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COMPARISON OF OPTIMAL ENERGY MANAGEMENT STRATEGIES 
USING DYNAMIC PROGRAMMING, MODEL PREDICTIVE 

CONTROL, AND CONSTANT VELOCITY PREDICTION 

Amol Arvind Patil, M.S.E. 

Western Michigan University, 2020 

Due to the recent advancements in autonomous vehicle technology, future vehicle 

velocity predictions are becoming more robust which allows fuel economy (FE) improvements in 

hybrid electric vehicles through optimal energy management strategies (EMS). A real-

world highway drive cycle (DC) and a controls-oriented 2017 Toyota Prius Prime model are 

used to study potential FE improvements. We proposed three important metrics for 

comparison: (1) perfect full drive cycle prediction using dynamic programming, (2) 10-second 

prediction horizon model predictive control (MPC), and (3) 10-second constant velocity 

prediction. These different velocity predictions are put into an optimal EMS derivation 

algorithm to derive optimal engine torque and engine speed. The results show that the 

constant velocity prediction algorithm outperformed the baseline control strategy but 

underperformed the MPC strategy with an average 1.58% and 2.45% of FE improvement with 

highway and city-highway DC. Also, using a 10-second prediction window MPC strategy 

provided FE improvement results close to the full drive cycle prediction case. MPC has the 

potential to achieve 60%-65% and 70% - 80% of global FE improvement over highway and 

city-highway DC respectively. 
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1. INTRODUCTION 

 

 

Transportation-related air pollution issues have gained increasing attention in recent 

years. Federal and state governments have mandated that new transportation projects 

conform to the Environmental Protection Agency (EPA) regulations. Advancement in novel 

vehicle control approaches that accomplish improved fuel economy is an ongoing topic of 

study due to the financial, environmental, and air-pollution impact of transportation [1, 2, 6]. 

Improving fuel economy (FE) is an important way to reduce the adverse effects of climate 

change and reduce energy use [2, 3, 6]. This FE improvement along with a significant 

reduction in emissions has been achieved using hybrid electric vehicles (HEVs) and plug-In 

hybrid electric vehicles (PHEVs).  

Modern-day vehicles are equipped with an ability to comprehend the worldview 

with many sophisticated sensors and signals and the industry is moving rapidly towards the 

"Intelligent Vehicle Era" [4, 6]. An intelligent vehicle means a vehicle that can sense the 

environment around it, communicate with it, and execute the controls accordingly. The type 

of sensors/signals available is vehicle-to-vehicle (V2V)/ vehicle-to-vehicle (V2I) 

communication, advanced driver-assistance systems (ADAS - RADAR, LiDAR, Camera), 

traffic data, controller area network (CAN) data and GPS [5, 7, 8]. Those modern-day 

technologies can tremendously improve vehicular safety along with reduced energy 

consumption and reduced environmental pollution [2].  

There are two types of vehicle control strategies that can effectively improve the FE 

(1) driving behavior modification including eco-driving and eco-routing, (2) powertrain 

operation modification through optimal energy management strategy (EMS) [6, 9]. The 

optimal EMS can be classified as (1) instantaneous second by second optimization without 

prior knowledge of whole drive cycle (DC) and (2) predictive optimal EMS which requires 

some trip information known beforehand [6, 10, 11]. 

Furthermore, predictive optimal EMS can be classified as- 1) globally optimal EMS 

with perfect full DC knowledge and prediction by using numerical optimization methods like 
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dynamic programming (DP) and pontryagin's minimum principle (PMP) [6, 10, 12] (2) non-

globally optimal EMS with stochastic prediction and computationally efficient non-global 

optimal EMS [6, 13, 14]. The last two methods don't guarantee the global solution but come 

with less computational cost and are practically implementable. 

When deriving a globally optimal EMS using deterministic prediction, DP has been 

the overwhelming favorite due to its ease of use, robustness, and no need for knowledge of 

derivatives [6, 10,15]. A globally optimal EMS with deterministic prediction is difficult to 

implement in practice because of the high computational cost and deviations in the planned 

for drive due to disturbances that arise from interaction with traffic, traffic control devices, 

etc., but it is still beneficial in simulation to define the upper practical limit on FE benefits for 

a given vehicle and drive cycle [6, 16]. Computationally efficient non-global optimal EMS 

can be implemented by model predictive control (MPC), where the optimization is done over 

a moving finite horizon that is shorter than the DC. Also, with the advancement in perception 

systems and associated computational improvements, MPC is implementable in real vehicles 

[6, 14]. When limited trip information is available, optimal EMS can be implemented by 

assuming that the velocity is constant for that horizon [16]. This novel EMS strategy could be 

implementable in-vehicle controllers with an MPC type of framework. 

In the sub-sequent sections, I extensively studied previous research studies on optimal 

EMS and quantified and compared the fuel economy improvement by utilized a dynamics 

programming, model predictive control, and constant velocity prediction strategy. 

 

  

1.1 Literature Review 

Starting in 2008, the earliest and presently most cited research pertaining to 

perception, optimal EMS planning, and FE results comes from researchers at the University 

of Florida and the University of Wisconsin-Milwaukee. Their study used V2I and GPS 

signals as inputs into an artificial neural network (NN) perception model, and FE 

improvements using an Optimal EMS in a PHEV were realized [17]. In 2013, researchers at 

the University of Stuttgart, Germany integrated a perception model and a planning model. 

The planning optimal EMS only determines the optimal time to implement the hydraulic 

power [18]. In 2014, researchers at the University of Minnesota applied a traffic model to 
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predict future vehicle velocity with V2V and V2I as inputs [19]. They employed Pontryagin's 

minimization principle to derive their Optimal EMS and realized a 1.5% to 4.5% FE 

improvement with prediction-with-error scenario. Then in 2015, researchers from the 

University of California at Berkeley recognized the important relationship between 

perception and planning and investigated three perception models for use with a Model 

Predictive Control Optimal EMS. They used previous driving data and the current vehicle 

state as inputs to test an exponentially varying perception model, a stochastic Markov chain 

perception model, and an NN perception model [20]. Their results show that the NN 

perception model with model predictive control as the Optimal EMS produced the best FE 

results, though this result was not a full realization of globally optimal FE.  

Starting in 2017, researchers at Colorado State University began publishing research 

that included a perception model, optimal EMS, and FE results [references]. The first study 

used current and previous vehicle velocity and GPS data input to a shallow NN perception 

model with an Optimal EMS computed using DP on a validated model of a 2010 Toyota 

Prius. The maximum FE improvement of x% was achieved using 30 seconds of prediction 

[21]. Another follow-up study used custom camera detections relevant for velocity prediction 

[7], travel time data, as well as current and previous vehicle velocity and GPS data as the 

sensor/signal inputs again with a shallow NN and an Optimal EMS [22]. Additionally, 

research that was conducted at the University of Michigan and then transitioned to Western 

Michigan University explored a variety of perception models including auto-regressive 

moving average, shallow NN, long short-term memory (LSTM) deep NN, markov chain, and 

conditional linear gaussian models. It was determined that the LSTM deep NN provided the 

best prediction fidelity (measured in mean absolute error) [23] which realized a fuel economy 

improvement of 3% in a dynamometer validated model of a 2017 Toyota Prius Prime [24]. 

Recent trends have begun to implement advancements in machine learning and have 

replaced shallow NNs with deep NNs. This was first demonstrated by researchers at the 

University of California Riverside where a deep reinforcement network was implemented as 

a perception and planning subsystem where traffic data was the input and optimal control of 

a generic PHEV was the output. This technique resulted in a 16.3% FE improvement in 

simulation [25].  
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1.2 Motivation 

In terms of global energy consumption, the transportation sector is the second largest 

consumer behind the industrial sector. Transportation accounts for 30% of the world's energy 

consumption and the transportation energy demand is projected to increase 30% from current 

levels by 2040 [3]. Associated utilization of energy conversion devices such as the internal 

combustion engine, result in issues spanning climate stability, domestic energy security, and 

human health risks from local air quality impacts. The global transportation sector accounted 

for 64.5% of worldwide petroleum consumption in 2014 [3]. As a 2016 estimation shows 

that the United States alone paid $150 billion to the Organization of Petroleum Exporting 

Countries (OPEC), which creates issues like energy insecurity and vulnerability to 

geopolitical instability. The transportation sector is also a major contributor to air pollution. 

Out of the six primary air pollutants, transportation significantly contributes to worldwide 

nitrogen oxide/nitrogen dioxide (NOx), carbon monoxide (CO), volatile organic compounds 

(Voc), particulate matter (PM), and sulfur dioxide (SO2) [3]. As a result, 6.5 million 

premature deaths were attributed to air pollution in 2012, making it the world’s fourth-largest 

threat to human health [12]. Greenhouse gas emissions resulted in increased climatic changes 

and the transportation sector was also responsible for 23% of global greenhouse gas 

emissions in 2014 [6]. To combat these climate impacts, the Paris climate agreement has 

been adopted by most countries to limit greenhouse gas emissions and with the goal of 

keeping global warming to at most 2ºC [6]. Limiting greenhouse gas emissions from 

transportation is proposed to be accomplished primarily through the increasing of fuel 

economy (FE) with technologies such as improved vehicle operation efficiency and 

electrification [2, 6]. 

Overall, increasing vehicle FE (reducing petroleum consumption), results in lower 

global energy consumption, lower greenhouse gas emissions, and lower air pollution 

emissions. Automotive FE standards, such as those adopted by the United States, Japan, 

Canada, Australia, China, Taiwan, South Korea, and others, have proven to be one of the 

most effective tools in controlling petroleum demand and greenhouse gas emissions in many 

regions and countries around the world [6]. There are three types of vehicle controls that 

reduce fuel consumption for a drive cycle with a fixed starting point and a fixed ending point: 

(1) Eco-Driving, (2) Eco-Routing, and (3) an improved Energy Management Strategy 
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(EMS). Eco-Driving and Eco-Routing decreases fuel consumption by decreasing the energy 

output of the vehicle through modification of the drive cycle. An improved EMS decreases 

fuel consumption by increasing the efficiency of the vehicle powertrain operation without 

modification of the drive cycle. 

Eco-Driving reduces fuel consumption for all types of vehicles by implementing fuel 

efficient driving behaviors along a fixed route which may alter the travel time. In practice, 

Eco-Driving is challenging to implement because most drivers do not like to give up control 

[6]. On the other hand, Eco-Routing reduces fuel consumption for all types of vehicles by 

exploring alternate vehicle routes between a fixed starting and ending location. As vehicles 

become more intelligent, Eco-Routing can assist vehicles in real time [6]. 

An improved EMS seeks to reduce the energy consumption over a fixed drive cycle 

through improved powertrain operation efficiency. Typically, an optimal control problem is 

formulated and an Optimal Energy Management Strategy (Optimal EMS) is derived. An 

Optimal EMS realizes FE improvements by explicitly or implicitly modeling vehicle 

operation and controlling the vehicle powertrain components to minimize fuel consumption. 

An Optimal EMS does not require a change in driver behavior; thus, this FE improvement 

technique has a consumer acceptance advantage over Eco-Driving and Eco-Routing. An 

Optimal EMS can realize FE improvements for conventional vehicles and electric vehicles, 

but the greatest FE improvements are realized from vehicles with more powertrain operation 

degrees of freedom such as HEVs and PHEVs. The exact FE improvement from an Optimal 

EMS is strongly dependent on the chosen drive cycle and vehicle architecture. As an 

example, one of the earliest Optimal EMS studies demonstrated a 28% FE improvement in a 

hybrid electric truck through optimal control of the gear shifting and battery charging and 

discharging [6]. Quantifying FE improvement through various Optimal EMS is the focus of 

this thesis research.  

 

 

1.3 Optimal Energy Management Strategies 

Developing and implementing an Optimal EMS has most commonly been posed as 

an application of optimal control [6]. A mathematical optimization problem is formulated by 

defining a dynamic equation which describes the current state of the vehicle, a cost function 
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that penalizes using fuel and any other variables of interest, and constraints that ensure a 

desired final value of the battery state of charge is met, powertrain component limitations are 

not violated, and that the drive cycle is fixed. This optimization problem is also described in 

equations as follows: 

Dynamic Equation: 

New Battery State of Charge = 𝑓(Battery State of Charge, Engine Power, velocity) 

Cost Equation: 

Cost = Sum(mass of fuel used) 

Constraints:   

• Desired battery state of charge at the end of drive cycle. 

• Powertrain component physical limitations 

• Fixed drive cycle. 

This framework can be utilized as either a second by second instantaneous 

optimization, or as a global optimization which includes future vehicle operation prediction. 

The solution from either of these schemes is the minimum fuel consumption strategy (or 

Optimal EMS) which can be then be applied to operate the vehicle powertrain. 

 

1.3.1 Instantaneous optimal EMS 

An instantaneous Optimal EMS involves finding the optimal control strategy that 

minimizes fuel consumption at the instant in time for which sampled data is available. In 

PHEVs such as the Toyota Prius Prime and the Chevrolet Volt, studies [references] using an 

instantaneous Optimal EMS have led to the “charge-depleting, charge-sustaining” EMS, 

where all excess battery power is used first, then the battery charge is sustained afterwards. 

 

1.3.2 Predictive Optimal EMS 

A predictive Optimal EMS involves finding the optimal control strategy that 

minimizes fuel consumption for the window of time in which prediction data is available. 

Figure 1 represents the general working principle of PHEV, where both engine and battery 

pack provide the total required power to run the vehicle. On the other hand, energy 

management in HEV means deciding the amount of power delivered by both energy sources 

at each instant to achieve desired vehicle velocity.  
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Figure 1. General Working Principle of HEV 

Figure 2 represents the principle of predictive optimal EMS. If it is assumed that the 

desired vehicle speed and desired acceleration, as well as road grade are known for the entire 

duration of the optimal control problem, i.e., the DC. From the desired speed and 

acceleration, the total desired power at each time instant can be computed. Given the total 

desired power, the required IC engine power can be determined for each candidate value of 

the control inputs engine torque and engine speed. Also, this engine torque values, together 

with engine speed, determine fuel consumption rates. The fuel consumption rates typically 

make up the costs in the choice of power split ratios at each time step. The SOC of the 

battery also needs to be determined for each choice of power split ratio, in order to ensure 

that upper and lower constraints on SOC are not violated. 
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Figure 2. Predictive Optimal Energy Management Strategy Principle  

 

The systems-level viewpoint of predictive optimal EMS is composed of four subsystems as 

shown in Figure 3: a vehicle perception subsystem, a vehicle planning subsystem, and a 

vehicle plant subsystem which includes a vehicle running controller. The input to the 

Optimal EMS system is a variety of sensors that detect environmental information, thus 

defining vehicular surroundings (commonly referred to as the worldview in autonomous 

vehicle literature). This worldview can be used to generate a prediction of future vehicle 

states through artificial intelligence, stochastic modeling, regression analysis, and more. The 

vehicle state prediction can then be utilized in a mathematical optimization problem to 

determine powertrain operation that maximized FE. The maximum FE powertrain operation 

is then issued as a request to the vehicle running controller, which enforces component 

constraints and may be subject to various disturbances such as future vehicle state prediction 

error. The powertrain operation from the running controller is actuated in the vehicle plant, 

and the FE or energy consumption can be measured. 
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      Figure 3. Detailed View of Predictive Optimal Energy Management Strategy [6] 
 

 

1.3.2.1 Perception 

The perception subsystem receives sensor and signal inputs, defines vehicle 

surroundings, and thus computes future vehicle operation as an output. The input data to the 

predictive optimal EMS is a series of sensors and signals such as CAN data, RADAR, GPS, 

V2V, V2I, and traffic data which recognize environmental information, thus defining 

vehicular surroundings. This can be used to produce a forecast of future vehicle states 

through a deep neural network, stochastic modeling, regression analysis, and more [23,24]. 

1.3.2.2 Planning 

The planning subsystem receives the vehicle operation prediction as an input and 

computes the optimal control as an output. Note that the planning subsystem is only required 

to compute the optimal control and issue a control request, this subsystem is not tasked with 

achieving the optimal control in the vehicle; achieving the optimal control is accomplished 

with the vehicle running controller. 

 

1.3.2.2.1 Globally Optimal EMS with Deterministic Prediction 

A globally Optimal EMS with deterministic prediction is derived using either 

dynamic programming (DP) or pontryagin's minimization principle (PMP) which is based on 
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calculus of variations [6]. When deriving a globally Optimal EMS using deterministic 

prediction, DP has been the overwhelming favorite of researchers due to its ease of use, 

robustness, and that no derivatives or analytic expressions are required [6]. A globally 

Optimal EMS with deterministic prediction is difficult to implement in practice because of 

the high computational cost but it is still beneficial in simulation to define the upper practical 

limit on FE benefits for a given vehicle and drive cycle.  

 

1.3.2.2.2 Optimal EMS with Stochastic Prediction 

An Optimal EMS with stochastic prediction is used in applications where researchers 

are willing to forgo a guarantee of global optimal FE in favor of a robustness to stochastic 

prediction errors. In other words, stochastic derivation strategies are appropriate for 

applications where a small increase in FE over a wide range of drive cycles is desired. 

Stochastic derivation strategies include stochastic dynamic programming (SDP) [6] and 

adaptive equivalent consumption minimization strategy (a-ECMS) [13]. 

 

1.3.2.2.3 Computationally Limited Optimal EMS to Enable Practical Implementation 

Computationally limited practical implementation Optimal EMS also forgoes the 

guarantee of global optimal FE in favor of computationally efficient algorithms that can be 

used in current and near future vehicles. Practical implementation derivation strategies in 

current vehicles include optimized rules-based control [6], equivalent consumption 

minimization strategy (ECMS) [6], and model predictive control (MPC) using fast 

optimizers. 

 

1.3.2.3 Running Controller and Vehicle Plant 

The final subsystem is comprised of the vehicle running controller and the vehicle 

plant which receives the optimal control request and the current vehicle state as inputs, 

determines physically feasible vehicle operation that does not violate torque, battery state of 

charge, speed, acceleration, etc. limits and actuates the vehicle plant thus producing vehicle 

movement and a measurable FE or energy consumption as outputs. 
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1.4 Optimal EMS Developed in This Research 

As explained in literature study, limited study is done previously which address 

globally optimal EMS with perfect full DC prediction, computationally efficient non-global 

optimal with perfect horizon prediction and limited perception. The methods I used in my 

research to address the above is as follows:  

1.4.1 Dynamic Programming 

When deriving a globally optimal EMS using deterministic prediction, DP has been 

the overwhelming favorite due to its ease of use, robustness, and no need for derivatives 

required. A globally optimal EMS with deterministic prediction is difficult to implement in 

practice because of the high computational cost but it is still beneficial in simulation to define 

the upper limit on FE benefits for a given vehicle and drive cycle 

 

1.4.2 Model Predictive Control 

For computationally efficient non-global optimal EMS model predictive control 

(MPC) can be implement, where the optimization is done over a moving finite horizon that is 

shorter than the DC. Also, with the advancement in perception systems and associated 

computational improvements, MPC could be implementable in real vehicles [6, 26] 

 

1.4.3 Constant Velocity Prediction 

When limited trip information available, we can implement optimal EMS by 

assuming the current velocity is constant over the current horizon [16]. This novel EMS 

strategy could be implementable in-vehicle controllers within an MPC framework. 

 

 

1.5 Hybrid-Electric Vehicles 

HEVs and PHEVs are unique in that they have two sources of vehicle propulsion 

energy available. These vehicles can be powered from either battery power, engine power, or 

a combination of both. This additional operational degree of freedom unlocks the potential 

for improved overall powertrain efficiency with intelligent control strategies. Examples of 

how this increased vehicle powertrain operational freedom can be used to reduce fuel 

consumption include regenerating energy during braking, storing excess energy from the 
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engine during coasting, and modifying the power-split powertrain component operation for 

maximum efficiency [16]. There are mainly 3 types of powertrains seen in hybrid-electric 

vehicles are as follows -    

 

1.5.1 Parallel Hybrid Powertrain 

As the name suggests itself, in a parallel hybrid powertrain IC engine and electric 

machines are placed in parallel to the transmission and ultimately to the vehicle wheels, as 

shown in Figure 4. Both the energy sources can simultaneously provide power to the wheels 

using a suitable transmission system. As there is no engine power to electric power 

conversion that happens in the parallel hybrid powertrain, it works with higher efficiency as 

power conversion losses get nullified. However, the major drawback of this system is, IC 

engine cannot operate at its optimal operation region. Instead, it works over wide operation 

region to fulfill the vehicle power demand. The battery gets recharged by the electric motors 

during regenerative braking. 

 

 

 

 

 

 

 

 

 

 

                      Figure 4. Parallel Hybrid Electric Vehicle Architecture Layout [16] 

 

1.5.2 Series Hybrid Powertrain 

As the name suggest, in a series hybrid powertrain, the IC engine, battery, and 

electric machines are placed serially to the vehicle wheels. As Figure 5 shows, the IC engine 

is not directly connected to the vehicle wheels. Instead, it got connected to the battery pack 

through the generator. In series hybrid powertrain, the only power source is in direct 

connection with the wheels is the electric motor. The power is provided either by the battery-

pack or by the engine-generator to the motor to drive the wheel. In this system, engine can 
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work in its most optimal operating region as it is not directly connected to the wheels, so 

engine does not need to work over a wide operation range. As this system can efficiently 

work with smaller engines, which could also reduce the engine cost.  But on the other hand, 

to fulfill the required demand, it may need a larger battery pack than parallel hybrid 

powertrain, which ultimately increases the cost of the overall system. The battery can be 

recharged both from the engine-generator set and from the motor during regenerative 

braking. In regenerative braking, motor acts as a generator and recharges the battery [16] 

. 

 

 

 

 

 

 

 

 

 

 

 

                  Figure 5. Series Hybrid Electric Vehicle Architecture Layout [16] 

 

1.5.3 Series-Parallel Hybrid Powertrain 

As the name suggests, the series-parallel hybrid powertrain combines the benefits of 

both series and a parallel hybrid powertrain. In this system, both the energy sources can run 

the vehicle wheels simultaneously like parallel hybrid powertrain and work as a series hybrid 

powertrain by disconnecting the wheels from the engine and run only by an electric motor, as 

shown in Figure 6. We can also split the engine power and provide one part directly to the 

wheels and another part to the motor through the generator set. By doing this, we can set the 

engine operation in its most optimal operative range. In low-speed operation, it works as a 

series hybrid because of stop-and-go driving nature. On the other hand, at high-speed 

operation, it works as a parallel hybrid with higher efficiency as the mechanical to electric 

conversion losses get nullified as the engine is now directly connected to the wheels. The 

battery can be recharged by the engine-generator set or by a motor during regenerative 

braking. Also, we can split the engine power to drive the wheels and to recharge the battery 
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using excess engine power. The Toyota Prius is a common example of a hybrid vehicle that 

consists of a power-split hybrid powertrain. [16] 

 

 

 

 

 

 

 

 

 

 

 

                Figure 6. Series-Parallel Hybrid Electric Vehicle Architecture Layout [16] 

 

 

 

 

1.6 Novel Contribution 

The novel contribution of my research are as follows: 

• Use of DP, MPC, and constant velocity prediction to quantify the fuel economy 
improvements 

• Use of control-oriented, high-fidelity vehicle model 

• Use of high-fidelity DP optimizer with MPC 

• Development of “Constant Velocity Prediction” strategy 

• Use of high-fidelity DP optimizer with constant velocity prediction strategy. 

• Effect analysis of discretization steps, interpolation methods on FE improvement 
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2. HIGH-FIDELITY, CONTROL-ORIENTED VEHICLE MODEL 

 

 

 

2.1 Toyota Prius Prime Model into MATLAB 

Toyota created the modern hybrid car segment in 1997 with the debut of the original 

Prius. Over the last 22 years, it remains one of the important hybrid cars in its class due to its 

efficiency, blends of technology, and usability. Toyota Prius Prime is a new generation of 

Toyota PHEV, where the primary difference from the previous PHEV system is that the new 

version has a one-way clutch between the engine and the planetary gear-set, which could 

step-up electric propulsive force with the help of generator [27]. Because of these reasons, I 

selected a 2017 Toyota Prius Prime vehicle to demonstrate the potential FE improvements of 

the Optimal EMS. This high-fidelity, controls-oriented model was developed using 

previously documented Toyota Prius operation equations implemented with 

MATLAB/Simulink to calculate different types of vehicle performance, especially fuel 

economy and battery state [25].  

(Note – Due to confidentiality clause, I’m not able to disclose exact vehicle parameters.)  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                          Figure 7. Overview of High-Fidelity, Control-Oriented Vehicle Model 
 

Figure 7 shows the block diagram of overall vehicle model. The input to the vehicle 

model is predicted vehicle velocity (v), propeller torque (𝜏𝑃), engine torque (𝜏𝐼𝐶𝐸), engine 

speed (𝜔𝐼𝐶𝐸), next state of battery at each time-step. Figure 8 shows examples of input 

parameters versus. distance traveled. As mentioned earlier the output of the model is fuel 

consumption and battery state of charge at the end of a time-step. As shown in the block 

High-Fidelity, 

Control Orientated 

2017 Toyota Prius 

Prime Model in 

MATLAB/Simulink 

 

Time, t 

Velocity, v 

t Propeller Torque, 𝜏𝑃 

Engine Torque, 𝜏𝐼𝐶𝐸 

Engine Speed, 𝜔𝐼𝐶𝐸 

evr 

SOC 

Fuel Consumption, 

fc_out 
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diagram, the calculated SOC is a feedback into the model because it is a dynamic variable. 

The detailed model components are explained in further sections, 

 
                                Figure 8. Input Parameters Vs. Distance Graph  

 

While model development I kept accessary power zero, and ev ratio one,  

Pacc = 0, evr = 1. 

 

Where, 

𝑒𝑣𝑟 =  
𝑀𝑜𝑡𝑜𝑟 𝐷𝑖𝑟𝑒𝑐𝑡 𝑇𝑜𝑟𝑞𝑢𝑒

𝑀𝑜𝑡𝑜𝑟 𝐷𝑖𝑟𝑒𝑐𝑡 𝑇𝑜𝑟𝑞𝑢𝑒 + 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝐷𝑖𝑟𝑒𝑐𝑡 𝑇𝑜𝑟𝑞𝑢𝑒 
 

 

• Calculation of Engine Fuel consumption 

As the primary goal in HEV is to minimize fuel consumption, which can be 

calculated with an engine map at different operating conditions. If we know the engine 
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torque and engine speed, we can find the fuel consumption rate using an engine map. A 

contour on the map represents a constant fuel consumption contour for a range of torque and 

engine speed conditions. A 2-D lookup table is widely used to represent the engine map. 

Where engine torque and engine speed represent rows and columns, respectively. If the 

operating point is in between the grid points, then linear interpolation can be used to find the 

fuel consumption at that operating point [10, 16]. 

 

• Calculation of Next State of Charge 

To take the advantages of both parallel and series hybrid powertrains, Toyota Prius 

used planetary gear system in their power-split architecture as shown in Figure 9 to provide 

engine torque to both vehicle wheel and to a generator to recharge the battery [10, 16]. 

The planetary gear system shown in Figure 10, the engine is connected to the carrier 

gear, a generator to the sun gear, common shaft of motor and wheel to the ring gear by a 

reduction gear. It is possible to connect the engine to both generator and wheels by using 

pinion gears [10, 16]. The total torque required to run the vehicle is a summation of ring gear 

torque and the torque produced by the electric motor as per equation 1. 

(𝜔𝑠 𝑅𝑠) + (𝜔𝑟 𝑅𝑟) = 𝜔𝑐 (𝑅𝑠 + 𝑅𝑟)……………………………………….1 

where, Rs, Rr are radii of the ring and sun gear respectively, and ωs, ωr, ωc are rotational speeds 

of sun, ring and carrier gears respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

                                           Figure 9. Planetary Gear System [16] 
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          Figure 10. Power-Split Architecture with Planetary Gear Train Arrangement [27] 
 

• Electric Machine 1 / Generator Model: 

Due to the addition of one-way clutch at the engine side and planetary gear set in 

power-split hybrid structure, engine can provide torque to both the wheels as well as to the 

electric machine 1/generator. The generator is connected to the sun gear which charges the 

battery [10, 16].  

When engine speed is equal to 0 and propeller torque is positive (battery provides 

power), the vehicle is propelled by both electric machines [10, 16]. The relation between 

generator, motor, engine and wheel torque is as follows – 

𝜏𝐺 = −(𝜌 × 𝜏𝑃 × (1 − 𝑒𝑣𝑟))             ..………………………………………..2 

𝜏𝑀 = (𝜏𝑃 × (𝑒𝑣𝑟/𝐺𝑟𝑚))             ..………………………………………..3 

On the other hand, when engine speed is positive, and vehicle is also driven by 

traction motor the relation between generator, motor, engine and wheel torque is as follows – 

𝜏𝐺 = − 𝜏𝐼𝐶𝐸 × (
𝜌

1+𝜌
)             ..………………………………………..4 

 
R = Ring Gear, C = Carrier Gear, S = Sun Gear 
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𝜏𝑀 =
(𝜏𝑃−(

𝜏𝐼𝐶𝐸
1+𝜌

))

𝐺𝑟𝑚
             ..………………………………………..5 

 

where, 

𝜏𝐺 = Electric Machine1 or Generator Torque. 

𝜏𝑀 = Electric Machine1 or Motor Torque. 

𝜌 = Gear ratio between sun gear and the ring gear = 
𝑅𝑠

𝑅𝑟
 

𝐺𝑟𝑚 = motor gear ratio. 

 

As in the Toyota Prius Prime, the vehicle wheels are connected to the ring gear 

through a reduction gear. The rotational speed of the ring gear is given as follows –  

𝜔𝑟 = [𝑣 × (
1

𝑅𝑡
) × 𝐺𝑟]             ..………………………………………..6 

 

As the generator is connected to the sun gear, the rotational speed of sun gear is equal 

to the generator speed (𝜔𝑠 = 𝜔𝐺). From Equation 1, the generator speed is, 

𝜔𝐺 = [𝜔𝐼𝐶𝐸 × (
1+𝜌

𝜌
)] − (

𝜔𝑟

𝜌
)             ..………………………………………..7 

 

The motor and ring gear are on same shaft and wheels are connected to the ring gear 

through a reduction gear. Motor speed and ring gear speed are proportional: 

𝜔𝑀 = (
𝜔𝑟

𝐺𝑟𝑚
)             ..………………………………………..8 

 

where, 

Rt = wheel radius 

Gr = final reduction gear ratio. 

V = Vehicle Speed 

𝜔𝑟 = Rotational Speed of Ring gear (rpm). 

𝜔𝐺 = Generator Speed (rpm). 

𝜔𝑀 = Motor Speed (rpm). 
 

• Battery Model/ Battery Dynamics: 

Power discharge from the battery to the motor and charging from the generator to the 

battery is given by [10, 16], 

𝑃𝐵𝑎𝑡𝑡 = 𝑃𝐺 + 𝑃𝑀 + 𝑃𝑎𝑐𝑐…………………………………………………..9 
Where, 

𝑃𝐵𝑎𝑡𝑡 = Battery Power. 

𝑃𝐺 = Generator Power. 

𝑃𝑀 = Motor Power. 
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The generator and motor power are calculated using torque and speed of generator 

and motor respectively as follows –  

𝑃𝐺 = [𝜏𝐺 × 𝜔𝐺 × (
2𝜋

60
) × (

1

1000
)] + 𝐺𝑐𝑜𝑟𝑒𝑙𝑜𝑠𝑠          ………………..10 

 

𝑃𝑀 = [𝜏𝑀 ×𝜔𝑀 × (
2𝜋

60
) × (

1

1000
)] + 𝑀𝑐𝑜𝑟𝑒𝑙𝑜𝑠𝑠   ………….………..11 

 

where, the 𝐺𝑐𝑜𝑟𝑒𝑙𝑜𝑠𝑠 and 𝑀𝑐𝑜𝑟𝑒𝑙𝑜𝑠𝑠 are generator core-loss and motor core-loss respectively. 

This electrical loss are function of torque, speed and open circuit voltage of generator and 

motor respectively. 

o A contour generator core-loss and motor core-loss map provides both the 

core losses at different torque, speed and open circuit voltage. 

o The values of core losses at operating points between the grid points in 

the matrix are obtained by interpolation. 

o 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝐶𝑜𝑟𝑒𝑙𝑜𝑠𝑠 = 𝑓(𝜏𝐺 , 𝜔𝐺 , 𝑉𝑂𝐶) 
o 𝑀𝑜𝑡𝑜𝑟 𝐶𝑜𝑟𝑒𝑙𝑜𝑠𝑠 = 𝑓(𝜏𝑀, 𝜔𝑀, 𝑉𝑂𝐶) 

Also, battery power can be calculated from the electrical dynamics of the battery 

system as follows –  

𝑃𝐵𝑎𝑡𝑡 = [(𝑉𝑂𝐶 ∗ 𝐼𝐵𝑎𝑡𝑡) − (𝑅𝐵𝑎𝑡𝑡 ∗ 𝐼𝐵𝑎𝑡𝑡
2)]…………………………………………………..12 

 

Where, 

𝑉𝑂𝐶 = Open Circuit Voltage. 

𝐼𝐵𝑎𝑡𝑡 = Battery Current. 

𝑅𝐵𝑎𝑡𝑡 = Battery Resistance. 

As I already calculated the battery power using equation 13, and other parameters can 

be calculated as follows -  

Open Circuit Voltage Calculation: 

The open circuit voltage (𝑉𝑂𝐶) means the battery voltage when it is not connected to 

any load is a battery characteristic and is mainly a function of battery state of charge and 

battery temperature. Consider battery temperature is 25℃. 

o A contour 𝑉𝑜𝑐 map provides 𝑉𝑜𝑐 at different SOC and battery temperature. 

o The values of 𝑉𝑜𝑐 at operating points between the grid points in the matrix 

are obtained by interpolation. 

o 𝑉𝑜𝑐 = 𝑓(𝑆𝑂𝐶, 𝑇𝐵𝑎𝑡𝑡) 
 

Where, 

𝑇𝐵𝑎𝑡𝑡 = Battery Temperature. 
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Battery Resistance Calculation: 

As of the open circuit voltage, battery resistance is also a battery characteristic and is 

mainly a function of battery state of charge and battery temperature [10, 16]. 

Consider battery temperature is 25℃. 

o A contour 𝑅𝐵𝑎𝑡𝑡 map provides 𝑅𝐵𝑎𝑡𝑡 at different SOC and battery 

temperature. 

o The values of 𝑅𝐵𝑎𝑡𝑡 at operating points between the grid points in the 

matrix are obtained by interpolation. 

o 𝑅𝐵𝑎𝑡𝑡 = 𝑓(𝑆𝑂𝐶, 𝑇𝐵𝑎𝑡𝑡) 
 

By rearranging equation 13, 

(𝑅𝐵𝑎𝑡𝑡 ∗ 𝐼𝐵𝑎𝑡𝑡
2) + (𝑉𝑂𝐶 ∗ 𝐼𝐵𝑎𝑡𝑡) − 𝑃𝐵𝑎𝑡𝑡 = 0…………………………………………………..13 

 
Equation 13 becomes a quadratic equation in the form of  𝐼𝐵𝑎𝑡𝑡. So, we can calculate 

battery current by solving this quadratic equation as follows -  

𝐼𝐵𝑎𝑡𝑡 =
𝑉𝑂𝐶−√𝑉𝑂𝐶

2−(4×𝑃𝐵𝑎𝑡𝑡×𝑅𝐵𝑎𝑡𝑡)

2×𝑅𝐵𝑎𝑡𝑡
……………………………………..14 

But this battery current doesn’t account the constant voltage current loss of battery. 

So, again calculate battery current by considering constant battery voltage current losses as 

follows-   

                     𝑃𝐵𝑎𝑡𝑡,𝑣𝑐𝑙 = 𝑃𝐵𝑎𝑡𝑡 + 𝑉𝐶𝑙𝑜𝑠𝑠 

Where, 𝑉𝐶𝑙𝑜𝑠𝑠 is the battery voltage current loss. which is function of battery current, and 

open circuit voltage. 

o A contour Voltage Current Loss map provides Voltage Current Loss at 

different battery current and open circuit voltage. 

o The values of Voltage Current Loss at operating points between the grid 

points in the matrix are obtained by interpolation. 

o 𝑅𝐵𝑎𝑡𝑡 = 𝑓(𝐼𝐵𝑎𝑡𝑡, 𝑉𝑂𝐶) 

Now, calculate battery current with all losses as follows -  

𝐼𝐵𝑎𝑡𝑡,𝑓𝑖𝑛𝑎𝑙 =
𝑉𝑂𝐶±√𝑉𝑂𝐶

2−(4×𝑃𝐵𝑎𝑡𝑡,𝑣𝑐𝑙×𝑅𝐵𝑎𝑡𝑡)

2×𝑅𝐵𝑎𝑡𝑡
……………………………………..15 

 

Using state of charge dynamics, rate of change of SOC can be calculated as follows –  

𝑑

𝑑𝑡
𝑆𝑂𝐶 = −

𝐼𝐵𝑎𝑡𝑡,𝑓𝑖𝑛𝑎𝑙

𝑄𝐵𝑎𝑡𝑡
………………………………………………..16 
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Where, 

𝑄𝐵𝑎𝑡𝑡 = total/maximum charge of fully charged battery. 

 

Finally, state of charge of next state is calculated as follows –  

𝑆𝑂𝐶(𝑘 + 1) = 𝑆𝑂𝐶(𝑘) + (
𝑑

𝑑𝑡
𝑆𝑂𝐶)……………………………………17 

Again, for the next step calculations provide this calculated SOC as a one of the 

inputs. Figure 11 shows the example outputs (fuel consumption and SOC) of the developed 

high-fidelity, control-orientated HEV model.  Figure 11(a) and 11(b) shows model outputs 

means SOC and cumulative fuel consumption with respect to distance graphs. In the 

highlighted section of Figure 12(a), Y point represents SOC at respective distance, and it also 

shows that I successfully developed chare-sustaining, control-oriented model. 

 

                                  Figure 11. Output Parameters Vs. Distance Graph  
 
 

2.2 Model Validation 

Comparison and validation between the controls-oriented model used in this research 

and chassis dynamometer data are shown in Figure 12-13 where Figure 12 is fuel 

consumption and Figure 13 is the initial SOCi at the beginning of the DC and the final SOCf 

at the end of the DC. These plots show a linear relationship between this control-oriented 

(b) 

(a) 
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model and the chassis dynamometer data for both fuel consumption and SOC across the 

industry-standard U.S. Environmental Protection Agency (EPA) drive cycles, including the 

Urban Dynamometer Driving Schedule (UDDS) and Highway Fuel Economy Test (HWY), 

and more. Because there is a linear relationship between the control-oriented model and 

chassis dynamometer data over a variety of standard drive cycles, the model is considered to 

be validated [24].  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.  A Comparison Between the Controls-Oriented Model Used in this Research 
and Chassis Dynamometer Data of Fuel Consumption 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. The Initial SOCi at the Beginning of the DC and the Final SOCf at the End of 
the DC 
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3. OPTIMAL ENERGY MANAGEMENT STRATEGIES 

 

 

 

3.1 Grid Convergence Study and the Effect of Interpolation Method  

Before presenting the optimal EMS, it is very important to discuss the effect of 

discretization steps and the interpolation method used in the optimal EMS development. Here 

we assumed the accessory power is zero. In Figure 14 from a to d we step by step discretized 

the control and state variables more finely. In all Figures X-axis represents interpolation 

methods available and Y-axis represents the FE improvements numbers. The very first 2 

Figures i.e. with coarse grid and medium grid, the effect of interpolation methods shows 

significant effect on FE improvement results. That make difficult to decide which 

interpolation method to use in the simulations. As we move downward from a→b→c→d the 

effect of interpolation methods got nullified after a certain state (from c). The effect of 

interpolation methods faded away as we make the grid size finer and finer. Also, it gives us 

freedom to select any of the interpolation method. So, in our research while developing the 

optimal EMS we utilized the control and state variables discretization steps as Figure 14-c. 
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                           Figure 14. Grid Convergence and Interpolation Method Effect. 
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3.2 Dynamic Programming  

Based on Bellman's principle of optimality, DP is a numerical method, which is 

applicable to multistage decision-making problems like Optimal EMS. It finds the global 

optimal solution by working backward in time [9, 31, 32]. We assumed that the desired 

future speed of the entire DC is obtained from the perception sub-system. To solve any 

problem with DP, first the dynamic equation and the cost function must be discretized. This 

can be done most conveniently by dividing the total DC time into N equal interval of Δt. So, 

time can be expressed as t = k Δt where k is time index. The predicted speed data can be used 

to calculate the total desired power and subsequently the optimal control (engine torque and 

engine speed) values that deliver the desired IC engine power [15, 16]. Fuel consumption 

rates are calculated based on these data along with IC engine speed. Whereas, SOC of battery 

is also calculated at each power-split ratio and each time index to make sure it doesn't violate 

the SOC constraints. 

The detailed DP planning sub-system is shown in Figure 15. It takes future velocity 

as an input to calculate optimal controls by proceeding backward in time and provides 

optimal EMS decision matrix consisting of optimal control matrix to calculate optimal engine 

power, SOC and fuel consumption at optimal EMS section [24]. Figure 16 shows the 

principle of backward recursive DP optimization, where it takes full DC prediction as an 

input and apply DP optimizer backwards to calculate optimal control and next state.  

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Detailed View of Planning Sub-System by DP 
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Figure 16. Working Principle of Dynamic Programming  

In general, the DP technique consists of a dynamic equation, a cost function (J), state 

(S) and control variables (U) with feasibility constraints. In our study, we implemented DP 

on a 2017 Toyota Prius Prime by setting SOC as a state variable (S), engine speed (u1) and 

engine torque (u2) as a control variables, vehicle velocity as an exogenous input (w) and the 

summation of mass of fuel used and charge sustaining penalty as a cost function which is to 

be minimized. 

The overall DP formulation given by equation 17 is as follows 

Dynamic Equation:  

𝑠(𝑘 + 1) = 𝑓(𝑠, 𝑢1, 𝑢2, 𝑤1, 𝑤2, 𝑘)∆𝑡                ……………………………………….18 

The simplified DP equation consisting - all dynamic equations of vehicle, battery, 

motor, and generator of power-split architecture with planetary gear train arrangement is, 

𝑠(𝑘 + 1) = 𝑠(𝑘) − 𝐶1 +

√𝐶2 − [𝐶3 × 𝑢2 × ((𝐶4 ×  𝑢1) − (𝐶5 ×𝑤1))] − [𝐶6 × 𝑤1 × ((𝐶7 × 𝑤2) − (𝐶8 × 𝑢2))]   ……….19 

Where, k is time index, SOC(k) is current SOC, SOC(k+1) is derived next SOC after 

applying control, C values are constant used to display the equation in a simple way (please 

refer appendix). 

Cost Function  

The cost function is the summation of the addition of mass of fuel used and charge 
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sustaining deviation penalty. 

𝐶𝑜𝑠𝑡 = 𝑚𝑓𝑢𝑒𝑙(𝑢1, 𝑢2) +𝑊(𝑆𝑂𝐶𝑓 − 𝑆𝑂𝐶𝑓,   𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐸𝑀𝑆)
2
………………… . .20 

where - mfuel is mass of fuel used which is a function of engine speed and engine torque 

derived using engine map. W is a penalty weight (1665 - 1670), SOCf, Baseline EMS is the final 

SOC of baseline EMS. 

Constraints   

𝑠𝑚𝑖𝑛(𝑘) ≤ 𝑠(𝑘) ≤ 𝑠𝑚𝑎𝑥(𝑘) ≡ 10% ≤ 𝑆𝑂𝐶(𝑘) ≤ 20% 

𝑢1𝑚𝑖𝑛(𝑘) ≤ 𝑢1(𝑘) ≤ 𝑢1𝑚𝑎𝑥(𝑘) ≡ 0𝑁𝑚 ≤ 𝜏𝐼𝐶𝐸(𝑘) ≤ 140𝑁𝑚 

𝑢2𝑚𝑖𝑛(𝑘) ≤ 𝑢2(𝑘) ≤ 𝑢2𝑚𝑎𝑥(𝑘) ≡ 0𝑟𝑝𝑚 ≤ 𝜔𝐼𝐶𝐸(𝑘) ≤ 5200𝑟𝑝𝑚 

 

Optimal Control Formulation by DP 

Start with defining inputs like all vehicle constants, and exogenous inputs. Here we 

considered vehicle velocity, v and propulsion torque, τP as our inputs w1, and w2 

respectively. 

Then we defined the state vector, 𝑠 and discretized with a step of 𝛿𝑠 from a minimum 

value of 𝑠𝑚𝑖𝑛 to a maximum value of 𝑠𝑚𝑎𝑥 as follows –  

𝑠 = {𝑠𝑚𝑖𝑛, 𝑠𝑚𝑖𝑛 + 𝛿𝑠,… . . 𝑠𝑚𝑎𝑥 } 

The same we did for control variables 𝑢⃑⃑1, 𝑢⃑⃑2 as follows 

𝑢⃑⃑1 = {𝑢1𝑚𝑖𝑛, 𝑢1𝑚𝑖𝑛 + 𝛿𝑢1, … . . 𝑢1𝑚𝑎𝑥  } 

𝑢⃑⃑2 = {𝑢2𝑚𝑖𝑛, 𝑢2𝑚𝑖𝑛 + 𝛿𝑢2, … . . 𝑢2𝑚𝑎𝑥  } 

Where, 𝛿𝑠 = 0.01%, 𝛿𝑢1 = 1Nm, and 𝛿𝑢2 = 10 rpm. Also, the length of 𝑠, 𝑢⃑⃑1, 𝑢⃑⃑2 

vectors are 𝑁𝑠, 𝑁𝑢1, and 𝑁𝑢2 respectively. 

Now make a 3-D matrix of 𝑠, 𝑢⃑⃑1, 𝑢⃑⃑2 for simplicity and to reduce computational time. 

So, the new control and state variables are, 

𝑆 = [𝑠]𝑠,𝑢⃑⃑⃑1,𝑢⃑⃑⃑2 

𝑈1 = [𝑢1]𝑠,𝑢⃑⃑⃑1,𝑢⃑⃑⃑2 

𝑈2 = [𝑢2]𝑠,𝑢⃑⃑⃑1,𝑢⃑⃑⃑2 
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    Now evaluate the vehicle model by backward recursive dynamic programming to 

calculate next state and fuel consumption. 

                 for k = N, N-1,…..1 

                   Now simulate the vehicle model described in previous section from equation 1 - 19        

              calculate the next state and cost function at each grid point of state and control   

              variables for given constraints. 

𝑆(𝑘 + 1) = 𝑓(𝑆, 𝑈1, 𝑈2, 𝑤1, 𝑤2)∆𝑡 

              While calculating the cost, keep in mind that we assumed charge sustaining mode   

    i.e 𝑆(𝑘 + 1) = 𝑆(𝑘). So, arrangements were made where, if this condition gets  

    violated, then apply a penalty on that to keep final state equal to the first as follows, 

                      𝑖𝑓  𝑆𝑘 + 1 >  𝑆𝑓, 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐸𝑀𝑆                        
       𝐶𝑜𝑠𝑡 = 𝑚𝑓𝑢𝑒𝑙(𝑈1, 𝑈2) 

                      else 

𝐶𝑜𝑠𝑡 = 𝑚𝑓𝑢𝑒𝑙(𝑈1, 𝑈2) +𝑊(𝑆𝑂𝐶𝑓 − 𝑆𝑂𝐶𝑓,   𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐸𝑀𝑆)
2 

                       end 

Now extract a minimum/optimal cost for each state and at each time index in the 

form of matrix 𝐽∗[𝑘, 𝑠]. Also, find out the index of minimum cost (Imin cost) to find 

the control value associated with each minimum cost. For each admissible state and 

time, the control index that generates the optimal cost is stored in the matrix 

𝑢1
∗ [𝑘, 𝑠 ], and 𝑢2

∗ [𝑘, 𝑠 ] as follows – 

𝐽∗[𝑘, 𝑠] = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (𝐶𝑜𝑠𝑡[𝑠, 𝑢⃑⃑1, 𝑢⃑⃑2]) 

𝑢1
∗ [𝑘, 𝑠 ] = 𝑈1(𝐼min𝑐𝑜𝑠𝑡) 

𝑢2
∗ [𝑘, 𝑠 ] = 𝑈2(𝐼min𝑐𝑜𝑠𝑡) 

                 end 

 

 

 

3.3 Model Predictive Control 

Even though DP gives globally optimal EMS, it is also very difficult to implement in 

practice because full DC cannot be predicted currently. Nowadays many researchers are 

exploring the optimal EMS which can be implemented practically. Model predictive control 
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(MPC) is a prospective strategy that can deliver optimal controls with practical 

considerations [22, 33, 34, 35, 36].  

Model predictive control (MPC) involves control of a dynamic system based on 

different control inputs which are applied from the current time to a future time resulting in 

minimization of a cost function subject to the system dynamics and additional constraints 

[37, 38, 39].  The detailed MPC planning sub-system is shown in Figure 17 and the working 

principle of MPC is shown in Figure 18. 

 

 

 

 

 

 

 

 

 

 

Figure 17. Detailed View of Planning Sub-System by MPC 
 

 

 

  

 

 

 

 

 

 

 

 

Figure 18. Working Principle of Model Predictive Control 
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optimal control for the entire horizon. But for further optimal EMS calculation just select the 

controls of the desired time index. 

In general, MPC consists of a control equation, a cost function (J), state (S) and 

control variables (U) with feasibility constraints. In our study, we have implemented MPC 

with a 10-second prediction horizon and keeping DP as the optimizer. The overall MPC 

formulation for 2017 Toyota Prius Prime model is as follows 

Control Equation:  

𝑠(𝑘 + 1) = 𝑓(𝑠, 𝑢1, 𝑢2, 𝑤1, 𝑤2, 𝑘)∆𝑡 ………….……..………………………21 

where - k is time index, SOC(k) is current SOC, SOC(k+1) is derived next SOC after 

applying control, u1 is engine speed, u2 is engine torque, w1, w2 are an exogenous input - 

velocity, and propulsion torque respectively. 

Cost Function:  The cost equation is the same as DP. Only the difference is 

considered only horizon time, not whole DC. 

𝐶𝑜𝑠𝑡 = 𝑚𝑓𝑢𝑒𝑙(𝑢1, 𝑢2) +𝑊(𝑆𝑂𝐶𝑓 − 𝑆𝑂𝐶𝑓,   𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐸𝑀𝑆)
2
………………22 

Constraints: constraints are also the same as one used in DP. Only consider for the 

horizon.    

𝑠𝑚𝑖𝑛(𝑘) ≤ 𝑠(𝑘) ≤ 𝑠𝑚𝑎𝑥(𝑘) ≡ 10% ≤ 𝑆𝑂𝐶(𝑘) ≤ 20% 

𝑢1𝑚𝑖𝑛(𝑘) ≤ 𝑢1(𝑘) ≤ 𝑢1𝑚𝑎𝑥(𝑘) ≡ 0𝑁𝑚 ≤ 𝜏𝐼𝐶𝐸(𝑘) ≤ 140𝑁𝑚 

𝑢2𝑚𝑖𝑛(𝑘) ≤ 𝑢2(𝑘) ≤ 𝑢2𝑚𝑎𝑥(𝑘) ≡ 0𝑟𝑝𝑚 ≤ 𝜔𝐼𝐶𝐸(𝑘) ≤ 5200𝑟𝑝𝑚 

 

Optimal Control with MPC 

To derive optimal controls, DP has been used as an optimizer in MPC. Start with 

defining inputs like all vehicle constants, and exogenous inputs. Here we considered vehicle 

velocity, v and propulsion torque, τP as our inputs w1, and w2 respectively. 

Start from 1st time state 

               for i = 1, 2,……N   

        Make desired segment of time known as time horizon. Apply DP optimizer only for that  

        horizon, not for the whole DC So, new time and exogenous inputs are thorizon, whorizon.        

        Then we defined the state vector, 𝑠 and discretized with a step of 𝛿𝑠 from a minimum   
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        value of 𝑠𝑚𝑖𝑛 to a maximum value of 𝑠𝑚𝑎𝑥 as follows –  

𝑠 = {𝑠𝑚𝑖𝑛, 𝑠𝑚𝑖𝑛 + 𝛿𝑠,… . . 𝑠𝑚𝑎𝑥 } 

       The same we did for control variables 𝑢⃑⃑1, 𝑢⃑⃑2 as follows 

𝑢⃑⃑1 = {𝑢1𝑚𝑖𝑛, 𝑢1𝑚𝑖𝑛 + 𝛿𝑢1, … . . 𝑢1𝑚𝑎𝑥  } 

𝑢⃑⃑2 = {𝑢2𝑚𝑖𝑛, 𝑢2𝑚𝑖𝑛 + 𝛿𝑢2, … . . 𝑢2𝑚𝑎𝑥  } 

         Where, 𝛿𝑠 = 0.01%, 𝛿𝑢1 = 1𝑁𝑚, and 𝛿𝑢2 = 10𝑟𝑝𝑚. Also, the length of 𝑠, 𝑢⃑⃑1, 𝑢⃑⃑2   

          vectors are 𝑁𝑠, 𝑁𝑢1, and 𝑁𝑢2 respectively. 

          Now make a 3-D matrix of 𝑠, 𝑢⃑⃑1, 𝑢⃑⃑2 for simplicity and to reduce computational time.   

          So, the new control and state variables are, 

𝑆 = [𝑠]𝑠,𝑢⃑⃑⃑1,𝑢⃑⃑⃑2 

𝑈1 = [𝑢1]𝑠,𝑢⃑⃑⃑1,𝑢⃑⃑⃑2 

𝑈2 = [𝑢2]𝑠,𝑢⃑⃑⃑1,𝑢⃑⃑⃑2 

Now evaluate the vehicle model by applying backward recursive DP optimizer for  

required time horizon to calculate next state, 

                   for k = Nhorizon, Nhorizon -1,….i 

                Now simulate the vehicle model described in previous section from equation 1 - 19        

           calculate the next state and cost function at each grid point of state and control   

           variables for given constraints. 

𝑆(𝑘 + 1) = 𝑓(𝑆, 𝑈1, 𝑈2, 𝑤1,ℎ𝑜𝑟𝑖𝑧𝑜𝑛, 𝑤2,ℎ𝑜𝑟𝑖𝑧𝑜𝑛)∆𝑡 

           While calculating the cost, keep in mind that we assumed charge sustaining mode i.e.  

           𝑆(𝑘 + 1) = 𝑆(𝑘). So, we made an arrangement where if this condition gets violates  

           then apply a penalty on that to keep final state equal to the first as follows -  

                    if Sk+1 > Sf, BaselineEMS   

           

                  𝐶𝑜𝑠𝑡 = 𝑚𝑓𝑢𝑒𝑙(𝑈1, 𝑈2) 

      else        

𝐶𝑜𝑠𝑡 = 𝑚𝑓𝑢𝑒𝑙(𝑈1, 𝑈2) +𝑊(𝑆𝑂𝐶𝑓 − 𝑆𝑂𝐶𝑓,   𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐸𝑀𝑆)
2 

                   end 

Now extract a minimum/optimal cost for each state and at each horizon time index  

in the form of matrix 𝐽∗[𝑘, 𝑠]. Also, find out the index of minimum cost (Imin cost) to  
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find the control value associated with each minimum cost. For each admissible state  

and time, the control index that generates the optimal cost is stored in the matrix  

𝑢1
∗ [𝑘, 𝑠], and 𝑢2

∗ [𝑘, 𝑠] as follows (horizon control matrix) – 

𝐽ℎ𝑜𝑟𝑖𝑧𝑜𝑛
∗[𝑘, 𝑠] = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (𝐶𝑜𝑠𝑡[𝑠, 𝑢⃑⃑1, 𝑢⃑⃑2]) 

𝑢1,ℎ𝑜𝑟𝑖𝑧𝑜𝑛
∗ [𝑘, 𝑠] = 𝑈1(𝐼min𝑐𝑜𝑠𝑡) 

𝑢2,ℎ𝑜𝑟𝑖𝑧𝑜𝑛
∗ [𝑘, 𝑠] = 𝑈2(𝐼min𝑐𝑜𝑠𝑡) 

                      end 

     save only 1st results of each thorizon step results to get whole DC control matrix - 

𝐽𝐷𝐶
∗[𝑖, 𝑠] = 𝐽ℎ𝑜𝑟𝑖𝑧𝑜𝑛

∗[: , 1] 

𝑢1,𝐷𝐶
∗ [𝑖, 𝑠] = 𝑢1,ℎ𝑜𝑟𝑖𝑧𝑜𝑛

∗[: , 1] 

𝑢2,𝐷𝐶
∗ [𝑘, 𝑠] = 𝑢2,ℎ𝑜𝑟𝑖𝑧𝑜𝑛

∗[: , 1] 

                    end 

 

 

3.4 Constant Velocity Prediction 

Due to limitations on perception sub-system, in the near term with limited trip 

information available or with no trip information available, we can calculate the optimal 

controls by assuming a constant speed for an assumed finite time horizon [16]. The detailed 

constant velocity prediction planning sub-system is shown in Figure 19 and the working 

principle of constant velocity prediction is shown in figure 20. 

 

 

 

 

 

 

 

 

 

 

Figure 19. Detailed View of Planning Sub-System by Constant Velocity Prediction 
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time-step. The optimal controls for that selected horizon are calculated using DP optimizer 

moving backward in time. This process provides optimal control for the entire horizon with 

all horizon velocity same as the current time-step velocity. But for further optimal EMS 

calculation select the controls which are associated with the current time-step 

 

 

  

 

 

 

 

 

 

   

Figure 20. Working Principle of Constant Velocity Prediction  

 The control equation, cost equation, constraints, state and control variables are the 

same as previously used in MPC. The only difference is in the horizon velocity.   
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𝑢⃑⃑2 = {𝑢2𝑚𝑖𝑛, 𝑢2𝑚𝑖𝑛 + 𝛿𝑢2, … . . 𝑢2𝑚𝑎𝑥  } 

         Where, 𝛿𝑠 = 0.01%, 𝛿𝑢1 = 1𝑁𝑚, and 𝛿𝑢2 = 10𝑟𝑝𝑚. Also, the length of 𝑠, 𝑢⃑⃑1, 𝑢⃑⃑2   

          vectors are 𝑁𝑠, 𝑁𝑢1, and 𝑁𝑢2 respectively. 

          Now make a 3-D matrix of 𝑠, 𝑢⃑⃑1, 𝑢⃑⃑2 for simplicity and to reduce computational time.    

          So, the new control and state variables are, 

𝑆 = [𝑠]𝑠,𝑢⃑⃑⃑1,𝑢⃑⃑⃑2 

𝑈1 = [𝑢1]𝑠,𝑢⃑⃑⃑1,𝑢⃑⃑⃑2 

𝑈2 = [𝑢2]𝑠,𝑢⃑⃑⃑1,𝑢⃑⃑⃑2 

Now evaluate the vehicle model by applying backward recursive DP optimizer for  

required time horizon to calculate next state 

                     for k = Nhorizon, Nhorizon -1,….i 

                Now simulate the vehicle model described in previous section from equation 1 - 19        

           calculate the next state and cost function at each grid point of state and control  

           variables for given constraints. 

𝑆(𝑘 + 1) = 𝑓(𝑆, 𝑈1, 𝑈2, 𝑤1,ℎ𝑜𝑟𝑖𝑧𝑜𝑛, 𝑤2,ℎ𝑜𝑟𝑖𝑧𝑜𝑛)∆𝑡 

           While calculating the cost, keep in mind that we assumed charge sustaining mode i.e. 

           𝑆(𝑘 + 1) = 𝑆(𝑘). So, arrangements were made where, if this condition gets violated, 

           then a penalty is applied to keep the final state equal to the first as follows –  

 

                               if Sk+1 > Sf, BaselineEMS   

            

                  𝐶𝑜𝑠𝑡 = 𝑚𝑓𝑢𝑒𝑙(𝑈1, 𝑈2) 

                else     

    

𝐶𝑜𝑠𝑡 = 𝑚𝑓𝑢𝑒𝑙(𝑈1, 𝑈2) +𝑊(𝑆𝑂𝐶𝑓 − 𝑆𝑂𝐶𝑓,   𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐸𝑀𝑆)
2 

                             end 

  Now extract a minimum/optimal cost for each state and at each horizon time index   

  In the form of matrix 𝐽∗[𝑘, 𝑠]. Also, find out the index of minimum cost (Imin cost) to  

  find the control value associated with each minimum cost. For each admissible state  

  and time, the control index that generates the optimal cost is stored in the matrix  

  𝑢1
∗ [𝑘, 𝑠], and 𝑢2

∗ [𝑘, 𝑠] as follows (horizon control matrix) – 

𝐽ℎ𝑜𝑟𝑖𝑧𝑜𝑛
∗[𝑘, 𝑠] = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (𝐶𝑜𝑠𝑡[𝑠, 𝑢⃑⃑1, 𝑢⃑⃑2]) 
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𝑢1,ℎ𝑜𝑟𝑖𝑧𝑜𝑛
∗ [𝑘, 𝑠] = 𝑈1(𝐼min𝑐𝑜𝑠𝑡) 

𝑢2,ℎ𝑜𝑟𝑖𝑧𝑜𝑛
∗ [𝑘, 𝑠] = 𝑈2(𝐼min𝑐𝑜𝑠𝑡) 

                       end 

     save only 1st results of each thorizon step results to get whole DC control matrix -  

𝐽𝐷𝐶
∗[𝑖, 𝑠] = 𝐽ℎ𝑜𝑟𝑖𝑧𝑜𝑛

∗[: , 1] 

𝑢1,𝐷𝐶
∗ [𝑖, 𝑠] = 𝑢1,ℎ𝑜𝑟𝑖𝑧𝑜𝑛

∗[: , 1] 
𝑢2,𝐷𝐶

∗ [𝑘, 𝑠] = 𝑢2,ℎ𝑜𝑟𝑖𝑧𝑜𝑛
∗[: , 1] 

              end 
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4. SIMULATION 

 

 

 

 

4.1 Drive Cycle on which Data was Collected  

Three different instances one of a real-world DC are employed to symbolize highway 

driving and city-highway driving while simulation to find baseline and optimal FE [23, 24]. 

The main differences separating these drive cycles are velocities and acceleration through the 

path. The location of DC's shown in Figure 21 and Figure 22 is in Ann Arbor, MI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 21. Drive Cycle Map of The Highway Dataset (Created with Google Maps) [23, 24] 

Figure 21 shows the DC map of the highway data set and Figure 22 shows the DC 

map of the city-highway data set created with Google maps. The different instances of each 

drive cycle may have different traffic conditions and different stop light states along the drive 

cycle. The total recorded highway DC is 11.9 miles long and city-highway DC is 13.3 miles 

long. 
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Figure 22.  Drive Cycle Map of the City-Highway Dataset (Created with Google Maps) 
[23, 24] 

 

 

4.2 Baseline EMS/ Performance 

The Baseline EMS represents the current performance of a 2017 Toyota Prius Prime 

in a rules-based, non-predictive control strategy (due to confidentiality clause, I’m not able to 

disclose exact rules that used while development). Recorded vehicle velocity, propeller 

torque, engine speed and engine torque through the whole DC and calculated next state of 

charge are used as an input into previously developed a controls oriented, high-fidelity HEV 

model. As mentioned earlier this model was developed using previously documented Toyota 

Prius operation equations [15, 16]. Integrated with MATLAB/Simulink but updated with 

vehicle parameters for the engine and motors to accurately represent a 2017 Toyota Prius 

Prime. Also, in this research, I considered charge sustaining approach. Because charge 

sustenance and blending incur nearly the same total energy costs through the depletion phase. 

In blending engine operates efficiently and the battery charge depletes slowly, because in 

blending engine gets utilized often during the charge depletion phase thereby assisting the 

battery in meeting total power demand. 

Figure 23 and Figure 24 shows the baseline performance of the high-fidelity, control-

oriented model with highway and city-highway DC respectively. Figures 23 (a-b-c-d) and 24 
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(a-b-c-d) represents the velocity, engine power, SOC and cumulative fuel consumption 

profiles with respect to distance on highway and city-highway DC respectively. Highlighted 

section of SOC trends from both the figures shows that the developed models achieved 

charge sustention mode.  

 

Figure 23. Baseline Performance of High-Fidelity, Control-Oriented Model with  
Highway DC 

(a) 

(b) 

(c) 

(d) 
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Figure 24. Baseline Performance of High-Fidelity, Control-Oriented Model with  
City-Highway DC 

 

 

4.3 Optimal EMS Decision Matrix Using DP 

Figure 25 and Figure 26 show the optimal control (u1* and u2*) matrix (also called as 

optimal EMS decision matrix) obtained by full DC prediction using DP with highway and 

city-highway DC respectively. This plot is 2D representation of 3D graph, where SOC, time 

(a) 

(b) 

(c) 

(d) 
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and optimal controls (u1* and u2*) are the co-ordinates of 3D graphs. It provides the optimal 

EMS decision matrix where optimal control is given for each possible value of SOC to 

achieve desired predicted vehicle velocity. Using this controls the engine power, SOC and 

fuel consumption has been calculated which is globally optimal.  

 

 
Figure 25. The Optimal Control Matrix Obtained by DP with Highway DC 

 
 

 
Figure 26. The Optimal Control Matrix Obtained by DP with City-Highway DC 
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4.4 Optimal EMS Decision Matrix Using 10 sec Horizon MPC 

Figure 27 and Figure 28 show the engine power, SOC and fuel-consumption 

calculated with the optimal control (u1* and u2*) matrix obtained by MPC over a 10 second 

horizon prediction with highway and city-highway DC respectively. 

 

 
Figure 27. The Optimal Control Matrix Obtained by MPC with Highway DC 

 

 

Figure 28. The Optimal Control Matrix Obtained by MPC with City-Highway DC 

 

 



43  

4.5 Optimal EMS Decision Matrix Using 10 sec Horizon Constant Velocity Prediction 

Figure 29 and Figure 30 shows the engine power, SOC and fuel-consumption 

calculated for the optimal control (u1* and u2*) matrix obtained by constant velocity 

prediction with highway and city-highway DC respectively. 

 
Figure 29. The Optimal Control Matrix Obtained by Constant Velocity Prediction with 

Highway DC 

 

 
Figure 30. The Optimal Control Matrix Obtained by Constant Velocity Prediction with  

City-Highway DC 
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5. RESULTS 

 

 

We proposed three different strategies for optimal EMS analysis, namely (1) perfect 

full DC prediction using dynamic programming, (2) 10-second prediction horizon MPC, and 

(3) 10-second horizon constant velocity prediction. To derive the globally optimal FE, DP 

needs full DC future prediction as an input. On the other hand, MPC only needs desired 

horizon future speed prediction as an input to derive optimal FE improvement. To cope with 

a limited perception system, constant velocity prediction only needs a desired time-step 

velocity prediction, and we can consider that velocity will be constant throughout the 

horizon. These three cases are simulated and presented in a separate figure. Figure 32 to 

Figure 41 shows each of these three Optimal EMS cases is presented next with both the 

highway dataset and the city-highway dataset. 

 

5.1 Perfect Full Drive Cycle Prediction Using Dynamic Programming 

Perfect full DC prediction implemented with dynamic programming provides 

maximum possible FE improvement over baseline FE. This is a critical data point because it 

can act as a benchmark for other optimal EMS for comparison. We simulated three of each 

perfect full highway DC and full city-highway DC prediction with DP and presented each of 

FE improvement over baseline FE along with the average FE improvement in Table 1 and 

Table 2 Also, Figure 31 and Figure 32 shows the engine power, fuel consumption and SOC 

comparison of full DC prediction using DP with baseline (All plots represent simulation 

results of DC1). 

Table 1. DP Optimal FE Improvement Over Baseline with Highway DC. 

DP: Fuel Economy Improvement Over Baseline 

 MPGe (%) 1st SOC (%) Last SOC (%) 

DC1 2.96 13.64 13.62 

DC2 2.89 13.64 13.63 

DC3 2.96 13.64 13.63 

Average 2.94   
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Table 1 and Table 2 shows global FE improvement over baseline FE for highway DC 

and city-highway DC, and the average FE improvement across all drive cycles is 2.94%, 

4.32%, respectively. Also, for both the DCs the initial SOC and final SOC calculations show, 

we successfully achieved charge sustaining mode with highway and city-highway data set.   

Table 2. DP Optimal FE Improvement Over Baseline with City-Highway DC. 

DP: Fuel Economy Improvement Over Baseline 

 MPGe (%) 1st SOC (%) Last SOC (%) 

DC1 4.51 13.64 13.64 

DC2 4.59 13.64 13.63 

DC3 3.86 13.64 13.63 

Average 4.32   

 
Figure 31. Baseline EMS Vs. Optimal EMS with Dynamic Programming on Highway DC 

(a) 

(b)

) 
 (a) 

(c) 

(d) 
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Figure 31 (a-d) and Figure 32 (a-d) shows the velocity profile, engine power, fuel 

consumption, and SOC over time of full highway DC, and full city-highway DC prediction 

using DP with baseline performance. When comparing the engine power from the Baseline 

EMS and the globally Optimal EMS in Figure 31 (b), there are few points like at 4th, 12th 

mile distance, where the Optimal EMS has turned off the engine and operated the engine at 

lower overall power with fewer fluctuations resulting in the FE improvement. Similarly, 

when comparing the engine power from the Baseline EMS and the globally Optimal EMS in 

Figure 32 (b), there are many points where the Optimal EMS has turned off the engine and 

operated the engine at lower overall power with fewer fluctuations resulting in the FE 

improvement. Both highway and city-highway DC’s fuel consumption tends also reflects the 

same with less cumulative fuel consumed by optimal EMS.  

 

Figure 32. Baseline EMS Vs. Optimal EMS with Dynamic Programming on  
City-Highway DC 

(d) 

(c) 

(b) 

(a) 
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5.2 10-Second Prediction Horizon With MPC 

The DP with perfect full DC prediction is difficult to implement in real vehicles due 

to its high computational cost and complexity. However, the recent advancement in driver 

assistance technologies taps the potential of the perception system to improve vehicular FE 

on a future time horizon shorter than the whole DC. This is an advantageous data point, as it 

provides maximum and real-world implementable optimal FE with an advance perception 

system. Here also we simulated 3 of each highway DC and city-highway DC with 10-second 

prediction horizon using MPC and presented each of FE improvement over baseline FE 

along with the average FE improvement in Table 3 and Table 4. Also, Figure 33 and Figure 

34 show the engine power, fuel consumption, and SOC comparison of the 10-second 

prediction horizon using MPC with baseline (All plots represent simulation results of DC1). 

Table 3. MPC Optimal FE Improvement Over Baseline with Highway DC. 

MPC: Fuel Economy Improvement Over Baseline 

 MPGe (%) 1st SOC (%) Last SOC (%) 

DC1 1.87 13.64 13.63 

DC2 1.84 13.64 13.63 

DC3 1.84 13.64 13.64 

Average 1.85   

 
Table 4. MPC Optimal FE Improvement Over Baseline with City-Highway DC. 

MPC: Fuel Economy Improvement Over Baseline 

 MPGe (%) 1st SOC (%) Last SOC (%) 

DC1 3.32 13.64 13.63 

DC2 2.95 13.64 13.63 

DC3 2.61 13.64 13.66 

Average 2.96   

 

Table 3 and Table 4 shows FE improvement over baseline FE for highway DC and 

city-highway DC, and the average FE improvement across all drive cycles is 1.85%, 2.96% 
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respectively. Also, both the DC’s the initial SOC and final SOC calculations shows, we 

successfully achieved charge sustaining mode with highway and city-highway data set.   

 
            Figure 33. Baseline EMS Vs. Optimal EMS with MPC on Highway DC 

Figure 33 (a-d) and Figure 34 (a-d) shows the velocity profile, engine power, fuel 

consumption, and SOC of 10-second horizon highway and city-highway DC’s prediction 

using MPC with baseline performance respectively. When comparing the engine power from 

the Baseline EMS and the 10-second horizon with MPC Optimal EMS in Figure 33 (b), the 

Optimal EMS tends to operate the engine at lower power and a more consistent power 

(d) 

(c) 

(b) 

(a) 
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resulting in the FE savings. Similarly, when comparing the engine power from the Baseline 

EMS and the 10-second horizon with MPC Optimal EMS in Figure 34 (b), Optimal EMS 

yields similar lower engine power as with the highway DC, which resulting in an FE 

increase. Both highway and city-highway DC’s fuel consumption tends also reflects the same 

with less cumulative fuel consumed by optimal EMS. 

 
Figure 34. Baseline EMS Vs. Optimal EMS with MPC on City-Highway DC 

 

5.3 10-Second Prediction Horizon with Constant Velocity Prediction 

MPC has advantages like very significant and real-world implementable optimal FE 

over the finite horizon with an advanced perception system. Even though it requires a very 

advance perception system; however, in the current state, there is a need to develop a control 

strategy that can work with limited perception and provides some FE improvement over 

(d) 

(c) 

(b) 

(a) 
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baseline FE. So, we have developed a control strategy which can provide significant FE 

improvement with limited perception of future vehicle operation. Here also, we simulated 3 

of each highway DC and city-highway DC with a 10-second prediction horizon using 

constant velocity prediction where velocity is assumed constant for the entire horizon and 

presented each of FE improvement over baseline FE along with the average FE improvement 

in Table 5 and Table 6. Also, Figure 35 and Figure 36 show the engine power, fuel 

consumption, and SOC comparison of 10-second prediction horizon using constant velocity 

prediction with baseline (All plots represent simulation results of DC1). 

Table 5. Constant Velocity Prediction Optimal FE Improvement Over Baseline with  
Highway DC. 

Constant Velocity: Fuel Economy Improvement Over Baseline 

 MPGe (%) 1st SOC (%) Last SOC (%) 

DC1 1.71 13.64 13.62 

DC2 1.47 13.64 13.63 

DC3 1.58 13.64 13.63 

Average 1.58   

 

Table 5 and Table 6 shows non-global FE improvement over baseline FE for highway 

and city-highway DC’s, and the average FE improvement across all drive cycles is 1.58%, 

2.45%, respectively. Also, both DC’s the initial SOC, and final SOC calculations show, we 

successfully achieved charge sustaining mode with highway and city-highway data set.   

Table 6. Constant Velocity Prediction Optimal FE Improvement Over Baseline with  
City-Highway DC. 

Constant Velocity: Fuel Economy Improvement Over Baseline 

 MPGe (%) 1st SOC (%) Last SOC (%) 

DC1 2.45 13.64 13.63 

DC2 2.51 13.64 13.66 

DC3 2.41 13.64 13.64 

Average 2.45   
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Figure 35 (a-d) and Figure 36 (a-d) shows the velocity profile, engine power, fuel 

consumption, and SOC of a full highway and city-highway DC’s prediction using 10-Second 

Constant Velocity Prediction with baseline performance. When comparing the engine power 

from the Baseline EMS and the non-globally Optimal EMS in Figure 35 (b), there are very 

few points where the Optimal EMS has turned off the engine and operated the engine at 

lower overall power with fewer fluctuations resulting in the FE improvement. Similarly, 

when comparing the engine power from the Baseline EMS and the globally Optimal EMS in 

Figure 36 (b), Optimal EMS yields similar lower engine power as with the highway DC, 

which resulting in an FE increase. Both highway and city-highway DC’s fuel consumption 

tends also reflects the same with less cumulative fuel consumed by optimal EMS. 

 

         Figure 35. Baseline EMS Vs. Optimal EMS with Constant Velocity Prediction on  
Highway DC 

(d) 

(c) 

(b) 

(a) 
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Figure 36. Baseline EMS Vs. Optimal EMS with Constant Velocity Prediction on  

City-Highway DC 
 

5.4 Combined Results: Fuel Consumption and SOC  

Figure 38 and Figure 39 compares the result of fuel consumption and SOC level with 

highway DC and city-highway DC respectively at each time index of all three strategies with 

baseline EMS which outlines the current performance of a vehicle in a rules-based, non-

predictive control strategy.  

Table 7 and 8 shows the average FE improvement and Figure 38-39 (a), 38-39 (b) 

and 38-39 (c) shows the overall fuel consumption trend (DC1 plots) from lowest to highest 

can be given as:  

(d) 

(c) 

(b) 

(a) 
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DP < MPC < Constant Velocity Prediction < Baseline EMS 

Perfect full DC prediction implemented with DP shows the best FE improvement and 

is considered as the upper limit on FE improvement. On the contrary, the baseline EMS 

shows the point of comparison for any FE improvement 

Figure 37 (b) shows a constant velocity prediction fuel consumption trend closely 

follows the MPC on highway driving; on the contrary, Figure 38 (b) shows a significant 

difference between constant velocity prediction and MPC fuel consumption trends. However, 

it shows that even with the limited prediction, constant velocity prediction strategy can 

provide remarkable FE improvement. Also, all EMS strategies start and end with the same 

SOC level, which verifies that "charge sustaining" mode is being enforced.  

Table 7. Average DP, MPC, and Constant Velocity Prediction Optimal FE Improvement Over 
Baseline with Highway DC. 

Fuel Economy Improvement Over Baseline 

 MPGe (%) 1st SOC (%) Last SOC (%) 

DP 2.94 13.64 13.64 

MPC 1.85 13.64 13.62 

Constant Velocity 1.58 13.64 13.62 

 

Table 8. Average DP, MPC, and Constant Velocity Prediction Optimal FE Improvement Over 
Baseline with City-Highway DC. 

Fuel Economy Improvement Over Baseline 

 MPGe (%) 1st SOC (%) Last SOC (%) 

DP 4.32 13.63 13.64 

MPC 2.96 13.63 13.62 

Constant Velocity 2.45 13.63 13.62 
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Figure 37. Baseline, DP, MPC, and Constant Velocity Prediction EMS Comparisons with 
Highway DC  

 

From Figure 37 - 38 (c), SOC trends of DP strictly obey charge sustaining operation, 

but in between the DC endpoints, SOC fluctuates broadly. This clearly indicates that DP 

takes full advantage of battery power with perfect full DC prediction. Due to this in both 

highway and city-highway driving, FE improvement is biggest. This is also justified by the 

DP fuel consumption trends shown in Figure 37 – 38 (b). This clearly shows that the low DP 

fuel consumption trend is distinct from others.  

Figure 37 (c) indicates that on highway driving, SOC trends of both MPC and 

constant velocity prediction at each time-step always stay close to the initial SOC level, 

which looks like the SOC level is constant for whole DC. This indicates that due to 

(c) 

(b) 

(a) 
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application of DP only for finite horizon, it restricts the MPC from taking advantage of 

battery SOC, and it tries to maintain chare sustaining mode. On the other hand, with city-

highway driving, the SOC trends of both MPC and constant velocity prediction shows some 

fluctuations, but their amplitude is much smaller than the DP SOC trend. This low SOC 

fluctuation results in higher battery life. 

 
     Figure 38. Baseline, DP, MPC, and Constant Velocity Prediction EMS Comparisons 

with City-Highway DC 

 

 

6. Combined Results: Engine Power 

Figure 39 and Figure 40 compare engine power trends of different EMS strategies on 

(c) 

(b) 

(a) 
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the highway and city-highway driving, respectively. From Figure 39 – 40 (a), the engine 

power comparison of DP with baseline performance shows relatively lower overall power 

resulting in 2.94% and 4.3% of average FE improvement over baseline fuel consumption for 

highway and city-highway driving, respectively. 

Figure 39 – 40 (b) shows that the MPC engine power trend closely follows the DP 

engine power trend with some exceptions. MPC has the potential to achieve 60% - 65% and 

70% - 80% of global FE improvement levels on the highway and city-highway DC, 

respectively. 

 
Figure 39. Baseline, DP, MPC, and Constant Velocity Prediction Engine Power 

Comparisons with Highway DC. 

Figure 39 (c) indicates on highway DC in some instances; there is a sharp increment 

in the engine power for the constant velocity prediction as compared to MPC engine power. 

(d) 

(c) 

(b) 

(a) 
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This indicates that constant velocity prediction can potentially achieve 80% - 92% of MPC 

FE improvement. On the other hand, the engine power trend with constant velocity 

prediction shows multiple sharp increments over MPC engine power on city-highway DC, as 

shown in Figure 40 (c). This causes the drop in FE improvement potential of constant 

velocity prediction over MPC FE improvement. Overall the constant velocity prediction has 

the potential to achieve 50% - 60% of global FE improvement.  

 

          Figure 40. Baseline, DP, MPC, and Constant Velocity Prediction Engine Power 
Comparisons with City-Highway DC. 

 

 

 

 

(d) 

(c) 

(b) 

(a) 
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6. SUMMARY 

 

 

 

Overall the FE improvement results of both highway and city-highway driving with 

all 3 strategies over baseline EMS are shown in Figure 41 and Table 9. The perfect full DC 

prediction along with DP has the largest average FE improvement, followed by 10-second 

prediction horizon MPC, and then 10-second horizon constant velocity prediction over 

baseline EMS.  

 

 

Figure 41. Overall Average FE Improvement Over Baseline with All 3 EMS with Both 
Highway and City-Highway DC 

 

Table 9. Overall Average FE Improvement Over Baseline with All 3 EMS with Both Highway 
and City-Highway DC. 

Average Fuel Economy Improvement Over Baseline (%) 

 Highway DC City-Highway DC 

DP 2.94 4.3 

MPC 1.85 2.96 

Constant Velocity 1.58 2.45 

2.9373

1.85
1.58

4.3

2.96

2.45

0

1

2

3

4

5

DP MPC Cnst.Vel

FE
 Im

p
ro

ve
m

en
t 

(%
)

Optimal EMS

FE Comparision 

Highway DC City-Highway DC



59  

Figure 41 also indicates that on the highway DC constant velocity prediction can 

achieve nearly equal FE improvement of MPC FE improvement. So, on highway driving, it 

could be better to use the more straightforward constant velocity prediction method than the 

complicated MPC method as constant velocity prediction does not require perfect horizon 

prediction like MPC. On the contrary, with city-highway DC, the gap between MPC and 

constant velocity prediction FE improvement is significant. This means with city-highway 

DC, MPC gives better results because it considers perfect horizon velocity predictions.  
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7. CONCLUSION 

 

 

 

 

In this study, I have investigated 3 different energy management strategies in 

simulation using real-world highway and city-highway DC in a validated, control-oriented 

2017 Toyota Prius Prime model operating in charge sustaining mode. The input to all the 

EMS planning sub-system is velocity predictions obtained from the perception sub-system. 

The output of the given planning sub-system is the vehicle control matrix which realizes FE 

improvement with optimal engine power generation while maintaining charge sustention 

mode. 

The perfect full DC prediction along with DP gives globally optimal EMS which 

represents the upper limit on achievable FE improvement. The 10-second prediction window 

MPC strategy provides the second-best FE improvement results in my research which were 

found to be very significant. The MPC results suggest that, it has potential to achieve 60%-

65% and 70% - 80% of global FE improvement over highway and city-highway DC 

respectively. So, with the advancement in perception systems, MPC can be implemented in 

real vehicles. Whereas, the constant velocity prediction results also show prospects of 

implementation in vehicle controllers with MPC type of framework. The constant velocity 

prediction results suggest that has the potential to achieve 80%-90% and 75% - 85% of MPC 

FE improvement over highway and city-highway DC respectively. Also, the MPC and 

constant velocity prediction results suggest that FE improvement from perfect 10 second 

MPC is only slightly higher than constant velocity 10 second. This means that a 10 second 

prediction window is not that beneficial for generating actual velocity predictions for MPC. 

The MPC and Constant velocity SOC results corroborate the above claim(s) to achieve better 

battery performance. 
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8. FUTURE STUDY 

 

 

 

For future work, we seek to combine both perception and planning sub-system and 

integrate it with a real-world vehicle through NVIDIA PX2 and vehicle controller. Along 

with fuel economy, our goal is to combine the vehicular emissions model with a neural 

network to accomplish the ultimate goal of efficient vehicle powertrain. Our near-term goal 

is to implement the constant velocity prediction strategy as it does not require perfect horizon 

operation prediction. As the 10 second prediction window is not that beneficial for generating 

actual velocity predictions for MPC, we seek to explore more prediction windows, and its 

effect on FE improvement. Our long-term goal is to implement the model predictive control 

strategy as our perception research gets mature.   
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APPENDIX 

 

Let’s start with state of charge dynamics [14, 15], 

𝑆𝑂𝐶(𝑘 + 1) = 𝑆𝑂𝐶(𝑘) − {
𝑉𝑂𝐶−√𝑉𝑂𝐶

2−(4×𝑃𝐵𝑎𝑡𝑡×𝑅𝐵𝑎𝑡𝑡)

2×𝑅𝐵𝑎𝑡𝑡×𝑄𝐵𝑎𝑡𝑡_0
}…………………….I 

Where, 

𝑆𝑂𝐶(𝑘 + 1) = State of charge of next state 

𝑆𝑂𝐶(𝑘) = State of charge of current state 

𝑉𝑂𝐶 = Open Circuit Voltage 

𝑅𝐵𝑎𝑡𝑡 = Battery Resistance 

𝑄𝐵𝑎𝑡𝑡 = total/maximum charge of fully charged battery 

𝑃𝐵𝑎𝑡𝑡 = Battery Power 

 

Let, Power discharge from the battery to the motor and charging from the generator to the 

battery is given by [14, 15], 

𝑃𝐵𝑎𝑡𝑡 = 𝑃𝐺 + 𝑃𝑀 

Where, 

𝑃𝐺 = Generator Power. 

𝑃𝑀 = Motor Power. 

 

Now find 𝑃𝐺 , 𝑎𝑛𝑑𝑃𝑀 

generator and motor power are calculated using torque and speed of generator and motor 

respectively as follows [14, 15], 

𝑃𝐺 = [𝜂𝑘 × 𝜏𝐺 × 𝜔𝐺]  

𝑃𝐺 = 𝜂𝑘 × (𝜏𝐼𝐶𝐸 × (
𝜌

1+𝜌
)) × (( 𝜔𝐼𝐶𝐸 × (

1+𝜌

𝜌
)) − (

𝑉

𝑅𝑡×𝑟𝑓𝑖𝑛𝑎𝑙×𝜌
))   

 

𝑃𝑀 = [𝜂𝑘 × 𝜏𝑀 × 𝜔𝑀]   

𝑃𝑀 = 𝜂𝑘 × (
𝑉

𝑅𝑡 × 𝑟𝑓𝑖𝑛𝑎𝑙 × 𝜌
) × ((𝜏𝑃 × 𝑟𝑓𝑖𝑛𝑎𝑙) − (

𝜏𝐼𝐶𝐸
1 + 𝜌

)) 

Where, 

𝜂 = Electrochemical conversion efficiency 

𝑘 = -1 during discharging and 1 during charging 

𝜏𝐺 = Electric Machine1 or Generator Torque. 

𝜏𝑀 = Electric Machine1 or Motor Torque. 

𝜌 = Gear ratio between sun gear and the ring gear = 
𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑠𝑢𝑛 𝑔𝑒𝑎𝑟 (𝑅𝑠)

𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑟𝑖𝑛𝑔 𝑔𝑒𝑎𝑟 (𝑅𝑟)
 

Rt = Wheel/tire radius 
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𝑟𝑓𝑖𝑛𝑎𝑙  = Final reduction gear ratio. 

V = Vehicle velocity 

𝜏𝐼𝐶𝐸  = Engine Torque. 

𝜔𝐼𝐶𝐸 = Engine Speed. 

𝜏𝑃 = Propulsion Torque. 

 

Green part of equation I becomes, 

(4 × 𝑃𝐵𝑎𝑡𝑡 × 𝑅𝐵𝑎𝑡𝑡) = 4 × (𝑃𝐺 + 𝑃𝑀) × 𝑅𝐵𝑎𝑡𝑡  
(4 × 𝑃𝐵𝑎𝑡𝑡 × 𝑅𝐵𝑎𝑡𝑡)= 4 × 𝑅𝐵𝑎𝑡𝑡 ×

{
 
 

 
 [𝜂𝑘 × (𝜏𝐼𝐶𝐸 × (

𝜌

1+𝜌
)) × (( 𝜔𝐼𝐶𝐸 × (

1+𝜌

𝜌
)) − (

𝑉

𝑅𝑡×𝑟𝑓𝑖𝑛𝑎𝑙×𝜌
))  ] +

[𝜂𝑘 × (
𝑉

𝑅𝑡×𝑟𝑓𝑖𝑛𝑎𝑙×𝜌
) × ((𝜏𝑃 × 𝑟𝑓𝑖𝑛𝑎𝑙) − (

𝜏𝐼𝐶𝐸

1+𝜌
))]

}
 
 

 
 

 

 

Now equation 1 becomes, 

𝑆𝑂𝐶(𝑘 + 1) = 𝑆𝑂𝐶(𝑘) − (
𝑉𝑂𝐶

2×𝑅𝐵𝑎𝑡𝑡×𝑄𝐵𝑎𝑡𝑡0
)  +

√
  
  
  
  
  
  
  
 

(
𝑉𝑂𝐶

2

4×𝑅𝐵𝑎𝑡𝑡
2×𝑄𝐵𝑎𝑡𝑡0

2) − [
4×𝑅𝐵𝑎𝑡𝑡×𝜂𝑘×(𝜏𝐼𝐶𝐸×(

𝜌

1+𝜌
))×(( 𝜔𝐼𝐶𝐸×(

1+𝜌

𝜌
))−(

𝑉

𝑅𝑡×𝑟𝑓𝑖𝑛𝑎𝑙×𝜌
))

4×𝑅𝐵𝑎𝑡𝑡
2×𝑄𝐵𝑎𝑡𝑡0

2 ] 

− [
4×𝑅𝐵𝑎𝑡𝑡×𝜂𝑘×(

𝑉

𝑅𝑡×𝑟𝑓𝑖𝑛𝑎𝑙
)×((𝜏𝑃×𝑟𝑓𝑖𝑛𝑎𝑙)−(

𝜏𝐼𝐶𝐸
1+𝜌

))

4×𝑅𝐵𝑎𝑡𝑡
2×𝑄𝐵𝑎𝑡𝑡0

2 ] 

   

 

 

𝑆𝑂𝐶(𝑘 + 1) = 𝑆𝑂𝐶(𝑘) − (
𝑉𝑂𝐶

2×𝑅𝐵𝑎𝑡𝑡×𝑄𝐵𝑎𝑡𝑡0
) +

√
  
  
  
  
  
  
  
 

 (
𝑉𝑂𝐶

2

4×𝑅𝐵𝑎𝑡𝑡
2×𝑄𝐵𝑎𝑡𝑡0

2) − [
𝜂𝑘×(𝜏𝐼𝐶𝐸×(

𝜌

1+𝜌
))×(( 𝜔𝐼𝐶𝐸×(

1+𝜌

𝜌
))−(

𝑉

𝑅𝑡×𝑟𝑓𝑖𝑛𝑎𝑙×𝜌
))

𝑅𝐵𝑎𝑡𝑡×𝑄𝐵𝑎𝑡𝑡0
2 ] 

− [
𝜂𝑘×(

𝑉

𝑅𝑡×𝑟𝑓𝑖𝑛𝑎𝑙
)×((𝜏𝑃×𝑟𝑓𝑖𝑛𝑎𝑙)−(

𝜏𝐼𝐶𝐸
1+𝜌

))

𝑅𝐵𝑎𝑡𝑡×𝑄𝐵𝑎𝑡𝑡0
2 ]

  

 

The simplified DP equation consisting - all dynamic equations of vehicle, wheel, SOC of power-

split architecture with planetary gear train arrangement is, 
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𝑆𝑂𝐶(𝑘 + 1) = 𝑆𝑂𝐶(𝑘) − 𝐶1 +

√𝐶2 − [𝐶3 × 𝜏𝐼𝐶𝐸 × ((𝐶4 ×  𝜔𝐼𝐶𝐸) − (𝐶5 × 𝑉))] − [𝐶6 × 𝑉 × ((𝐶7 × 𝜏𝑃) − (𝐶8 × 𝜏𝐼𝐶𝐸))]………II 

 

Where, 

𝑤1= V = Vehicle velocity 

𝑤2 = 𝜏𝑃 = Propulsion Torque. 

𝑢1  =  𝜔𝐼𝐶𝐸 = Engine Speed. 

𝑢2 = 𝜏𝐼𝐶𝐸 = Engine Torque. 

𝑠 = 𝑆𝑂𝐶 = State of charge. 

 

Equation II becomes, 

𝑠(𝑘 + 1) = 𝑠(𝑘) − 𝐶1 +

√𝐶2 − [𝐶3 × 𝑢2 × ((𝐶4 ×  𝑢1) − (𝐶5 ×𝑤1))] − [𝐶6 × 𝑤1 × ((𝐶7 × 𝑤2) − (𝐶8 × 𝑢2))]  

 

Where, 

𝐶1 = 
𝑉𝑂𝐶

2×𝑅𝐵𝑎𝑡𝑡×𝑄𝐵𝑎𝑡𝑡0
                                                                  𝐶2 = 

𝑉𝑂𝐶
2

4×𝑅𝐵𝑎𝑡𝑡
2×𝑄𝐵𝑎𝑡𝑡0

2             

   

𝐶3 = 
𝜂𝑘

𝑅𝐵𝑎𝑡𝑡×𝑄𝐵𝑎𝑡𝑡0
2 × (

𝜌

1+𝜌
)                                                     𝐶4 = 

1

𝑅𝐵𝑎𝑡𝑡×𝑄𝐵𝑎𝑡𝑡0
2 × (

1+𝜌

𝜌
) 

 

𝐶5 = 
1

𝑅𝐵𝑎𝑡𝑡 × 𝑄𝐵𝑎𝑡𝑡0
2 × 𝑅𝑡 × 𝑟𝑓𝑖𝑛𝑎𝑙 × 𝜌

                              𝐶6 = 
𝜂𝑘

𝑅𝐵𝑎𝑡𝑡 × 𝑄𝐵𝑎𝑡𝑡0
2 × 𝑅𝑡 × 𝑟𝑓𝑖𝑛𝑎𝑙

       

 

𝐶7 = 
𝑟𝑓𝑖𝑛𝑎𝑙

𝑅𝐵𝑎𝑡𝑡 × 𝑄𝐵𝑎𝑡𝑡0
2                                                                 𝐶8 = 

1

𝑅𝐵𝑎𝑡𝑡 × 𝑄𝐵𝑎𝑡𝑡0
2 × (

1

1 + 𝜌
) 
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