
 

 
 
  

Evaluating Production Implications of Pressure 
Maintenance in Unconventional Oil and Gas Wells 
using a Machine Learning Modeling Approach: Case 
Study in the Permian Basin 

January 31, 2023 
DOE/NETL-2023/4379 

 



 

Disclaimer 
 
This project was funded by the United States Department of Energy, National Energy 
Technology Laboratory, in part, through a site support contract. Neither the United 
States Government nor any agency thereof, nor any of their employees, nor the 
support contractor, nor any of their employees, makes any warranty, express or implied, 
or assumes any legal liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The views and 
opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 
 
All images in this report were created by NETL, unless otherwise noted.



EVALUATING PRODUCTION IMPLICATIONS OF PRESSURE MAINTENANCE IN UNCONVENTIONAL OIL AND GAS 
WELLS USING A MACHINE LEARNING MODELING APPROACH: CASE STUDY IN THE PERMIAN BASIN 

 

 
 
Kolawole Bello1,2: Conceptualization, Methodology, Programming, 
Formal Analysis, Visualization, Investigation, Resources, Writing - 
Original draft preparation, Validation, Writing - Review & Editing; 
Derek Vikara1,2: Conceptualization, Methodology, Programming, 
Formal Analysis, Investigation, Resources, Writing - Original draft 
preparation, Validation, Writing - Review & Editing, Supervision; 
Luciane Cunha2*: Project Administration, Funding Acquisition, Writing 
- Review & Editing 

 
1National Energy Technology Laboratory (NETL) support contractor 
2NETL 
*Corresponding contact: Luciane.cunha@netl.doe.gov  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Suggested Citation: 
K. Bello, D. Vikara, and L. Cunha, "Evaluating Production Implications of Pressure 
Maintenance in Unconventional Oil and Gas Wells using a Machine Learning Modeling 
Approach: Case Study in the Permian Basin," National Energy Technology Laboratory, 
Pittsburgh, Pennsylvania, January 31, 2023. 
 

mailto:Luciane.cunha@netl.doe.gov


EVALUATING PRODUCTION IMPLICATIONS OF PRESSURE MAINTENANCE IN UNCONVENTIONAL OIL AND GAS 
WELLS USING A MACHINE LEARNING MODELING APPROACH: CASE STUDY IN THE PERMIAN BASIN 

 

 

This page intentionally left blank.  
 



EVALUATING PRODUCTION IMPLICATIONS OF PRESSURE MAINTENANCE IN UNCONVENTIONAL OIL AND GAS 
WELLS USING A MACHINE LEARNING MODELING APPROACH: CASE STUDY IN THE PERMIAN BASIN 

i  
 

TABLE OF CONTENTS 
List of Exhibits ............................................................................................................................... ii 
List of Equations ........................................................................................................................... ii 
Acronyms and Abbreviations .................................................................................................... iii 
Executive Summary .................................................................................................................... 1 
1 Introduction .......................................................................................................................... 3 
2 Study Approach .................................................................................................................. 5 

2.1 Model Overview ........................................................................................................... 5 
2.2 Model Data Summary and Data Processing Steps .................................................. 5 
2.3 Machine Learning Model Development Summary ................................................ 10 
2.4 Model Prediction Performance Assessment ........................................................... 10 
2.5 Model Performance Summary ................................................................................. 11 
2.6 Case Study Well .......................................................................................................... 12 
2.7 Pressure Decline Model and Pressure Drawdown Cases ...................................... 13 

3 Pressure Drawdown Case Results .................................................................................... 16 
4 Conclusions ........................................................................................................................ 21 
References ................................................................................................................................ 23 
 



EVALUATING PRODUCTION IMPLICATIONS OF PRESSURE MAINTENANCE IN UNCONVENTIONAL OIL AND GAS 
WELLS USING A MACHINE LEARNING MODELING APPROACH: CASE STUDY IN THE PERMIAN BASIN 

ii  
 

LIST OF EXHIBITS 
Exhibit 2-1. Map of the study area in the Midland Basin, Texas, highlighting locations of 
wells used in this study. ............................................................................................................... 6 
Exhibit 2-2. Stratigraphic overview for the Midland Basin, Texas, proximal to the study 
area .............................................................................................................................................. 6 
Exhibit 2-3. Descriptive statistical summary of study dataset features (includes records 
before dropping instances where null values exist) ............................................................... 7 
Exhibit 2-4. Model performance in RMSE for daily production prediction (left) and 
cumulative production (right) ................................................................................................. 11 
Exhibit 2-5.  Model prediction performance in R2 for daily production prediction ........... 12 
Exhibit 2-6. Daily production prediction (top) and cumulative production (bottom) for a 
relatively uninterrupted well using the joint production prediction model ........................ 13 
Exhibit 2-7. History matched pressure data from the case study well ................................ 14 
Exhibit 2-8. Pressure decline rates for the modeled drawdown cases ............................... 15 
Exhibit 3-1. Pressure drawdown strategies and the forecasted daily rates for oil, water, 
and gas over the first five years of production ..................................................................... 17 
Exhibit 3-2. Peak production time and rate for the modeled pressure drawdown cases 17 
Exhibit 3-3. Pressure drawdown strategies and the cumulative production outlook for oil, 
water, and gas over the first 5 years ...................................................................................... 18 
Exhibit 3-4. Comparison of cumulative oil production for the different pressure 
drawdown strategies over 30 days, 60 days, 90 days, 1 year, and 5 years of production
 .................................................................................................................................................... 19 
Exhibit 3-5. Comparison of cumulative gas production for the different pressure 
drawdown strategies over 30 days, 60 days, 90 days, 1 year, and 5 years of production
 .................................................................................................................................................... 19 
Exhibit 3-6. Comparison of cumulative water production for the different pressure 
drawdown strategies over 30 days, 60 days, 90 days, 1 year, and 5 years of production
 .................................................................................................................................................... 20 

 

LIST OF EQUATIONS 
Equation 1 ................................................................................................................................. 10 
Equation 2 ................................................................................................................................. 10 
Equation 3 ................................................................................................................................. 14 
Equation 4 ................................................................................................................................. 14 
 
 



EVALUATING PRODUCTION IMPLICATIONS OF PRESSURE MAINTENANCE IN UNCONVENTIONAL OIL AND GAS 
WELLS USING A MACHINE LEARNING MODELING APPROACH: CASE STUDY IN THE PERMIAN BASIN 

iii  
 

ACRONYMS AND ABBREVIATIONS 
API American Petroleum Institute 
bbls Barrels 
DA Data Analytics 
ESP Electric submersible pump 
EUR Estimated ultimate recovery 
IP Initial production 
lbs Pounds 
LSTM Long short-term memory 
Mbbls Thousand barrels  
Mcf Thousand cubic feet 
MMcf Million cubic feet 
ML Machine learning 
MSE Mean squared error 
O&G Oil and gas 
Pe Photoelectric factor 
psi Pounds per square inch 
RMSE Root mean squared error 



EVALUATING PRODUCTION IMPLICATIONS OF PRESSURE MAINTENANCE IN UNCONVENTIONAL OIL AND GAS 
WELLS USING A MACHINE LEARNING MODELING APPROACH: CASE STUDY IN THE PERMIAN BASIN 

iv 
 

This page intentionally left blank. 



EVALUATING PRODUCTION IMPLICATIONS OF PRESSURE MAINTENANCE IN UNCONVENTIONAL OIL AND GAS 
WELLS USING A MACHINE LEARNING MODELING APPROACH: CASE STUDY IN THE PERMIAN BASIN 

1 
 

EXECUTIVE SUMMARY  
The use of data analytics (DA) and machine learning (ML) to model subsurface processes in the 
oil and gas (O&G) sector has gained significant popularity as of late. One widely explored 
application is the use of ML-based models trained to replicate and forecast O&G production. 
The utility of developed ML-based models is dependent on the data quality used in the model 
development. Critical geologic, drilling, and well completion parameters are key to developing 
models that are representative of the systems they reflect and would offer utility when applied 
in practice. In the context of O&G production, ML models offer fast and accurate compliments 
to traditional reservoir modeling and simulation approaches and can be employed to explore 
the implications of different well completion, well placement, and production choices – thereby 
contributing insight that can be used to then inform operational decisions. 

This study examines and implements the proprietary deep learning ML-based model (model) 
developed by Vikara et al. [1] for forecasting unconventional oil and gas production using well 
data from the Permian Basin. The model was developed using an exclusive dataset that includes 
time series data from an operator in the Permian Basin. The model is designed to jointly predict 
daily oil, gas, and water production for horizontal wells as a function of bottom-hole pressure 
drawdown, spatial placement across the study domain, and well-completion attributes. Key 
features in the dataset include geologic properties from well log data, detailed well hydraulic 
fracturing data, artificial lift design data, and well operating conditions. The model can predict 
daily production for oil, water, and gas with accuracy on the order of 79 percent (for water and 
gas) to 86 percent (for oil). The extensive input parameter set used in the development of the 
model provides the utility to test and evaluate multiple controlling features on associated 
production. These features include (but are not limited to) well completion attributes, 
placement (spatially, at depth, and wellbore trajectory orientation), and operational controls on 
production intensity (via pumping pressure downhole).  

In this study, the model was explicitly applied to explore its utility to evaluate the impact of 
varying drawdown strategies on the production forecast of one of the wells from the Permian 
Basin dataset. Managing pressure drawdown has been identified as a way to improve estimated 
ultimate recovery (EUR) due to the stress-dependent nature of fractures in shale reservoirs. 
Research has shown that applying a lower pressure drawdown helps to maintain the reservoir 
conductivity, resulting in higher productivity over the life of a well. Historic bottomhole pressure 
data from the well over time was used as a benchmark from which to set more and less 
aggressive pressure decline rates as bounding modeling cases. All pressure decline 
rates/strategies were forecasted over 5 years, and the model was used to generate oil, water, 
and gas prediction over the same timeframe. Results indicate that rapid drawdown of pressure 
generates higher initial oil and gas production from the well. However, overall oil and gas 
production over the medium to long term from rapid drawdown strategies is lower compared to 
conservative drawdown strategies that sustain pressure. Rapid drawdown strategies resulted in 
lower water production over the life of the well compared to conservative drawdown strategies.  
This production forecast of the varying drawdown strategies could have significant operational 
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and economic implications, with contrasting perspectives between well productivity and 
profitability given typical oil and gas economics and the volatility in the oil and gas market. 
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1 INTRODUCTION  
Technological advancements that have occurred over the past two decades through horizontal 
drilling and hydraulic fracturing have afforded the enabling components for producing 
hydrocarbon from unconventional shale gas, tight gas, and tight oil formations—key resources 
that are extensive in the United States. Horizontal wells drilled and completed in 
unconventional oil and gas reservoirs using hydraulic fracturing techniques account for the vast 
majority of hydrocarbon production in the United States (U.S.). [2] These techniques have been 
central in revolutionizing the energy system in the U.S. and are leading drivers in the growth of 
domestic oil and gas (O&G) production. 

While the use of horizontal drilling and hydraulic fracturing in developing unconventional 
resources has boosted hydrocarbon production in the United States [3, 4, 2, 5, 6, 7], recovery 
factors from these resources remain relatively low. [8, 9] Opportunities exist to improve the 
productivity from these resources which would directly enable improved use of the nation’s 
energy assets. At the well level, improved recovery could mean improved economics for 
operators, and potentially reduced environmental impact from O&G operations and lower 
greenhouse gas emissions from using fewer wells, water, and vehicle transport for production 
on a per-unit basis.  One of the techniques that is been considered for improving the production 
of unconventional O&G resources is to produce the well using a lower-pressure drawdown.    

O&G operators have reported that producing slower or using pressure maintenance schemes 
can be used as one of many potential strategies to enhance total production in unconventional 
reservoirs. Typically, in unconventional or hydraulically fractured reservoirs, a rapid pressure 
drawdown approach is employed to achieve high initial production (IP). However, controlling 
choke to optimize drawdown, shut-in time, and pressure cycling/maintenance has been a tactic 
to increase cumulative recovery (i.e., estimated ultimate recovery [EUR]) and overall recovery 
factors—but these outcomes may come at the expense of higher IPs. Controlling pressure 
drawdown results in a slower but more sustained production from the well. However, it is 
expected that limiting pressure drawdown will maintain the reservoir permeability, leading to 
higher production over the life of the well [10, 11]. Techno-economic analysis of O&G 
developments has shown that higher IPs from wells tend to correlate with greater economic 
returns. [12, 13, 14] Operators, therefore, typically employ rapid pressure drawdown strategies 
aimed to maximize initial production to achieve profitability objectives. However, research has 
shown that the implementation of rapid pressure drawdown to achieve high IP can reduce 
reservoir flow capacity and EUR. [15, 16] Therefore, effectively managing the production 
pressure drawdown can significantly improve the well productivity and reservoir performance.   

Machine learning (ML) technologies have gained interest in the oil and gas sector because of 
their rapid prediction capability and capacity for effective generalization of complex systems. 
[17, 18] ML offers enormous potential for augmenting and enhancing traditional reservoir 
engineering strategies and can be applied to a multitude of use cases. For instance, several use 
cases exist where ML has been applied towards formation, stratigraphy, and lithology 
classification, inversion, and delineation [19, 20, 21], informing well drilling practices [22, 23], 
and evaluating the effects of hydraulic fracturing designs on hydrocarbon production and other 
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well responses in unconventional reservoirs. [24, 25, 26, 27, 28, 29, 30, 31] In addition to these 
examples, many studies have focused on using ML for dynamic reservoir analysis by evaluating 
time series-based oil or gas production over the life of producing wells. These studies utilize 
different combinations of empirical data which include daily or monthly cumulative 
hydrocarbon production values over all or a portion of each well’s productive life. Many of the 
relevant studies apply deep learning ML strategies to capture and generalize the intrinsic 
temporal or time sequence-based properties within the data. [32, 33, 34, 35, 36] Machine 
learning has even been applied for pressure drawdown evaluation in shale reservoirs [37], but 
examples in the literature are limited. 

In this study, we aim to test the utility of a deep learning model developed by Vikara et al. 
(2022) [1] in evaluating pressure drawdown strategies using a case study well in the Permian 
Basin. The Vikara et al. (2022) study developed several supervised ML models for time series 
prediction of daily oil, water, and gas in a select area of the Permian Basin. Different predictive 
model variants were trained with specific formulations of proprietary and commonly-public 
data features. Each model variant makes predictions utilizing input attributes that span well 
performance (like pumping inlet pressure and days of production), completion (like water and 
proppant volumes used, fracture interval length, and the number of stages and perforation 
clusters), and spatial attributes (including well log data, drilling depth, and well spacing). 
Proprietary datasets were acquired by the National Energy Technology Laboratory (NETL) 
through an agreement with an operator with a large operational footprint in the Midland Basin. 
Their study used a quasi-experimental framework to quantify the impact of oil and gas 
operator-specific proprietary data on ML-based predictive model performance relative to using 
oil and gas datasets that may be more commonly publicly available. Their study found that 
model variants developed using input features not commonly available in the public domain 
(including lift inlet pressure, well log data, and stage-level completion data) held upwards of a 
30 percent improved performance accuracy compared to a model formulation that utilizes only 
input attributes commonly publicly available. The Vikara et al. (2022) work helps demonstrate 
the utility of time series-capable ML modeling as a complement to existing oil and gas 
operational management strategies aimed at understanding the implications of well design, 
placement, and management choices on resulting production outlooks. The best-performing 
model proposed in their study utilizes downhole pump inlet pressure as a key input attribute. 
Therefore, that model variant can be simulated under various pressure management cases to 
test how the production response is reflected accordingly.   
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2 STUDY APPROACH 
The objective of this study is to test the efficacy of the “Proprietary Model” (referred to as 
“model” from here on) proposed by Vikara et al. [1] towards evaluating the implications of 
pressure drawdown strategies using a case study well in the Permian Basin. The model is used 
to make predictions of three-stream fluid flows (i.e., oil, water, and gas) in a time series fashion. 
A single well is used as a case study for this analysis. The resulting three-stream production 
outlooks (at daily resolution) cover a series of different bottom-hole pressure drawdown and 
management cases. Oil, water, and gas production volumes can then be evaluated in the 
context of pressure drawdown. The following sub-sections discuss the data needs for the 
model, an overview of the model performance, and the approach to generate the various 
pressure drawdown cases. 

2.1 MODEL OVERVIEW 
The “Proprietary Model” proposed by Vikara et al. [1] is used as the base model for this analysis. 
The “Proprietary Model” gets its namesake because it contains an input feature set with data 
types that are not commonly available (in large quantities) in the public domain. Key proprietary 
input data features include downhole pump inlet pressure, electric submersible pump (ESP) 
size, detailed well hydraulic fracturing information (i.e., stages, clusters, sand and fluid 
treatment per stage, average and initial shut-in pressure, and specific chemical additives 
applied), as well log data of several geologic properties. Out of the three model variants 
developed and evaluated in the Vikara et al. [1] study, the “Proprietary Model” variant showed 
the highest overall performance for predicting daily three-stream fluid production. Additionally, 
because the model leverages downhole pump inlet pressure data,a the model seems to lend 
itself well to evaluating pressure management and associated production implications.  

2.2 MODEL DATA SUMMARY AND DATA PROCESSING STEPS 
A dataset of 318 horizontal wells in the Permian Basin (Exhibit 2-1) was used in the Vikara et al. 
[1] study, of which 240 wells were drilled in the Wolfcamp formations and 76 wells were drilled 
in the Spraberry and the Dean formations of the Permian Basin (Exhibit 2-2). The dataset was 
compiled from proprietary and public sources, and with some attributes generated through 
feature engineering. [1] The dataset contains features related to the location and orientation of 
the wells, reservoir geologies, well completion parameters, and production performance 
parameters (Exhibit 2-3). The wells in the dataset were drilled between January 2015 and 
August 2020, with production ranging between 1 day and 1,969 days.   

A suite of legacy well logs in the study area was also evaluated and included in the ML workflow.  
The logs were evaluated to identify the tops of the different Wolfcamp, Spraberry, and Dean 
formations as well as other geologic properties including gamma ray, resistivity, photoelectric 
index, density, and neutron porosity values. Production wells were matched to logs based on 
relative aerial proximity using the k-means clustering approach. Through this process, geologic 

 
a The feature importance assessment in the Vikara et al. [1] study indicated the pump inlet pressure is the most impactful 
input data attribute on daily oil, water, and gas production compared to all other input attributes.  



EVALUATING PRODUCTION IMPLICATIONS OF PRESSURE MAINTENANCE IN UNCONVENTIONAL OIL AND GAS 
WELLS USING A MACHINE LEARNING MODELING APPROACH: CASE STUDY IN THE PERMIAN BASIN 

6 
 

data representative of the producing zones was harvested for wells that shared a common 
cluster group (Exhibit 2-1). Two key data preprocessing steps were performed before model 
training. The data were normalized to scale attribute data to a consistent range using min-max 
scaling to improve the efficiency of the ML algorithm [38, 39, 40, 41] and time-series sequence 
data was zero-padded to ensure that all wells had consistent sequence lengths. [42] Further 
description of the data summary and preprocessing steps is available in Vikara et al. [1] 

Exhibit 2-1. Map of the study area in the Midland Basin, Texas, highlighting locations of wells used in this study.  

 

Exhibit 2-2. Stratigraphic overview for the Midland Basin, Texas, proximal to the study area 

Era Period Epoch Local Series Stratigraphic/Formation Name Reservoir Operational Name 

Pa
le

oz
oi

c 

Permian 

Guadalupian Ward 
San Andreas San Andreas 

San Angelo/Glorieta San Angelo/Glorieta 

Leonardian 

Clearfork Upper Leonard 

Wichita 

Upper Spraberry 

Spraberry Lower Spraberry 

Dean 

Lower 
Leonard Wolfcamp Wolfcamp A  

Wolfcampian Wolfcamp 
Wolfcamp B 

Wolfcamp C 

Pennsylvanian 

Virgilian Cisco/Cline Wolfcamp D 

Missourian Canyon Canyon 

Des 
Moinesian Strawn Strawn 

Atokan Atoka/Bend Atoka/Bend 
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Exhibit 2-3. Descriptive statistical summary of study dataset features (includes records before dropping instances where null values exist) 

Feature 
Group Feature 

Data Class Temporal Influence Descriptive Statistics 

Description 
Continuous Category Proprietary Public Static Dynamic Count Mean Stdev. Minimum 25th 

percentile 
50th 

percentile 
75th 

percentile Maximum 

W
el

l P
er

fo
rm

an
ce

 A
tt

rib
ut

es
 

Days Online (days) X   X  X 160,649 444 358 1 169 354 638 1,969 
Total days since wells were turned are online 
(under production); also include days well are 
offline (shut-in) 

Oil (bbls) X   X  X 153,726 292 264 1 115 205 382 2,795 Daily oil production volume for each well 

Gas (Mcf) X   X  X 149,504 588 416 1 279 499 813 4,031 Daily gas production volume for each well 

Water (bbls) X   X  X 155,798 662 692 1 215 402 834 12,941 Daily water production volume for each well 

Pressure (psi) X  X   X 109,888 943 594 0 583 779 1,092 5,444 Daily inlet pressure of the artificial gas lift 
system (typically ESP) for each well 

W
el

l C
om

pl
et

io
n 

At
tr

ib
ut

es
 

Perforated Interval 
(feet) X   X X  318 9,042 1,491 998 7,627 9,575 10,177 14,686 Total length of the horizontal (i.e., lateral) 

section of a well that is perforated 

ESP Size (rating) X  X  X  316 2,462 1,677 0 1,750 2,700 3,550 5,800 Flow rate of the ESP installed on the well 

Stages (count) X  X  X  318 55 10 6 48 54 60 87 Amount of hydraulic fractured zones on each 
well 

Clusters per Stage 
(count) X  X  X  318 8 2 4 6 8 9 13 Average amount of perforation clusters per 

stage of each well 

Shots per Cluster 
(count) X  X  X  318 5 1 3 4 6 6 12 Volume of perforation shots per perforation 

cluster for each well 

Fluid per Cluster 
(bbls) X  X  X  318 1,071 303 517 833 1,056 1,268 2,300 Average volume of fluid per perforation cluster 

for each well 

Sand per Cluster (lbs) X  X  X  318 43,981 10,680 9 35,614 44,406 50,530 90,086 Average volume of proppant per perforation 
cluster for each well 

Initial Shut-in 
Pressure (psi) X  X  X  318 3,176 2,208 1,133 2,499 2,984 3,630 39,450 Average initial shut in pressure for each well 

during the hydraulic fracturing process 

Average Treatment 
Pressure (psi) X  X  X  318 7,365 711 5,032 6,928 7,428 7,856 9,049 Average treating pressure for each well during 

the hydraulic fracturing process 

Resin-coated 
Proppant Volume 

(lbs per foot) 
X  X  X  318 103 59 0 89 126 141 

251 

 

 

 

Average volume of resin-coated proppant 
pumped per perforated interval for each well 
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Feature 
Group Feature 

Data Class Temporal Influence Descriptive Statistics 

Description 
Continuous Category Proprietary Public Static Dynamic Count Mean Stdev. Minimum 25th 

percentile 
50th 

percentile 
75th 

percentile Maximum 

  

Surfactant Use 
(yes/no) 

 X X  X  318 Yes = 309 No = 9 A non-emulsifier or surfactant agent used 
during the hydraulic fracturing process 

Clay Stabilizer Use  

(yes/no) 
 X X  X  318 Yes = 318 No = 0 

Clay stabilizer used during the hydraulic 
fracturing process that can prevent the 
migration or swelling of clay particles 

Scale Inhibitor Use  

(yes/no) 
 X X  X  318 Yes = 231 No = 87 

Scale inhibitor compound was used during the 
hydraulic fracturing process to prevent 
formation of scale in the wellbore that may 
inhibit fluid flow 

Breaker Use (yes/no)  X X  X  318 Yes = 264 No = 54 
Polymer breaking agent was used to reduce 
viscosity of fluid during the hydraulic fracturing 
process 

Lift Type (ESP or Gas)  X X  X  316 ESP = 256 Gas Lift = 62 Indication if either an ESP or Gas lift was used 
as an artificial lift system in the well 

Azimuth (degrees) X   X X  323 163 5 158 162 162 164 231 
Orientation of the well derived from the 
surface and bottom hole longitudes and 
latitudes 

Sp
at

ia
l a

nd
 P

la
ce

m
en

t A
tt

rib
ut

es
 

Surface Hole Latitude 
(degrees) X   X X  318 32.133 0.200 31.585 31.963 32.170 32.305 32.460 Angular distance north or south of the 

meridian for each well 

Surface Hole 
Longitude (degrees) X   X X  318 -101.759 0.161 -102.047 -101.826 -101.716 -101.659 -101.298 

Angular distance on the earth, east or west of 
the prime meridian at Greenwich, England, to 
the point on the earth's surface for which the 
position is being determined 

True Vertical Depth 
(feet) X   X X  318 8,493 620 6,957 8,020 8,418 8,924 10,361 Distance from the surface to the bottom of the 

well in straight perpendicular line 

Average Bench 
Spacing (feet) X   X X  213 475 389 0 0 600 625 2,387 Distance between the outer most wells in a 

bench of wells 

Avg. Gamma Ray 
(API) X  X  X  143 77 32 7 60 84 99 141 

Average gamma ray values. These logs 
measure the natural emission of gamma rays 
by a formation. Shales and clays typically 
possess high natural radioactivity relative to 
other rock types 
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Feature 
Group Feature 

Data Class Temporal Influence Descriptive Statistics 

Description 
Continuous Category Proprietary Public Static Dynamic Count Mean Stdev. Minimum 25th 

percentile 
50th 

percentile 
75th 

percentile Maximum 

Avg. Resistivity 
(Ohm-m) X  X  X  143 662 3,445 5 20 50 147 32,243 

Average formation resistivity. These logs 
measure the resistance of associated rocks to 
flow of electrical currents. Hydrocarbons do 
not conduct electricity while all formation 
waters do and are much less resistive 

Avg. Photoelectric 
(Pe) X  X  X  143 3.5 0.9 2.5 3.1 3.4 3.8 12.9 

Average photoelectric absorption factor values. 
The log can infer mineralogy. Sandstones have 
low Pe, while dolomites, limestones, clays, and 
heavy and iron-bearing minerals have high Pe 

Avg. Density Porosity 
(decimal) X  X  X  143 0.09 0.05 -0.01 0.06 0.08 0.11 0.25 

Average density porosity values. The log 
provides a record of a formation's bulk density. 
Bulk density is affected by the density of the 
minerals forming the rock matrix in tandem 
with the fluid enclosed in the pore spaces. 
Porosity can, therefore, be inferred from the 
bulk density 

Avg. Neutron 
Porosity (decimal) X  X  X  143 0.14 0.06 0.02 0.10 0.15 0.18 0.31 

Average neutron porosity values. The log 
evaluates the effect of the formation on fast 
neutrons emitted by a source. Hydrogen 
common in pore fluids slows captured 
neutrons substantially. Therefore, the log 
responds to porosity in the rock matrix 

Stdev. Gamma Ray 
(API) X  X  X  143 22 14 0 18 21 27 99 

Standard deviation of the gamma ray values for 
each production zone for a cluster of 
neighboring wells 

Stdev. Resistivity 
(Ohm-m) X  X  X  143 686 2,769 3 18 50 282 24,489 

Standard deviation of the formation resistivity 
values for each production zone for a cluster of 
neighboring wells 

Stdev. Photoelectric 
(Pe) X  X  X  143 0.47 0.23 0.09 0.32 0.42 0.59 1.42 

Standard deviation of the photoelectric 
absorption factor values for each producing 
zones for a cluster of neighboring wells 

Stdev. Density 
Porosity (decimal) X  X  X  143 0.05 0.04 0.01 0.02 0.03 0.05 0.22 

Standard deviation of the density porosity 
values for each producing zones for a cluster of 
neighboring wells 

Stdev. Neutron 
Porosity (decimal) X  X  X  143 0.05 0.04 0.01 0.03 0.04 0.06 0.25 

Standard deviation of the neutron porosity 
values for each producing zones for a cluster of 
neighboring wells 
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2.3 MACHINE LEARNING MODEL DEVELOPMENT SUMMARY 
The ML framework involved developing a deep learning-based model that enables the joint 
prediction of daily oil (in bbls), water (in bbls), and gas (in Mcf) volumes for unconventional 
shale wells placed in the Spraberry through Wolfcamp C reservoirs (highlighted orange in Exhibit 
2-2). The model uses long short-term memory (LSTM) recurrent neural networks to enable 
time-series prediction. Model development leveraged Python (version 3) and packages within 
the Scikit-learn library [43] and Keras. [44] The model was designed to generate production 
predictions over the entire life of the well. This affords the flexibility to adjust the duration to 
implement multiple functions which can enable insight (and optimization) to well productivity 
based on well completion, placement, and operational decisions including extending production 
forecasts for existing wells and generating production forecasts for new or theoretical wells. The 
model contains an input feature set spanning 43 attributes with data types that are not 
commonly available (in large quantities) in the public domain. As noted in Section 2.1, key 
proprietary input data features include downhole pump inlet pressure, ESP size, detailed well 
hydraulic fracturing information (i.e., stages, clusters, sand and fluid treatment per stage, 
average and initial shut-in pressure, and specific chemical additives applied), as well log data of 
several geologic properties.  

2.4 MODEL PREDICTION PERFORMANCE ASSESSMENT 
The trained model was assessed using a holdout test and validation dataset, as well as against 
the training data as an additional comparative measure. Root mean squared error (RMSE) and 
R2 were used to compare the predicted values from the model against historical production 
data. RMSE (Equation 1) reflects the error between the predicted value and the ground truth. 
Smaller RMSE values signify a low error between the predicted value and the ground truth and 
vice-versa. RMSE is also reflected in the same units of the attribute of interest. R2 (Equation 2) 
reflects the degree of correlation between a predicted value and the ground truth. R2 values 
range between 0 and 1 and larger values closer to 1 represent minor discrepancies between the 
ground truth and predicted values. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑦𝑖𝑖)

2
𝑛𝑛

𝑖𝑖=1

 Equation 1 

𝑅𝑅2 = 1 −
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑦𝑖𝑖
𝑛𝑛−1
𝑖𝑖=0 )2

∑ (𝑛𝑛−1
𝑖𝑖=0 𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑦)2

 Equation 2 

where n represents the length of the dataset, yi is the observed value, 𝑦𝑦�𝑖𝑖 is the simulated or 
estimated response value, and 𝑦𝑦𝑦 is the mean value across the observed values. 
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2.5 MODEL PERFORMANCE SUMMARY 
As discussed in Section 2.3, the model was used to predict daily oil, water, and gas production 
from three sets of well data - the training, validation, and test sets (Exhibit 2-1). Exhibit 2-4 
displays the model performance in terms of RMSE for the daily volume and the cumulative 
volumes. The results show low error in the prediction performance, with the lowest prediction 
error associated with oil production. Additionally, the model demonstrates little variability in 
the prediction error across predictions of the test, validation, and test sets – the one exception 
noted to water predictions from the test sets relative to the training and validation sets. A close 
examination of the water production prediction attributes this issue to two wells in Glasscock 
County where there was a significant underprediction of water production. These wells were 
each drilled to depths of just over 7,700 feet—one of which targeted the Lower Spraberry (in 
northern Glasscock County, Texas) and the other the Wolfcamp A (in central Glasscock County). 

Exhibit 2-4. Model performance in RMSE for daily production prediction (left) and cumulative production (right) 

 
Exhibit 2-5 displays the model performance in terms of R2 for the daily fluid flows. A similar 
observation was noted when assessing the model performance in terms of R2.  The model 
shows the highest prediction performance with daily (and cumulative) oil (R2 > 0.8 on all data 
sets) relative to the other two fluids. On average (across training, validation, and test datasets), 
the model is capable of daily prediction accuracy (using R2 values) over the entire life of a given 
well on the order of 79 percent for water and gas to upwards of 86 percent (for oil). Overall, the 
model does well at predicting multiple production outputs at daily resolution. The model also 
accounts for and gives reasonable predictions in the three production streams when transient 
well events, such as well shut-ins, occur. [1]  
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Exhibit 2-5.  Model prediction performance in R2 for daily production prediction 

 

2.6 CASE STUDY WELL 
Exhibit 2-6 shows the comparison of empirical field data (including production and noted pump 
inlet pressure) with the model’s predictions for one of the wells in the study test set. The well 
(highlighted red in Exhibit 2-1) is completed in the Lower Spraberry (in western Howard County, 
Texas) at a total vertical depth of 7,632 feet and has a perforated interval length of 9,780 ft. This 
well has experienced relatively uninterrupted production over its life (roughly 380 days). The 
three-stream fluid production predictions for this well show that the model is exemplary in 
capturing the daily production trends for all fluid types. Additionally, there is little difference 
noted in the simulated versus empirical cumulative production. Given that this well has shown 
largely uninterrupted production and absence of transient events (i.e., spikes or rapid falloffs in 
either pressure and empirical fluid production) as well as an observed lifespan that provides a 
combination of a substantial subset of historic data (~ 1 year) and opportunity to forecast near-
term production into the future (< 5 years), this well was selected for use as the case study.  

The historic pressure data that exists for this well which is also largely uninterrupted bodes well 
for establishing a simple pressure decline model (outlined in Section 2.7) which is ultimately 
used to generate several pressure management cases used as model input.  
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Exhibit 2-6. Daily production prediction (top) and cumulative production (bottom) for a relatively uninterrupted 
well using the joint production prediction model 

 

 

2.7 PRESSURE DECLINE MODEL AND PRESSURE DRAWDOWN CASES 
The analyses in this study utilized a workflow in which the ML model was used to test the 
production implications of varying the drawdown of the uninterrupted well from the test case 
(presented in Exhibit 2-6). This workflow involved the creation of different synthetic pressure 
drawdown cases used as model input. The model was fed these different pressure drawdown 
cases to generate commensurate oil, water, and gas production outlooks. It is worth noting that 
of all the model input requirements (listed in detail in Exhibit 3-7 in Vikara et al. [1]), daily pump 
inlet pressure was the only input set that varied across the pressure drawdown cases evaluated. 
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All other well performance, well completion, and spatial and placement attribute inputs were 
fixed across all cases and set at the actual field setting noted for the case study well. 

The actual, in-field pressure decline of the well was history matched using a modified Langmuir 
isotherm equation as expressed in Equation 3 to enable forecasting and pressure drawdown 
synthetic case creation. The Langmuir isotherm equation was selected to fit the historical data 
due to its practicality in fitting the pressure-transient nature of the well which is non-linear and 
hyperbolic. The Langmuir equation has traditionally been used to model experimental data 
relating to the desorption of oil and gas from shale reservoirs as it relates the absorbed fluid 
concentration in the shale matrix to the pressure of the reservoir system. [45, 46, 47] 

𝑃𝑃𝑡𝑡 =  𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �
𝐾𝐾𝐾𝐾

𝐾𝐾𝐾𝐾 + 𝑐𝑐
� Equation 3 

where 𝑃𝑃𝑡𝑡 represents the pressure (psi) at time 𝑡𝑡 days in the well’s producing life, 𝑃𝑃𝑖𝑖 is the initial 
pressure (psi) at time = 0 in the well’s producing life,  𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐾𝐾 are constants, and 𝑐𝑐 is the 
pressure decline rate.   

The R2 metric as displayed in Equation 2 was used to gage the quality of the history match. The 
pressure history match is strongly correlated to the observed pressure data from the case study 
well, with an R2 value of 0.96 (Exhibit 2-7). Derived values for the pressure decline function in 
Equation 3 are expressed in Equation 4 below. 

𝑃𝑃𝑡𝑡 =  𝑃𝑃𝑖𝑖 − 2788.33 �
5.39t

5.39t + 209.05
� Equation 4 

Exhibit 2-7. History matched pressure data from the case study well 
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Five pressure drawdown strategies were generated using Equation 4 by varying the pressure 
decline rate variable. The pressure decline rate generated during the history-matching process 
(i.e., c = 209.05) was considered a baseline case. Four additional cases were generated by 
increasing or decreasing the baseline pressure decline rate by 25% and 50% from the baseline, 
respectively (Exhibit 2-8). The decreased pressure decline rate cases represent conservative 
pressure drawdown strategies, while increased pressure decline rate cases represent aggressive 
drawdown strategies. All cases assume the same starting pressure as well as assume a minimum 
flowing pressure of 400 psi. 

Exhibit 2-8. Pressure decline rates for the modeled drawdown cases 

Case Strategy Description Initial Pressure 
(psi) (Pi) 

Pressure 
Decline 
Rate (c) 

A Aggressive 50% increase in the drawdown rate 

3,107 

313.58 
B Aggressive 25% increase in the drawdown rate 261.31 

C Standard Baseline (drawdown rate modeled 
from historical data) 209.05 

D Conservative 25% decrease in the drawdown rate 156.79 
E Conservative 50% decrease in the drawdown rate 104.53 
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3 PRESSURE DRAWDOWN CASE RESULTS 
The ML model was used to forecast daily three-stream production data for the varying pressure 
drawdown cases (specified in Exhibit 2-8) over a five-year producing timeframe for each case. 
Exhibit 3-1 displays the time-series profiles of the modeled pressure drawdown cases in tandem 
with the predicted three-stream production outlooks. In general, the aggressive pressure 
drawdown strategies (A and B) were observed to have the highest oil production rates in the 
earlier time frames (< 45 days production) relative to other cases. The baseline and conservative 
cases (C, D, and E), however, showed higher oil production rates later in the well’s producing life 
(> 90 days of production) and a higher oil production peak. The results show that the timeframe 
in which the oil production peak occurred across all cases directly corresponds to the pressure 
decline rate value (c) modeled in the cases in Exhibit 2-8.  

Model predictions similarly show higher gas production rates in the early times (until 
approximately 105 producing days) for the aggressive A and B cases as compared to baseline 
and conservative cases D and E (Exhibit 3-1). After approximately 105 days, gas production 
peaks corresponding with higher production rates are observed in the baseline and conservative 
drawdown strategies. In addition, peak oil and gas production rates were highest in case E, 
decreasing accordingly with increasing pressure decline rates (Exhibit 3-2). The conservative 
strategies show peak oil and gas occurring rates further into the production timeframe 
compared to the aggressive cases. Overall, the conservative strategies showed a more sustained 
duration of higher oil and gas production rates relative to the aggressive drawdown cases – a 
notion that matches the heuristic understanding of unconventional oil and gas operations. [16, 
15, 11, 10, 48] 

The model’s water production predictions over time showed that the more conservative 
strategies generated higher water production rates throughout the period explored (Exhibit 
3-10) – not only in the later producing timeframes as was witnessed with oil and gas. The lowest 
pressure decline rate case (Case E) generated the largest volumes of water. However, the most 
aggressive pressure drawdown case (Case A) had the lowest overall water production rates 
across the five-year production timeframe. The occurrence of peak water production rates for 
the cases was noted to occur largely in the same timeframe (near t = eight to nine days) of each 
other (Exhibit 3-2) regardless of the case-by-case trend in water production over the long term.  
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Exhibit 3-1. Pressure drawdown strategies and the forecasted daily rates for oil, water, and gas over the first five 
years of production 

 

Exhibit 3-2. Peak production time and rate for the modeled pressure drawdown cases 

Case 
Peak Production Rates (bbls/day 

or Mcf/day) 
Time of Peak Production 

Rates (days) 
Oil Gas Water Oil Gas Water 

A 731 797 3,058 51 90 8 
B 756 848 3,116 68 116 8 
C 776 888 3,149 86 139 9 
D 794 918 3,171 104 161 9 
E 810 941 3,186 120 182 9 
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The cumulative production volume summation (Exhibit 3-3) shows that the more aggressive 
pressure drawdown cases generate more oil and gas production in the short term (90 to 180 
days of production), however, rates diminish quickly shortly after. In general, conservative cases 
D and E provide the highest cumulative volumes of oil, gas, and water relative to all other cases 
– even despite the later emergence of peak production for oil and gas. Cumulative production 
data from the different cases are compared relative to baseline case C (Exhibit 3-3), which 
closely reflects the infield pressure drawdown for the case study well. Analysis of cumulative 
production data shows that aggressive drawdown strategies offer an increase of 1.89% to 4.47% 
in oil production at 30 days and a 2.03% to 3.72% increase in oil production at 60 days relative 
to the baseline (Exhibit 3-4). The relative difference in cumulative oil production for the 
aggressive drawdown cases reduces between 0.22% and -3.37% of the baseline case C at 90 
days of production. This difference extends even more so after one year of production to 
between -10.74% and -22.83% and then between -7.03% and -14.52% after five years of 
production (Exhibit 3-4). Similar trends are observed in gas production with aggressive pressure 
drawdown strategies showing a difference as high as 8.49% to 18.94% relative to the baseline at 
180 days of production, before reducing to -3.59% to -7.33% from the baseline at five years of 
production (Exhibit 3-5). It is worth noting that despite the larger cumulative fluid volumes 
produced under the conservative drawdown cases, these cases yield comparatively lower oil 
and gas recovery in the short-term production (approximately 90 days for oil and 180 days for 
gas production) and comparatively higher oil and gas recovery in the medium term. Cumulative 
oil production was noted to be as low as -1.24% to -2.59% from the baseline at 90 days before 
increasing to 6.68% and 13.06% more than the baseline at five years for the conservative 
drawdown strategies. Cumulative gas production was noted to be as low as -5.76% to -9.50% 
from the baseline at 90 days before increasing to 3.44% and 6.73% more than the baseline at 
five years for the conservative drawdown strategies (Exhibit 3-5). Cumulative water production 
prediction data demonstrate a much different trend compared to oil and gas – where Cases D 
and E consistently produce more water than all other cases at every point in time (Exhibit 3-6). 

Exhibit 3-3. Pressure drawdown strategies and the cumulative production outlook for oil, water, and gas over 
the first 5 years 
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The modeling results suggest that more aggressive pressure drawdowns may be advantageous 
for initial production by providing more oil early on. However, the aggressive cases also result in 
higher early associated gas production and do not sustain oil production at rates shown in more 
conservative cases over the long term. From an economic point of view, greater production of 
oil can potentially offer a larger revenue stream but the handling of associated gas and water 
(depending on what they can be used for or how they are disposed of) can have a substantial 
cost and/or environmental impacts. One of the more favorable tradeoffs observed is that more 
aggressive drawdown approaches yield marginally lower water production – a result that would 
lower a given project’s cost for water treatment and/or disposal to some degree.  This will 
potentially increase the profitability of the well.  Plus, it has been noted that the injection of 
large volumes of wastewater from O&G operations is strongly correlated to the increased 
frequency of occurrence of induced seismic events. [49] 

Exhibit 3-4. Comparison of cumulative oil production for the different pressure drawdown strategies over 30 
days, 60 days, 90 days, 1 year, and 5 years of production 

Case 
Cumulative Oil Production (Mbbls/day) Incremental Daily Oil Production Difference Relative  

to Case C (%) 

30 
Days 

60 
Days 

90 
Days 

180 
Days 1 Year 5 Years 30 

Days 
60 

Days 
90 

Days 
180 

Days 1 Year 5 Years 

A 14.96 36.26 55.97 91.50 129.60 268.09 4.47 3.72 -3.37 -20.04 -22.83 -14.52 
B 14.59 35.67 58.05 104.75 149.91 291.57 1.89 2.03 0.22 -8.46 -10.74 -7.03 
C 14.32 34.96 57.92 114.43 167.95 313.63 Baseline 
D 14.13 34.41 57.20 121.12 184.06 334.58 -1.33 -1.57 -1.24 5.85 9.59 6.68 

E 13.98 33.96 56.42 125.32 198.38 354.60 -2.37 -2.86 -2.59 9.52 18.12 13.06 

Exhibit 3-5. Comparison of cumulative gas production for the different pressure drawdown strategies over 30 
days, 60 days, 90 days, 1 year, and 5 years of production 

Case 
Cumulative Gas Production (MMcf/day) Incremental Daily Gas Production Difference Relative to 

Case C (%) 

30 
Days 

60 
Days 

90 
Days 

180 
Days 1 Year 5 Years 30 

Days 
60 

Days 
90 

Days 
180 

Days 1 Year 5 Years 

A 9.49 26.64 49.73 114.54 207.22 651.02 3.38 17.20 18.94 -3.46 -14.57 -7.33 
B 9.26 23.96 45.36 118.68 226.53 677.29 0.87 5.41 8.49 0.03 -6.61 -3.59 
C 9.18 22.73 41.81 118.65 242.56 702.54 Baseline 
D 9.13 22.18 39.40 116.04 255.02 726.70 -0.54 -2.42 -5.76 -2.20 5.14 3.44 

E 9.10 21.88 37.84 111.99 263.87 749.83 -0.87 -3.74 -9.50 -5.61 8.79 6.73 
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Exhibit 3-6. Comparison of cumulative water production for the different pressure drawdown strategies over 30 
days, 60 days, 90 days, 1 year, and 5 years of production 

Case 
Cumulative Water Production (Mbbl/day) Incremental Daily Water Production Difference Relative 

to Case C (%) 

30 
Days 

60 
Days 

90 
Days 

180 
Days 1 Year 5 Years 30 

Days 
60 

Days 
90 

Days 
180 

Days 1 Year 5 Years 

A 84.68 140.10 184.44 265.71 369.62 898.69 -5.47 -9.67 -10.07 -16.88 -17.15 -9.14 
B 87.86 148.71 196.82 296.74 411.35 946.44 -1.92 -4.12 -4.04 -7.17 -7.80 -4.32 
C 89.58 155.10 205.10 319.66 446.14 989.13 Baseline 
D 90.68 159.80 211.81 336.58 475.85 1,028.30 1.23 3.03 3.27 5.29 6.66 3.96 

E 91.46 163.20 217.55 348.85 501.64 1,064.82 2.10 5.23 6.07 9.13 12.44 7.65 
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4 CONCLUSIONS 
The advancement in DA and ML affords a multitude of opportunities for O&G operators to apply 
these types of data-driven techniques toward improving reservoir management and operational 
decisions. The ML-based model employed in this study was purposely implemented to explore 
its utility to evaluate the impact of varying drawdown strategies on production for one case 
study well in the Permian Basin. The study findings largely support that the application of the 
deep learning-based, three-stream predictive model developed under the Vikara et al. study [1] 
can offer utility in evaluating the effect of pressure drawdown strategies on total hydrocarbon 
and water production from shale reservoirs. The three stream fluid predictions resulting from 
the various pressure management cases evaluated within the study largely trend with notional 
expectations of unconventional O&G operations undergoing either rapid or more sustained 
pressure management strategies. Results demonstrate that aggressive and rapid drawdown 
cases tend to provide earlier peak oil and gas production relative to the more sustained 
pressure management cases. However, the more sustained pressure cases produce larger 
cumulative volumes of oil and gas (and water) overall.  

The deep learning-based model used for this study was found to accurately replicate and 
forecast production from unconventional reservoirs in the Permian Basin when developed with 
a mix of well performance, completion, and well placement attributes as inputs. [1] While the 
production outlooks generated in this study appear to suggest that the model’s response to 
dynamic pressure data matches the heuristic understanding of unconventional oil and gas 
operations, validating model predictions is still needed. This notable limitation may warrant 
further exploration through field testing and validation (and potentially calibration) of ML-based 
model performance. It is also worth noting that the model leans heavily on data that is largely 
held propriety by O&G operations – therefore, adapting the model for application to other 
regions of interest would require procuring the needed data for transferability.  

Given that advanced computational resources are becoming more widely available and digital 
formats of O&G data are becoming the norm, ML and DA are slated to provide unique and 
valuable compliments to existing approaches for O&G operational decision support. [18, 50] 
The model applied in this study was used to explore one specific aspect of unconventional O&G 
operations. However, the model itself was originally developed to evaluate and appraise the 
impact of various types of data (those considered proprietary vs. data more publicly available) 
on model response using three-stream production in unconventional wells as a modeling focus. 
As a result, these ML-based models, while typically built to be fit for purpose, afford the ability 
to be modified to address additional objectives (an aspect of transfer learning). Therefore, the 
model, or variants like it, could be utilized to more utility in future endeavors moving forward. 
For instance, this sort of rapid and accurate prediction model employed in this study can be 
leveraged to help assess the multitude of completion, design, and production implications 
associated with unconventional O&G operations. Additionally, ML models of this nature can be 
advantageous for O&G operators in evaluating drawdown strategies aimed to optimize project 
economics, especially given the volatile nature of O&G markets and commodity prices. They can 
also be used to explore the effect of alternative well design decisions on production, including 
hydraulic fracture completion parameters. It has been noted that significant environmental 
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concerns exist associated with shale O&G development including water usage, induced 
seismicity correlation with wastewater disposal through subsurface injection, and flaring (and 
possible venting) of produced natural gas. This study’s model output can directly provide the 
needed insight to support the formulation of management and/or remedial strategies based on 
the volumes of fluids expected from unconventional O&G development operational conditions. 
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