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COMPARISON OF OPTIMAL ENERGY MANAGEMENT STRATEGIES
USING DYNAMIC PROGRAMMING, MODEL PREDICTIVE
CONTROL, AND CONSTANT VELOCITY PREDICTION

Amol Arvind Patil, M.S.E.

Western Michigan University, 2020

Due to the recent advancements in autonomous vehicle technology, future vehicle
velocity predictions are becoming more robust which allows fuel economy (FE) improvements in
hybrid electric vehicles through optimal energy management strategies (EMS). A real-
world highway drive cycle (DC) and a controls-oriented 2017 Toyota Prius Prime model are
used to study potential FE improvements. We proposed three important metrics for
comparison: (1) perfect full drive cycle prediction using dynamic programming, (2) 10-second
prediction horizon model predictive control (MPC), and (3) 10-second constant velocity
prediction. These different velocity predictions are put into an optimal EMS derivation
algorithm to derive optimal engine torque and engine speed. The results show that the
constant velocity prediction algorithm outperformed the baseline control strategy but
underperformed the MPC strategy with an average 1.58% and 2.45% of FE improvement with
highway and city-highway DC. Also, using a 10-second prediction window MPC strategy
provided FE improvement results close to the full drive cycle prediction case. MPC has the
potential to achieve 60%-65% and 70% - 80% of global FE improvement over highway and
city-highway DC respectively.
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1. INTRODUCTION

Transportation-related air pollution issues have gained increasing attention in recent
years. Federal and state governments have mandated that new transportation projects
conform to the Environmental Protection Agency (EPA) regulations. Advancement in novel
vehicle control approaches that accomplish improved fuel economy is an ongoing topic of
study due to the financial, environmental, and air-pollution impact of transportation [1, 2, 6].
Improving fuel economy (FE) is an important way to reduce the adverse effects of climate
change and reduce energy use [2, 3, 6]. This FE improvement along with a significant
reduction in emissions has been achieved using hybrid electric vehicles (HEVs) and plug-In
hybrid electric vehicles (PHEVS).

Modern-day vehicles are equipped with an ability to comprehend the worldview
with many sophisticated sensors and signals and the industry is moving rapidly towards the
"Intelligent Vehicle Era" [4, 6]. An intelligent vehicle means a vehicle that can sense the
environment around it, communicate with it, and execute the controls accordingly. The type
of sensors/signals available is vehicle-to-vehicle (V2V)/ vehicle-to-vehicle (V2I)
communication, advanced driver-assistance systems (ADAS - RADAR, LiDAR, Camera),
traffic data, controller area network (CAN) data and GPS [5, 7, 8]. Those modern-day
technologies can tremendously improve vehicular safety along with reduced energy

consumption and reduced environmental pollution [2].

There are two types of vehicle control strategies that can effectively improve the FE
(1) driving behavior modification including eco-driving and eco-routing, (2) powertrain
operation modification through optimal energy management strategy (EMS) [6, 9]. The
optimal EMS can be classified as (1) instantaneous second by second optimization without
prior knowledge of whole drive cycle (DC) and (2) predictive optimal EMS which requires
some trip information known beforehand [6, 10, 11].

Furthermore, predictive optimal EMS can be classified as- 1) globally optimal EMS

with perfect full DC knowledge and prediction by using numerical optimization methods like



dynamic programming (DP) and pontryagin's minimum principle (PMP) [6, 10, 12] (2) non-
globally optimal EMS with stochastic prediction and computationally efficient non-global
optimal EMS [6, 13, 14]. The last two methods don't guarantee the global solution but come
with less computational cost and are practically implementable.

When deriving a globally optimal EMS using deterministic prediction, DP has been
the overwhelming favorite due to its ease of use, robustness, and no need for knowledge of
derivatives [6, 10,15]. A globally optimal EMS with deterministic prediction is difficult to
implement in practice because of the high computational cost and deviations in the planned
for drive due to disturbances that arise from interaction with traffic, traffic control devices,
etc., but it is still beneficial in simulation to define the upper practical limit on FE benefits for
a given vehicle and drive cycle [6, 16]. Computationally efficient non-global optimal EMS
can be implemented by model predictive control (MPC), where the optimization is done over
a moving finite horizon that is shorter than the DC. Also, with the advancement in perception
systems and associated computational improvements, MPC is implementable in real vehicles
[6, 14]. When limited trip information is available, optimal EMS can be implemented by
assuming that the velocity is constant for that horizon [16]. This novel EMS strategy could be

implementable in-vehicle controllers with an MPC type of framework.

In the sub-sequent sections, | extensively studied previous research studies on optimal
EMS and quantified and compared the fuel economy improvement by utilized a dynamics

programming, model predictive control, and constant velocity prediction strategy.

1.1 Literature Review

Starting in 2008, the earliest and presently most cited research pertaining to
perception, optimal EMS planning, and FE results comes from researchers at the University
of Florida and the University of Wisconsin-Milwaukee. Their study used V21 and GPS
signals as inputs into an artificial neural network (NN) perception model, and FE
improvements using an Optimal EMS in a PHEV were realized [17]. In 2013, researchers at
the University of Stuttgart, Germany integrated a perception model and a planning model.
The planning optimal EMS only determines the optimal time to implement the hydraulic

power [18]. In 2014, researchers at the University of Minnesota applied a traffic model to



predict future vehicle velocity with V2V and V21 as inputs [19]. They employed Pontryagin's
minimization principle to derive their Optimal EMS and realized a 1.5% to 4.5% FE
improvement with prediction-with-error scenario. Then in 2015, researchers from the
University of California at Berkeley recognized the important relationship between
perception and planning and investigated three perception models for use with a Model
Predictive Control Optimal EMS. They used previous driving data and the current vehicle
state as inputs to test an exponentially varying perception model, a stochastic Markov chain
perception model, and an NN perception model [20]. Their results show that the NN
perception model with model predictive control as the Optimal EMS produced the best FE

results, though this result was not a full realization of globally optimal FE.

Starting in 2017, researchers at Colorado State University began publishing research
that included a perception model, optimal EMS, and FE results [references]. The first study
used current and previous vehicle velocity and GPS data input to a shallow NN perception
model with an Optimal EMS computed using DP on a validated model of a 2010 Toyota
Prius. The maximum FE improvement of x% was achieved using 30 seconds of prediction
[21]. Another follow-up study used custom camera detections relevant for velocity prediction
[7], travel time data, as well as current and previous vehicle velocity and GPS data as the
sensor/signal inputs again with a shallow NN and an Optimal EMS [22]. Additionally,
research that was conducted at the University of Michigan and then transitioned to Western
Michigan University explored a variety of perception models including auto-regressive
moving average, shallow NN, long short-term memory (LSTM) deep NN, markov chain, and
conditional linear gaussian models. It was determined that the LSTM deep NN provided the
best prediction fidelity (measured in mean absolute error) [23] which realized a fuel economy
improvement of 3% in a dynamometer validated model of a 2017 Toyota Prius Prime [24].

Recent trends have begun to implement advancements in machine learning and have
replaced shallow NNs with deep NNs. This was first demonstrated by researchers at the
University of California Riverside where a deep reinforcement network was implemented as
a perception and planning subsystem where traffic data was the input and optimal control of
a generic PHEV was the output. This technique resulted in a 16.3% FE improvement in

simulation [25].



1.2 Motivation

In terms of global energy consumption, the transportation sector is the second largest
consumer behind the industrial sector. Transportation accounts for 30% of the world's energy
consumption and the transportation energy demand is projected to increase 30% from current
levels by 2040 [3]. Associated utilization of energy conversion devices such as the internal
combustion engine, result in issues spanning climate stability, domestic energy security, and
human health risks from local air quality impacts. The global transportation sector accounted
for 64.5% of worldwide petroleum consumption in 2014 [3]. As a 2016 estimation shows
that the United States alone paid $150 billion to the Organization of Petroleum Exporting
Countries (OPEC), which creates issues like energy insecurity and vulnerability to
geopolitical instability. The transportation sector is also a major contributor to air pollution.
Out of the six primary air pollutants, transportation significantly contributes to worldwide
nitrogen oxide/nitrogen dioxide (NOx), carbon monoxide (CO), volatile organic compounds
(Voc), particulate matter (PM), and sulfur dioxide (SO2) [3]. As a result, 6.5 million
premature deaths were attributed to air pollution in 2012, making it the world’s fourth-largest
threat to human health [12]. Greenhouse gas emissions resulted in increased climatic changes
and the transportation sector was also responsible for 23% of global greenhouse gas
emissions in 2014 [6]. To combat these climate impacts, the Paris climate agreement has
been adopted by most countries to limit greenhouse gas emissions and with the goal of
keeping global warming to at most 2°C [6]. Limiting greenhouse gas emissions from
transportation is proposed to be accomplished primarily through the increasing of fuel
economy (FE) with technologies such as improved vehicle operation efficiency and

electrification [2, 6].

Overall, increasing vehicle FE (reducing petroleum consumption), results in lower
global energy consumption, lower greenhouse gas emissions, and lower air pollution
emissions. Automotive FE standards, such as those adopted by the United States, Japan,
Canada, Australia, China, Taiwan, South Korea, and others, have proven to be one of the
most effective tools in controlling petroleum demand and greenhouse gas emissions in many
regions and countries around the world [6]. There are three types of vehicle controls that
reduce fuel consumption for a drive cycle with a fixed starting point and a fixed ending point:

(1) Eco-Driving, (2) Eco-Routing, and (3) an improved Energy Management Strategy
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(EMS). Eco-Driving and Eco-Routing decreases fuel consumption by decreasing the energy
output of the vehicle through modification of the drive cycle. An improved EMS decreases
fuel consumption by increasing the efficiency of the vehicle powertrain operation without
modification of the drive cycle.

Eco-Driving reduces fuel consumption for all types of vehicles by implementing fuel
efficient driving behaviors along a fixed route which may alter the travel time. In practice,
Eco-Driving is challenging to implement because most drivers do not like to give up control
[6]. On the other hand, Eco-Routing reduces fuel consumption for all types of vehicles by
exploring alternate vehicle routes between a fixed starting and ending location. As vehicles

become more intelligent, Eco-Routing can assist vehicles in real time [6].

An improved EMS seeks to reduce the energy consumption over a fixed drive cycle
through improved powertrain operation efficiency. Typically, an optimal control problem is
formulated and an Optimal Energy Management Strategy (Optimal EMS) is derived. An
Optimal EMS realizes FE improvements by explicitly or implicitly modeling vehicle
operation and controlling the vehicle powertrain components to minimize fuel consumption.
An Optimal EMS does not require a change in driver behavior; thus, this FE improvement
technique has a consumer acceptance advantage over Eco-Driving and Eco-Routing. An
Optimal EMS can realize FE improvements for conventional vehicles and electric vehicles,
but the greatest FE improvements are realized from vehicles with more powertrain operation
degrees of freedom such as HEVs and PHEVs. The exact FE improvement from an Optimal
EMS is strongly dependent on the chosen drive cycle and vehicle architecture. As an
example, one of the earliest Optimal EMS studies demonstrated a 28% FE improvement in a
hybrid electric truck through optimal control of the gear shifting and battery charging and
discharging [6]. Quantifying FE improvement through various Optimal EMS is the focus of
this thesis research.

1.3 Optimal Energy Management Strategies

Developing and implementing an Optimal EMS has most commonly been posed as
an application of optimal control [6]. A mathematical optimization problem is formulated by

defining a dynamic equation which describes the current state of the vehicle, a cost function



that penalizes using fuel and any other variables of interest, and constraints that ensure a
desired final value of the battery state of charge is met, powertrain component limitations are
not violated, and that the drive cycle is fixed. This optimization problem is also described in
equations as follows:
Dynamic Equation:
New Battery State of Charge = f(Battery State of Charge, Engine Power, velocity)
Cost Equation:
Cost = Sum(mass of fuel used)

Constraints:

e Desired battery state of charge at the end of drive cycle.
e Powertrain component physical limitations
e Fixed drive cycle.

This framework can be utilized as either a second by second instantaneous
optimization, or as a global optimization which includes future vehicle operation prediction.
The solution from either of these schemes is the minimum fuel consumption strategy (or

Optimal EMS) which can be then be applied to operate the vehicle powertrain.

1.3.1 Instantaneous optimal EMS

An instantaneous Optimal EMS involves finding the optimal control strategy that
minimizes fuel consumption at the instant in time for which sampled data is available. In
PHEVs such as the Toyota Prius Prime and the Chevrolet Volt, studies [references] using an
instantaneous Optimal EMS have led to the “charge-depleting, charge-sustaining” EMS,
where all excess battery power is used first, then the battery charge is sustained afterwards.

1.3.2 Predictive Optimal EMS

A predictive Optimal EMS involves finding the optimal control strategy that
minimizes fuel consumption for the window of time in which prediction data is available.
Figure 1 represents the general working principle of PHEV, where both engine and battery
pack provide the total required power to run the vehicle. On the other hand, energy
management in HEV means deciding the amount of power delivered by both energy sources

at each instant to achieve desired vehicle velocity.



Pycp = f (Tice, 0i1cE)
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Figure 1. General Working Principle of HEV

Figure 2 represents the principle of predictive optimal EMS. If it is assumed that the
desired vehicle speed and desired acceleration, as well as road grade are known for the entire
duration of the optimal control problem, i.e., the DC. From the desired speed and
acceleration, the total desired power at each time instant can be computed. Given the total
desired power, the required IC engine power can be determined for each candidate value of
the control inputs engine torque and engine speed. Also, this engine torque values, together
with engine speed, determine fuel consumption rates. The fuel consumption rates typically
make up the costs in the choice of power split ratios at each time step. The SOC of the
battery also needs to be determined for each choice of power split ratio, in order to ensure

that upper and lower constraints on SOC are not violated.
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Figure 2. Predictive Optimal Energy Management Strategy Principle

The systems-level viewpoint of predictive optimal EMS is composed of four subsystems as
shown in Figure 3: a vehicle perception subsystem, a vehicle planning subsystem, and a
vehicle plant subsystem which includes a vehicle running controller. The input to the
Optimal EMS system is a variety of sensors that detect environmental information, thus
defining vehicular surroundings (commonly referred to as the worldview in autonomous
vehicle literature). This worldview can be used to generate a prediction of future vehicle
states through artificial intelligence, stochastic modeling, regression analysis, and more. The
vehicle state prediction can then be utilized in a mathematical optimization problem to
determine powertrain operation that maximized FE. The maximum FE powertrain operation
is then issued as a request to the vehicle running controller, which enforces component
constraints and may be subject to various disturbances such as future vehicle state prediction
error. The powertrain operation from the running controller is actuated in the vehicle plant,

and the FE or energy consumption can be measured.
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Figure 3. Detailed View of Predictive Optimal Energy Management Strategy [6]

1.3.2.1 Perception
The perception subsystem receives sensor and signal inputs, defines vehicle
surroundings, and thus computes future vehicle operation as an output. The input data to the
predictive optimal EMS is a series of sensors and signals such as CAN data, RADAR, GPS,
V2V, V2I, and traffic data which recognize environmental information, thus defining
vehicular surroundings. This can be used to produce a forecast of future vehicle states
through a deep neural network, stochastic modeling, regression analysis, and more [23,24].
1.3.2.2 Planning
The planning subsystem receives the vehicle operation prediction as an input and
computes the optimal control as an output. Note that the planning subsystem is only required
to compute the optimal control and issue a control request, this subsystem is not tasked with
achieving the optimal control in the vehicle; achieving the optimal control is accomplished

with the vehicle running controller.

1.3.2.2.1 Globally Optimal EMS with Deterministic Prediction

A globally Optimal EMS with deterministic prediction is derived using either

dynamic programming (DP) or pontryagin's minimization principle (PMP) which is based on



calculus of variations [6]. When deriving a globally Optimal EMS using deterministic
prediction, DP has been the overwhelming favorite of researchers due to its ease of use,
robustness, and that no derivatives or analytic expressions are required [6]. A globally
Optimal EMS with deterministic prediction is difficult to implement in practice because of
the high computational cost but it is still beneficial in simulation to define the upper practical

limit on FE benefits for a given vehicle and drive cycle.

1.3.2.2.2 Optimal EMS with Stochastic Prediction

An Optimal EMS with stochastic prediction is used in applications where researchers
are willing to forgo a guarantee of global optimal FE in favor of a robustness to stochastic
prediction errors. In other words, stochastic derivation strategies are appropriate for
applications where a small increase in FE over a wide range of drive cycles is desired.
Stochastic derivation strategies include stochastic dynamic programming (SDP) [6] and
adaptive equivalent consumption minimization strategy (a-ECMS) [13].

1.3.2.2.3 Computationally Limited Optimal EMS to Enable Practical Implementation

Computationally limited practical implementation Optimal EMS also forgoes the
guarantee of global optimal FE in favor of computationally efficient algorithms that can be
used in current and near future vehicles. Practical implementation derivation strategies in
current vehicles include optimized rules-based control [6], equivalent consumption
minimization strategy (ECMS) [6], and model predictive control (MPC) using fast

optimizers.

1.3.2.3 Running Controller and Vehicle Plant

The final subsystem is comprised of the vehicle running controller and the vehicle
plant which receives the optimal control request and the current vehicle state as inputs,
determines physically feasible vehicle operation that does not violate torque, battery state of
charge, speed, acceleration, etc. limits and actuates the vehicle plant thus producing vehicle

movement and a measurable FE or energy consumption as outputs.
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1.4 Optimal EMS Developed in This Research

As explained in literature study, limited study is done previously which address
globally optimal EMS with perfect full DC prediction, computationally efficient non-global
optimal with perfect horizon prediction and limited perception. The methods I used in my

research to address the above is as follows:

1.4.1 Dynamic Programming

When deriving a globally optimal EMS using deterministic prediction, DP has been
the overwhelming favorite due to its ease of use, robustness, and no need for derivatives
required. A globally optimal EMS with deterministic prediction is difficult to implement in
practice because of the high computational cost but it is still beneficial in simulation to define

the upper limit on FE benefits for a given vehicle and drive cycle

1.4.2 Model Predictive Control

For computationally efficient non-global optimal EMS model predictive control
(MPC) can be implement, where the optimization is done over a moving finite horizon that is
shorter than the DC. Also, with the advancement in perception systems and associated
computational improvements, MPC could be implementable in real vehicles [6, 26]

1.4.3 Constant Velocity Prediction

When limited trip information available, we can implement optimal EMS by
assuming the current velocity is constant over the current horizon [16]. This novel EMS

strategy could be implementable in-vehicle controllers within an MPC framework.

1.5 Hybrid-Electric Vehicles

HEVs and PHEVs are unique in that they have two sources of vehicle propulsion
energy available. These vehicles can be powered from either battery power, engine power, or
a combination of both. This additional operational degree of freedom unlocks the potential
for improved overall powertrain efficiency with intelligent control strategies. Examples of
how this increased vehicle powertrain operational freedom can be used to reduce fuel

consumption include regenerating energy during braking, storing excess energy from the
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engine during coasting, and modifying the power-split powertrain component operation for
maximum efficiency [16]. There are mainly 3 types of powertrains seen in hybrid-electric

vehicles are as follows -

1.5.1 Parallel Hybrid Powertrain

As the name suggests itself, in a parallel hybrid powertrain IC engine and electric
machines are placed in parallel to the transmission and ultimately to the vehicle wheels, as
shown in Figure 4. Both the energy sources can simultaneously provide power to the wheels
using a suitable transmission system. As there is no engine power to electric power
conversion that happens in the parallel hybrid powertrain, it works with higher efficiency as
power conversion losses get nullified. However, the major drawback of this system is, IC
engine cannot operate at its optimal operation region. Instead, it works over wide operation
region to fulfill the vehicle power demand. The battery gets recharged by the electric motors

during regenerative braking.

Battery Pack Electric Machines Transmission

iy =[]

Fuel = N

Y IC Engine

—a o

Figure 4. Parallel Hybrid Electric Vehicle Architecture Layout [16]

1.5.2 Series Hybrid Powertrain

As the name suggest, in a series hybrid powertrain, the IC engine, battery, and
electric machines are placed serially to the vehicle wheels. As Figure 5 shows, the IC engine
is not directly connected to the vehicle wheels. Instead, it got connected to the battery pack
through the generator. In series hybrid powertrain, the only power source is in direct
connection with the wheels is the electric motor. The power is provided either by the battery-

pack or by the engine-generator to the motor to drive the wheel. In this system, engine can
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work in its most optimal operating region as it is not directly connected to the wheels, so
engine does not need to work over a wide operation range. As this system can efficiently
work with smaller engines, which could also reduce the engine cost. But on the other hand,
to fulfill the required demand, it may need a larger battery pack than parallel hybrid
powertrain, which ultimately increases the cost of the overall system. The battery can be
recharged both from the engine-generator set and from the motor during regenerative

braking. In regenerative braking, motor acts as a generator and recharges the battery [16]

Battery Pack

Cod =1

Generator

Fuel . =
IC Engine

Figure 5. Series Hybrid Electric Vehicle Architecture Layout [16]

1.5.3 Series-Parallel Hybrid Powertrain

As the name suggests, the series-parallel hybrid powertrain combines the benefits of
both series and a parallel hybrid powertrain. In this system, both the energy sources can run
the vehicle wheels simultaneously like parallel hybrid powertrain and work as a series hybrid
powertrain by disconnecting the wheels from the engine and run only by an electric motor, as
shown in Figure 6. We can also split the engine power and provide one part directly to the
wheels and another part to the motor through the generator set. By doing this, we can set the
engine operation in its most optimal operative range. In low-speed operation, it works as a
series hybrid because of stop-and-go driving nature. On the other hand, at high-speed
operation, it works as a parallel hybrid with higher efficiency as the mechanical to electric
conversion losses get nullified as the engine is now directly connected to the wheels. The
battery can be recharged by the engine-generator set or by a motor during regenerative

braking. Also, we can split the engine power to drive the wheels and to recharge the battery
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using excess engine power. The Toyota Prius is a common example of a hybrid vehicle that

consists of a power-split hybrid powertrain. [16]

Battery Pack Electric Machines Trisision
Fuel I
ue -
\ IC Engine N

Figure 6. Series-Parallel Hybrid Electric Vehicle Architecture Layout [16]

1.6 Novel Contribution

The novel contribution of my research are as follows:

e Use of DP, MPC, and constant velocity prediction to quantify the fuel economy
improvements

e Use of control-oriented, high-fidelity vehicle model

e Use of high-fidelity DP optimizer with MPC

e Development of “Constant Velocity Prediction” strategy

e Use of high-fidelity DP optimizer with constant velocity prediction strategy.

e Effect analysis of discretization steps, interpolation methods on FE improvement
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2. HIGH-FIDELITY, CONTROL-ORIENTED VEHICLE MODEL

2.1 Toyota Prius Prime Model into MATLAB

Toyota created the modern hybrid car segment in 1997 with the debut of the original
Prius. Over the last 22 years, it remains one of the important hybrid cars in its class due to its
efficiency, blends of technology, and usability. Toyota Prius Prime is a new generation of
Toyota PHEV, where the primary difference from the previous PHEV system is that the new
version has a one-way clutch between the engine and the planetary gear-set, which could
step-up electric propulsive force with the help of generator [27]. Because of these reasons, |
selected a 2017 Toyota Prius Prime vehicle to demonstrate the potential FE improvements of
the Optimal EMS. This high-fidelity, controls-oriented model was developed using
previously documented Toyota Prius operation equations implemented with
MATLAB/Simulink to calculate different types of vehicle performance, especially fuel
economy and battery state [25].

(Note — Due to confidentiality clause, I’'m not able to disclose exact vehicle parameters.)

Time,t — 3| High-Fidelity,
Velocity, v——»| Control Orientated SOC
Propeller Torque, T, ———| 5017 Toyota Prius

Fuel Consumption,
fc_out

Engine Torque, T;cp ————» Prime Model in

Engine Speed, w;rfg ——
gme =p ICE MATLAB/Simulink

evr —

Figure 7. Overview of High-Fidelity, Control-Oriented Vehicle Model

Figure 7 shows the block diagram of overall vehicle model. The input to the vehicle
model is predicted vehicle velocity (v), propeller torque (7p), engine torque (t;cg), engine
speed (w;cg), next state of battery at each time-step. Figure 8 shows examples of input
parameters versus. distance traveled. As mentioned earlier the output of the model is fuel

consumption and battery state of charge at the end of a time-step. As shown in the block
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diagram, the calculated SOC is a feedback into the model because it is a dynamic variable.

The detailed model components are explained in further sections,
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Figure 8. Input Parameters Vs. Distance Graph

While model development | kept accessary power zero, and ev ratio one,
Pacc = 0, evr = 1.

Where,
Motor Direct Torque

Motor Direct Torque + Generator Direct Torque

evr =

e Calculation of Engine Fuel consumption
As the primary goal in HEV is to minimize fuel consumption, which can be

calculated with an engine map at different operating conditions. If we know the engine
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torque and engine speed, we can find the fuel consumption rate using an engine map. A
contour on the map represents a constant fuel consumption contour for a range of torque and
engine speed conditions. A 2-D lookup table is widely used to represent the engine map.
Where engine torque and engine speed represent rows and columns, respectively. If the
operating point is in between the grid points, then linear interpolation can be used to find the

fuel consumption at that operating point [10, 16].

e Calculation of Next State of Charge

To take the advantages of both parallel and series hybrid powertrains, Toyota Prius
used planetary gear system in their power-split architecture as shown in Figure 9 to provide

engine torque to both vehicle wheel and to a generator to recharge the battery [10, 16].

The planetary gear system shown in Figure 10, the engine is connected to the carrier

gear, a generator to the sun gear, common shaft of motor and wheel to the ring gear by a

reduction gear. It is possible to connect the engine to both generator and wheels by using

pinion gears [10, 16]. The total torque required to run the vehicle is a summation of ring gear
torque and the torque produced by the electric motor as per equation 1.

(Wg Rs) + (wyr Ry) = e (R F Ry ) e

where, Rs, Rr-are radii of the ring and sun gear respectively, and ws, wr, wcare rotational speeds

of sun, ring and carrier gears respectively.

motor/power shaft

—
\

-

~

Figure 9. Planetary Gear System [16]

engine

generator
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R = Ring Gear, C = Carrier Gear, S = Sun Gear

Figure 10. Power-Split Architecture with Planetary Gear Train Arrangement [27]

e Electric Machine 1 / Generator Model:

Due to the addition of one-way clutch at the engine side and planetary gear set in
power-split hybrid structure, engine can provide torque to both the wheels as well as to the
electric machine 1/generator. The generator is connected to the sun gear which charges the
battery [10, 16].

When engine speed is equal to 0 and propeller torque is positive (battery provides
power), the vehicle is propelled by both electric machines [10, 16]. The relation between
generator, motor, engine and wheel torque is as follows —

Te =—(PXTp X (1 —=€eUr))
Ty = (Tp X (eVr/Grm))

On the other hand, when engine speed is positive, and vehicle is also driven by

traction motor the relation between generator, motor, engine and wheel torque is as follows —

p
e
G ICE 1+p
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_(62)

Ty =

Grm

where,
7 = Electric Machinel or Generator Torque.
T)y = Electric Machinel or Motor Torque.

p = Gear ratio between sun gear and the ring gear = %
Grm = motor gear ratio.

As in the Toyota Prius Prime, the vehicle wheels are connected to the ring gear

through a reduction gear. The rotational speed of the ring gear is given as follows —

R o S :

As the generator is connected to the sun gear, the rotational speed of sun gear is equal
to the generator speed (ws = w¢). From Equation 1, the generator speed is,

W = [me X (1:7’))] - (%) ................................................. 7

The motor and ring gear are on same shaft and wheels are connected to the ring gear

through a reduction gear. Motor speed and ring gear speed are proportional:

where,

Rt = wheel radius

G = final reduction gear ratio.

V = Vehicle Speed

w, = Rotational Speed of Ring gear (rpm).
w; = Generator Speed (rpm).

wy = Motor Speed (rpm).

e Battery Model/ Battery Dynamics:

Power discharge from the battery to the motor and charging from the generator to the
battery is given by [10, 16],

PBatt - PG + PM + PaCC""""""""""'"""""""'"""""""""""'9
Where,

Pg,:+ = Battery Power.
P, = Generator Power.
Py, = Motor Power.
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The generator and motor power are calculated using torque and speed of generator
and motor respectively as follows —

1

P; = [TG X wg X (Z—D X (m)] F Groreloss — ceeeeeeeneieieenenn 10

Py = [TM X wpy X (z—’;) X (Tloo)] F More1oss «cveeverremrimnennenenns 11

where, the Gpreioss aNd More10ss are generator core-loss and motor core-loss respectively.
This electrical loss are function of torque, speed and open circuit voltage of generator and
motor respectively.

o A contour generator core-loss and motor core-loss map provides both the
core losses at different torque, speed and open circuit voltage.
o The values of core losses at operating points between the grid points in
the matrix are obtained by interpolation.
o Generator Coreloss = f(tg, wg, Voc)
o Motor Coreloss = f(ty, wp, Voc)
Also, battery power can be calculated from the electrical dynamics of the battery

system as follows —

PBatt = [(VOC * IBatt) - (RBatt * IBattZ)] ........................................................... 12

Where,

Vo = Open Circuit Voltage.
Igq:+ = Battery Current.
Rp.:: = Battery Resistance.

As | already calculated the battery power using equation 13, and other parameters can
be calculated as follows -

Open Circuit VVoltage Calculation:

The open circuit voltage (V,) means the battery voltage when it is not connected to
any load is a battery characteristic and is mainly a function of battery state of charge and
battery temperature. Consider battery temperature is 25°C.

o A contour V,. map provides V,. at different SOC and battery temperature.

o The values of I/, at operating points between the grid points in the matrix
are obtained by interpolation.

o Voc = f(SOC, Tpaer)

Where,
Tpq:: = Battery Temperature.
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Battery Resistance Calculation:

As of the open circuit voltage, battery resistance is also a battery characteristic and is
mainly a function of battery state of charge and battery temperature [10, 16].

Consider battery temperature is 25°C.

o A contour Rg,:: map provides Rg ;. at different SOC and battery
temperature.

o The values of Ry, at operating points between the grid points in the
matrix are obtained by interpolation.

O Rpare = f(SOC, Tgaet)
By rearranging equation 13,

(RBatt * IBattZ) + (VOC * IBatt) - PBatt - 0 ........................................................... 13

Equation 13 becomes a quadratic equation in the form of Iz,.;. S0, we can calculate

battery current by solving this quadratic equation as follows -

VOC_\/VOCZ_(4XPBatt><RBatt)

2XRBatt

Igate =

But this battery current doesn’t account the constant voltage current loss of battery.
So, again calculate battery current by considering constant battery voltage current losses as
follows-

PBatt,vcl = PBatt + VCloss

Where, V(,,s, is the battery voltage current loss. which is function of battery current, and

open circuit voltage.

o A contour Voltage Current Loss map provides Voltage Current Loss at
different battery current and open circuit voltage.

o The values of Voltage Current Loss at operating points between the grid
points in the matrix are obtained by interpolation.

o Rpge = f(IBattf Voc)

Now, calculate battery current with all losses as follows -

2
Voci\/Voc —(4xPpattvci¥RBatt)

IBatt,final = IXRpage s 15
Using state of charge dynamics, rate of change of SOC can be calculated as follows —
d Ipatt,final
— 0 C = — 16
dt QBatt
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Where,
Qpate = total/maximum charge of fully charged battery.

Finally, state of charge of next state is calculated as follows —

SOC(k + 1) = SOC(k) + (%SOC) .......................................... 17

Again, for the next step calculations provide this calculated SOC as a one of the
inputs. Figure 11 shows the example outputs (fuel consumption and SOC) of the developed
high-fidelity, control-orientated HEV model. Figure 11(a) and 11(b) shows model outputs
means SOC and cumulative fuel consumption with respect to distance graphs. In the
highlighted section of Figure 12(a), Y point represents SOC at respective distance, and it also

shows that | successfully developed chare-sustaining, control-oriented model.
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Figure 11. Output Parameters Vs. Distance Graph

2.2 Model Validation
Comparison and validation between the controls-oriented model used in this research
and chassis dynamometer data are shown in Figure 12-13 where Figure 12 is fuel
consumption and Figure 13 is the initial SOC; at the beginning of the DC and the final SOCs
at the end of the DC. These plots show a linear relationship between this control-oriented
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model and the chassis dynamometer data for both fuel consumption and SOC across the
industry-standard U.S. Environmental Protection Agency (EPA) drive cycles, including the
Urban Dynamometer Driving Schedule (UDDS) and Highway Fuel Economy Test (HWY),
and more. Because there is a linear relationship between the control-oriented model and
chassis dynamometer data over a variety of standard drive cycles, the model is considered to
be validated [24].
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Figure 12. A Comparison Between the Controls-Oriented Model Used in this Research
and Chassis Dynamometer Data of Fuel Consumption
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Figure 13. The Initial SOC; at the Beginning of the DC and the Final SOCsat the End of
the DC
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3. OPTIMAL ENERGY MANAGEMENT STRATEGIES

3.1 Grid Convergence Study and the Effect of Interpolation Method

Before presenting the optimal EMS, it is very important to discuss the effect of
discretization steps and the interpolation method used in the optimal EMS development. Here
we assumed the accessory power is zero. In Figure 14 from a to d we step by step discretized
the control and state variables more finely. In all Figures X-axis represents interpolation
methods available and Y-axis represents the FE improvements numbers. The very first 2
Figures i.e. with coarse grid and medium grid, the effect of interpolation methods shows
significant effect on FE improvement results. That make difficult to decide which
interpolation method to use in the simulations. As we move downward from a—b—c—d the
effect of interpolation methods got nullified after a certain state (from c). The effect of
interpolation methods faded away as we make the grid size finer and finer. Also, it gives us
freedom to select any of the interpolation method. So, in our research while developing the

optimal EMS we utilized the control and state variables discretization steps as Figure 14-c.
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Figure 14. Grid Convergence and Interpolation Method Effect.
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3.2 Dynamic Programming

Based on Bellman's principle of optimality, DP is a numerical method, which is
applicable to multistage decision-making problems like Optimal EMS. It finds the global
optimal solution by working backward in time [9, 31, 32]. We assumed that the desired
future speed of the entire DC is obtained from the perception sub-system. To solve any
problem with DP, first the dynamic equation and the cost function must be discretized. This
can be done most conveniently by dividing the total DC time into N equal interval of 4z. So,
time can be expressed as ¢ = k At where k is time index. The predicted speed data can be used
to calculate the total desired power and subsequently the optimal control (engine torque and
engine speed) values that deliver the desired IC engine power [15, 16]. Fuel consumption
rates are calculated based on these data along with IC engine speed. Whereas, SOC of battery
is also calculated at each power-split ratio and each time index to make sure it doesn't violate
the SOC constraints.

The detailed DP planning sub-system is shown in Figure 15. It takes future velocity
as an input to calculate optimal controls by proceeding backward in time and provides
optimal EMS decision matrix consisting of optimal control matrix to calculate optimal engine
power, SOC and fuel consumption at optimal EMS section [24]. Figure 16 shows the
principle of backward recursive DP optimization, where it takes full DC prediction as an

input and apply DP optimizer backwards to calculate optimal control and next state.

Planning Sub-system by DP
WhoIeDC,__________________g______y______}/_ _________

Future
velocity

Optimal Control | Optimal i 5
p o EMS Optimal |: control
By DP Optimizer Decisio®”| EMS ' Request

(Backward) : |
Matrix |

vehicle

Increase time by 1 sec

v
Energy Consumption

Figure 15. Detailed View of Planning Sub-System by DP
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Figure 16. Working Principle of Dynamic Programming
In general, the DP technique consists of a dynamic equation, a cost function (J), state
(S) and control variables (U) with feasibility constraints. In our study, we implemented DP
on a 2017 Toyota Prius Prime by setting SOC as a state variable (S), engine speed (u1) and
engine torque (uz) as a control variables, vehicle velocity as an exogenous input (w) and the
summation of mass of fuel used and charge sustaining penalty as a cost function which is to

be minimized.

The overall DP formulation given by equation 17 is as follows
Dynamic Equation:
S(k+1) = f(S,Uy, Uy, Wy, Wo, K)AL e 18
The simplified DP equation consisting - all dynamic equations of vehicle, battery,

motor, and generator of power-split architecture with planetary gear train arrangement is,

stk+1)=s(k)—C; +

\/Cz —[C5 x uy X ((C4 x uy) — (Cs X wy))] = [Ce x wy X ((C7 X wy) — (Cg X Up))| v 19

Where, k is time index, SOC(k) is current SOC, SOC(k+1) is derived next SOC after
applying control, C values are constant used to display the equation in a simple way (please

refer appendix).

Cost Function

The cost function is the summation of the addition of mass of fuel used and charge
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sustaining deviation penalty.
2
Cost = Mpye Uy, uz) + W(SOCr — SOCs, pasetine Ems) - woe wee wee wee wee wee .20

where - mre is mass of fuel used which is a function of engine speed and engine torque
derived using engine map. W is a penalty weight (1665 - 1670), SOCt, aseline Ems is the final
SOC of baseline EMS.

Constraints

Smin (k) < s(k) < Spax(k) = 10% < SOC(k) < 20%
Uimin (k) < Uy (k) < Ugmax(k) = ONm < 1,c5(k) < 140Nm
Uzmin (k) < Uz (k) < Uzmax (k) = 0rpm < wycp(k) < 5200rpm

Optimal Control Formulation by DP

Start with defining inputs like all vehicle constants, and exogenous inputs. Here we
considered vehicle velocity, v and propulsion torque, zr as our inputs wiz, and wz

respectively.

Then we defined the state vector, s and discretized with a step of §s from a minimum

value of s,,,;,, t0 a maximum value of s,,,,, as follows —
S = {Spmin> Smin + 6S, e+ Smax }
The same we did for control variables u,, u, as follows
ﬁl = {ulmin'ulmin + 68Uy, v Upmax }
172 = {uZmin' Upmin + OUz, v - Upmax }

Where, §s = 0.01%, 6u; = 1Nm, and du, = 10 rpm. Also, the length of s, u,u,

vectors are Ng, Ny, , and N,,, respectively.

Now make a 3-D matrix of s, u,,u, for simplicity and to reduce computational time.

So, the new control and state variables are,



Now evaluate the vehicle model by backward recursive dynamic programming to

calculate next state and fuel consumption.

Now simulate the vehicle model described in previous section from equation 1 - 19
calculate the next state and cost function at each grid point of state and control
variables for given constraints.
Sk +1) = f(S, Uy, Uy, wy, wy)At
While calculating the cost, keep in mind that we assumed charge sustaining mode
i.e S(k + 1) = S(k). So, arrangements were made where, if this condition gets
violated, then apply a penalty on that to keep final state equal to the first as follows,
if Sk+1 > Sf,BaselineEMS
Cost = Mgy (Uy, Uy)

else
Cost = mfuel(Ul’ Uz) + W(SOCf - SOCf, Baseline EMS)2

end
Now extract a minimum/optimal cost for each state and at each time index in the
form of matrix J*[k, 5]. Also, find out the index of minimum cost (Imin cost) to find
the control value associated with each minimum cost. For each admissible state and
time, the control index that generates the optimal cost is stored in the matrix

u,* [k,s ], and u,* [k, s ] as follows —

J*[k, 5] = minimum (Cost[s,uq, u,])
Uy [k,§] = Uy (Imin cost)

uy” [k,§] = UZ(Imincost)

3.3 Model Predictive Control

Even though DP gives globally optimal EMS, it is also very difficult to implement in

practice because full DC cannot be predicted currently. Nowadays many researchers are

exploring the optimal EMS which can be implemented practically. Model predictive control
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(MPC) is a prospective strategy that can deliver optimal controls with practical
considerations [22, 33, 34, 35, 36].

Model predictive control (MPC) involves control of a dynamic system based on
different control inputs which are applied from the current time to a future time resulting in
minimization of a cost function subject to the system dynamics and additional constraints
[37, 38, 39]. The detailed MPC planning sub-system is shown in Figure 17 and the working
principle of MPC is shown in Figure 18.

Planning Sub-system by MPC
Future ------- - oo s
velocity | Obti Optimal 1 Control
T imal Control ptima : |
i+horizon: B pDPO timizer EMS Optimal EMS |1 Request vehicle
I y ptimize Decisio for i" control |} (i sec)
+ | (Backward for i+horizon) Matrix :
"""""""""""""""""" Increase time by 1 sec_
v
Energy Consumption
Figure 17. Detailed View of Planning Sub-System by MPC
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Predicted | U< Ueenne control of k™ state.
Input \‘w Wk+Nhrz 2. Move the horizon by 4¢,
Rk e " again follow the previous
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k | 76 2 (SO K+Nhr: A N
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< Whole DC g

Figure 18. Working Principle of Model Predictive Control
As we don’t know the whole DC prediction in advance, we only know the velocity
predictions for the desired horizon at each time index as we move forward. So, it takes the
predicted velocity of the desired horizon as an input to calculate optimal controls only for

that selected horizon using DP optimizer in backward in time. This process provides us
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optimal control for the entire horizon. But for further optimal EMS calculation just select the

controls of the desired time index.

In general, MPC consists of a control equation, a cost function (J), state (S) and
control variables (U) with feasibility constraints. In our study, we have implemented MPC
with a 10-second prediction horizon and keeping DP as the optimizer. The overall MPC
formulation for 2017 Toyota Prius Prime model is as follows

Control Equation:

stk +1) = f(S,Ug, Uy, Wi, Wo, K)AL e 21

where - k is time index, SOC(K) is current SOC, SOC(k+1) is derived next SOC after
applying control, uz is engine speed, u. is engine torque, w1, W2 are an exogenous input -

velocity, and propulsion torque respectively.

Cost Function: The cost equation is the same as DP. Only the difference is

considered only horizon time, not whole DC.
Cost = Mpyer(Uy, Uz) + W(SOCs — SOC;. pasetine 5Ms) v vo v s oe ome 22
Constraints: constraints are also the same as one used in DP. Only consider for the
horizon.
Smin(k) < s(k) < spge(k) = 10% < SOC(k) < 20%
Upmin (k) < up (k) < Uymax (k) = ONm < 1565 (k) < 140Nm

Uzmin (k) < uz (k) < Upmax (k) = 0rpm < wcp(k) < 5200rpm

Optimal Control with MPC
To derive optimal controls, DP has been used as an optimizer in MPC. Start with
defining inputs like all vehicle constants, and exogenous inputs. Here we considered vehicle

velocity, vand propulsion torque, zras our inputs wz, and wzrespectively.

Start from 1st time state

Make desired segment of time known as time horizon. Apply DP optimizer only for that
horizon, not for the whole DC So, new time and exogenous inputs are thorizon, Whorizon.

Then we defined the state vector, s and discretized with a step of §s from a minimum
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value of s,,,;,, to a maximum value of s,,,,, as follows —
S = {Spin> Smin + 0S, e+ Smax }
The same we did for control variables u,, u, as follows
171 = {Uimin, Wimin + UL oo Ugmax }
az = {Uzmin, Uzmin + OUz, wo. Uzmay }

Where, s = 0.01%, u,; = 1Nm, and Su, = 10rpm. Also, the length of 5, u;, u,
vectors are Ny, Ny, , and N,,, respectively.

Now make a 3-D matrix of s, u,, u, for simplicity and to reduce computational time.
So, the new control and state variables are,

S = [slsu, 1,

U, = [uz]§,a1,a2
Now evaluate the vehicle model by applying backward recursive DP optimizer for

required time horizon to calculate next state,

Now simulate the vehicle model described in previous section from equation 1 - 19
calculate the next state and cost function at each grid point of state and control
variables for given constraints.

S(k +1) = f(S, Uy, Uz, W1 horizon Wa,horizon) At
While calculating the cost, keep in mind that we assumed charge sustaining mode i.e.
S(k + 1) = S(k). So, we made an arrangement where if this condition gets violates
then apply a penalty on that to keep final state equal to the first as follows -

— if Sk+1 > Sf, BaselineEMS

Cost = Mgy (Uy, Up)

else
Cost = mfuel(Ul' Uy) + W(SOCf - SOCf, Baseline EMS)2

— end
Now extract a minimum/optimal cost for each state and at each horizon time index

in the form of matrix J*[k, 5]. Also, find out the index of minimum cost (Imin cost) t0
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find the control value associated with each minimum cost. For each admissible state
and time, the control index that generates the optimal cost is stored in the matrix
u,* [k, s], and u,* [k, 5] as follows (horizon control matrix) —
Jhorizon Lk, 5] = minimum (Cost[s, uq, u,])
Ut horizon” LK) 5] = U1(Imin cost)

uz,horizon* [k: §] = U, (Imin cost)

save only 1st results of each thorizon Step results to get whole DC control matrix -
]DC*[i' §] = ]horizon*[: 1]
ul,DC* [i,5] = ul,horizon*[: ,1]

uz,DC* [k, 5] = uz,horizon*[: ,1]

3.4 Constant Velocity Prediction
Due to limitations on perception sub-system, in the near term with limited trip
information available or with no trip information available, we can calculate the optimal
controls by assuming a constant speed for an assumed finite time horizon [16]. The detailed
constant velocity prediction planning sub-system is shown in Figure 19 and the working

principle of constant velocity prediction is shown in figure 20.

Planning Sub-system by Constant Velocity Prediction

i" 1| Optimal Control | Optimal :
! . EMS | Optimal EMS [ Control )
—— » By DP Optimizer Decisio®|  for it control ,Tem» vehicle

ConSt"f‘nt || (Backward for i+horizon) | "\ 5 i
velocity 1 !

1
S A

Increase time by 1 sec

v
Energy Consumption

Figure 19. Detailed View of Planning Sub-System by Constant Velocity Prediction

The input to this planning sub-system is the future velocity of an assumed horizon (in
our research it is 10 seconds again) as a constant and is equal to the velocity of the current
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time-step. The optimal controls for that selected horizon are calculated using DP optimizer

moving backward in time. This process provides optimal control for the entire horizon with

all horizon velocity same as the current time-step v
calculation select the controls which are associated wit

elocity. But for further optimal EMS

h the current time-step

Current state

Past Values < » Future Values

<

DP optimizer

A

Si* ke+Nhrz* 1. Apply DP optimizer
Predicted Input backwards for desired
same for whole . . horizon.  Apply  optimal

horizon and equal Uk Uke+Nhrz control of k™" state.
to k" state WN’WI( 2. Move the horizon by A,
""" i again follow the previous
procedure.
K K+l-----mmmmm oo - k+Nhrz At N

Prediction Horizon (Nnr)

A

Whole DC

Figure 20. Working Principle of Constant Velocity Prediction

The control equation, cost equation, constrai
same as previously used in MPC. The only difference

Optimal Control Formulation by constant velo

nts, state and control variables are the

is in the horizon velocity.

city prediction

To derive optimal controls, use DP as an optimizer. It starts with defining inputs (all

constants, exogenous inputs)
Start from 1st time state

Make desired segment of time known as time horizon. Apply DP optimizer only for that

horizon, not for the whole DC by considering i vehicle velocity as same for whole

horizon so, new time and exogenous inputs are thorizon, Whorizon.

Then we defined the state vector, s and discretized with a step of §s from a minimum

value of s,,;,, t0 @ maximum value of s,,,, as follows —

S = {Smin» Smin + 05, ..

---Smax}

The same we did for control variables u,, u, as follows

Uy = {ulmin'ulmin + duy

34

. ulmax }

) en



Uy = {Upmins Uzmin + OUz, v Upma }
Where, §s = 0.01%, du; = 1Nm, and Su, = 10rpm. Also, the length of s, u;, u,
vectors are Ny, Ny, , and N,,, respectively.
Now make a 3-D matrix of s, u,, u, for simplicity and to reduce computational time.

So, the new control and state variables are,

Now evaluate the vehicle model by applying backward recursive DP optimizer for

required time horizon to calculate next state

Now simulate the vehicle model described in previous section from equation 1 - 19
calculate the next state and cost function at each grid point of state and control
variables for given constraints.

S(k + 1) = f(S, Uy, Uz, Wi horizon W2, horizon) At
While calculating the cost, keep in mind that we assumed charge sustaining mode i.e.
S(k + 1) = S(k). So, arrangements were made where, if this condition gets violated,

then a penalty is applied to keep the final state equal to the first as follows —

— if Sk+1 > Sf, BaselineEMS

Cost = Mgy (Uy, Uy)
else

Cost = mfuel(Up UZ) + W(SOCf - SOCf, Baseline EMS)2

L— end

Now extract a minimum/optimal cost for each state and at each horizon time index
In the form of matrix J*[k, 5]. Also, find out the index of minimum cost (Imin cost) tO
find the control value associated with each minimum cost. For each admissible state
and time, the control index that generates the optimal cost is stored in the matrix
u,* [k, s], and u,* [k, 5] as follows (horizon control matrix) —

Jhorizon Lk, S] = minimum (Cost[s, uq, u,])
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ul,horizon* [k: §] = Ul(lmin cost)

uz,horizon* [k: §] = U, (Imin cost)

save only 1st results of each torizon Step results to get whole DC control matrix -

]DC*[i' §] = ]horizon*[: ’ 1]

ul,DC* [i: 5] = ul,horizon*[: ’ 1]
uZ,DC* [k, S] = uz,horizon*[: ’ 1]
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4. SIMULATION

4.1 Drive Cycle on which Data was Collected
Three different instances one of a real-world DC are employed to symbolize highway
driving and city-highway driving while simulation to find baseline and optimal FE [23, 24].
The main differences separating these drive cycles are velocities and acceleration through the

path. The location of DC's shown in Figure 21 and Figure 22 is in Ann Arbor, MI.

Whitmore
Lake

435 Eight Mile Roadg 53

Webster
Worden|

= 11 min
11.9 miles

Ann Arbe‘r
Delhi Mills Charter TWp

\’1
Plymouth Road

Ann Arbor

&

Figure 21. Drive Cycle Map of The Highway Dataset (Created with Google Maps) [23, 24]
Figure 21 shows the DC map of the highway data set and Figure 22 shows the DC
map of the city-highway data set created with Google maps. The different instances of each
drive cycle may have different traffic conditions and different stop light states along the drive
cycle. The total recorded highway DC is 11.9 miles long and city-highway DC is 13.3 miles

long.
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Figure 22. Drive Cycle Map of the City-Highway Dataset (Created with Google Maps)
[23, 24]

4.2 Baseline EMS/ Performance

The Baseline EMS represents the current performance of a 2017 Toyota Prius Prime
in a rules-based, non-predictive control strategy (due to confidentiality clause, I’m not able to
disclose exact rules that used while development). Recorded vehicle velocity, propeller
torque, engine speed and engine torque through the whole DC and calculated next state of
charge are used as an input into previously developed a controls oriented, high-fidelity HEV
model. As mentioned earlier this model was developed using previously documented Toyota
Prius operation equations [15, 16]. Integrated with MATLAB/Simulink but updated with
vehicle parameters for the engine and motors to accurately represent a 2017 Toyota Prius
Prime. Also, in this research, | considered charge sustaining approach. Because charge
sustenance and blending incur nearly the same total energy costs through the depletion phase.
In blending engine operates efficiently and the battery charge depletes slowly, because in
blending engine gets utilized often during the charge depletion phase thereby assisting the

battery in meeting total power demand.

Figure 23 and Figure 24 shows the baseline performance of the high-fidelity, control-

oriented model with highway and city-highway DC respectively. Figures 23 (a-b-c-d) and 24
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(a-b-c-d) represents the velocity, engine power, SOC and cumulative fuel consumption
profiles with respect to distance on highway and city-highway DC respectively. Highlighted
section of SOC trends from both the figures shows that the developed models achieved
charge sustention mode.
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Figure 23. Baseline Performance of High-Fidelity, Control-Oriented Model with
Highway DC
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Figure 24. Baseline Performance of High-Fidelity, Control-Oriented Model with
City-Highway DC

4.3 Optimal EMS Decision Matrix Using DP

Figure 25 and Figure 26 show the optimal control (us* and u2*) matrix (also called as
optimal EMS decision matrix) obtained by full DC prediction using DP with highway and
city-highway DC respectively. This plot is 2D representation of 3D graph, where SOC, time
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and optimal controls (us* and ux*) are the co-ordinates of 3D graphs. It provides the optimal
EMS decision matrix where optimal control is given for each possible value of SOC to
achieve desired predicted vehicle velocity. Using this controls the engine power, SOC and

fuel consumption has been calculated which is globally optimal.
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Figure 25. The Optimal Control Matrix Obtained by DP with Highway DC
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Figure 26. The Optimal Control Matrix Obtained by DP with City-Highway DC
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4.4 Optimal EMS Decision Matrix Using 10 sec Horizon MPC
Figure 27 and Figure 28 show the engine power, SOC and fuel-consumption
calculated with the optimal control (ul* and u2*) matrix obtained by MPC over a 10 second

horizon prediction with highway and city-highway DC respectively.
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Figure 27. The Optimal Control Matrix Obtained by MPC with Highway DC
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Figure 28. The Optimal Control Matrix Obtained by MPC with City-Highway DC
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4.5 Optimal EMS Decision Matrix Using 10 sec Horizon Constant Velocity Prediction
Figure 29 and Figure 30 shows the engine power, SOC and fuel-consumption
calculated for the optimal control (ui* and u.*) matrix obtained by constant velocity

prediction with highway and city-highway DC respectively.
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Figure 29. The Optimal Control Matrix Obtained by Constant Velocity Prediction with

Highway DC
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Figure 30. The Optimal Control Matrix Obtained by Constant Velocity Prediction with
City-Highway DC
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5. RESULTS

We proposed three different strategies for optimal EMS analysis, namely (1) perfect
full DC prediction using dynamic programming, (2) 10-second prediction horizon MPC, and
(3) 10-second horizon constant velocity prediction. To derive the globally optimal FE, DP
needs full DC future prediction as an input. On the other hand, MPC only needs desired
horizon future speed prediction as an input to derive optimal FE improvement. To cope with
a limited perception system, constant velocity prediction only needs a desired time-step
velocity prediction, and we can consider that velocity will be constant throughout the
horizon. These three cases are simulated and presented in a separate figure. Figure 32 to
Figure 41 shows each of these three Optimal EMS cases is presented next with both the

highway dataset and the city-highway dataset.

5.1 Perfect Full Drive Cycle Prediction Using Dynamic Programming

Perfect full DC prediction implemented with dynamic programming provides
maximum possible FE improvement over baseline FE. This is a critical data point because it
can act as a benchmark for other optimal EMS for comparison. We simulated three of each
perfect full highway DC and full city-highway DC prediction with DP and presented each of
FE improvement over baseline FE along with the average FE improvement in Table 1 and
Table 2 Also, Figure 31 and Figure 32 shows the engine power, fuel consumption and SOC
comparison of full DC prediction using DP with baseline (All plots represent simulation
results of DC1).

Table 1. DP Optimal FE Improvement Over Baseline with Highway DC.

MPGe (%) 1t SOC (%) Last SOC (%)
DC1 2.96 13.64 13.62
DC2 2.89 13.64 13.63
DC3 2.96 13.64 13.63
Average 2.94

44



Table 1 and Table 2 shows global FE improvement over baseline FE for highway DC

and city-highway DC, and the average FE improvement across all drive cycles is 2.94%,
4.32%, respectively. Also, for both the DCs the initial SOC and final SOC calculations show,
we successfully achieved charge sustaining mode with highway and city-highway data set.

Table 2. DP Optimal FE Improvement Over Baseline with City-Highway DC.

MPGe (%)

15t SOC (%) Last SOC (%)
13.64 13.64
13.64 13.63
13.64 13.63

DC1
DC2
DC3
Average
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Figure 31. Baseline EMS Vs. Optimal EMS with Dynamic Programming on Highway DC
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Figure 31 (a-d) and Figure 32 (a-d) shows the velocity profile, engine power, fuel
consumption, and SOC over time of full highway DC, and full city-highway DC prediction
using DP with baseline performance. When comparing the engine power from the Baseline
EMS and the globally Optimal EMS in Figure 31 (b), there are few points like at 4", 12t
mile distance, where the Optimal EMS has turned off the engine and operated the engine at
lower overall power with fewer fluctuations resulting in the FE improvement. Similarly,
when comparing the engine power from the Baseline EMS and the globally Optimal EMS in
Figure 32 (b), there are many points where the Optimal EMS has turned off the engine and
operated the engine at lower overall power with fewer fluctuations resulting in the FE
improvement. Both highway and city-highway DC’s fuel consumption tends also reflects the

same with less cumulative fuel consumed by optimal EMS.
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Figure 32. Baseline EMS Vs. Optimal EMS with Dynamic Programming on
City-Highway DC
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5.2 10-Second Prediction Horizon With MPC

The DP with perfect full DC prediction is difficult to implement in real vehicles due
to its high computational cost and complexity. However, the recent advancement in driver
assistance technologies taps the potential of the perception system to improve vehicular FE
on a future time horizon shorter than the whole DC. This is an advantageous data point, as it
provides maximum and real-world implementable optimal FE with an advance perception
system. Here also we simulated 3 of each highway DC and city-highway DC with 10-second
prediction horizon using MPC and presented each of FE improvement over baseline FE
along with the average FE improvement in Table 3 and Table 4. Also, Figure 33 and Figure
34 show the engine power, fuel consumption, and SOC comparison of the 10-second
prediction horizon using MPC with baseline (All plots represent simulation results of DC1).

Table 3. MPC Optimal FE Improvement Over Baseline with Highway DC.

MPGe (%) 15t SOC (%) Last SOC (%)
DC1 1.87 13.64 13.63
DC2 1.84 13.64 13.63
DC3 1.84 13.64 13.64
Average 1.85

Table 4. MPC Optimal FE Improvement Over Baseline with City-Highway DC.

MPGe (%) 15t SOC (%) Last SOC (%)
DC1 3.32 13.64 13.63
DC2 2.95 13.64 13.63
DC3 2.61 13.64 13.66
Average 2.96

Table 3 and Table 4 shows FE improvement over baseline FE for highway DC and

city-highway DC, and the average FE improvement across all drive cycles is 1.85%, 2.96%
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respectively. Also, both the DC’s the initial SOC and final SOC calculations shows, we

successfully achieved charge sustaining mode with highway and city-highway data set.
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Figure 33. Baseline EMS Vs. Optimal EMS with MPC on Highway DC

Figure 33 (a-d) and Figure 34 (a-d) shows the velocity profile, engine power, fuel
consumption, and SOC of 10-second horizon highway and city-highway DC’s prediction
using MPC with baseline performance respectively. When comparing the engine power from
the Baseline EMS and the 10-second horizon with MPC Optimal EMS in Figure 33 (b), the

Optimal EMS tends to operate the engine at lower power and a more consistent power
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resulting in the FE savings. Similarly, when comparing the engine power from the Baseline
EMS and the 10-second horizon with MPC Optimal EMS in Figure 34 (b), Optimal EMS
yields similar lower engine power as with the highway DC, which resulting in an FE
increase. Both highway and city-highway DC’s fuel consumption tends also reflects the same

with less cumulative fuel consumed by optimal EMS.
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Figure 34. Baseline EMS Vs. Optimal EMS with MPC on City-Highway DC

5.3 10-Second Prediction Horizon with Constant Velocity Prediction

MPC has advantages like very significant and real-world implementable optimal FE
over the finite horizon with an advanced perception system. Even though it requires a very
advance perception system; however, in the current state, there is a need to develop a control

strategy that can work with limited perception and provides some FE improvement over
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baseline FE. So, we have developed a control strategy which can provide significant FE
improvement with limited perception of future vehicle operation. Here also, we simulated 3
of each highway DC and city-highway DC with a 10-second prediction horizon using
constant velocity prediction where velocity is assumed constant for the entire horizon and
presented each of FE improvement over baseline FE along with the average FE improvement
in Table 5 and Table 6. Also, Figure 35 and Figure 36 show the engine power, fuel
consumption, and SOC comparison of 10-second prediction horizon using constant velocity
prediction with baseline (All plots represent simulation results of DC1).

Table 5. Constant Velocity Prediction Optimal FE Improvement Over Baseline with

Highway DC.
MPGe (%) 1t SOC (%) Last SOC (%)
DC1 171 13.64 13.62
DC2 1.47 13.64 13.63
DC3 1.58 13.64 13.63

Average 1.58

Table 5 and Table 6 shows non-global FE improvement over baseline FE for highway
and city-highway DC’s, and the average FE improvement across all drive cycles is 1.58%,
2.45%, respectively. Also, both DC’s the initial SOC, and final SOC calculations show, we
successfully achieved charge sustaining mode with highway and city-highway data set.

Table 6. Constant Velocity Prediction Optimal FE Improvement Over Baseline with
City-Highway DC.

MPGe (%) 15t SOC (%) Last SOC (%)
DC1 245 13.64 13.63
DC2 251 13.64 13.66
DC3 241 13.64 13.64
Average 2.45
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Figure 35 (a-d) and Figure 36 (a-d) shows the velocity profile, engine power, fuel
consumption, and SOC of a full highway and city-highway DC’s prediction using 10-Second
Constant Velocity Prediction with baseline performance. When comparing the engine power
from the Baseline EMS and the non-globally Optimal EMS in Figure 35 (b), there are very
few points where the Optimal EMS has turned off the engine and operated the engine at
lower overall power with fewer fluctuations resulting in the FE improvement. Similarly,
when comparing the engine power from the Baseline EMS and the globally Optimal EMS in
Figure 36 (b), Optimal EMS yields similar lower engine power as with the highway DC,
which resulting in an FE increase. Both highway and city-highway DC’s fuel consumption

tends also reflects the same with less cumulative fuel consumed by optimal EMS.
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Figure 35. Baseline EMS Vs. Optimal EMS with Constant Velocity Prediction on
Highway DC
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Figure 36. Baseline EMS Vs. Optimal EMS with Constant Velocity Prediction on
City-Highway DC

5.4 Combined Results: Fuel Consumption and SOC

Figure 38 and Figure 39 compares the result of fuel consumption and SOC level with
highway DC and city-highway DC respectively at each time index of all three strategies with
baseline EMS which outlines the current performance of a vehicle in a rules-based, non-

predictive control strategy.

Table 7 and 8 shows the average FE improvement and Figure 38-39 (a), 38-39 (b)

and 38-39 (c) shows the overall fuel consumption trend (DC1 plots) from lowest to highest

can be given as:
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DP < MPC < Constant Velocity Prediction < Baseline EMS

Perfect full DC prediction implemented with DP shows the best FE improvement and
is considered as the upper limit on FE improvement. On the contrary, the baseline EMS
shows the point of comparison for any FE improvement

Figure 37 (b) shows a constant velocity prediction fuel consumption trend closely
follows the MPC on highway driving; on the contrary, Figure 38 (b) shows a significant
difference between constant velocity prediction and MPC fuel consumption trends. However,
it shows that even with the limited prediction, constant velocity prediction strategy can
provide remarkable FE improvement. Also, all EMS strategies start and end with the same

SOC level, which verifies that "charge sustaining” mode is being enforced.

Table 7. Average DP, MPC, and Constant Velocity Prediction Optimal FE Improvement Over
Baseline with Highway DC.

MPGe (%) 15t SOC (%) Last SOC (%)
DP 2.94 13.64 13.64
MPC 1.85 13.64 13.62
Constant Velocity 1.58 13.64 13.62

Table 8. Average DP, MPC, and Constant Velocity Prediction Optimal FE Improvement Over
Baseline with City-Highway DC.

MPGe (%) 15t SOC (%) Last SOC (%)
DP 4.32 13.63 13.64
MPC 2.96 13.63 13.62
Constant Velocity 2.45 13.63 13.62
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Figure 37. Baseline, DP, MPC, and Constant Velocity Prediction EMS Comparisons with
Highway DC

From Figure 37 - 38 (c), SOC trends of DP strictly obey charge sustaining operation,
but in between the DC endpoints, SOC fluctuates broadly. This clearly indicates that DP
takes full advantage of battery power with perfect full DC prediction. Due to this in both
highway and city-highway driving, FE improvement is biggest. This is also justified by the
DP fuel consumption trends shown in Figure 37 — 38 (b). This clearly shows that the low DP

fuel consumption trend is distinct from others.

Figure 37 (c) indicates that on highway driving, SOC trends of both MPC and
constant velocity prediction at each time-step always stay close to the initial SOC level,

which looks like the SOC level is constant for whole DC. This indicates that due to
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application of DP only for finite horizon, it restricts the MPC from taking advantage of
battery SOC, and it tries to maintain chare sustaining mode. On the other hand, with city-
highway driving, the SOC trends of both MPC and constant velocity prediction shows some
fluctuations, but their amplitude is much smaller than the DP SOC trend. This low SOC

fluctuation results in higher battery life.
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Figure 38. Baseline, DP, MPC, and Constant Velocity Prediction EMS Comparisons
with City-Highway DC

6. Combined Results: Engine Power

Figure 39 and Figure 40 compare engine power trends of different EMS strategies on
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the highway and city-highway driving, respectively. From Figure 39 — 40 (a), the engine
power comparison of DP with baseline performance shows relatively lower overall power
resulting in 2.94% and 4.3% of average FE improvement over baseline fuel consumption for
highway and city-highway driving, respectively.

Figure 39 — 40 (b) shows that the MPC engine power trend closely follows the DP
engine power trend with some exceptions. MPC has the potential to achieve 60% - 65% and
70% - 80% of global FE improvement levels on the highway and city-highway DC,
respectively.
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Figure 39. Baseline, DP, MPC, and Constant Velocity Prediction Engine Power
Comparisons with Highway DC.

Figure 39 (c) indicates on highway DC in some instances; there is a sharp increment

in the engine power for the constant velocity prediction as compared to MPC engine power.
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This indicates that constant velocity prediction can potentially achieve 80% - 92% of MPC
FE improvement. On the other hand, the engine power trend with constant velocity
prediction shows multiple sharp increments over MPC engine power on city-highway DC, as
shown in Figure 40 (c). This causes the drop in FE improvement potential of constant
velocity prediction over MPC FE improvement. Overall the constant velocity prediction has

the potential to achieve 50% - 60% of global FE improvement.
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Figure 40. Baseline, DP, MPC, and Constant Velocity Prediction Engine Power
Comparisons with City-Highway DC.
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6. SUMMARY

Overall the FE improvement results of both highway and city-highway driving with
all 3 strategies over baseline EMS are shown in Figure 41 and Table 9. The perfect full DC
prediction along with DP has the largest average FE improvement, followed by 10-second
prediction horizon MPC, and then 10-second horizon constant velocity prediction over
baseline EMS.
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Figure 41. Overall Average FE Improvement Over Baseline with All 3 EMS with Both
Highway and City-Highway DC

Table 9. Overall Average FE Improvement Over Baseline with All 3 EMS with Both Highway
and City-Highway DC.

Highway DC City-Highway DC
DP 2.94 4.3
MPC 1.85 2.96
Constant Velocity 1.58 2.45
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Figure 41 also indicates that on the highway DC constant velocity prediction can
achieve nearly equal FE improvement of MPC FE improvement. So, on highway driving, it
could be better to use the more straightforward constant velocity prediction method than the
complicated MPC method as constant velocity prediction does not require perfect horizon
prediction like MPC. On the contrary, with city-highway DC, the gap between MPC and
constant velocity prediction FE improvement is significant. This means with city-highway

DC, MPC gives better results because it considers perfect horizon velocity predictions.
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7. CONCLUSION

In this study, | have investigated 3 different energy management strategies in
simulation using real-world highway and city-highway DC in a validated, control-oriented
2017 Toyota Prius Prime model operating in charge sustaining mode. The input to all the
EMS planning sub-system is velocity predictions obtained from the perception sub-system.
The output of the given planning sub-system is the vehicle control matrix which realizes FE
improvement with optimal engine power generation while maintaining charge sustention
mode.

The perfect full DC prediction along with DP gives globally optimal EMS which
represents the upper limit on achievable FE improvement. The 10-second prediction window
MPC strategy provides the second-best FE improvement results in my research which were
found to be very significant. The MPC results suggest that, it has potential to achieve 60%-
65% and 70% - 80% of global FE improvement over highway and city-highway DC
respectively. So, with the advancement in perception systems, MPC can be implemented in
real vehicles. Whereas, the constant velocity prediction results also show prospects of
implementation in vehicle controllers with MPC type of framework. The constant velocity
prediction results suggest that has the potential to achieve 80%-90% and 75% - 85% of MPC
FE improvement over highway and city-highway DC respectively. Also, the MPC and
constant velocity prediction results suggest that FE improvement from perfect 10 second
MPC is only slightly higher than constant velocity 10 second. This means that a 10 second
prediction window is not that beneficial for generating actual velocity predictions for MPC.
The MPC and Constant velocity SOC results corroborate the above claim(s) to achieve better
battery performance.
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8. FUTURE STUDY

For future work, we seek to combine both perception and planning sub-system and
integrate it with a real-world vehicle through NVIDIA PX2 and vehicle controller. Along
with fuel economy, our goal is to combine the vehicular emissions model with a neural
network to accomplish the ultimate goal of efficient vehicle powertrain. Our near-term goal
is to implement the constant velocity prediction strategy as it does not require perfect horizon
operation prediction. As the 10 second prediction window is not that beneficial for generating
actual velocity predictions for MPC, we seek to explore more prediction windows, and its
effect on FE improvement. Our long-term goal is to implement the model predictive control

strategy as our perception research gets mature.
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APPENDIX

Let’s start with state of charge dynamics [14, 15],

VOC_\/VOCZ_(4XPBattXRBatt)
SOC(k+1)=S0C(k) — S ———————————/errrrrrrereennns

2XRBqttXQBatt_o

Where,

S0C(k + 1) = State of charge of next state

S0C (k) = State of charge of current state

Voc = Open Circuit Voltage

Ry, = Battery Resistance

Qpat: = total/maximum charge of fully charged battery
Pga:¢ = Battery Power

Let, Power discharge from the battery to the motor and charging from the generator to the
battery is given by [14, 15],

Pgate = Pg + Py

Where,

P; = Generator Power.

Py, = Motor Power.

Now find P, and Py,

generator and motor power are calculated using torque and speed of generator and motor
respectively as follows [14, 15],

Ps = [n* X 75 X wg]

P; = n* x <T1cE X (ﬁ)) X (( Wicg X (?)) o (Rtxrftnalxp)>

Py = [n* X Ty X wy]

%4 TicE
Py = n* x X X Tringl) — ( >
M=1 (Rt X Trinar X P) <(TP Tfmal) 1+p >

Where,

n = Electrochemical conversion efficiency

k = -1 during discharging and 1 during charging
7 = Electric Machinel or Generator Torque.
Ty = Electric Machinel or Motor Torque.

p = Gear ratio between sun gear and the ring gear = —oaus of sun gear (Rs)

R:= Wheel/tire radius

radius of ring gear (Ry)
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Trin = Final reduction gear ratio.
IV =Vehicle velocity

T;cg = Engine Torque.

w;cp = Engine Speed.

Tp = Propulsion Torque.

Green part of equation | becomes,
(4 X Pgate X Rpatr) =4 X (Pg + Py) X Rpaee
(4 X Pgase X Rpare) =4 X Rpaer X

[l (e =) - ) |

L ) (e -2)] )

Now equation 1 becomes,

SOC(k + 1) = SOC(k) — (L) N

2XRpattXQBatt

k P o\ (V.
(ot ) oxtacsor(si(25) e orcex(2) - (s )

2 2 2 2
4XRBart”“ XQBatt 4XRBart“XQBatt
0 0

v TICE
4XRBattX77kx(m)x<(TPerinal)_( 1+p )>

2 2
4XRBart“XQBatt

SOC(k + 1) = SOC(k) — (L) +

2XRpattXQBatt
tex(10ex(22) ¢{ ( wrcex(222))- +>
( Voc? ) ~ n ( 1cEX\ 75, 1ceX(—5 RO<T Final<P
2 2
4XRBatt>XQBatt RBattXQBatt
0 0

kol V . _(YICE
! X(Rt”final>x<(rpXrﬂnal) (1“’))

2
RpattXQBatt

e

The simplified DP equation consisting - all dynamic equations of vehicle, wheel, SOC of power-
split architecture with planetary gear train arrangement is,
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S0C(k+1) =S0C(k) —C; +

\/Cz —[C3s X T1eg X ((C4 X wiep) — (Cs X V)] = [Ce X V x ((C; X Tp) — (Cg X Tycp))]everveen I

Where,

w; = V' =Vehicle velocity

w, = Tp = Propulsion Torque.
u; = w;cg = Engine Speed.
u, = 1, = Engine Torque.

s = SOC = State of charge.

Equation 11 becomes,
stk+1)=s(k)—C; +

\/Cz —[Cs X uy X ((C4 X uy) — (Cs X wy))] = [Ce x wy X ((C7 X wy) — (Cg X up))]

Where,

Voc
Cl=—
2XRpattXQBatt

k
CS ! zx(p)
RpattXQBatty 1+p

1

2
Rpate X Qpatty” X Re X Trinar X P

rf inal

2
Rpate X Qpatt,

2

C, = Voc
2 = 2 2
4XRBatt”“XQBatt
1 1+
6= ()
RpattXQBatt p
k
_ n
Ce = 5
Rpate X Qpatty” X Re X Tinal
¢ o< (r55)
= X
8 2
Rpate X Qpatt, 1+p
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