts a subset of parties learns nothing more about the secret

inputs of honest parties than what it can derive from the output of the computation. Importantly,

the bulletin board commitments are reusable, and the security guarantee continues to hold even

76

if there are multiple computation sessions. In their work, Benhamouda and Lin mention that

any one-round construction is susceptible to the residual attacks and thus slightly relax the non-

interactive requirement in order to solve this problem. Indeed, their construction can be viewed

as a 2-round MPC protocol with the possibility to reuse messages of the first round for multiple

computations. Our scheme shows that when using blockchains it is indeed possible to provide a

construction that requires only a single round of interaction from the parties supplying the input

and is nonetheless not susceptible to residual attacks.

Concurrent to our work, Almashaqbeh et al. [89] recently published a manuscript which

focuses on designing non-interactive MPC protocols which use blockchains to provide short

term security without residual leakage. They focus on the setting where the inputs of all but one

of the parties are public. In this setting, designing one-round MPC can be done easily by having

all parties send their input to the only party which holds the secret input. This party can then

compute the output and distribute it to other parties. The authors are able to extend the setting

to the two-party semi-honest private input setting where one round protocols for the party not

getting the output can be easily designed as well. While our protocol provides a worst-case

security guarantee, they focus on an incentive-based notion of security. While both

constructions bypass the residual leakage issue, their security guarantees might degrade with

time. The key challenge in their setting is fairness / guaranteed output delivery which they

solve using an incentive-based model of security. Hence their work is essentially unrelated to

ours.

Finally, recently two works ([90, 91]) appeared which are inspired by blockchains and

focus on improving the flexibility of the MPC protocols. Choudhuri et al. [90] proposed the

notion of fluid MPC which allows parties to dynamically join and leave the computation.

Gentry et al. [91] proposed the YOSO (“You Only Speak Once”) model which focuses on

stateless parties which can only send a single message. Similar to us, their constructions allow

the MPC participants to leave after the first round if they are not interested in learning the

output. However, to execute the MPC protocol both Choudhuri et al. and Gentry et al. require a

number of committees of different parties which interact with each other, and each committee

must provide honest majority. Our protocol preserves privacy of inputs even if there is a single

evaluator who is dishonest.

5.1. Preliminaries

In this section we briefly discuss cryptographic building blocks used in our system.

5.1.1 MPC

In our work we consider MPC that allow a set of parties P = {P1,...,Pn} to securely compute

the output of some function f. We specifically consider MPC protocols in the broadcast model

77

4, where all parties have access to a broadcast channel and each round consists of parties

broadcasting messages to other parties that participate in the protocol. An MPC protocol

specifies for each party and each round the so-called next-message function, which defines the

computation that is performed by that particular party in that round, as well as the message that

the party broadcasts in that round and the state that is passed to the next round. More formally:

Definition 1. Given an interactive broadcast-only d-round MPC protocol, the next-message

function for round i of party Pj is the function (mij,sij) ←

, where xj is Pj’s input in the MPC protocol, is the local randomness used

by party Pj in round is the concatenation of messages received by

each party in round i−1 (note that since we consider a broadcast protocol all parties receive the

same message), is an auxiliary state information output by Pj in round i (s0j = ⊥), and mij is the

message output by Pj in round i.

Note: we assume that if a message from round k < i − 1 is needed in round i, it is

incorporated in all of Pj’s state messages from .

Regarding the security of the MPC protocol, we consider the standard simulationbased

notion. In the ideal world parties interact with the ideal functionality FMPC, described in

Functionality 1. In the real world, parties engage in the real-world MPC protocol π in the

presence of an adversary A, who is allowed to corrupt a set I ⊂ [n] of parties and may follow an

arbitrary polynomial-time strategy. Security of π is defined as follows:

Definition 2. A protocol π is said to securely compute F with abort if for every PPT

adversary A in the real world, there exists a PPT adversary S, such that for any set of corrupted

parties I ⊂ [n] with |I| ≤ t (where t is the adversarial threshold), every initial input vector

(x1,...,xn), and every security parameter λ, it holds that

{IDEAL ,

where z ∈ {0,1}∗ is the auxiliary input, IDEALf,S(z),I denotes the output of the interaction

of the adversary S(z) (who corrupts parties in I) with the ideal functionality (this output consists

of the output of the adversary S(z) as well as the outputs of the honest parties), and

REALπ,A(z),I denotes the output of protocol π given the adversary A(z) who corrupts parties in

I (this output consists of the output of the adversary A(z) as well as the outputs of the honest

parties).

Finally, in our constructions we additionally assume that the underlying protocol π has the

property that given the transcript of the protocol execution, the output can be publicly

computed (as defined in [92]):

4 Note that we will relax this requirement later, also allowing MPC protocols which use secure point-to-point channels.

78

Definition 3 (Publicly Recoverable Output). Given a transcript τ of an execution of a

protocol π, there exists a function Eval such that the output of the protocol π for all parties is

given by y = Eval(τ).

In one of our constructions, we consider MPC protocols which provide guaranteed output

delivery. In that case the security of protocol π is defined the same way as before, except that

the ideal functionality is now FMPC-GoD, described in Functionality 2.

5.1.2 Yao’s Grabled Circuits

One of the core building blocks in our construction are Yao’s garbled circuits that allow

secure two-party computation. In the following, we provide definitions for the garbling process

as well as the security of garbling scheme (taken verbatim from [71]):

Definition 4 (Garbling scheme). A garbling scheme for circuits is a tuple of PPT

algorithms GC := (Gen,Garble,Eval) such that:

79

–

– C¯ ← Garble(C,({labw,b}w∈inp,b∈{0,1}) : Garble takes as input a circuit

– C : {0,1}inp → {0,1}out and a set of input labels {labw,b}w∈inp,b∈{0,1} and outputs the garbled

circuit C¯.

– y ← Eval(C,¯ labx) : Eval takes as input the garbled circuit C¯, input labels labx

corresponding to the input x ∈ {0,1}inp and outputs y ∈ {0,1}out.

The garbling scheme satisfies the following properties:

1. Correctness: For any circuit C and input x ∈ {0,1}inp,

80

Pr[C(x) = Eval(C,¯ labx)] = 1,

where ({labw,b}w∈inp,b∈{0,1}) ← Gen(1λ,inp) and C¯ ← Garble(C,{labw,b}w∈inp,b∈{0,1}).

2. Selective Security: There exists a PPT simulator SimGC such that, for any PPT

adversary A, there exists a negligible function µ(·) such that

where the experiment ExperimentA,SimGC(1λ,b) is defined as follows:

(a) The adversary A specifies the circuit C and an input x ∈ {0,1}inp and gets C¯

and labˆ , which are computed as follows: – If b = 0:

• ({labw,b}w∈inp,b∈{0,1}) ← Gen

• C¯ ← Garble(C,({labw,b}w∈inp,b∈{0,1})

– If b = 1:

– • (C,¯ labˆ) ← SimGC(1λ,C(x))

– The adversary outputs a bit b′, which is the output of the experiment.

We note that Yao’s protocol achieves selective security. Very roughly, the security of the

party producing the garbled circuit relies on the fact that for each wire of the circuit, only a

single garbled key is revealed, and thus the only information the other party gets is the

(garbled) output. We refer to the work of Lindell and Pinkas for the details of the construction

as well as the security proof .

5.1.3 Append-only Bulletin Boards

In our construction, we rely on public bulletin boards. Specifically, we require that the

bulletin boards allows parties to publish arbitrary strings and receive a confirmation (dubbed

“proof of publish”) that the string was published in return.

Following the approach of Kaptchuk et al, we assume that parties publish their strings as

part of a public chain of values, and abstract the bulletin board syntax as follows:

– (post,σ) ← Post(M). Intuitively, when a party wishes to post some data M on the public

chain, the Post function is called. This call results in post (which consists of M, as well as

additional data which identifies this data record on the chain) being appended to the chain.

The tuple (post,σ), where σ is the proof of publish, is returned. We assume that a proof of

publish is public and can be retrieved for already published posts as well.

– {0,1} ← Verify(post,σ). The public verification algorithm takes as input a supposedly

published record post as well as a proof of publish σ, and verifies that the record post has

indeed been published.

81

Security-wise, we require that the contents of the bulletin board are hard to erase or modify

and that the proof of publish is unforgeable. Specifically, we require that up to a negligible

probability it is impossible to come up with a pair (post,σ) such that Verify(post,σ) = 1, unless

this pair has been generated through a call to the Post algorithm. This property holds even if the

adversary is given an oracle that posts arbitrary strings on the bulletin board on the behalf of the

adversary.

Such bulletin boards have been extensively investigated in prior works. While specific

syntax details of the bulletin board abstraction slightly vary throughout these works, they all

ensure that parties are able to post arbitrary strings on an append-only log, and the proof of

publish cannot be forged. These works also point out that bulletin boards with the properties

described above already exist in practice. They can be realized from centralized systems such

as the Certificate Transparency project, and from the decentralized systems such as proof-of-

work or proof-of-stake blockchains.

5.1.4 CSaRs

In our work, we rely on what we call conditional storage and retrieval systems (CSaRs) that

allow for a secure storage and retrieval of secrets. In more detail, the user who stores the secret

with a CSaR specifies a release condition, and the secret is released if and only if this condition

is satisfied. While such systems could be realized via a trusted third party, they can also be

realized using a set of parties with the guarantee that some sufficiently large subset of these

parties is honest. A user can then distribute its secret between the set of parties, and the CSaR’s

security guarantee ensures that no subset of parties that is smaller than a defined threshold can

use its secret shares to gain information about the secret. Recently, multiple independent works

appeared that use blockchains to provide such functionality. We provide a clean definition of

the core functionality that these works aim to provide (without fixating on blockchains) and

outline why the eWEB system satisfies this definition.

Formally, the ideal CSaR functionality is described in Figure 3. The security of a CSaR

system is then defined as follows:

82

CSaR Security For any PPT adversary A there exists a PPT simulator S with access to our

security model IdealCSaR (described in Ideal CSaR), such that the view of A interacting with S

is computationally indistinguishable from the view in the real execution.

5.1.5 MPC in the Presence of Contributors and Evaluators

In the following, we formally define the security of the functionality which we want to

achieve. Recall that we consider two sets of parties – MPC contributors who supply inputs and

MPC evaluators who wish to obtain the output.

We consider the simulation-based notion of security. In the ideal world, parties interact with

the ideal functionality Feval-MPC, described in Figure 4. Note that the difference to the

standard ideal functionality for MPC with abort (described in Figure 1) is that we distinguish

between contributors and evaluators.

In the real world, parties execute the protocol π in the presence of an adversary A. The

adversary A is allowed to corrupt a set of contributors I ⊂ [n] as well as a set of evaluators I′ ⊂

[n′]. A is allowed to send messages in place of corrupted parties and can follow an arbitrary

polynomial-time strategy. Security of π is defined as follows:

Definition 5. A protocol π is said to securely compute F with abort in the presence of

contributors and evaluators if for every PPT adversary A in the real world, there

exists a PPT adversary S, such that for any set of corrupted evaluators I′ ⊂ [n′], any

set of contributors I ⊂ [n] with |I| ≤ t (where t is the adversarial threshold), every

initial input vector (x1,...,xn), and every security parameter λ, it holds that

where z ∈ {0,1}∗ is the auxiliary input, IDEALf,S(z),I denotes the output of the interaction of

the adversary S(z) (who corrupts parties in I) with the ideal functionality Feval-MPC (this

output consists of the output of the adversary S(z) as well as the outputs of the honest parties),

and REALπ,A(z),I denotes the output of the interaction between the adversary A(z) who

83

corrupts parties in I and the honest parties in the protocol π (this output consists of the output of

the adversary A(z) as well as the outputs of the honest parties).

In one of our constructions, we consider MPC protocols which provide guaranteed output

delivery. In that case the security of protocol π is defined the same way as before, except that

the ideal functionality is now Feval-MPC-GoD, described in Functionality 5.

5.1.6 Multi-Key FHE with Distributed Setup

Our construction of an MPC scheme which combined communication and state complexity

is independent of the function being computed is based on the MPC protocol of Brakerski et al.

84

[15], which in turn utilizes multi-key fully homomorphic encryption scheme with distributed

setup. In the following, we formally define this primitive (in large parts taken verbatim from

Brakerski et al. [15]).

Definition 6 (Multi-key homomorphic encryption scheme). A multi-key homomorphic

encryption scheme with distributed setup consists of five procedures, MFHE =

(MFHE.DistSetup,MFHE.Keygen,MFHE.Encrypt,MFHE.Decrypt,MFHE.Eval) :

The scheme is correct if for every circuit C on N inputs and any input sequence x1,...,xN for

C, we set paramsi ← MFHE.DistSetup), params = {paramsi}i∈[N], and then generate

N key-pairs and N ciphertexts (pki,ski) ←

MFHE.Keygen(params) and ci ← MFHE.Encrypt(pki,xi), then we get

MFHE.Decrypt((sk1,...,skN),MFHE.Eval(params;C;(c1,...,cN))) = C(x1,...,xN)

except with negligible probability (in κ) taken over the randomness of all these algorithms.

In the work of Brakerski et al. the following two properties are needed of the multi-key

FHE schemes: first, the decryption procedure consists of a “local” partial-decryption procedure

evi ← MFHE.PartDec(c,ˆ ski) that only takes one of the secret keys and outputs a partial

decryption share, and a public combination procedure that takes these partial shares and outputs

the plaintext, x ← MFHE.FinDec(ev1,...,evN,cˆ). Another property that is needed is the ability

to simulate the decryption shares. Specifically, there exists a PPT simulator ST, that gets for

input:

– the evaluated ciphertext ˆc,

– the output plaintext x := MFHE.Decrypt((sk1,←,skN),cˆ),

– a subset I ⊂ [N], and all secret keys except the one for I, {skj}j∈[N]\I.

85

– The simulator produces as output simulated partial evaluation decryption shares:

{ev˜i}i∈I ← ST(x,c,I,ˆ {skj}j∈[N]\I). We want the simulated shares to be statistically close to

the shares produced by the local partial decryption procedures using the keys [93]i∈I, even

conditioned on all the inputs of ST. A scheme is simulatable if it has local decryption and a

simulator as described here.

Brakerski et al. require that semantic security for the i-th party holds even when all

{paramsj}j∈[N]\i are generated adversarially and possibly depending on paramsi.

They consider a rushing adversary that chooses N and i ∈ [N], then it sees paramsi and

produces paramsj for all j ∈ [N]\{i}. After this setup, the adversary is engaged in the usual

semantic-security game, where it is given the public key, chooses two messages and is given

the encryption of one of them, and it needs to guess which one was encrypted.

Simulatability of the decryption shares is defined as before, but now the evaluated

ciphertext is produced by the honest party interacting with the same rushing adversary (and

statistical closeness holds even conditioned on everything that the adversary sees).

5.2 Our Non-Interactive MPC Construction

We now present our first construction - given an MPC protocol π, we use Yao’s garbled

circuits as well as a CSaR to transform it into an MPC protocol π′ that does not require parties

to be online at the same time and only requires a single message from the contributors in π. The

contributors in π do not need to interact with each other. First, we briefly outline the

assumptions we make and define the adversarial model.

Assumptions. We assume a public-key infrastructure and the existence of a CSaR. To

distinguish between concurrent executions of the protocol, we give each computation a unique

identifier id, and we assume that the evaluators know the public keys of the parties eligible to

contribute in the protocol π. We assume the existence of a bulletin board modeled as an

append-only log that provides a proof of publish which cannot be (efficiently) forged. Such

bulletin boards can be implemented in practice via a blockchain. Finally,we assume IND-CCA

secure public key encryption.

For the ease of presentation, we assume the following about the MPC protocol π: (a) it is in

a broadcast model, and (b) it has a single output which is made public to all participants in the

last round 5.

5 Note that these are not real limitations: if a protocol has several outputs, some of which cannot be made
public, the MPC functionality broadcasts the encryption of a party’s output under that party’s public key.
Additionally, later in this section we discuss how protocols with point-to-point channels can be supported
in the broadcast model.

86

Adversary model. We consider a computationally bounded, fully malicious, static adversary

A. Once an adversary corrupts a party it remains corrupted: the adversary is not allowed to

adaptively corrupt previously honest parties.

5.2.1 Construction Overview

Intuitively, there are two main steps in the protocol. In the first step, the parties (dubbed

“contributors”) prepare the garbled circuits (and keys) and store these with the CSaR. In the

second step, one or more parties (we dub them “evaluators”) use the garbled circuits to execute

the original protocol π.

Step 1. Preparing Garbled Circuits and Keys. Each party Pj that wishes to participate

(contribute inputs) in π starts by garbling the slightly modified nextmessage functions of each

round of π. Typically, the next-message function takes as input some subset of the following:

the secret input of the party, local randomness of the party for that particular round, the

messages received in the previous rounds, some secret state passed along from the previous

round. The output consists of the message that is broadcast as well as the state that is passed to

the next round. We make the following modifications: in each round i, instead of the state that

is passed to the next round, the function outputs the encryption of the state as well as a

signature sigprji over this encryption. Additionally, the modified next-message function outputs

the public message that is supposed to be broadcast by Pj in this round, as well as the

signature sigpubij over this message. The secret key as well as the signature key of Pj are hard-

coded in the circuit (we explain how it can be done later in this section). Prior to executing the

original next-message function, the modified function decrypts the state using the hard-coded

secret key of Pj and verifies the signatures on each public message as well as the signature on

the state passed in from previous round. Intuitively, these modifications are due to the

following reasons:

– The state of the party is passed in an encrypted state because the state information is

assumed to be private in the original MPC construction.

– The parties need to sign their messages (and verify signatures on the messages passed as

inputs) since we must prevent the adversary from tricking an honest party into acceptance

of a message that is supposedly generated by another honest party, but in reality is mauled

by the adversary.

Once the garbled circuits are prepared, Pj stores the garbled circuits with CSaR. Note that

the next-round functions in particular take messages produced by other parties as inputs. Thus,

there is no way for the party to know at the time the garbled circuits are constructed, whether

the key corresponding to bit 0 or the key corresponding to bit 1 will be chosen for some wire w.

To allow an evaluator to execute the garbled circuits anyway, Pj additionally stores both wire

keys for each input wire with CSaR, each with a separate CSaR request. This needs to be done

for every single round, since in any particular round the inputs will depend on the messages

produced by the garbled circuits of other parties in the previous round.

87

Intuitively, in order to be able to reduce the security of this protocol to the security of the

original MPC protocol, we need to ensure not only that the adversary is not able to maul

messages of the honest parties and see the parties’ private information, but also that the

protocol is executed in order and there is only a single instance of the protocol running. This is

ensured by carefully constructing conditions that must be met in order to release the garbled

circuits and wire keys. In order to release a garbled circuit for some round i, a party needs to

provide a proof that the execution of the protocol up to and including round i − 1 is finalized. In

order to release a wire key corresponding to bit b on a wire corresponding to position p of the

input to some garbled circuit, a party needs to additionally provide a proof that the input bit to

position p in this circuit is indeed bit b. In the following, we first explain how the protocol is

executed, and then explain how exactly the release conditions look like.

Step 2. Executing π. Once all required information is stored, an evaluator E can execute the

original MPC protocol π. It is not required that E is one of the parties participating in the

protocol π and in fact, there can be multiple evaluators (for simplicity, we refer to all of them as

“E”). E executes the garbled circuits round-by-round. Once E has executed all garbled circuits

for a certain round, E publishes the concatenation of the outputs of these circuits on a bulletin

board. Then, E uses the proof of publishing of this message in order to release the garbled

circuits as well as the wire keys of the next round.

First round optimization. Note that the message broadcast by the parties in the first round of

the protocol π does not require any information from the other participants in the MPC

protocol. Thus, instead of storing the garbled circuits for the first round, we let the parties

publish their first message (and the signature on it) directly. The secret state that needs to be

passed to the second round is hard-coded in the garbled circuit of the second round.

Release conditions. As described above, after the execution of all garbled circuits of the

certain round, the evaluator is tasked with publishing the (concatenation of the) outputs of these

circuits. This published message servers as a commitment to the evaluator’s execution of this

round, and this is what is needed to release the gabled circuits of the next round. We

additionally require that the length of each published message is the same as expected by the

protocol (corresponds to the number of input wires), and the correct length requirement holds

for every part of this message (i.e., the public message, the signature over it, the state, and the

signature over the state for each contributing party). In order to ensure that there is only a single

evaluation of the original MPC running, only the very first published message that is of a

correct form (i.e., satisfies the length requirements) can be used as the witness to release

garbled circuits and keys of a certain round. We call such messages authoritative messages.

Formally, the authoritative message of round d > 1 is a published message that satisfies the

following conditions:

– Message is of the form (id,d,m), where m is of the form (

–). This corresponds to

88

– the concatenated output of the garbled circuits of round d: public messages followed by

signatures over each public message, and encryptions of state followed by signatures over

each ciphertext.

– each mdj, cdj, sigpubdj, sigprjd has correct length.

– This is the first published message that satisfies the requirements above.

Due to our first round optimization the authoritative message of the first round is slightly

different. In particular, there are up to n authoritative messages for the first round – one for

each contributing party. Formally, an authoritative message of round d = 1 from party Pk is a

published message that satisfies the following conditions:

– Message is of the form (id,1,k,m1k,sigpub1k).

– m1k and sigpub1k both have correct length.

– This is the first published message that satisfies the requirements above.

In terms of authoritative messages, the release conditions can be now defined as follows: in

order to release the garbled circuits for round i, we require that all authoritative messages for

rounds 1 up to and including round i − 1 are published. In order to release the wire key for

some bit b of an input wire w of a garbled circuit the authoritative message of the previous

round must contain bit b at the same position w.

Identifying secrets In order for the evaluator to know the identifiers of the secrets it must

request from CSaR, we require that upon storing the secrets (i.e., garbled circuits and wire

keys), the contributors choose their CSaR secret identifiers (appending their own party

identifier to the secret in order to ensure that it has not been used before) and publish those

identifiers on the bulletin board (we assume messages can’t be posted or stored by a party

pretending to be another party). For readability purposes, further we exclude this detail from

the construction description.

Removing point-to-point channels. While in our construction we assume that the original

MPC protocol is in a broadcast model, it is very common for MPC protocols to assume secure

point-to-point channels. We can handle such protocols as well since an MPC protocol that

assumes point-to-point channels can be easily converted to a protocol in a broadcast model. A

generic transformation is outlined in the eWEB paper (Protocols 1 and 2 in [28]), it requires

using a protocol to “package” a message that must be sent and another protocol to “unpack” a

message received by a party. Intuitively, these protocols rely on authenticated communication

channels (which can be realized via signatures). The packaging is done via appending the id of

the sender to the message and IND-CCA encrypting the resulting string. The unpacking is done

via decrypting and verifying that the party id specified in the message corresponds to the id of

the party who sent this message via the authenticated communication channel.

89

Hardcoding secret inputs. As mentioned above, some of the information used in the

modified next-message function (such as the secrets of the parties, their secret keys etc.) is

hardcoded in the circuit. Say the hardcoded input wire is w, and its value is (bit) b. Then, the

party preparing the garbled circuit that uses w does so as follows: whenever one of the inputs to

a gate is w, the party removes the wire corresponding to w from the circuit and computes the

values in the ciphertexts using bit b only (instead of computing the output both for w = 0 and w

= 1). We give an example for the computation of the AND-Gate in Figure 6. For security

purposes, it is important that we do not perform any circuit optimizations based on the value of

w.

Fig.5.1. On the left, we show the computation of the AND-gate in Yao’s construction. Given the garbled

keys of x and w, depending on whether they correspond to zero or one, the doubly-encrypted ciphertext

contains K0 or K1. On the right, we show the computation for the AND-gate if w = 0. In this case, both

ciphertexts contain K0.

Notation. In the following, we denote party Pj’s public and secret encryption key pair as

(pkj,skj). We denote party Pj’s signature and verification keys as sigkj and verkj. By mij we

denote messages that are generated by the party Pj in the i-th round.

Further Details. Note that eWEB, the construction that we use as the instantiation of the

CSaR, assumes a CRS. This requirement can be removed in our case by simply allowing each

participant in the protocol π to prepare the CRS on its own. From a security standpoint, this is

unproblematic – we only wish to protect the secrets of honest clients, and if a client is honest, it

will generate the CRS honestly as well 6.

Additionally, we note that in eWEB the party storing the secret is required to send multiple

messages. In order to ensure that in our MPC protocol a single message from the MPC

participant is sufficient and the parties can go offline after sending this message, we slightly

modify the eWEB construction. Roughly, in eWEB miners are tasked with jointly preparing a

random value r s.t. each miner knows a share of r. The user then publishes the value s+r (where

s denotes the secret to be stored), and the miners compute their shares of s by subtracting their

shares of r from s + r. Along the way, the commitments to the sharing of s are made public. We

modify it as follows: the user simply publishes the commitments to the sharing of s and sends

6 Note that this change reduces the efficiency of the eWEB system – instead of batching secrets from different clients,
only secrets from a single client can be processed together now.

90

shares of s (along with the witnesses) to the miners who then verify the correctness of the

shares and witnesses.

Finally, note that we require that the original protocol π has the publicly recoverable output

property (see Definition 3). For security with abort, this property can be easily achieved as

follows: first, all parties broadcast the output. Then, if all parties broadcasted the same value,

this value is taken as the output. Otherwise, protocol is considered to be aborted. In the

following, for simplicity we assume that protocol π has the publicly recoverable output

property and Eval denotes the algorithm used to retrieve the output from the transcript.

91

The full construction is given in Protocols 1 and 2 (preparation of the garbled circuits and

keys), as well as Protocol 3 (execution phase).

Security Analysis Intuitively, correctness of the construction as well as the secrecy of the

honest parties’ inputs follow from the correctness as well as security properties of the underlying

cryptographic primitives as well as the original protocol π. We formally show security by

providing a simulator in the ideal model and showing that no PPT adversary can distinguish

between interaction with the simulator and the interaction with the honest parties. Intuitively, we

rely on the security of the cryptographic primitives used in our construction to show that the

adversary is not able to use a garbled circuit from an honest party in a “wrong” way. In

92

particular, the adversary cannot trick an honestly produced garbled circuit into accepting wrong

inputs from other honest parties i.e., inputs that were not produced using the garbled circuits or

published (for the first message) by those parties directly, or claim that a required message from

some honest party is missing. Additionally, there is no way for the adversary to execute honest

garbled circuits for the same round on inconsistent inputs (or execute a single honest garbled

circuit multiple times on a different inputs) since only the authoritative message published for a

single round is considered valid. We then rely on the security of the original protocol π.

5.3. Optimizations

Our next goal is to minimize the number of CSaR invocations in our construction. For this,

we will focus on our main construction (Protocols 1, 2 and 3), but the optimizations are

applicable to our guaranteed output delivery construction (which will be introduced later) as

well.

93

Let n denote the number of parties participating in the original MPC protocol π, nrounds

denote the number of rounds in denote the number of input wires of a garbled circuit of

the next-message function for round i of party Pj. Then, the number of CSaR secret store

operations is upper bounded by:g

The term n ∗ (nrounds − 1) is due to the fact that each party needs to store a garbled circuit

for each round, except for the very first one. The term is added because

each party also needs to store two wire keys for each input wire of each garbled circuit it

publishes.

The number of CSaR secret release operations for each evaluator is upper bounded by:

94

This is because the evaluator needs all of the garbled circuits, as well as a single wire key

for each input wire of each garbled circuit, to perform the computation.

Note that the dominant factor in both of the equations is .

This term is precisely the combined communication and (encrypted) state complexity of the

original MPC protocol π, minus the messages of the first round and plus the signatures on the

public messages and the state. Thus, in order to minimize the number of CSaR invocations, we

must first and foremost optimize the combined communication and state complexity of the

original MPC scheme. We discuss a possible way to do this in the next section.

5.4. Optimizing Communication and State Complexity in MPC

Our goal in this section is to design an MPC protocol in the plain model such that its

combined communication and state complexity is independent of the function that it is

computing. While a number of works have focused on optimizing communication complexity,

we are not aware of any construction optimizing both the communication and state complexity.

We achieve it in two steps, starting with a protocol secure against semi-malicious

adversaries. Semi-malicious security, introduced by Asharov et al, intuitively means that the

adversary must follow the protocol, but can choose its random coins in an arbitrary way. The

adversary is assumed to have a special witnesstape and is required to write a pair of input and

randomness (x,r) that explains its behavior. We specifically start with a semi-malicious MPC

protocol that has attractive communication and state complexity (i.e., independent of the

function being computed). Then, we extend it so that the resulting construction is secure against

not only semi-malicious, but also fully malicious adversaries.

5.4.1. Step 1: MPC with semi-malicious security

Our starting point is the solution proposed in the work of Brakerski et al. [15] based on

multi-key fully homomorphic encryption (MFHE) that achieves semimalicious security 7. The

construction is for deterministic functionalities where all the parties receive the same output,

7 Their scheme is secure when exactly all but one parties are corrupted. To transform it into a scheme that is secure
against any number of corruptions, Brakerski et al. suggest to extend it by a protocol proposed by Mukherjee and Wichs
that relies on a so-called extended function. For simplicity, we skip this technical detail in our protocol. We note,
however, that the additional communication and state complexity incurred due to the transformation depend only on
the security parameter, as well as the parties’ input and output sizes.

95

however it can be easily extended using standard techniques to randomized functionalities with

individual outputs for different parties. For technical details behind the construction and the

security proof we refer to Brakerski et al.

We note that while Brakerski et al. do not explicitly explain how to handle circuits of

arbitrary depth, the bootstrapping approach outlined by Mukherjee and Wichs can be used here.

Informally, the bootstrapping is done as follows: each party encrypts their secret key bit-by-bit

using their public key and broadcasts the resulting ciphertext. These ciphertexts are used to

evaluate the decryption circuit, thus reducing the noise. To do so, the parameters of the MFHE

scheme must be set in a way that allows it to handle the evaluation of the decryption circuit. We

assume circular security that ensures that it is secure to encrypt a secret key under its

corresponding public key and refer to Mukherjee and Wichs for details.

To summarize, the construction in Protocol 4 is an MPC protocol secure against semi-

malicious adversaries and can handle functions of arbitrary depth 8.

The communication complexity in Protocol 4 depends only on the security parameters, the

number of parties, and input and output sizes. Note that for a party Pk the state that is passed

between the rounds in Protocol 4 consists of the following data:

– paramsk (passed from round one to round two and round three)

– params, (pkk,skk), {ck,j}j∈[lin], {c˜k,j}j∈[lkey] (passed from round two to round three)

– {evk,j}j∈lout (passed from round three to round four)

Note that this data depends only on security parameters, number of parties, and input and

output sizes. Thus, the communication and state complexity of the semi-malicious protocol

does not depend on the circuit we are computing.

5.4.2. Step 2: MPC with fully malicious security

In order to protect from fully malicious adversaries, we extend the construction above with

the zero-knowledge protocol proposed by Kilian. In the following, we first elaborate on

Kilian’s protocol and some changes we need to make to it in order to keep the combined

communication and state complexity low. Then, we elaborate on how Kilian’s protocol is used

in the overall MPC construction.

Kilian’s zero-knowledge protocol Kilian’s construction [36] relies on probabilistically

checkable proofs (PCPs) and allows a party P to prove the correctness of some statement x

using a witness w to the prover V . We specifically chose Kilian’s construction because of its

8 Again, this construction is secure against exactly N −1 corruptions (where N is the total number of parties). When used
with the extended function transformation by Mukherjee and Wichs (which we skip here for readability purposes), the
construction becomes secure against arbitrary many corruptions.

96

attractive communication and state complexities. Note that we make a minor change to

Kilian’s construction (Protocol 5) – instead of storing the PCP string that was computed in

round two to use it in round four (as is done in the Kilian’s original scheme), P recomputes the

string (using the same randomness) in round four. Clearly, this changes nothing in terms of

correctness and security. However, it allows us to drastically cut the state complexity of

Kilian’s original construction since the storage of the PCP becomes unnecessary.

Full construction The MPC construction secure against fully malicious adversaries is

effectively the same as the semi-malicious one, except that additionally the parties commit to

their input and randomness in the semi-malicious protocol and prove (using any zero-

knowledge argument of knowledge, denoted by ZKAoK Protocol 4 Optimizing MPC

1. Let Pk be the party executing this protocol.

2. Run paramsk ← MFHE.DistSetup). Broadcast paramsk.

3. Set params = (params1,...,paramsN), and do the following:

– Generate a key-pair (pkk,skk) ← MFHE.Keygen(params,k)

– Let lin denote the length of the party’s input. Let xk[j] denote the j-th bit of Pk’s input xk. Let lkey

denote the length of the party’s secret key. – Encrypt the input bit-by-bit:

{ck,j ← MFHE.Encrypt(pkk,xk[j])j∈[lin]

– Encrypt the secret key bit-by-bit:

{c˜k,j ← MFHE.Encrypt(pkk,skk[j])j∈[lkey]

– Broadcast the public key and the ciphertexts (pkk,{ck,j}j∈[lin],{c˜k,j}j∈[lkey])

4. On receiving values {pki,ci,j}i∈[N]\{k},j∈[lin] execute the following steps:

– Let fj be the boolean function for j-th bit of the output of f. Let lout denote the length of the output

of f.

– Run the evaluation algorithm to generate the evaluated ciphertext bit-by-bit:

{cj ← MFHE.Eval(params,fj,(c1,1,...,cN,lin))}j∈[lout],

while performing a bootstrapping (using the previously broadcasted encryptions of the secret

keys) whenever needed. – Compute the partial decryption for all j ∈ [lout] :

evk,j ← MFHE.PartDec(skk,cj)

– Broadcasts the values {evk,j}j∈lout

5. On receiving all the values {evi,j}i∈[N],j∈[lout] run the final decryption to obtain the j-th output bit: {yj

← MFHE.FinDec(ev1,j,...,evN,j,cj)}j∈[lout]. Output y = y1 ...ylout.

97

in the following) that they know the opening to the commitment. Kilian’s construction is

executed by each party Pk after each of the first three rounds of Protocol 4. In more detail:

We assume that there exists some ordering of parties participating in Protocol 4. Following

the approach outlined by Asharov et al., in each round d of Protocol 4 we use Kilian’s

construction as follows:

For each pair of parties (Pi,Pj), Pi acts as a prover to the verifier Pj in order to prove the

statement

NextMessaged(xi,ri,[64]d
k=1) = mi

d
 ,com(xi||ri,ri

′) = ci

Here, NextMessage is the function executed by Pi in this round according to Protocol 4, xi

is the secret input of Pi, ri is the randomness used by Pi in the semi-malicious construction,

 are (concatenations of) the messages broadcast by all parties participating in Protocol 4

in rounds 1 to d, mdi is the

Protocol 5 Optimizing MPC - Kilian’s construction

1. Verifier V chooses a collision-resistant hash function h and sends its description to the prover P.

2. Prover P uses the PCP prover P′ to construct a PCP string ψ ← P(x,w). Denote by rp the randomness

used by the prover in the generation of ψ. P computes the root of the Merkle tree (using the hash function

h) on ψ, and sends the commitment to the Merkle tree root to the verifier V .

3. V chooses a randomness rv and sends it to P.

4. P recomputes the PCP string ψ ← P(x,w) using the randomness rp and sends PCP answers to the set of

queries generated according to the PCP verifier V ′ (executed on randomness rv) to V .

5. V checks the validity of the answers, and accepts if all answers are valid and consistent with the

previously received Merkle tree root. Otherwise, V outputs ⊥.

message broadcast by Pi in round d, and ci is the commitment broadcast by Pi in the first

round (com(x,r) denotes a perfectly binding, computationally hiding commitment to value x

using randomness r). If a check fails, Pj broadcasts ⊥ and aborts. These proofs are done

sequentially (starting a new one only after the previous is fully finished), following the ordering

of the (pairs of) parties. If at least one party has broadcasted ⊥, all parties abort.

5.4.3 Properties of the resulting MPC construction

We now discuss the properties of the scheme constructed above. Specifically, we show the

following:

98

Theorem 5. Let f be an N-party function. Protocol 6 is an MPC protocol computing f in the

plain (authenticated broadcast) model which is secure against fully malicious adversaries

corrupting up to t < N parties. Its communication and state complexity depend only on security

parameters, number of parties, and input and output sizes. In particular, the complexity is

independent of the function f.

Security We outline why this construction is secure. Intuitively, in order to prove security

we construct the simulator S as follows: S commits to 0 for each honest party, and uses a zero-

knowledge argument of knowledge simulator to prove that it knows the opening to the

commitment. Then, S uses an extractor Ext of the argument of knowledge construction to

retrieve the input and randomness of each corrupted party Pi’s valid proof. Then, in

each round S uses the simulator Ssm of the semi-malicious scheme to retrieve the honest

parties’ messages, while forwarding messages broadcasted by any adversarial party Pi to

Ssm (aborting whenever NextMessage but the proof supplied by

the adversary goes through, and writing witnesses (xi,ri) extracted by Ext on the witness tape of

Pi otherwise). S uses the zero-knowledge simulator Szk of Kilian’s protocol to simulate proofs

on behalf of the honest parties. S Protocol 6 Optimizing MPC - handling fully malicious

adversaries

1. Let Pz denote the party executing this protocol.

2. Let NextMessaged(·) denote the next message function of Protocol 4.

3. Compute and broadcast

4. Sequentially, for each ordered pair of parties (Pi,Pj):

(a) If Pi = Pz: Act as a prover in a ZKAoK to prove knowledge of such that cz = com(xz||rz,rz
′

).

(b) If Pj = Pz: act as verifier in a ZKAoK to check knowledge of xi||ri, ri
′ such that ci = com(xi||ri,ri

′).

If this check fails, broadcast ⊥.

5. If any party party broadcast ⊥, abort.

6. For each round d = 1,...,3

(a) Let .

(b) Compute NextMessaged(xz,rz,[64]d
k=1) = md

z.

(c) Broadcast .

(d) Sequentially, for each ordered pair of parties (Pi,Pj):

i. If Pi = Pz, Pz acts as a Prover in Protocol 5 and uses the witness

99

(xz,rz,cd
z
−1,rz

′) to prove that the following holds:

NextMessage

ii. If Pj = Pz, Pz acts as a Verifier in Protocol 5 to verify that there exist (xi,ri,cd
i
−1,ri

′) such that the

following holds:

NextMessage

If this verification check fails, broadcast ⊥ and abort. (e) If any party party

broadcast ⊥, abort.

7. Output NextMessage4(xz,rz,[64]4
k=1,c3

z) = md
z.

honestly checks the proofs submitted by the adversary, aborting (according to the protocol)

whenever a proof is invalid.

Communication and State Complexity Analysis As we mentioned above, the

communication complexity of Protocol 4 depends only on security parameters, number of

parties, and input and output sizes. In particular, the communication and state complexity of the

semi-malicious protocol does not depend on the circuit we are computing.

The communication complexity of Kilian’s protocol depends on the security parameter as

well as the length of the statement. In our case, the statement consists of the messages sent by

the parties participating in the semi-malicious MPC protocol in the previous round as well as

the message output by the party in the current round. Since the communication complexity of

the semi-malicious MPC protocol is independent of the function being computed, the

communication complexity of the overall construction is also independent of the function being

computed. As for the state complexity, recall that we made a minor change to Kilian’s original

protocol – instead of storing the PCP, the prover simply recomputes (using the same

randomness) it whenever it is needed. Due to this simple modification the PCP string does not

contribute to the state complexity. The only other things contributing to the state complexity is

the hash function h and the randomness rv, both independent of the function being computed by

the MPC9.

The combined communication and state complexity added due to the broadcasted

commitments as well as ZKAoK proofs about these commitments also depends only on

security parameters, number of parties, and input and output sizes.

9 Additionally, they can be chosen by V independently of any messages from P, and thus they can be hardcoded in the garbled

circuits and do not add to the state complexity of the non-interactive construction.

100

Thus, we have shown that the communication and state complexity of our construction in

Protocol 6 is independent of the function the MPC protocol is tasked with computing.

Integrating communication and state optimized MPC As we showed in previous section, the

number of CSaR secret store operations in our non-interactive MPC construction (Protocols 1,

2 and 3) is upper bounded by:

nrounds n

Nstore = n ∗ (nrounds − 1) + X X2 ∗ niwires,j

 i=2 j=1

The number of CSaR secret release operations for each evaluator is upper bounded by:

nrounds n

Nrelease = n ∗ (nrounds − 1) + X Xniwires,j

 i=2 j=1

As we pointed out in previous section, the term is precisely the

combined communication and (encrypted) state complexity of the underlying MPC protocol π,

minus the messages of the first round and plus signatures on the public messages and the state.

Thus, when using Protocol 6 as the underlying protocol π in our main non-interactive MPC

construction (Protocols 1, 2 and 3), we obtain a construction which number of CSaR store and

release operations depends only on the number of rounds in π, security parameters, number of

parties, and input and output sizes. All of these parameters are independent of the function that

π is tasked with computing. Thus, we get the following result:

Corollary 3. There exists an MPC protocol π′ in the blockchain model that has adversarial

threshold t < N, provides security with abort against fully-malicious adversaries and does not

require participants to be online at the same time. Only a single message is required from the

MPC contributors (the evaluators might be required to produce multiple messages). Furthermore,

the number of calls to CSaR of this protocol is independent of the function that is being

computed using this MPC protocol.

5.5. Guaranteed Output Delivery

In this section, we provide an extension of our main construction that ensures guaranteed

output delivery, meaning that the corrupted parties cannot prevent honest parties from receiving

their output.

In order to provide guaranteed output delivery, the first step is to build upon an MPC

protocol π that also has this property. However, note that this change by itself is not sufficient –

a malicious evaluator could still disrupt the execution of our original construction by simply

101

providing an authoritative message that contains an invalid signature and thus forcing honest

garbled circuits to abort. It is clear that we cannot simply accept such invalid signatures. Thus,

further modifications are required. In general, compared to our main protocol we make the

following changes:

– The original MPC protocol must have the guaranteed output delivery property.

– We introduce a deadline by which all initial messages must be posted. In the following, we denote

this deadline by τ.

– Signatures on the messages are verified not by the garbled circuits, but rather by the CSaR parties

as part of the CSaR request. The signature is computed on the whole message, rather than separately

for the public and state parts of the next-message function’s output.

– We use CSaR with public release, which is similar to CSaR, but instead of privately releasing secret

shares to the user, the parties release the shares publicly (e.g., by posting them on the bulletin board).

– As a part of the release condition, the garbled circuits and wire keys of the current round (that were

previously published on the bullet board) are used to check whether the message submitted by the

evaluator is indeed the output of the garbled circuit in question. Only if this is the case (i.e., the

evaluator acted honestly) is the evaluator allowed to receive the next wire keys. The evaluator uses

a proof of publishing of the garbled circuits and the wire keys released by the CSaR to prove the

correctness of the computation. Roughly the following statement is checked: “The execution of the

garbled circuit GC on the wire keys {ki}i∈I results in the output provided by E. Here, the garbled

circuit GC is the circuit, and {ki}i∈I are the keys for this circuit reconstructed using the published

values of the CSaR present on the proof of publish supplied by E”.

– If a message from the first round was not published, or a garbled circuit or wire key from some

party was not stored with CSaR, the evaluator needs to prove that with respect to the genesis block,

by deadline τ indeed no such message was stored. We call such proof a “proof of missing message”.

– In the cases described in the last two points, the CSaR releases default wire keys (encoding “⊥”)

for each garbled circuit that is supposed to use the missing message.

In order to allow for an easy verification of the evaluator’s claims of invalid garbled

circuits, we use CSaR with public release (CSaR-PR, see Figure 7), which is the same as CSaR,

except that the witness is supplied by the client that wishes to receive the secrets publicly, and

the secrets (garbled circuits and wire keys in our case) are released publicly as well (as long as

the release condition is satisfied). Such CSaR-PR can be instantiated with the PublicWitness

construction presented in the eWEB work. For simplicity, in the following we assume that the

public release of the computation result is permitted. If the application requires that only a

certain party obtains the function result, it can be easily supported by changing the output of the

function that is being computed to the encryption of this output under that party’s public key.

The definition of the authoritative message for this construction is a bit different from the

definition in our main construction to account for the fact that the signatures and proofs of

102

execution are checked by the CSaR parties. Formally, the authoritative message of round d > 1

is a published message that satisfies the following conditions:

– Message is of the form (id,d,m), where m is of the form (

), where P is some additional proof data, as

explained below.

– each md
j, cd

j, sigj
d has correct length, and each sigj

d is a valid signature of Pd on the tuple

(id,d,j,md
j,cd

j), and P contains a proof that for each contributor Pd the output of Pd’s garbled circuit

for that round is indeed what the evaluator claims this output to be10. The following exceptions are

allowed:

1. if a garbled circuit or wire key needed for the evaluation of that garbled circuit from some party

Pj is missing and the corresponding message part could not be computed, the evaluator must prove

that Pj failed to post the garbled circuit or wire key and the deadline τ has passed. Recall that in

our main construction we require CSaR secret identifiers to be published on the bulletin board (in

order for the evaluator to know what secrets it must request from the CSaR). If Pj failed to post the

secret identifier, “proof of missing message” is used to prove that this message does not exist. If

Pj posted this identifier, but the corresponding message is not stored with CSaR, CSaR publicly

returned ⊥ upon evaluator’s request to retrieve this message and the proof of this publication is

used to prove that the message was not stored. In both cases, wire keys for the default value ⊥ are

released by the CSaR participants as wire keys corresponding to the output of the missing circuit.

2. If a has incorrect length, or is not a valid signature of

Pd on the tuple (id,d,j,md
j,cd

j), but the evaluator proved that it is indeed the output of Pd’s

garbled circuit, this still counts as an authoritative message. In this case, wire keys for the

default value ⊥ are released by the CSaR participants as wire keys corresponding to md
j and

cd
j.

– The deadline τ has passed at the time of posting.

– This is the first published message that satisfies the requirements above.

Same as in our main construction, there are up to n authoritative messages for the first

round – one for each contributing party. Formally, an authoritative message of round d = 1

from party Pk is a published message that satisfies the following conditions:

– Message is of the form (id,1,k,m1
k,sigk

1).

– sigk
1 is a Pk’s correct signature over m1

k.

10 The “proof” simply consists of the whole bulletin board. CSaR retrieves the garbled circuit of Pj and the corresponding wire
keys that were published by CSaR on the bulletin board, executes the garbled circuit and checks whether the output is
consistent with the message posted by the evaluator.

103

– m1
k has correct length.

– The deadline τ has not passed at the time of posting.

– This is the first published message that satisfies the requirements above.

If a required authoritative first message from some party Pj is missing, the evaluator must

prove that Pj failed to post this message and the deadline τ has passed (“proof of missing

message”). In this case, wire keys for the default value ⊥ are released by the CSaR participants

as wire keys corresponding to that message.

Finally, note that same as in our main construction, we require that the original protocol π

has the publicly recoverable output property, now with the additional guarantee of output

delivery. The publicly recoverable output property with guaranteed output delivery can be

easily achieved as follows in a protocol which has guaranteed output delivery: first, all parties

broadcast the output. Then, the value that was broadcasted by more than half of the parties is

taken as the output. Note that if π has guaranteed output delivery, each honest participant in π is

guaranteed to be able to correctly compute the honest output. Given honest majority among the

participants (which we assume in order for π to provide the guaranteed output delivery

anyway), the protocol outlined above results in a correct output. In the following, for simplicity

we assume that protocol π has the publicly recoverable output property with guaranteed otput

delivery and Eval denotes the algorithm used to retrieve the output from the transcript.

The full construction is given in Protocols 7 and 8 (preparation of the garbled circuits and

keys), as well as Protocol 9 (execution phase). Just as in our main construction, we show

security by providing a simulator that does not have access to the honest parties’ secrets and

showing that no PPT adversary is able to distinguish the interaction with the simulator from the

interaction with the honest parties. However, this time we additionally prove that the

guaranteed output delivery property holds for our construction.

Protocol 7

1. Pj computes the output (m1
j,s1

j) of the first round of the MPC protocol for F. Pj computes the

signature sigj
1 on the tuple (id,1,j,m1

j) using its signing key sigkj. Pj posts (id,1,j,m1
j,sigj

1) on the

bulletin board.

2. Pj produces Yao garbled circuit {GCj
i} for each round i > 1 based on the circuit Cj

i of the next-

message function fi of the original MPC protocol π:

 ({labw,b,i
j}w∈inpij,b∈{0,1}) ← Gen(1λ,inpi

j)

GCj
i ← Garble

Here, inpi
j is the length of the input to the circuit Cj

i. This circuit takes as input messages

published by the parties in the previous round, and the encryption cj
i−1 of the secret state passed by

Pj from the previous round. All of Pj’s keys, input and randomness are hardcoded in the circuit.

104

The verification and public keys of other contributors are also hardcoded in the circuit. For the

circuit of the second round, the secret state passed from the first round is hardcoded in the circuit

as well. The circuit decrypts the secret state and executes the next message function of the current

round:

(a) Compute sij−1 = Decskj(cij−1).

(b) Obtain (mi
j,si

j) by executing), where .

(c) Compute the encryption of the state ci
j = Encpkj(si

j).

(d) Compute the signature sigj
i on the tuple (id,i,j,mi

j,ci
j) using the signing key sigkj.

(e) Output (mi
j,ci

j,sigj
i).

3. Pj securely stores garbled circuits {GCj
i} for all rounds i > 1 using CSaR-PR. The witness needed

to decrypt the ciphertext of some round i is a valid proof of publishing of all authoritative messages

of round 1 and up to (and including) round i − 1. If τ was reached and some party did not post its

authoritative message of the first round, the witness does not need to include a proof of publishing

of the message computed by the garbled circuits of this party. Instead, the witness needs to include

a proof of missing message by the deadline τ.

Research Corporation (SRC) program sponsored by DARPA. Vipul Goyal and Yifan Song

were supported by the NSF award 1916939, DARPA SIEVE program, a Cylab Presidential

Fellowship, a gift from Ripple, a DoE NETL award, a JP Morgan Faculty Fellowship, a PNC

center for financial services innovation award, and a Cylab seed funding award.

Protocol 8 Non-Interactive MPC with GoD − KeyPreparationPhase

1. Securely store input wire keys () for the circuit of the second round using CSaR-PR. For each party

Pk whose first round message m1
k is needed for the computation, the witness required to decrypt the

wire key corresponding to the i-th bit of the input m1
k being 0 (resp. 1) is a valid proof of publishing

with respect to the genesis block of the following:

(a) Each authoritative message of the first round is published. If a message is missing, the witness

needs to include a proof of missing message by deadline τ instead of that message. For each

missing message that is needed in the computation, wire keys for the default value ⊥ are

released. (b) i-th bit of m1
k is 0 (resp. 1).

2. Securely store input wire keys () for the circuit of the d-th

(d ≥ 3) round using CSaR-PR. Say a message md
j
−1 (resp., cd

j
−1) is needed for the computation. The

witness needed to decrypt the wire key corresponding to the i-th bit of md
j
−1 (resp., cd

j
−1) being 0

(resp. 1) is a valid proof of publishing with respect to the genesis block of the following:

(a) All authoritative messages of round 1 up to and including round d − 1 are published (subject to

the constraint that τ is reached and some party did not post its authoritative message of the first

105

round). Recall that an authoritative message is defined in a way that allows for missing or invalid

partial messages (given a valid execution proof from the evaluator) – in those cases, for each

missing message that is needed in the computation, wire keys for the default value ⊥ are

released.

(b) i-th bit of md
j
−1 (resp., cd

j
−1) is 0 (resp. 1).

Protocol 9 Non-Interactive MPC with GoD − ExecutionPhase

1. Wait until either deadline τ has passed.

2. The evaluator E uses messages (id,1,z,m1
z,sigpub1

z) posted on the bulletin board by each party Pz as

the proof of publishing to get the garbled circuits (and keys) for the second round stored in CSaR

by each participant in π. Then, E computes the outputs (m2
j,sigpub2

j,c2
j,sigprj

2) of the second round

by executing the garbled circuits. If for a party Pj any part of the information required to compute

the output is missing, output ⊥ is used in the following.

3. Check whether an authoritative message was published for round 2. If yes, check if this message is

consistent with own output and if so, simply use its proof of publish as the witness to decrypt the

wire keys of the next round. If the message is not consistent, abort. If the authoritative message is

not published yet, publish

) (appending the proof of execution,

as well as proofs of of missing/invalid messages if necessary) and use the proof of publish as the

witness.

4. In each following round d ≥ 3, E executes each garbled circuit published by party Pz for round d−1.

Then, E checks whether the authoritative message was published for that round and whether this

message is consistent with own output and if so, simply uses its proof of publish as the witness to

decrypt the wire keys of the next round. If the message is not consistent, E aborts. If the authoritative

message is not published yet, E publishes the concatenated output of the garbled circuits along with

the proof of execution. In any case, E uses the proof of publish of the authoritative message to

release the wire keys and the garbled circuits of the next round.

5. Whenever any needed wire key and/or garbled circuit was missing, E additionally supplies a proof

of missing message to decrypt the default wire keys of the next round.

6. Let τ′ denote the resulting transcript of execution of π. E outputs Eval(τ′) as the result.

106

CHAPTER SIX

Blockchain Protocol for Sensor Network

A critical and required property of the Smart Private Ledger is the ability to privately store

and retrieve secret data with access control. This ensures that an entity is able to store classified

data over the blockchain such that only a large set of nodes collaborating together can retrieve it.

Suppose a ‘dealer’ would like to store classified data 𝑀 on the blockchain. First, they generate a

secret key 𝐾 and encrypt 𝑀 under 𝐾 using a secret key encryption scheme (where the same key

is used for encryption and decryption). This ciphertext is then publicly posted on the blockchain.

An adversarial party is not able to access the classified data as the secret key (that only the dealer

has access to) is required to decrypt the publicly available ciphertext.

The next step is to securely distribute the shares of secret key 𝐾 to the nodes on the

blockchain network in a manner such that only a pre-defined large set of nodes collaborating

together can recover 𝐾. This ensures that even if a small number of nodes are compromised by

an adversary the system remains secure and the adversary is not able to recover the secret key to

decrypt the publicly available ciphertext. To securely generate and distribute the shares of the

secret key to each miner on the network, the Shamir Secret Sharing scheme is used and described

below.

Assume that there are 𝑁 participants in the protocol, which in our case are the miners in the

blockchain network. Given a secret 𝑆 (e.g., a specific value of strain or temperature), which in

our case is a 256-bit integer, the secret sharing protocol divides 𝑆 into 𝑁 shares, giving each

participant its unique share. With each participant given their unique share, knowledge of a

predefined number 𝐾of the 𝑁shares is required to recover the secret 𝑆. This is denoted as a

(𝐾, 𝑁) threshold scheme.

Mathematically, we implemented a (𝐾, 𝑁) threshold Shamir Secret Sharing scheme using

polynomial interpolation. As stated before, let the secret be 𝑆. We then construct a random

polynomial 𝑓(𝑥) = 𝑆 + 𝑆1𝑥 + 𝑆2𝑥2+. . . +𝑆𝐾−1𝑥𝐾−1, where the secret is the constant term. A

share is defined as a tuple (𝑖, 𝑓(𝑖)) for some 𝑖 ∈ ℤ. Note that the degree of the polynomial is

𝐾 − 1; a known result that requires 𝑘 + 1 points to uniquely recover a 𝑘-degree polynomial and

requires 𝐾 out of the 𝑁 shares to recover the secret 𝑆 (see Figure 4). Furthermore, each

participant is given a unique share (𝑖, 𝑓(𝑖)), which is done by assigning a unique 𝑖 to each

participant.

 Given 𝐾 shares, polynomial interpolation (Lagrange interpolation) is used to recover the

constructed polynomial 𝑓. Let the 𝐾 shares be (𝑥1, 𝑦1), . . . , (𝑥𝐾, 𝑦𝐾). Define the Lagrange basis

functions 𝑓𝑗

107

 (1)

Then, the originally generated polynomial 𝑓 is

 (2)

Now that we are able to uniquely interpolate the polynomial 𝑓 with the 𝐾 shares, the secret is

recovered as the constant term in 𝑓. Note that the dealer uses the 𝐾 threshold to generate the

random polynomial, which is then used to create the secret shares.

The security of this scheme is dependent on the random generation of the sharing polynomial

and that the polynomial is generated uniquely each time secret shares are created. Furthermore,

the result that 𝐾 shares uniquely generate a polynomial in a finite field ensures that if an

adversary had access to fewer than 𝐾 shares (assume 𝐾 − 1 shares), all viable values of the

secret are possible and equally likely to be the constant terms in the interpolated polynomial.

This therefore provides the adversary with no additional information regarding the secret!

The dealer generates these shares using Shamir’s Secret Sharing scheme and distributes them

to corresponding miners by encrypting each miner’s share with their corresponding public key

before posting all the encrypted shares on the blockchain. Only the assigned miner is able to

access their share, as their corresponding private key is required to decrypt their publicly posted

share.

At a future stage, the dealer posts a release condition on the blockchain (signed with the

dealer’s corresponding digital signature), indicating the miners to release their secret shares. In

this release condition, the dealer also specifies a public key of the person who requests for

reconstruction (person who the dealer would like the private data to be available to). All miners

post their secret shares encrypted under this specified public key. This protocol ensures that only

the specified user is able to perform the reconstruction as they are able to decrypt the shares with

their associated private key.

108

Note that in the reconstruction step, it is possible for some of the nodes to be actively

corrupted and release incorrect shares. To solve this problem, each miner signs their released

share with a unique digital signature (signed using each miner’s private key and verified using

their corresponding public key). Once these decrypted shares are publicly posted on the

blockchain, each miner (handling a node of the SCADA system of the blockchain) can

reconstruct the original polynomial randomly generated by the dealer in the Shamir Secret

Sharing protocol, hence gaining access to the secret key. This secret key can then be used to

decrypt the ciphertext (posted publicly on the blockchain), giving each miner access to the

classified data 𝑀.

Figure 6.1: Image of transmission module connected with temperature sensor

6.1 Access Control

In addition to developing a Smart Private Ledger which facilitates secure data storage and

retrieval, we also enable access control for sensor data in the smart ledger. For example, the main

SCADA system may have a higher level of access than other nodes in the blockchain, which

could be given lower access levels. To implement this, we define a given number of secrecy

levels (say 1-5) which can be easily modified depending on the use case.

 Then, depending on the access priority of each node in the network, assign a secrecy level to

each of the miner public keys. Therefore, each of the secrecy levels now has a corresponding list

of associated public keys. The dealer (e.g. who controls the SCADA system or is in charge of

deciding when data should be released to nodes on the blockchain) is then able to assign a

secrecy level to each piece of sensor data. If a user would like to request for secret key

109

reconstruction to decrypt data with secrecy level 𝑛 (3 for example), the user would need to post a

statement on the blockchain signed with their public key associated with secrecy level 𝑛. This

ensures attribute-based access control, where the data owner is able to predefine a set of

attributes that a user must have to access the data.

6.2 Security and Availability Guarantees of Protocol

We show security guarantees of our protocol if a node on the blockchain network is

compromised. In order for an adversary to recover the secret key that the private data is

encrypted with, they would have to potentially collude with a significant number of the miners

(depending on the threshold set by the dealer in the Shamir Secret Sharing scheme when secret

key shares are generated). A cyberattack requiring the collaboration of multiple (potentially a

majority) miners is extremely difficult to launch in practice without going undetected before it

takes place, as honest miners can report unusual behavior if occurring in a significant portion of

the blockchain network.

 We now show that our protocol guarantees availability of data, that all authorized users on the

blockchain with appropriate access thresholds (defined in the previous section) can access the

private data when needed if they meet the threshold of reconstruction set by the dealer. A

common way an adversary may compromise availability is by launching a DoS (Denial of

Service) attack on some node in the blockchain. However, due to the distributed, public nature of

the blockchain network, unless the adversary launches such an attack over sufficiently many

nodes in the network, availability is guaranteed for all active miners in the network.

Furthermore, even if an adversary obtains the keys of a miner and posts a reconstruction

request on the blockchain network, as this request is publicly posted and accessible to everyone

on the network, the compromised miner can then immediately post a message on the network to

stop reconstruction before the private data is leaked to the adversary.

6.3 Implementation

A schematic of the Smart Private Ledger is shown in Figure 6.1 and 6.2. For the purpose of

this project, we use Ethereum as the blockchain technology due to its capability of performing

computations over stored data and smart contract deployment. Furthermore, in the

implementation of the Smart Private Ledger, smart contracts are used for the dealer to post i)

ciphertext (encrypted data file), ii) encrypted secret key shares and iii) release condition on the

blockchain and for the miners to post i) decrypted shares (after the release condition is posted)

and ii) reconstruction requests. This design using smart contracts ensures that the Smart Private

Ledger is easily usable and deployable.

6.4 Simulation Results

We ran simulations of our Smart Private Ledger blockchain described in the previous

sections in order to measure performance of each stage of the system. As the moving variables in

110

the system (which can be changed) are the data file sizes and number of miners on the network,

it naturally follows to measure how system performance scales with these variables.

Figure 6.2: Blockchain network and data storage mechanism with access control

In order to determine system performance for increasing file sizes, we measured the time

taken for the program to run (from secret generation to termination) on sensor data (stored in

XLS files) of various file sizes (20, 40, 60, 80, 100 megabytes). The results for these simulations

are shown in Figure 6.3. The file sizes were chosen to reflect large spreadsheet files which could

reflect sensor data storage. In addition, we also measured how system performance changes as

the number of miners (measured for n= 4, 8, 16, 32, 64 where k=n/2) is scaled (Figure 6.3). Note

that we take half the total number of miners as the number of miners required for secret

reconstruction in each measurement. The two primary components of the system which can be

affected by the changing number of miners (secret generation and reconstruction) were measured

separately to provide a more accurate representation of how changing the number of miners

affects the relevant parts of our system.

Figure 6.3: Measuring how system performance of file loading and file encryption steps scales with file

size (left) and measuring how system performance of secret share generation and encryption scales with

the number of miners in the network (right).

The data in Figures 6.3 left and right are obtained by running our simulations for 10

iterations and by taking an average of the time taken across the 10 iterations. It appears from

111

these results that run times scale linearly with number of miners and file sizes. However, external

factors such as the specific machine programs are run on could impact exact run times.

Furthermore, we note that the most time-consuming operations for the dealer are loading the file

into the program and generating the secret shares, both of which take place once for a single

program instance.

6.5 Simulated Cyberattacks

Our Smart Private Ledger system is also secure against common cyber-attacks such as the

Ukraine power grid attack in 2015 and Colonial Pipeline cyberattack in 2021. The cyberattack

method used in most cases is a form of SCADA Hijack where attackers gain access to the

Industrial Control System (ICS) network through individual workstations. Attackers typically

attempt to install malicious software on individual internet connected machines through phishing

attempts.

However, with the Smart Private Ledger, it is much harder for any adversary to compromise

the entire network through attacking an individual machine. For example, in the Ukraine power

grid attack, spear-phishing emails were sent to individual machines to obtain personal

information and credentials required to take control of the SCADA systems. In a generic

cyberattack of this form, once personal credentials are obtained, compromising a small number

of nodes allows the adversary to use malware such as BlackEnergy (used in the Ukraine power

grid attack in 2015) to execute denial-of-service attacks and gain control of the entire system.

Our scheme significantly mitigates the possibility of such attacks as adversaries are unable to

access privately stored information on the network by compromising a single node through

techniques such as phishing attacks. This is due to the secret sharing mechanism in our scheme,

the adversary would need to compromise a significant predetermined number (unknown to the

adversary) of nodes in the network (each potentially running a different architecture and

operating system) over the internet.

 This process is unlikely to go undetected before preventative measures can be taken.

Therefore, the Smart Private Ledger significantly reduces the possibility of a cyberattack due to a

single point of compromise in the network, which is currently the most common technique used

when hijacking SCADA systems.

112

CHAPTER SEVEN

Conclusions and Impact

A novel private blockchain protocol, Smart Private Ledger, with hierarchical access control is

designed and implemented in this work which provides cybersecurity for machine-to-machine

interactions, infrastructure for secure data logging for sensors, and decentralized data storage and

retrieval. A lab-scale sensor network consisting of strain and temperature sensors which simulates

encrypted information flows in a typical power plant is developed to test this protocol. A single

transmitter receives data from multiple type of sensors and securely transmits it to a base station

which acts as a blockchain node.

Our protocol addresses security concerns for cyberattacks on distributed sensor networks that

are vulnerable to threats from a given machine in the network (i.e., similar to the recent cyberattack

on the Colonial Pipeline). This is achieved by integrating the Smart Private Ledger into SCADA

systems of the sensor networks that ensures strong security guarantees on sensor data using

fundamental ideas from secret sharing and cryptographic digital signature schemes. The use of

ordinary laptops and desktops as the nodes of the Smart Private Ledger leads to a blockchain network

with minimal cost, lowering the barrier to access this important security technology for underserved

areas/regions. This work thus establishes Smart Private Ledger as the next generation of blockchain

technology for cybersecure sensor network compatible with existing SCADA systems and easily

deployable for decentralized data storage and retrieval required for various applications. As a next

step, we recommend implementation of this network in security-critical public infrastructure such as

power plants and power grids.

The project also achieved significant success in terms of student training. The students received

training in disparate areas of theoretical computer science and sensor networks. One of the students

has joined Virginia Tech as a tenure-track assistant professor. Other students joined companies such

as Google Inc., Simple Origin Inc., etc.

113

REFERENCES

1. Analytica, O., US pipeline hack signals critical infrastructure risks. Emerald Expert

Briefings, 2021(oxan-es).

2. Case, D.U., Analysis of the cyber attack on the Ukrainian power grid. Electricity

Information Sharing and Analysis Center (E-ISAC), 2016. 388: p. 1-29.

3. Greenberg, A., The untold story of NotPetya, the most devastating cyberattack in history.

Wired, August, 2018. 22.

4. Liang, G., et al., The 2015 ukraine blackout: Implications for false data injection attacks.

IEEE transactions on power systems, 2016. 32(4): p. 3317-3318.

5. Buterin, V., Privacy on the Blockchain. Ethereum Blog, 2016.

6. Thomas, L., et al., Automation of the supplier role in the GB power system using

blockchain based smart contracts. 2017.

7. Aitzhan, N.Z. and D. Svetinovic, Security and privacy in decentralized energy trading

through multi-signatures, blockchain and anonymous messaging streams. IEEE

Transactions on Dependable and Secure Computing, 2016. 15(5): p. 840-852.

8. Mengelkamp, E., et al., Designing microgrid energy markets: A case study: The Brooklyn

Microgrid. Applied energy, 2018. 210: p. 870-880.

9. Horta, J., D. Kofman, and D. Menga, Novel paradigms for advanced distribution grid

energy management. arXiv preprint arXiv:1712.05841, 2017.

10. Goranović, A., et al. Blockchain applications in microgrids an overview of current

projects and concepts. in IECON 2017-43rd Annual Conference of the IEEE Industrial

Electronics Society. 2017. IEEE.

11. Liu, J., et al., How to build time-lock encryption. Designs, Codes and Cryptography,

2018. 86: p. 2549-2586.

12. Chiesa, A., et al. Marlin: Preprocessing zkSNARKs with universal and updatable SRS. in

Advances in Cryptology–EUROCRYPT 2020: 39th Annual International Conference on

the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10–14,

2020, Proceedings, Part I 39. 2020. Springer.

13. Goyal, R. and V. Goyal. Overcoming cryptographic impossibility results using

blockchains. in Theory of Cryptography: 15th International Conference, TCC 2017,

Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part I 15. 2017. Springer.

14. Garg, S., et al. Witness encryption and its applications. in Proceedings of the forty-fifth

annual ACM symposium on Theory of computing. 2013.

15. Applebaum, B., et al., Encoding functions with constant online rate, or how to compress

garbled circuit keys. SIAM Journal on Computing, 2015. 44(2): p. 433-466.

16. Garg, S., et al., On the implausibility of differing-inputs obfuscation and extractable

witness encryption with auxiliary input. Algorithmica, 2017. 79: p. 1353-1373.

17. Beuchat, J.-L., et al., High-Speed Software Implementation of the Optimal Ate Pairing

over Barreto-Naehrig Curves. Pairing, 2010. 6487: p. 21-39.

114

18. Schnorr, C.-P. Efficient identification and signatures for smart cards. in Advances in

Cryptology—CRYPTO’89 Proceedings 9. 1990. Springer.

19. Yao, A.C. Protocols for secure computations. in 23rd annual symposium on foundations

of computer science (sfcs 1982). 1982. IEEE.

20. Barak, B., et al. On the (im) possibility of obfuscating programs. in Advances in

Cryptology—CRYPTO 2001: 21st Annual International Cryptology Conference, Santa

Barbara, California, USA, August 19–23, 2001 Proceedings. 2001. Springer.

21. Damgård, I. and J.B. Nielsen. Scalable and unconditionally secure multiparty

computation. in Advances in Cryptology-CRYPTO 2007: 27th Annual International

Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2007. Proceedings 27.

2007. Springer.

22. Maram, S.K.D., et al. CHURP: dynamic-committee proactive secret sharing. in

Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications

Security. 2019.

23. Ostrovsky, R. and M. Yung. How to withstand mobile virus attacks. in Proceedings of the

tenth annual ACM symposium on Principles of distributed computing. 1991.

24. Baron, J., et al. Communication-optimal proactive secret sharing for dynamic groups. in

Applied Cryptography and Network Security: 13th International Conference, ACNS

2015, New York, NY, USA, June 2-5, 2015, Revised Selected Papers. 2016. Springer.

25. Shamir, A., How to share a secret. Commun. ACM. 1979.

26. Kate, A., G.M. Zaverucha, and I. Goldberg. Constant-size commitments to polynomials

and their applications. in Advances in Cryptology-ASIACRYPT 2010: 16th International

Conference on the Theory and Application of Cryptology and Information Security,

Singapore, December 5-9, 2010. Proceedings 16. 2010. Springer.

27. Choudhuri, A.R., et al. Fairness in an unfair world: Fair multiparty computation from

public bulletin boards. in Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security. 2017.

28. Kokoris-Kogias, E., et al., Verifiable management of private data under byzantine

failures. IACR ePrint, 2018. 209: p. 2018.

29. Gilad, Y., et al. Algorand: Scaling byzantine agreements for cryptocurrencies. in

Proceedings of the 26th symposium on operating systems principles. 2017.

30. Androulaki, E., et al. Hyperledger fabric: a distributed operating system for

permissioned blockchains. in Proceedings of the thirteenth EuroSys conference. 2018.

31. Pass, R. and E. Shi. Fruitchains: A fair blockchain. in Proceedings of the ACM

symposium on principles of distributed computing. 2017.

32. Abdolmaleki, B., S. Ramacher, and D. Slamanig. Lift-and-shift: obtaining simulation

extractable subversion and updatable SNARKs generically. in Proceedings of the 2020

ACM SIGSAC Conference on Computer and Communications Security. 2020.

33. Kosba, A., et al., C $\emptyset $ C $\emptyset $: A Framework for Building Composable

Zero-Knowledge Proofs. Cryptology ePrint Archive, 2015.

115

34. Rivest, R.L., A. Shamir, and D.A. Wagner, Time-lock puzzles and timed-release crypto.

1996.

35. Galil, Z., S. Haber, and M. Yung. Cryptographic computation: Secure fault-tolerant

protocols and the public-key model. in Advances in Cryptology—CRYPTO’87:

Proceedings 7. 1988. Springer.

36. Cleve, R. Limits on the security of coin flips when half the processors are faulty. in

Proceedings of the eighteenth annual ACM symposium on Theory of computing. 1986.

37. Blum, M. and S. Micali, How to generate cryptographically strong sequences of pseudo

random bits, in Providing Sound Foundations for Cryptography: On the Work of Shafi

Goldwasser and Silvio Micali. 2019. p. 227-240.

38. Bellare, M., V.T. Hoang, and P. Rogaway. Adaptively secure garbling with applications

to one-time programs and secure outsourcing. in Advances in Cryptology–ASIACRYPT

2012: 18th International Conference on the Theory and Application of Cryptology and

Information Security, Beijing, China, December 2-6, 2012. Proceedings 18. 2012.

Springer.

39. Durnoga, K., et al. One-time programs with limited memory. in Information Security and

Cryptology: 9th International Conference, Inscrypt 2013, Guangzhou, China, November

27-30, 2013, Revised Selected Papers. 2014. Springer.

40. Faust, S., et al. On the Non-malleability of the Fiat-Shamir Transform. in INDOCRYPT.

2012. Springer.

41. Pedersen, T.P. Non-interactive and information-theoretic secure verifiable secret

sharing. in Advances in Cryptology—CRYPTO’91: Proceedings. 2001. Springer.

42. Decker, C. and R. Wattenhofer. Bitcoin transaction malleability and MtGox. in Computer

Security-ESORICS 2014: 19th European Symposium on Research in Computer Security,

Wroclaw, Poland, September 7-11, 2014. Proceedings, Part II 19. 2014. Springer.

43. Mehar, M.I., et al., Understanding a revolutionary and flawed grand experiment in

blockchain: the DAO attack. Journal of Cases on Information Technology (JCIT), 2019.

21(1): p. 19-32.

44. Gentry, C. Fully homomorphic encryption using ideal lattices. in Proceedings of the

forty-first annual ACM symposium on Theory of computing. 2009.

45. Boneh, D., et al. Threshold cryptosystems from threshold fully homomorphic encryption.

in Advances in Cryptology–CRYPTO 2018: 38th Annual International Cryptology

Conference, Santa Barbara, CA, USA, August 19–23, 2018, Proceedings, Part I 38.

2018. Springer.

46. ElGamal, T., A public key cryptosystem and a signature scheme based on discrete

logarithms. IEEE transactions on information theory, 1985. 31(4): p. 469-472.

47. Shamir, A., How to share a secret. Communications of the ACM, 1979. 22(11): p. 612-

613.

48. Blum, M., P. Feldman, and S. Micali, Non-interactive zero-knowledge and its

applications, in Providing Sound Foundations for Cryptography: On the Work of Shafi

Goldwasser and Silvio Micali. 2019. p. 329-349.

116

49. Doerner, J., et al. Threshold ECDSA from ECDSA assumptions: The multiparty case. in

2019 IEEE Symposium on Security and Privacy (SP). 2019. IEEE.

50. Gennaro, R. and S. Goldfeder. Fast multiparty threshold ECDSA with fast trustless setup.

in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications

Security. 2018.

51. Lindell, Y. and A. Nof. Fast secure multiparty ECDSA with practical distributed key

generation and applications to cryptocurrency custody. in Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security. 2018.

52. Schnorr, C.-P., Efficient signature generation by smart cards. Journal of cryptology,

1991. 4: p. 161-174.

53. Doerner, J., et al. Secure two-party threshold ECDSA from ECDSA assumptions. in 2018

IEEE Symposium on Security and Privacy (SP). 2018. IEEE.

54. Goldfeder, S., et al., Securing Bitcoin wallets via a new DSA/ECDSA threshold signature

scheme, in et al. 2015.

55. Lindell, Y. Fast secure two-party ECDSA signing. in Advances in Cryptology–CRYPTO

2017: 37th Annual International Cryptology Conference, Santa Barbara, CA, USA,

August 20–24, 2017, Proceedings, Part II 37. 2017. Springer.

56. Gennaro, R., S. Goldfeder, and A. Narayanan. Threshold-optimal DSA/ECDSA

signatures and an application to bitcoin wallet security. in Applied Cryptography and

Network Security: 14th International Conference, ACNS 2016, Guildford, UK, June 19-

22, 2016. Proceedings 14. 2016. Springer.

57. Di Raimondo, M. and R. Gennaro. Provably secure threshold password-authenticated

key exchange. in Advances in Cryptology—EUROCRYPT 2003: International

Conference on the Theory and Applications of Cryptographic Techniques, Warsaw,

Poland, May 4–8, 2003 Proceedings 22. 2003. Springer.

58. MacKenzie, P., T. Shrimpton, and M. Jakobsson. Threshold password-authenticated key

exchange. in Advances in Cryptology—CRYPTO 2002: 22nd Annual International

Cryptology Conference Santa Barbara, California, USA, August 18–22, 2002

Proceedings 22. 2002. Springer.

59. Canetti, R. and S. Goldwasser. An efficient threshold public key cryptosystem secure

against adaptive chosen ciphertext attack. in Advances in Cryptology—EUROCRYPT’99:

International Conference on the Theory and Application of Cryptographic Techniques

Prague, Czech Republic, May 2–6, 1999 Proceedings 18. 1999. Springer.

60. Barreto, P.S. and M. Naehrig. Pairing-friendly elliptic curves of prime order. in Selected

Areas in Cryptography: 12th International Workshop, SAC 2005, Kingston, ON, Canada,

August 11-12, 2005, Revised Selected Papers 12. 2006. Springer.

61. Srinivas, S., et al., Universal 2nd factor (U2F) overview. FIDO Alliance Proposed

Standard, 2015. 15.

62. Wood, G., Ethereum: A secure decentralised generalised transaction ledger. Ethereum

project yellow paper, 2014. 151(2014): p. 1-32.

117

63. Micali, S., O. Goldreich, and A. Wigderson. How to play any mental game. in

Proceedings of the Nineteenth ACM Symp. on Theory of Computing, STOC. 1987. ACM

New York, NY, USA.

64. Garg, S., et al. The exact round complexity of secure computation. in Advances in

Cryptology–EUROCRYPT 2016: 35th Annual International Conference on the Theory

and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016,

Proceedings, Part II 35. 2016. Springer.

65. Beaver, D., S. Micali, and P. Rogaway. The round complexity of secure protocols. in

Proceedings of the twenty-second annual ACM symposium on Theory of computing.

1990.

66. Goyal, V. Constant round non-malleable protocols using one way functions. in

Proceedings of the forty-third annual ACM symposium on Theory of computing. 2011.

67. Katz, J., R. Ostrovsky, and A. Smith. Round efficiency of multi-party computation with a

dishonest majority. in Advances in Cryptology—EUROCRYPT 2003: International

Conference on the Theory and Applications of Cryptographic Techniques, Warsaw,

Poland, May 4–8, 2003 Proceedings 22. 2003. Springer.

68. Pass, R. Bounded-concurrent secure multi-party computation with a dishonest majority.

in Proceedings of the thirty-sixth annual ACM symposium on Theory of computing. 2004.

69. Badrinarayanan, S., et al. Promise zero knowledge and its applications to round optimal

MPC. in Advances in Cryptology–CRYPTO 2018: 38th Annual International Cryptology

Conference, Santa Barbara, CA, USA, August 19–23, 2018, Proceedings, Part II. 2018.

Springer.

70. Brakerski, Z., S. Halevi, and A. Polychroniadou. Four round secure computation without

setup. in Theory of Cryptography: 15th International Conference, TCC 2017, Baltimore,

MD, USA, November 12-15, 2017, Proceedings, Part I. 2017. Springer.

71. Rai Choudhuri, A., et al. Round optimal secure multiparty computation from minimal

assumptions. in Theory of Cryptography: 18th International Conference, TCC 2020,

Durham, NC, USA, November 16–19, 2020, Proceedings, Part II 18. 2020. Springer.

72. McMahan, B. and D. Ramage, Google AI blog: Federated learning: Collaborative

machine learning without centralized training data. URL https://ai. googleblog.

com/2017/04/federated-learning-collaborative. html, 2017.

73. Goyal, V., et al. Storing and retrieving secrets on a blockchain. in Public-Key

Cryptography–PKC 2022: 25th IACR International Conference on Practice and Theory

of Public-Key Cryptography, Virtual Event, March 8–11, 2022, Proceedings, Part I.

2022. Springer.

74. Kaptchuk, G., I. Miers, and M. Green, Giving state to the stateless: Augmenting

trustworthy computation with ledgers. Cryptology ePrint Archive, 2017.

75. Bellare, M., V.T. Hoang, and P. Rogaway. Foundations of garbled circuits. in

Proceedings of the 2012 ACM conference on Computer and communications security.

2012.

https://ai/

118

76. Yao, A.C.-C. How to generate and exchange secrets. in 27th annual symposium on

foundations of computer science (Sfcs 1986). 1986. IEEE.

77. Benhamouda, F., et al. Can a public blockchain keep a secret? in Theory of

Cryptography: 18th International Conference, TCC 2020, Durham, NC, USA, November

16–19, 2020, Proceedings, Part I 18. 2020. Springer.

78. Feige, U., J. Killian, and M. Naor. A minimal model for secure computation. in

Proceedings of the twenty-sixth annual ACM symposium on Theory of computing. 1994.

79. Halevi, S., et al. Non-interactive multiparty computation without correlated randomness.

in Advances in Cryptology–ASIACRYPT 2017: 23rd International Conference on the

Theory and Applications of Cryptology and Information Security, Hong Kong, China,

December 3-7, 2017, Proceedings, Part III. 2017. Springer.

80. Halevi, S., Y. Lindell, and B. Pinkas. Secure computation on the web: Computing without

simultaneous interaction. in Advances in Cryptology–CRYPTO 2011: 31st Annual

Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings 31.

2011. Springer.

81. Beimel, A., et al. Non-interactive secure multiparty computation. in Advances in

Cryptology–CRYPTO 2014: 34th Annual Cryptology Conference, Santa Barbara, CA,

USA, August 17-21, 2014, Proceedings, Part II 34. 2014. Springer.

82. Halevi, S., et al. Secure multiparty computation with general interaction patterns. in

Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer

Science. 2016.

83. Badrinarayanan, S., et al. Non-interactive secure computation from one-way functions. in

Advances in Cryptology–ASIACRYPT 2018: 24th International Conference on the Theory

and Application of Cryptology and Information Security, Brisbane, QLD, Australia,

December 2–6, 2018, Proceedings, Part III. 2018. Springer.

84. Canetti, R., A. Jain, and A. Scafuro. Practical UC security with a global random oracle.

in Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications

Security. 2014.

85. Chase, M., et al. Reusable non-interactive secure computation. in Advances in

Cryptology–CRYPTO 2019: 39th Annual International Cryptology Conference, Santa

Barbara, CA, USA, August 18–22, 2019, Proceedings, Part III 39. 2019. Springer.

86. Afshar, A., et al. Non-interactive secure computation based on cut-and-choose. in

Advances in Cryptology–EUROCRYPT 2014: 33rd Annual International Conference on

the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark, May

11-15, 2014. Proceedings 33. 2014. Springer.

87. Badrinarayanan, S., et al. Two-message witness indistinguishability and secure

computation in the plain model from new assumptions. in Advances in Cryptology–

ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of

Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,

Proceedings, Part III. 2017. Springer.

119

88. Ishai, Y., et al. Efficient non-interactive secure computatiosn. in Advances in Cryptology–

EUROCRYPT 2011: 30th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011.

Proceedings 30. 2011. Springer.

89. Benhamouda, F. and H. Lin. Mr NISC: multiparty reusable non-interactive secure

computation. in Theory of Cryptography: 18th International Conference, TCC 2020,

Durham, NC, USA, November 16–19, 2020, Proceedings, Part II 18. 2020. Springer.

90. Choudhuri, A.R., et al. Fluid MPC: secure multiparty computation with dynamic

participants. in Advances in Cryptology–CRYPTO 2021: 41st Annual International

Cryptology Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021, Proceedings,

Part II 41. 2021. Springer.

91. Gentry, C., et al. YOSO: You Only Speak Once: Secure MPC with Stateless Ephemeral

Roles. in Advances in Cryptology–CRYPTO 2021: 41st Annual International Cryptology

Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021, Proceedings, Part II.

2021. Springer.

92. Jain, A., N. Manohar, and A. Sahai. Combiners for functional encryption,

unconditionally. in Advances in Cryptology–EUROCRYPT 2020: 39th Annual

International Conference on the Theory and Applications of Cryptographic Techniques,

Zagreb, Croatia, May 10–14, 2020, Proceedings, Part I 39. 2020. Springer.

93. Lowengrub, J. and L. Truskinovsky, Quasi–incompressible Cahn–Hilliard fluids and

topological transitions. Proceedings of the Royal Society of London. Series A:

Mathematical, Physical and Engineering Sciences, 1998. 454(1978): p. 2617-2654.

	ABSTRACT
	EXECUTIVE SUMMARY
	CHAPTER ONE Introduction
	1.1 Background and Research Need
	1.2 Significance of the Work
	Our protocol addresses security concerns for cyberattacks on distributed sensor networks that are vulnerable to threats from a given machine in the network. This is achieved by integrating the Smart Private Ledger into SCADA systems of the sensor netw...
	1.3 Report Organization

	CHAPTER TWO Lab-scale Sensor Network for Blockchain Development
	2.1 Strain Sensors
	2.2 Temperature Sensors
	2.3 Transmission Module

	CHAPTER THREE Blockchain for Encryption
	3.1 DPSS
	3.1.1 DPSS Background
	3.1.1.1 Adversary Model
	3.1.1.2 DPSS Security Definition
	3.1.2 Overview: Our DPSS Construction
	3.1.2.1 Our Construction: Semi-honest Case
	3.1.2.2 Moving to a Fully Malicious Setting
	3.1.2.3 DPSS Setup Phase
	3.1.2.4 DPSS Reconstruction Phase
	3.1.2.5 Security of Our Construction
	3.2 Defining eWEB
	3.2.1 Syntax
	3.2.2 Security Game Definition
	A new committee is chosen, and secrets (if any exist) are handed over
	(a) A may ask the challenger to create a secret storage request for the challenge (only once)
	(d) A may create new release requests for any number of storage requests with IDs 𝑖𝑑𝑖
	3.3 Our eWEB Protocol Design
	3.3.1 Assumptions
	3.3.2 Our eWEB Construction
	3.3.2.1 Subtleties of Point-to-Point Channels
	3.3.2.2 Storage Identifiers
	3.3.2.3 Handling Large Secrets
	3.3.3 Security Proof Intuition
	3.4 Application Examples
	3.4.1 Voting Protocol
	3.5 Implementation
	3.6 Experimental Evaluation
	3.6.1 eWEB Performance
	3.6.2 DPSS Comparison
	3.6.3 Applicaitons
	3.6.4 Microbenchmarks
	3.7 Related Work
	3.7.1 Prior Work on DPSS
	3.7.2 Extractable Witness Encryption and Conditional Secret Release
	3.8 Conclusion

	CHAPTER FOUR Security Policies and Two-Factor Authentication
	4.0.1 System Architecture
	4.0.2 Two-Factor Authentication Mechanisms
	4.0.3 Security Policies
	4.0.4 Our Contribution
	4.1 Technical Overview
	4.1.1 A Generic Solution
	4.1.2 A Flawed Attempt
	4.1.3 Bilinear Maps at Rescue
	4.1.4 Additional Challenges
	4.2 Related Work
	4.3 Preliminaries
	4.3.1 Bilinear Groups
	4.3.2 Non-Interactive Zero-Knowledge
	4.3.3 Secret Sharing
	4.4 Definitions
	4.4.1 Overview
	4.4.2 Syntax and Security Properties
	4.5 Construction of Distributed Zero-Tester
	4.5.1 Efficient Non-Interactive Zero Knowledge
	4.5.2 Implementation in Ethereum
	4.6 Experimental Evaluations
	4.6.1 Security Policies
	4.6.2 Performance Evaluation
	4.7 A Solution Based on U2F Tokens
	4.7.1 U2F on Ethereum
	4.8 Conclusions

	CHAPTER FIVE Blockchains Enable Non-Interactive Multiparty Computation
	5.0.1 Our Results
	5.0.2 Technical Overview
	5.0.3 Related Work
	5.1. Preliminaries
	5.1.1 MPC
	5.1.2 Yao’s Grabled Circuits
	5.1.3 Append-only Bulletin Boards
	5.1.4 CSaRs
	5.1.5 MPC in the Presence of Contributors and Evaluators
	5.1.6 Multi-Key FHE with Distributed Setup
	5.2 Our Non-Interactive MPC Construction
	5.2.1 Construction Overview
	5.3. Optimizations
	5.4. Optimizing Communication and State Complexity in MPC
	5.4.1. Step 1: MPC with semi-malicious security
	5.4.2. Step 2: MPC with fully malicious security
	5.4.3 Properties of the resulting MPC construction
	5.5. Guaranteed Output Delivery

	CHAPTER SIX Blockchain Protocol for Sensor Network
	6.1 Access Control
	6.2 Security and Availability Guarantees of Protocol
	6.3 Implementation
	6.4 Simulation Results
	6.5 Simulated Cyberattacks

	CHAPTER SEVEN Conclusions and Impact
	REFERENCES

