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EXECUTIVE SUMMARY

The use of data analytics (DA) and machine learning (ML) to model subsurface processes in the
oil and gas (O&G) sector has gained significant popularity as of late. One widely explored
application is the use of ML-based models trained to replicate and forecast O&G production.
The utility of developed ML-based models is dependent on the data quality used in the model
development. Critical geologic, drilling, and well completion parameters are key to developing
models that are representative of the systems they reflect and would offer utility when applied
in practice. In the context of O&G production, ML models offer fast and accurate compliments
to traditional reservoir modeling and simulation approaches and can be employed to explore
the implications of different well completion, well placement, and production choices — thereby
contributing insight that can be used to then inform operational decisions.

This study examines and implements the proprietary deep learning ML-based model (model)
developed by Vikara et al. [1] for forecasting unconventional oil and gas production using well
data from the Permian Basin. The model was developed using an exclusive dataset that includes
time series data from an operator in the Permian Basin. The model is designed to jointly predict
daily oil, gas, and water production for horizontal wells as a function of bottom-hole pressure
drawdown, spatial placement across the study domain, and well-completion attributes. Key
features in the dataset include geologic properties from well log data, detailed well hydraulic
fracturing data, artificial lift design data, and well operating conditions. The model can predict
daily production for oil, water, and gas with accuracy on the order of 79 percent (for water and
gas) to 86 percent (for oil). The extensive input parameter set used in the development of the
model provides the utility to test and evaluate multiple controlling features on associated
production. These features include (but are not limited to) well completion attributes,
placement (spatially, at depth, and wellbore trajectory orientation), and operational controls on
production intensity (via pumping pressure downhole).

In this study, the model was explicitly applied to explore its utility to evaluate the impact of
varying drawdown strategies on the production forecast of one of the wells from the Permian
Basin dataset. Managing pressure drawdown has been identified as a way to improve estimated
ultimate recovery (EUR) due to the stress-dependent nature of fractures in shale reservoirs.
Research has shown that applying a lower pressure drawdown helps to maintain the reservoir
conductivity, resulting in higher productivity over the life of a well. Historic bottomhole pressure
data from the well over time was used as a benchmark from which to set more and less
aggressive pressure decline rates as bounding modeling cases. All pressure decline
rates/strategies were forecasted over 5 years, and the model was used to generate oil, water,
and gas prediction over the same timeframe. Results indicate that rapid drawdown of pressure
generates higher initial oil and gas production from the well. However, overall oil and gas
production over the medium to long term from rapid drawdown strategies is lower compared to
conservative drawdown strategies that sustain pressure. Rapid drawdown strategies resulted in
lower water production over the life of the well compared to conservative drawdown strategies.
This production forecast of the varying drawdown strategies could have significant operational
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and economic implications, with contrasting perspectives between well productivity and
profitability given typical oil and gas economics and the volatility in the oil and gas market.
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1 INTRODUCTION

Technological advancements that have occurred over the past two decades through horizontal
drilling and hydraulic fracturing have afforded the enabling components for producing
hydrocarbon from unconventional shale gas, tight gas, and tight oil formations—key resources
that are extensive in the United States. Horizontal wells drilled and completed in
unconventional oil and gas reservoirs using hydraulic fracturing techniques account for the vast
majority of hydrocarbon production in the United States (U.S.). [2] These techniques have been
central in revolutionizing the energy system in the U.S. and are leading drivers in the growth of
domestic oil and gas (O&G) production.

While the use of horizontal drilling and hydraulic fracturing in developing unconventional
resources has boosted hydrocarbon production in the United States [3, 4, 2, 5, 6, 7], recovery
factors from these resources remain relatively low. [8, 9] Opportunities exist to improve the
productivity from these resources which would directly enable improved use of the nation’s
energy assets. At the well level, improved recovery could mean improved economics for
operators, and potentially reduced environmental impact from O&G operations and lower
greenhouse gas emissions from using fewer wells, water, and vehicle transport for production
on a per-unit basis. One of the techniques that is been considered for improving the production
of unconventional O&G resources is to produce the well using a lower-pressure drawdown.

O&G operators have reported that producing slower or using pressure maintenance schemes
can be used as one of many potential strategies to enhance total production in unconventional
reservoirs. Typically, in unconventional or hydraulically fractured reservoirs, a rapid pressure
drawdown approach is employed to achieve high initial production (IP). However, controlling
choke to optimize drawdown, shut-in time, and pressure cycling/maintenance has been a tactic
to increase cumulative recovery (i.e., estimated ultimate recovery [EUR]) and overall recovery
factors—but these outcomes may come at the expense of higher IPs. Controlling pressure
drawdown results in a slower but more sustained production from the well. However, it is
expected that limiting pressure drawdown will maintain the reservoir permeability, leading to
higher production over the life of the well [10, 11]. Techno-economic analysis of 0&G
developments has shown that higher IPs from wells tend to correlate with greater economic
returns. [12, 13, 14] Operators, therefore, typically employ rapid pressure drawdown strategies
aimed to maximize initial production to achieve profitability objectives. However, research has
shown that the implementation of rapid pressure drawdown to achieve high IP can reduce
reservoir flow capacity and EUR. [15, 16] Therefore, effectively managing the production
pressure drawdown can significantly improve the well productivity and reservoir performance.

Machine learning (ML) technologies have gained interest in the oil and gas sector because of
their rapid prediction capability and capacity for effective generalization of complex systems.
[17, 18] ML offers enormous potential for augmenting and enhancing traditional reservoir
engineering strategies and can be applied to a multitude of use cases. For instance, several use
cases exist where ML has been applied towards formation, stratigraphy, and lithology
classification, inversion, and delineation [19, 20, 21], informing well drilling practices [22, 23],
and evaluating the effects of hydraulic fracturing designs on hydrocarbon production and other
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well responses in unconventional reservoirs. [24, 25, 26, 27, 28, 29, 30, 31] In addition to these
examples, many studies have focused on using ML for dynamic reservoir analysis by evaluating
time series-based oil or gas production over the life of producing wells. These studies utilize
different combinations of empirical data which include daily or monthly cumulative
hydrocarbon production values over all or a portion of each well’s productive life. Many of the
relevant studies apply deep learning ML strategies to capture and generalize the intrinsic
temporal or time sequence-based properties within the data. [32, 33, 34, 35, 36] Machine
learning has even been applied for pressure drawdown evaluation in shale reservoirs [37], but
examples in the literature are limited.

In this study, we aim to test the utility of a deep learning model developed by Vikara et al.
(2022) [1] in evaluating pressure drawdown strategies using a case study well in the Permian
Basin. The Vikara et al. (2022) study developed several supervised ML models for time series
prediction of daily oil, water, and gas in a select area of the Permian Basin. Different predictive
model variants were trained with specific formulations of proprietary and commonly-public
data features. Each model variant makes predictions utilizing input attributes that span well
performance (like pumping inlet pressure and days of production), completion (like water and
proppant volumes used, fracture interval length, and the number of stages and perforation
clusters), and spatial attributes (including well log data, drilling depth, and well spacing).
Proprietary datasets were acquired by the National Energy Technology Laboratory (NETL)
through an agreement with an operator with a large operational footprint in the Midland Basin.
Their study used a quasi-experimental framework to quantify the impact of oil and gas
operator-specific proprietary data on ML-based predictive model performance relative to using
oil and gas datasets that may be more commonly publicly available. Their study found that
model variants developed using input features not commonly available in the public domain
(including lift inlet pressure, well log data, and stage-level completion data) held upwards of a
30 percent improved performance accuracy compared to a model formulation that utilizes only
input attributes commonly publicly available. The Vikara et al. (2022) work helps demonstrate
the utility of time series-capable ML modeling as a complement to existing oil and gas
operational management strategies aimed at understanding the implications of well design,
placement, and management choices on resulting production outlooks. The best-performing
model proposed in their study utilizes downhole pump inlet pressure as a key input attribute.
Therefore, that model variant can be simulated under various pressure management cases to
test how the production response is reflected accordingly.
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2 STUDY APPROACH

The objective of this study is to test the efficacy of the “Proprietary Model” (referred to as
“model” from here on) proposed by Vikara et al. [1] towards evaluating the implications of
pressure drawdown strategies using a case study well in the Permian Basin. The model is used
to make predictions of three-stream fluid flows (i.e., oil, water, and gas) in a time series fashion.
A single well is used as a case study for this analysis. The resulting three-stream production
outlooks (at daily resolution) cover a series of different bottom-hole pressure drawdown and
management cases. Oil, water, and gas production volumes can then be evaluated in the
context of pressure drawdown. The following sub-sections discuss the data needs for the
model, an overview of the model performance, and the approach to generate the various
pressure drawdown cases.

2.1 MODEL OVERVIEW

The “Proprietary Model” proposed by Vikara et al. [1] is used as the base model for this analysis.
The “Proprietary Model” gets its namesake because it contains an input feature set with data
types that are not commonly available (in large quantities) in the public domain. Key proprietary
input data features include downhole pump inlet pressure, electric submersible pump (ESP)
size, detailed well hydraulic fracturing information (i.e., stages, clusters, sand and fluid
treatment per stage, average and initial shut-in pressure, and specific chemical additives
applied), as well log data of several geologic properties. Out of the three model variants
developed and evaluated in the Vikara et al. [1] study, the “Proprietary Model” variant showed
the highest overall performance for predicting daily three-stream fluid production. Additionally,
because the model leverages downhole pump inlet pressure data,? the model seems to lend
itself well to evaluating pressure management and associated production implications.

2.2 MODEL DATA SUMMARY AND DATA PROCESSING STEPS

A dataset of 318 horizontal wells in the Permian Basin (Exhibit 2-1) was used in the Vikara et al.
[1] study, of which 240 wells were drilled in the Wolfcamp formations and 76 wells were drilled
in the Spraberry and the Dean formations of the Permian Basin (Exhibit 2-2). The dataset was
compiled from proprietary and public sources, and with some attributes generated through
feature engineering. [1] The dataset contains features related to the location and orientation of
the wells, reservoir geologies, well completion parameters, and production performance
parameters (Exhibit 2-3). The wells in the dataset were drilled between January 2015 and
August 2020, with production ranging between 1 day and 1,969 days.

A suite of legacy well logs in the study area was also evaluated and included in the ML workflow.
The logs were evaluated to identify the tops of the different Wolfcamp, Spraberry, and Dean
formations as well as other geologic properties including gamma ray, resistivity, photoelectric
index, density, and neutron porosity values. Production wells were matched to logs based on
relative aerial proximity using the k-means clustering approach. Through this process, geologic

aThe feature importance assessment in the Vikara et al. [1] study indicated the pump inlet pressure is the most impactful
input data attribute on daily oil, water, and gas production compared to all other input attributes.

5
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data representative of the producing zones was harvested for wells that shared a common
cluster group (Exhibit 2-1). Two key data preprocessing steps were performed before model
training. The data were normalized to scale attribute data to a consistent range using min-max
scaling to improve the efficiency of the ML algorithm [38, 39, 40, 41] and time-series sequence
data was zero-padded to ensure that all wells had consistent sequence lengths. [42] Further
description of the data summary and preprocessing steps is available in Vikara et al. [1]

Exhibit 2-1. Map of the study area in the Midland Basin, Texas, highlighting locations of wells used in this study.
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Exhibit 2-2. Stratigraphic overview for the Midland Basin, Texas, proximal to the study area

Period Epoch Local Series

Stratigraphic/Formation Name

Reservoir Operational Name

Paleozoic

San Andreas

San Andreas

Guadalupian Ward
San Angelo/Glorieta San Angelo/Glorieta
Clearfork Upper Leonard
Upper Spraberry
Permian Leonardian Wichita Lower Spraberry Spraberry
Dean
Lower
P Wolfcamp Wolfcamp A
Wolfcamp B
Wolfcampian Wolfcamp
Wolfcamp C
Virgilian Cisco/Cline Wolfcamp D
Missourian Canyon Canyon
Pennsylvanian
!Des. Strawn Strawn
Moinesian
Atokan Atoka/Bend Atoka/Bend
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Exhibit 2-3. Descriptive statistical summary of study dataset features (includes records before dropping instances where null values exist)

Data Class Temporal Influence

Descriptive Statistics
Feature

Group

Well Performance Attributes

Well Completion Attributes

Feature 25th 50th 75th Description
Continuous @ Category Proprietary = Public Static Dynamic Count Stdev. Minimum : : : Maximum
percentile percentile percentile
Total days since wells were turned are online
Days Online (days) X 160,649 444 358 1 169 354 638 1,969 (under production); also include days well are
offline (shut-in)
Qil (bbls) X 153,726 292 264 1 115 205 382 2,795 Daily oil production volume for each well
Gas (Mcf) X 149,504 588 416 1 279 499 813 4,031 Daily gas production volume for each well
Water (bbls) X 155,798 662 692 1 215 402 834 12,941 Daily water production volume for each well
Pressure (psi) X 109,888 943 594 0 583 779 1,092 5,444 | Dallvinletpressure of the artificial gas lift
system (typically ESP) for each well
Perforated Interval X 318 9,042 1,491 998 7,627 9,575 10,177 14,686 Tota.l length of the ho.rlzontal (i.e., lateral)
(feet) section of a well that is perforated
ESP Size (rating) X 316 2,462 1,677 0 1,750 2,700 3,550 5,800 Flow rate of the ESP installed on the well
Stages (count) X 318 55 10 6 48 54 60 87 ar:ITunt of hydraulic fractured zones on each
Clusters per Stage X 318 3 oy 4 6 3 9 13 Average amount of perforation clusters per
(count) stage of each well
Shots per Cluster X 318 5 1 3 4 6 6 12 Volume of perforation shots per perforation
(count) cluster for each well
Fluid per Cluster X 318 1,071 303 517 833 1,056 1,268 2,300 Average volume of fluid per perforation cluster
(bbls) for each well
A | f t rforati
sand per Cluster (Ibs) X 318 43,981 | 10,680 9 35,614 44,406 50,530 90,086 verage volume of proppant per perforation
cluster for each well
Initial Shut-|.n X 318 3176 2,208 1,133 2,499 2,984 3,630 39,450 Ave.rage initial shuF in press'ure for each well
Pressure (psi) during the hydraulic fracturing process
Average Treatn.1ent X 318 7,365 711 5,032 6,928 7428 7,856 9,049 Average tre'atlng pre§sure for each well during
Pressure (psi) the hydraulic fracturing process
251
Resin-coated Average volume of resin-coated proppant
Proppant Volume X 318 103 59 0 89 126 141 g ) propp
pumped per perforated interval for each well
(Ibs per foot)
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D PO D D
0 D ptio
Ly 0 0 0 Prop Pub D 0 d
Surfactant Use X X X 318 Yes = 309 No =9 A nf)n—emulsmer o.r surfacta'nt agent used
(yes/no) during the hydraulic fracturing process
Clay Stabilizer Use Clay stabilizer used during the hydraulic
X X X 318 Yes =318 No =0 fracturing process that can prevent the
(yes/no) migration or swelling of clay particles
Scale inhibitor compound was used during the
Scale Inhibitor Use i i
X X X 318 Yes =231 No = 87 hydraulllc fracturlng process to prevent
(yes/no) formation of scale in the wellbore that may
inhibit fluid flow
Polymer breaking agent was used to reduce
Breaker Use (yes/no) X X X 318 Yes = 264 No =54 viscosity of fluid during the hydraulic fracturing
process
Lift Type (ESP or Gas) X X X 316 ESP =256 Gas Lift = 62 Indication If either an ESP or Gas lift was used
as an artificial lift system in the well
Orientation of the well derived from the
Azimuth (degrees) X X X 323 163 5 158 162 162 164 231 surface and bottom hole longitudes and
latitudes
Surface Hole Latitude X X X 318 32133 | 0.200 31.585 31.963 32.170 32.305 32.460 | Aneular distance north or south of the
(degrees) meridian for each well
Angular distance on the earth, east or west of
: Surface Hole the prime meridian at Greenwich, England, to
= ) X X X 18 -101.759 1161 -102.047 -101.82 -101.71 -101.659 -101.298 . .
Longitude (degrees) 3 0 0 0 826 0 6 016 the point on the earth's surface for which the
5 position is being determined
True Vertical Depth X X X 318 8,493 620 6,957 8,020 8,418 8,924 10,361 Dlsta.nce frf)m the surfa(_:e to the bottom of the
(feet) well in straight perpendicular line
= Avera'ge Bench X X X 213 475 389 0 0 600 625 2387 Distance between the outer most wells in a
Spacing (feet) bench of wells
3 Average gamma ray values. These logs
” Ave. Gamma Ra measure the natural emission of gamma rays
& APl \ X X X 143 77 32 7 60 84 99 141 by a formation. Shales and clays typically
possess high natural radioactivity relative to
other rock types
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Data Class ‘ Temporal Influence Descriptive Statistics

Feature

Feat
Group eature

Description
25th h 75th
Continuous = Category Proprietary = Public Static Dynamic Count Mean b Minimum - 8 50t. - : Maximum

percentile  percentile percentile

Average formation resistivity. These logs
measure the resistance of associated rocks to
X X X 143 662 3,445 5 20 50 147 32,243 flow of electrical currents. Hydrocarbons do
not conduct electricity while all formation
waters do and are much less resistive

Avg. Resistivity
(Ohm-m)

Average photoelectric absorption factor values.

Avg. Photoelectric X X X 143 35 0.9 25 31 3.4 38 12.9 The log can. infer mlr?eralqu. Sandstones have
(Pe) low Pe, while dolomites, limestones, clays, and

heavy and iron-bearing minerals have high Pe

Average density porosity values. The log
provides a record of a formation's bulk density.
Bulk density is affected by the density of the

X X X 143 0.09 0.05 -0.01 0.06 0.08 0.11 0.25 minerals forming the rock matrix in tandem
with the fluid enclosed in the pore spaces.
Porosity can, therefore, be inferred from the
bulk density

Avg. Density Porosity
(decimal)

Average neutron porosity values. The log
evaluates the effect of the formation on fast
Avg. Neutron X X X 143 0.14 0.06 0.02 0.10 0.15 0.18 031 | neutrons emitted by a source. Hydrogen
Porosity (decimal) common in pore fluids slows captured
neutrons substantially. Therefore, the log
responds to porosity in the rock matrix

Standard deviation of the gamma ray values for
X X X 143 22 14 0 18 21 27 99 each production zone for a cluster of
neighboring wells

Stdev. Gamma Ray
(API1)

Standard deviation of the formation resistivity
X X X 143 686 2,769 3 18 50 282 24,489 values for each production zone for a cluster of
neighboring wells

Stdev. Resistivity
(Ohm-m)

Standard deviation of the photoelectric
X X X 143 0.47 0.23 0.09 0.32 0.42 0.59 1.42 absorption factor values for each producing
zones for a cluster of neighboring wells

Stdev. Photoelectric
(Pe)

Standard deviation of the density porosity
X X X 143 0.05 0.04 0.01 0.02 0.03 0.05 0.22 values for each producing zones for a cluster of
neighboring wells

Stdev. Density
Porosity (decimal)

Standard deviation of the neutron porosity
X X X 143 0.05 0.04 0.01 0.03 0.04 0.06 0.25 values for each producing zones for a cluster of
neighboring wells

Stdev. Neutron
Porosity (decimal)
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2.3 MACHINE LEARNING MODEL DEVELOPMENT SUMMARY

The ML framework involved developing a deep learning-based model that enables the joint
prediction of daily oil (in bbls), water (in bbls), and gas (in Mcf) volumes for unconventional
shale wells placed in the Spraberry through Wolfcamp C reservoirs (highlighted orange in Exhibit
2-2). The model uses long short-term memory (LSTM) recurrent neural networks to enable
time-series prediction. Model development leveraged Python (version 3) and packages within
the Scikit-learn library [43] and Keras. [44] The model was designed to generate production
predictions over the entire life of the well. This affords the flexibility to adjust the duration to
implement multiple functions which can enable insight (and optimization) to well productivity
based on well completion, placement, and operational decisions including extending production
forecasts for existing wells and generating production forecasts for new or theoretical wells. The
model contains an input feature set spanning 43 attributes with data types that are not
commonly available (in large quantities) in the public domain. As noted in Section 2.1, key
proprietary input data features include downhole pump inlet pressure, ESP size, detailed well
hydraulic fracturing information (i.e., stages, clusters, sand and fluid treatment per stage,
average and initial shut-in pressure, and specific chemical additives applied), as well log data of
several geologic properties.

2.4 MODEL PREDICTION PERFORMANCE ASSESSMENT

The trained model was assessed using a holdout test and validation dataset, as well as against
the training data as an additional comparative measure. Root mean squared error (RMSE) and
R? were used to compare the predicted values from the model against historical production
data. RMSE (Equation 1) reflects the error between the predicted value and the ground truth.
Smaller RMSE values signify a low error between the predicted value and the ground truth and
vice-versa. RMSE is also reflected in the same units of the attribute of interest. R? (Equation 2)
reflects the degree of correlation between a predicted value and the ground truth. R% values
range between 0 and 1 and larger values closer to 1 represent minor discrepancies between the
ground truth and predicted values.

n
1
RMSE = EZ()/L- —¥,)? Equation 1
i=1

G-

R? = - Equation 2
S (v — 9)? a

where n represents the length of the dataset, y, is the observed value, J; is the simulated or
estimated response value, and y is the mean value across the observed values.
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2.5 MODEL PERFORMANCE SUMMARY

As discussed in Section 2.3, the model was used to predict daily oil, water, and gas production
from three sets of well data - the training, validation, and test sets (Exhibit 2-1). Exhibit 2-4
displays the model performance in terms of RMSE for the daily volume and the cumulative
volumes. The results show low error in the prediction performance, with the lowest prediction
error associated with oil production. Additionally, the model demonstrates little variability in
the prediction error across predictions of the test, validation, and test sets — the one exception
noted to water predictions from the test sets relative to the training and validation sets. A close
examination of the water production prediction attributes this issue to two wells in Glasscock
County where there was a significant underprediction of water production. These wells were
each drilled to depths of just over 7,700 feet—one of which targeted the Lower Spraberry (in
northern Glasscock County, Texas) and the other the Wolfcamp A (in central Glasscock County).

Exhibit 2-4. Model performance in RMSE for daily production prediction (left) and cumulative production (right)

Production - Daily Production - Cumulative
400 400,000
[ Training Data
350 [ Validation Data 350,000
1 Test Data — ]
o 300 = 300,000 -
- =
= 250 1 = 250,000 1
: i :
£ 200 —— 2 200,000
g | — | £
150 - = 150,000
Z Z
100 A 100,000 -
50 |_m 50,000
0 T T T 0 m T T
Oil Water Gas il Water Gas

Exhibit 2-5 displays the model performance in terms of R? for the daily fluid flows. A similar
observation was noted when assessing the model performance in terms of R%. The model
shows the highest prediction performance with daily (and cumulative) oil (R>> 0.8 on all data
sets) relative to the other two fluids. On average (across training, validation, and test datasets),
the model is capable of daily prediction accuracy (using R? values) over the entire life of a given
well on the order of 79 percent for water and gas to upwards of 86 percent (for oil). Overall, the
model does well at predicting multiple production outputs at daily resolution. The model also
accounts for and gives reasonable predictions in the three production streams when transient
well events, such as well shut-ins, occur. [1]

11
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Exhibit 2-5. Model prediction performance in R? for daily production prediction

Production - Daily
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0.4

0.2

0.0 T ' j

Oil Water Gas

2.6 CASE STUDY WELL

Exhibit 2-6 shows the comparison of empirical field data (including production and noted pump
inlet pressure) with the model’s predictions for one of the wells in the study test set. The well
(highlighted red in Exhibit 2-1) is completed in the Lower Spraberry (in western Howard County,
Texas) at a total vertical depth of 7,632 feet and has a perforated interval length of 9,780 ft. This
well has experienced relatively uninterrupted production over its life (roughly 380 days). The
three-stream fluid production predictions for this well show that the model is exemplary in
capturing the daily production trends for all fluid types. Additionally, there is little difference
noted in the simulated versus empirical cumulative production. Given that this well has shown
largely uninterrupted production and absence of transient events (i.e., spikes or rapid falloffs in
either pressure and empirical fluid production) as well as an observed lifespan that provides a
combination of a substantial subset of historic data (~ 1 year) and opportunity to forecast near-
term production into the future (< 5 years), this well was selected for use as the case study.

The historic pressure data that exists for this well which is also largely uninterrupted bodes well
for establishing a simple pressure decline model (outlined in Section 2.7) which is ultimately
used to generate several pressure management cases used as model input.

12
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Exhibit 2-6. Daily production prediction (top) and cumulative production (bottom) for a relatively uninterrupted
well using the joint production prediction model
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2.7 PRESSURE DECLINE MODEL AND PRESSURE DRAWDOWN CASES

The analyses in this study utilized a workflow in which the ML model was used to test the
production implications of varying the drawdown of the uninterrupted well from the test case
(presented in Exhibit 2-6). This workflow involved the creation of different synthetic pressure
drawdown cases used as model input. The model was fed these different pressure drawdown
cases to generate commensurate oil, water, and gas production outlooks. It is worth noting that
of all the model input requirements (listed in detail in Exhibit 3-7 in Vikara et al. [1]), daily pump
inlet pressure was the only input set that varied across the pressure drawdown cases evaluated.
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All other well performance, well completion, and spatial and placement attribute inputs were
fixed across all cases and set at the actual field setting noted for the case study well.

The actual, in-field pressure decline of the well was history matched using a modified Langmuir
isotherm equation as expressed in Equation 3 to enable forecasting and pressure drawdown
synthetic case creation. The Langmuir isotherm equation was selected to fit the historical data
due to its practicality in fitting the pressure-transient nature of the well which is non-linear and
hyperbolic. The Langmuir equation has traditionally been used to model experimental data
relating to the desorption of oil and gas from shale reservoirs as it relates the absorbed fluid
concentration in the shale matrix to the pressure of the reservoir system. [45, 46, 47]

Kt
Py = P = Pt (T—I—c‘) Equation 3

where P; represents the pressure (psi) at time t days in the well’s producing life, P; is the initial

pressure (psi) at time = 0 in the well’s producing life, P,,,;;: and K are constants, and c is the
pressure decline rate.

The R? metric as displayed in Equation 2 was used to gage the quality of the history match. The
pressure history match is strongly correlated to the observed pressure data from the case study
well, with an R? value of 0.96 (Exhibit 2-7). Derived values for the pressure decline function in
Equation 3 are expressed in Equation 4 below.
P, = P, —2788.33 ( >-39t ) Equation 4
£ 7 \5.39t + 209.05
Exhibit 2-7. History matched pressure data from the case study well
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Five pressure drawdown strategies were generated using Equation 4 by varying the pressure
decline rate variable. The pressure decline rate generated during the history-matching process
(i.e., c = 209.05) was considered a baseline case. Four additional cases were generated by
increasing or decreasing the baseline pressure decline rate by 25% and 50% from the baseline,
respectively (Exhibit 2-8). The decreased pressure decline rate cases represent conservative
pressure drawdown strategies, while increased pressure decline rate cases represent aggressive
drawdown strategies. All cases assume the same starting pressure as well as assume a minimum
flowing pressure of 400 psi.

Exhibit 2-8. Pressure decline rates for the modeled drawdown cases

Initial Pressure Fressure
Strategy Description (psi) (P) Decline
P : Rate (c)
Aggressive 50% increase in the drawdown rate 313.58
B Aggressive 25% increase in the drawdown rate 261.31
Baseli
C Standard aselln.e (dtjawdown rate modeled 3,107 509.05
from historical data)
D Conservative | 25% decrease in the drawdown rate 156.79
E Conservative | 50% decrease in the drawdown rate 104.53
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3 PRESSURE DRAWDOWN CASE RESULTS

The ML model was used to forecast daily three-stream production data for the varying pressure
drawdown cases (specified in Exhibit 2-8) over a five-year producing timeframe for each case.
Exhibit 3-1 displays the time-series profiles of the modeled pressure drawdown cases in tandem
with the predicted three-stream production outlooks. In general, the aggressive pressure
drawdown strategies (A and B) were observed to have the highest oil production rates in the
earlier time frames (< 45 days production) relative to other cases. The baseline and conservative
cases (C, D, and E), however, showed higher oil production rates later in the well’s producing life
(> 90 days of production) and a higher oil production peak. The results show that the timeframe
in which the oil production peak occurred across all cases directly corresponds to the pressure
decline rate value (c) modeled in the cases in Exhibit 2-8.

Model predictions similarly show higher gas production rates in the early times (until
approximately 105 producing days) for the aggressive A and B cases as compared to baseline
and conservative cases D and E (Exhibit 3-1). After approximately 105 days, gas production
peaks corresponding with higher production rates are observed in the baseline and conservative
drawdown strategies. In addition, peak oil and gas production rates were highest in case E,
decreasing accordingly with increasing pressure decline rates (Exhibit 3-2). The conservative
strategies show peak oil and gas occurring rates further into the production timeframe
compared to the aggressive cases. Overall, the conservative strategies showed a more sustained
duration of higher oil and gas production rates relative to the aggressive drawdown cases — a
notion that matches the heuristic understanding of unconventional oil and gas operations. [16,
15, 11, 10, 48]

The model’s water production predictions over time showed that the more conservative
strategies generated higher water production rates throughout the period explored (Exhibit
3-10) — not only in the later producing timeframes as was witnessed with oil and gas. The lowest
pressure decline rate case (Case E) generated the largest volumes of water. However, the most
aggressive pressure drawdown case (Case A) had the lowest overall water production rates
across the five-year production timeframe. The occurrence of peak water production rates for
the cases was noted to occur largely in the same timeframe (near t = eight to nine days) of each
other (Exhibit 3-2) regardless of the case-by-case trend in water production over the long term.
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Exhibit 3-1. Pressure drawdown strategies and the forecasted daily rates for oil, water, and gas over the first five
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Exhibit 3-2. Peak production time and rate for the modeled pressure drawdown cases

Peak Production Rates (bbls/day

Time of Peak Production

or Mcf/day) Rates (days)
(o]]] Gas Water (o]} Gas Water
A 731 797 3,058 51 90 8
B 756 848 3,116 68 116 8
C 776 888 3,149 86 139 9
D 794 918 3,171 104 161 9
E 810 941 3,186 120 182 9
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The cumulative production volume summation (Exhibit 3-3) shows that the more aggressive
pressure drawdown cases generate more oil and gas production in the short term (90 to 180
days of production), however, rates diminish quickly shortly after. In general, conservative cases
D and E provide the highest cumulative volumes of oil, gas, and water relative to all other cases
—even despite the later emergence of peak production for oil and gas. Cumulative production
data from the different cases are compared relative to baseline case C (Exhibit 3-3), which
closely reflects the infield pressure drawdown for the case study well. Analysis of cumulative
production data shows that aggressive drawdown strategies offer an increase of 1.89% to 4.47%
in oil production at 30 days and a 2.03% to 3.72% increase in oil production at 60 days relative
to the baseline (Exhibit 3-4). The relative difference in cumulative oil production for the
aggressive drawdown cases reduces between 0.22% and -3.37% of the baseline case C at 90
days of production. This difference extends even more so after one year of production to
between -10.74% and -22.83% and then between -7.03% and -14.52% after five years of
production (Exhibit 3-4). Similar trends are observed in gas production with aggressive pressure
drawdown strategies showing a difference as high as 8.49% to 18.94% relative to the baseline at
180 days of production, before reducing to -3.59% to -7.33% from the baseline at five years of
production (Exhibit 3-5). It is worth noting that despite the larger cumulative fluid volumes
produced under the conservative drawdown cases, these cases yield comparatively lower oil
and gas recovery in the short-term production (approximately 90 days for oil and 180 days for
gas production) and comparatively higher oil and gas recovery in the medium term. Cumulative
oil production was noted to be as low as -1.24% to -2.59% from the baseline at 90 days before
increasing to 6.68% and 13.06% more than the baseline at five years for the conservative
drawdown strategies. Cumulative gas production was noted to be as low as -5.76% to -9.50%
from the baseline at 90 days before increasing to 3.44% and 6.73% more than the baseline at
five years for the conservative drawdown strategies (Exhibit 3-5). Cumulative water production
prediction data demonstrate a much different trend compared to oil and gas — where Cases D
and E consistently produce more water than all other cases at every point in time (Exhibit 3-6).

Exhibit 3-3. Pressure drawdown strategies and the cumulative production outlook for oil, water, and gas over

the first 5 years
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The modeling results suggest that more aggressive pressure drawdowns may be advantageous
for initial production by providing more oil early on. However, the aggressive cases also result in
higher early associated gas production and do not sustain oil production at rates shown in more
conservative cases over the long term. From an economic point of view, greater production of
oil can potentially offer a larger revenue stream but the handling of associated gas and water
(depending on what they can be used for or how they are disposed of) can have a substantial
cost and/or environmental impacts. One of the more favorable tradeoffs observed is that more
aggressive drawdown approaches yield marginally lower water production — a result that would
lower a given project’s cost for water treatment and/or disposal to some degree. This will
potentially increase the profitability of the well. Plus, it has been noted that the injection of
large volumes of wastewater from O&G operations is strongly correlated to the increased
frequency of occurrence of induced seismic events. [49]

Exhibit 3-4. Comparison of cumulative oil production for the different pressure drawdown strategies over 30
days, 60 days, 90 days, 1 year, and 5 years of production

Incremental Daily Oil Production Difference Relative

Cumulative Oil Production (Mbbls/day)

to Case C (%)
Dz(\)/s Dz?/s ;:35 1Year 5 Years 30 o0 Dz?/s ;::s 1Year 5Years
14.96 36.26 55.97 91.50 129.60 | 268.09 4.47 3.72 -3.37 -20.04 -22.83 | -14.52
14.59 35.67 58.05 104.75 149.91 | 291.57 1.89 2.03 0.22 -8.46 -10.74 -7.03
14.32 34.96 57.92 114.43 167.95 | 313.63 Baseline

14.13 3441 57.20 121.12 | 184.06 | 33458 | -1.33 -1.57 -1.24 5.85 9.59 6.68

m (O[O | >

13.98 33.96 56.42 125.32 | 198.38 | 354.60 | -2.37 -2.86 -2.59 9.52 18.12 13.06

Exhibit 3-5. Comparison of cumulative gas production for the different pressure drawdown strategies over 30
days, 60 days, 90 days, 1 year, and 5 years of production

Dai ion Di .
Cumulative Gas Production (MMcf/day) Incremental Daily Gas Production Difference Relative to

Case C (%)
(1) 90 180 30 60 90 180
Days Days Days 1Year 5Years Days Days 1Year 5 Years
9.49 26.64 49.73 114.54 207.22 | 651.02 3.38 17.20 18.94 -3.46 -14.57 -7.33
9.26 23.96 45.36 118.68 226.53 | 677.29 0.87 5.41 8.49 0.03 -6.61 -3.59
9.18 22.73 41.81 118.65 242.56 | 702.54 Baseline

9.13 22.18 39.40 116.04 | 255.02 | 726.70 | -0.54 -2.42 -5.76 -2.20 5.14 3.44

m (O[O | >

9.10 21.88 37.84 111.99 | 263.87 | 749.83 | -0.87 -3.74 -9.50 -5.61 8.79 6.73
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Exhibit 3-6. Comparison of cumulative water production for the different pressure drawdown strategies over 30
days, 60 days, 90 days, 1 year, and 5 years of production

Incremental Daily Water Production Difference Relative
to Case C (%)

Cumulative Water Production (Mbbl/day)

60 90 180 1Year 5 Years 60 90 180
Days Days Days Days Days Days

84.68 | 140.10 | 184.44 | 265.71 | 369.62 | 898.69 -5.47 -9.67 -10.07 -16.88 -17.15 -9.14
87.86 | 148.71 | 196.82 | 296.74 | 411.35 | 946.44 -1.92 -4.12 -4.04 -7.17 -7.80 -4.32
155.10 | 205.10 | 319.66 | 446.14 | 989.13 Baseline
90.68 | 159.80 | 211.81 | 336.58 | 475.85 | 1,028.30 1.23 3.03 3.27 5.29 6.66 3.96
91.46 | 163.20 | 217.55 | 348.85 | 501.64 | 1,064.82 2.10 5.23 6.07 9.13 12.44 7.65

m |0 O |®m |>
00
©
Ul
00

20



EVALUATING PRODUCTION IMPLICATIONS OF PRESSURE MAINTENANCE IN UNCONVENTIONAL OIL AND GAS
WELLS USING A MACHINE LEARNING MODELING APPROACH: CASE STUDY IN THE PERMIAN BASIN

4 CONCLUSIONS

The advancement in DA and ML affords a multitude of opportunities for O&G operators to apply
these types of data-driven techniques toward improving reservoir management and operational
decisions. The ML-based model employed in this study was purposely implemented to explore
its utility to evaluate the impact of varying drawdown strategies on production for one case
study well in the Permian Basin. The study findings largely support that the application of the
deep learning-based, three-stream predictive model developed under the Vikara et al. study [1]
can offer utility in evaluating the effect of pressure drawdown strategies on total hydrocarbon
and water production from shale reservoirs. The three stream fluid predictions resulting from
the various pressure management cases evaluated within the study largely trend with notional
expectations of unconventional O&G operations undergoing either rapid or more sustained
pressure management strategies. Results demonstrate that aggressive and rapid drawdown
cases tend to provide earlier peak oil and gas production relative to the more sustained
pressure management cases. However, the more sustained pressure cases produce larger
cumulative volumes of oil and gas (and water) overall.

The deep learning-based model used for this study was found to accurately replicate and
forecast production from unconventional reservoirs in the Permian Basin when developed with
a mix of well performance, completion, and well placement attributes as inputs. [1] While the
production outlooks generated in this study appear to suggest that the model’s response to
dynamic pressure data matches the heuristic understanding of unconventional oil and gas
operations, validating model predictions is still needed. This notable limitation may warrant
further exploration through field testing and validation (and potentially calibration) of ML-based
model performance. It is also worth noting that the model leans heavily on data that is largely
held propriety by O&G operations — therefore, adapting the model for application to other
regions of interest would require procuring the needed data for transferability.

Given that advanced computational resources are becoming more widely available and digital
formats of O&G data are becoming the norm, ML and DA are slated to provide unique and
valuable compliments to existing approaches for O&G operational decision support. [18, 50]
The model applied in this study was used to explore one specific aspect of unconventional O&G
operations. However, the model itself was originally developed to evaluate and appraise the
impact of various types of data (those considered proprietary vs. data more publicly available)
on model response using three-stream production in unconventional wells as a modeling focus.
As a result, these ML-based models, while typically built to be fit for purpose, afford the ability
to be modified to address additional objectives (an aspect of transfer learning). Therefore, the
model, or variants like it, could be utilized to more utility in future endeavors moving forward.
For instance, this sort of rapid and accurate prediction model employed in this study can be
leveraged to help assess the multitude of completion, design, and production implications
associated with unconventional O&G operations. Additionally, ML models of this nature can be
advantageous for O&G operators in evaluating drawdown strategies aimed to optimize project
economics, especially given the volatile nature of O&G markets and commodity prices. They can
also be used to explore the effect of alternative well design decisions on production, including
hydraulic fracture completion parameters. It has been noted that significant environmental
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concerns exist associated with shale O&G development including water usage, induced
seismicity correlation with wastewater disposal through subsurface injection, and flaring (and
possible venting) of produced natural gas. This study’s model output can directly provide the
needed insight to support the formulation of management and/or remedial strategies based on
the volumes of fluids expected from unconventional O&G development operational conditions.
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