

Dimensionless parameters for ballistic performance evaluation of ceramic-faced bicomponent targets against sharp-nosed projectiles

March 2023

Zherui Guo

Changing the World's Energy Future

INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance, LLC

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

**Dimensionless parameters for ballistic performance
evaluation of ceramic-faced bicomponent targets
against sharp-nosed projectiles**

Zherui Guo

March 2023

**Idaho National Laboratory
Idaho Falls, Idaho 83415**

<http://www.inl.gov>

**Prepared for the
U.S. Department of Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517**

1
2
3
4
5
6
7
8
9 **Dimensionless parameters for ballistic performance**
10 **evaluation of ceramic-faced bicomponent targets against**
11 **sharp-nosed projectiles**

12
13 **Zherui Guo^{*1}**
14
15

16 *Corresponding author
17 Zherui Guo
18 Tel.: +1 (208) 526-3607.
19 E-mail address: Zherui.Guo@inl.gov
20 ORCiD: 0000-0002-8832-8435

21
22
23
24 ¹Idaho National Laboratory, Idaho Falls, ID, USA

1
2 **Abstract**
3

4 Two dimensionless parameters are proposed to give first-order approximations for the ballistic
5 performance of ceramic-faced bicomponent armor plates impacted by conical-nosed steel
6 projectiles. The current work collates expansive experimental data from Wilkins and Mayseless
7 covering a broad range of material and mechanical properties, target construction, and projectile
8 dimensions, the data is collapsed using the Hugoniot elastic limit of the ceramic strike face as a
9 strength metric. Within datasets where experimental conditions are kept constant, a singular
10 cubic curve can be generated, but variations in experimental conditions for the ballistic limit test
11 between datasets can result in differences in the predictive curve coefficients.
12

13 **Keywords:** Bicomponent armor. Ballistic impact. Ceramic. Dimensionless parameters.
14

15 **Introduction**
16

17 Ceramics, by themselves, typically perform poorly under ballistic impact because they tend to
18 fail catastrophically in a brittle fashion. A ductile backing material is usually used to provide
19 adequate support to the frontal ceramic during the impact process. The hard frontal ceramic
20 deforms and blunts the projectile, and the fracture initiation and propagation within the ceramic
21 further dissipates the impinging kinetic energy. During this process, the ceramic fracture conoid
22 formed helps to spread the impact load over a large area on the backing plate. Global
23 deformation of the rear backing plate also helps to trap debris and dissipate energy, when
24 projectile has sufficiently slowed down. This synergistic interaction between the ceramic front
25 and ductile backing gives them the advantage of improved ballistic capabilities with reduced
26 weight compared to monolithic metal armor systems.
27

28 Naturally, these ceramic-faced light armor systems became of interest in several scientific
29 studies and research programs because of their effectiveness against high-velocity impact. In the
30 1960s, two major works by Florence and Wilkins provided robust analytical frameworks to
31 optimize such ceramic-faced bicomponent armor systems. Florence examined the impact
32 interaction between hard steel projectiles and lightweight composite armor systems [1,2]. In the
33 experimental phase, hardened steel ogival projectiles were used to impact armor systems
34 comprised of an alumina plate at the strike face bonded to fiber glass fabric or 6061-T6
35 aluminum alloy backing. Based on experimental results and observations, Florence derived an
36 analytical framework to elucidate the impact mechanisms and parameters during the perforation
37 process.
38

39 Wilkins et al. [3–7] investigated the ballistic performance of ceramic/metal composite armors via
40 an extensive light armor program, aiming to gain in-depth fundamental insight into the
41 perforation mechanics of lightweight composite armors through a series of experimental and
42 numerical studies. The studies mainly looked into bicomponent armor plate systems with
43 alumina ceramic (85% and 99% high purity) as a frontal face material backed by aluminum alloy
44 6061-T6 plates, but also included experimental data on alumina/fiber glass composite systems, as
45 well as armor systems with boron carbide (B₄C) and silicon carbide (SiC) as a frontal ceramic
46 material. Representative projectiles chosen were sharp conical-nosed and blunt flat-ended
47 geometries. Computational simulation methods were subsequently developed based on the
48 experimental measurements and results. The findings were concisely summarized in a later

1 publication by Wilkins [8]. Mayseless et al. [9] further expanded the range of available ballistic
2 data by performing essentially the same experiments as Wilkins, but with larger conical-nosed
3 projectiles.

4
5 In the following decades, a good portion of impact research was dedicated to examining and
6 optimizing the ceramic-faced bicomponent armor system's ballistic performance and mass
7 efficiency. During this time, a broad body of work was either derived or improved upon from
8 these prior studies by Florence and Wilkins. Woodward [10,11] derived a simplified one
9 dimensional axisymmetric model based on Wilkins' experimental data. Den Reijer [12]
10 published a thesis on theoretical and experimental work on ceramic faced armor systems, and
11 further developed an axisymmetric target penetration model to simulate the impact mechanics.
12

13 Hetherington et al. [13,14] used Florence's analytical model to predict the ballistic performance
14 of ceramic/glass fiber reinforced plastic (GRP) composite armor systems, and these analytical
15 equations were further used to derive optimization curves. From this work, Wang & Lu [15]
16 derived similar equations to investigate the effects of ceramic/aluminum thickness ratio on the
17 bicomponent armor system's ballistic limit velocity. Zaera & Sánchez-Gálvez [16] proposed an
18 analytical model based on a combination of Tate and Alekseevskii's model for projectile
19 penetration into the ceramic front, and a combination of Wood and den Reijer's model for the
20 ductile metal backing. Following this, Chocron Benloulo & Sánchez-Gálvez [17] derived a
21 quasi-axisymmetric perforation model for ceramics backed with a fabric composite.
22

23 Moving away from specific material combinations, Ben-Dor et al. [18] returned to the analytical
24 Florence model and derived closed-form optimization equations for arbitrary materials using
25 their respective mechanical properties. They later improved upon these equations [19] by
26 including the strength of the ceramic strike face, as well as an experimentally-fitted ceramic
27 fracture conoid angle of 45° (compared to ~65° as assumed by Florence). The increased ease and
28 lowered cost of computational simulations have also helped to provide further insight into all
29 possible mechanisms of energy dissipation during ballistic perforation. For example, Chi &
30 Serjouei [20–22] performed a series of experiments and simulations on ceramic/aluminum
31 armor, and numerically obtained similar optimization curves as Ben-Dor et al. Recent studies
32 appear to have similarly shifted towards highly compartmentalized equations for performance
33 prediction [23,24].
34

35 The multitude of constituent material and mechanical properties as well as target structural
36 parameters requires *a priori* knowledge of all the relevant physical quantities for performance
37 prediction, which is not always possible to obtain. Therefore, in a departure from deriving even
38 more overly descriptive models, we present two dimensionless parameters that provide
39 sufficiently accurate first-order predictions for the ballistic limit of these bicomponent targets.
40 Specifically, we focus on the interaction of sharp-nosed projectiles with ceramic-faced light
41 armor systems.
42

43 Clearly, the efforts detailed herein are not meant to supplant other more exact methods of
44 predicting the ballistic performance. Instead, by generalizing and parametrizing the high velocity
45 impact response of these bicomponent target plates, we hope to provide a means for rapid
46 deployment of similar light armor systems without necessitating all the constituent properties and
47 structural parameters of the target plate, which may otherwise be unavailable or expensive to
48 measure experimentally. Further, these efforts may prove useful in generating meaningful,

1 physics-based trends for data-driven methods of performance prediction and optimization.

2 **Dimensionless parameters for ceramic/metal bicomponent impact**

3 The first dimensionless parameter is a ratio of the target mass to the projectile mass, given as

4
5
6
7
8
9 where A_d is the areal density of the target plate (mass per unit area), A_p is the projectile presented
10 area, and m_p is the mass of the projectile. Cunniff previously used this dimensionless parameter
11 to collapse ballistic impact data for fibrous soft body armor systems [25], but was later shown to
12 arise organically in ballistic perforation models for ogival-nosed projectiles impacting monolithic
13 metal plates [26]. Essentially, Π_1 is a geometric similarity parameter that implicitly includes the
14 target thickness and projectile nose geometry. For a bicomponent target system, the total areal
15 density A_d of the target plate is the sum of the constituent plates i.e.

16
17
18
19
20 where h_1 and h_2 are the thicknesses of the frontal ceramic and backing plate, respectively. We
21 define two similar parameters to indicate the amount of ceramic material being used. The first
22 parameter is k_t , given as the frontal ceramic plate thickness as a fraction of the total armor
23 thickness

24
25
26
27
28 The frontal ceramic plate areal density as a fraction of the total areal density is

29
30
31
32
33 With either k or k_t , we can calculate an average density of the overall target plate system using a
34 rule of mixtures. For a bicomponent system, this is given by

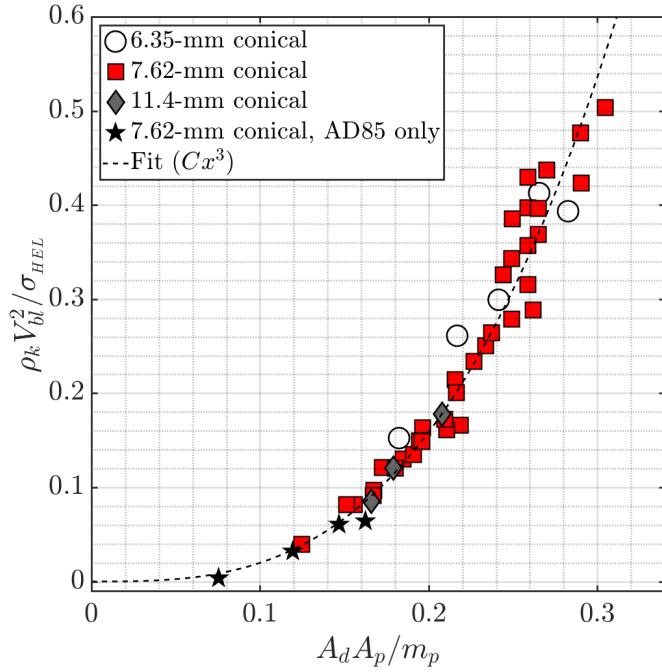
35
36
37
38
39 This is expressed equivalently in terms of k as

40
41
42
43
44 The choice of k or k_t to use for trend studies is a matter of design goals. Generally, both
45 parameters produce similar results if the material densities are not too disparate. A second
46 dimensionless term can be formulated as

1 (6)
2

3 In Equation 6, V_{bl} is the ballistic limit velocity of the whole target system when impacted by
4 some projectile, and σ is some characteristic strength term that represents the impact mechanics
5 of the problem. For example, in a prior study by Guo & Chen investigating similar dimensionless
6 parameters for monolithic ductile plates [27], the cavity expansion strength was used as the
7 representative term to collapse ballistic perforation data for armor-piercing rounds, while the
8 dynamic compressive strength was used to predict the ballistic performance of shear plug
9 formation in ductile metal plates under FSP impact.

10 In the current work, the Hugoniot elastic limit is used as a characteristic strength of the
11 bicomponent target. The Hugoniot elastic limit, or HEL, is a fundamental dynamic mechanical
12 property describing the threshold on the material's shock Hugoniot curve at which the dynamic
13 behavior transitions from a purely elastic state to an elastic-plastic state. While the actual HEL
14 values are seldom directly used in the derivation of dynamics equations, prior studies have used
15 the HEL transition point to derive other relevant physical quantities. For example, Tate
16 suggested a linear scaling of the HEL for both the projectile and target resistance when
17 modelling the high velocity impact penetration of long rods [28]. Rosenberg [29] related the
18 HEL to the dynamic compressive yield strength of the ceramic. Bavdekar et al [30] demonstrated
19 a linear relationship between the HEL and the comminuted material shear strength, and used this
20 relationship to modify the dynamic spherical cavity expansion model for ceramics.

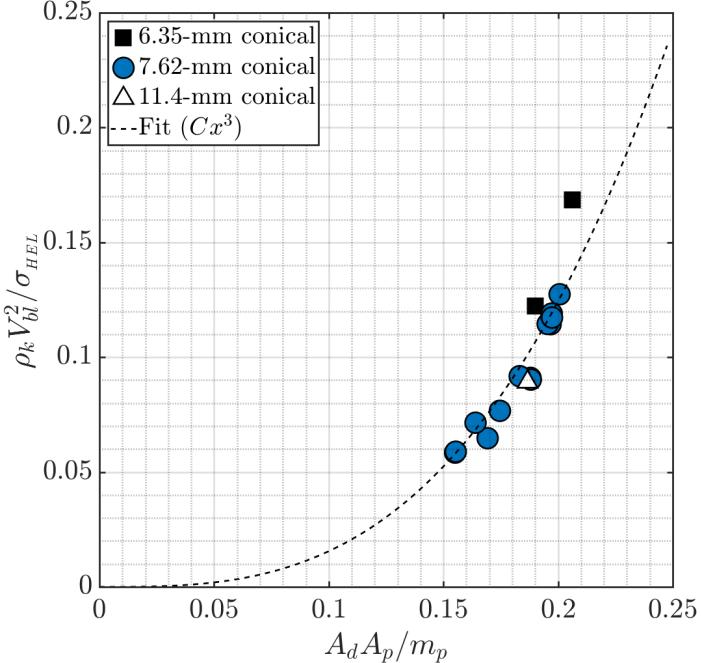

21
22
23
24 **Results & Discussion**
25

26 Due to the inherently sensitive nature of these bicomponent armor systems and their applications,
27 complete ballistic experimental data is often scarce in literature. Existing ballistic impact studies
28 reporting both ballistic limit velocities and the respective Hugoniot elastic limit are extremely
29 scarce. Since ceramic properties are sensitive to their chemical composition and processing
30 parameters, cross-referencing HEL values from other studies can often result in spurious
31 calculations. Therefore, unless otherwise stated, data points were collated from Wilkins'
32 experimental program on ceramic-faced armor systems [3–7] (Datasets W1–W5 in subsequent
33 sections). Data by Mayseless et al. [9] for similar ceramic-faced bicomponent targets are also
34 included (Dataset M). For ease of reference, material data were collated from a ceramic armor
35 database compiled by Holmquist et al wherever possible [31], and the respective material
36 number in the database is given where provided. In datasets W1 to W5, all projectiles were made
37 from Allegheny steel 609 with Rockwell hardness 54–56 R_c , and have an apex cone angle of 55°.
38 The complete raw ballistic data used in this section are given in their respective tables in the
39 Appendix. Additional ceramic/metal impact data for alumina/Al5083 by Lee & Yoo [32] are also
40 given in the Appendix, since the dataset was too small to provide further insight.

41 *Dataset W1: Conical-nosed projectiles impacting AD85/Al6061-T6 targets*
42

43 The conical-nosed projectiles had nominal diameters $D = 6.35, 7.62$, and 11.4 mm (.25-, .30, and
44 .40-cal), and masses $m_p = 4.70, 8.32$, and 27.6 g respectively. Projectile velocities ranged
45 between 200 – 1000 m/s. Frontal 85% purity alumina plates were manufactured by Coors (AD85).
46 Alumina AD85 plate thicknesses h_1 ranged between 3 – 9 mm. Rear backing plate material was
47 aluminum alloy 6061-T6, with density $\rho_2 = 2765$ kg/m³ and plate thicknesses h_2 ranging between
48 3 – 10 mm. Frontal and backing plates were bonded using Scotchcast 221 polyurethane adhesive.

1 The data is collapsed onto a single curve (Figure 1) with the dimensionless parameters derived in
 2 Equations 1 and 6. For reference, the ballistic perforation results for monolithic AD85 target
 3 plates ($k = k_t = 1$ in Equation 5) are also included. A cubic curve $y = Cx^3$ was used to fit the data
 4 using the Levenberg-Marquardt algorithm.
 5


6 **Figure 1:** Conical-nosed steel projectiles of different calibers impacting AD85/Al6061-T6
 7 targets. Fit parameters $C = 19.84$, $R^2 = 0.945$.
 8
 9

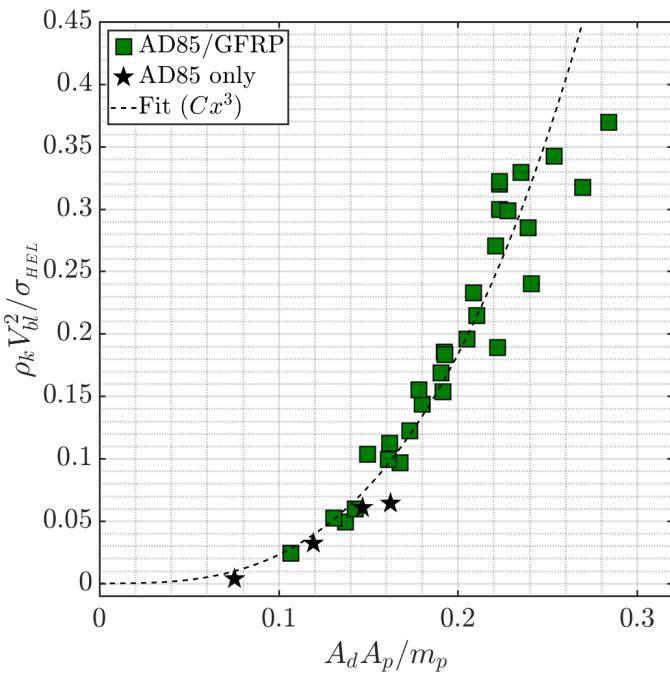
10 In this series of reports, Wilkins et al. performed dimensional scaling by using an ad-hoc factor K
 11 to normalize each projectile caliber with the 7.62-mm projectile, and the ballistic limit velocities
 12 were subsequently scaled using the term . For example, in the case of a 6.35-mm diameter
 13 projectile, the scale factor $K = 6.35/7.62 = 5/6$. In cases where the ceramic plate thickness h_1 was
 14 held constant, the scaled value was then shown to be a linear function of the backup plate
 15 thickness h_2 . Without a doubt, his results show that scale factors can and do exist within the
 16 perforation mechanics of ceramic-faced bicomponent armors, but such ad-hoc scaling tends to be
 17 untenable with large datasets. On the other hand, the data lines up extremely well along a single
 18 cubic curve despite the multitude of material and geometric variables within the complex impact
 19 perforation dynamics.
 20
 21

22 *Dataset W2: Conical-nosed projectiles impacting B₄C/Al6061-T6 targets*
 23

24 In the fourth and fifth progress reports, Wilkins reported ballistic limit velocities for frontal B₄C
 25 ceramic with Al6061 aluminum alloy backing [6,7]. Projectiles had nominal diameters $D = 6.35$,
 26 7.62, and 11.4 mm, and respective masses $m_p = 4.70$, 8.32, and 27.6 g. Projectile velocities
 27 ranged between 500–1000 m/s. Frontal B₄C plate thicknesses h_1 ranged between 5–10 mm. Rear

1 backing plate material was aluminum alloy 6061-T6, with density $\rho_2 = 2765 \text{ kg/m}^3$ and plate
 2 thicknesses h_2 between 5–10 mm. Frontal and backing plates were bonded using Scotchcast 221
 3 polyurethane adhesive.

7 **Figure 2:** Conical-nosed steel projectiles of different calibers impacting B₄C/Al6061-T6 targets.
 8 Cubic fit coefficient $C = 14.91$, $R^2 = 0.947$.

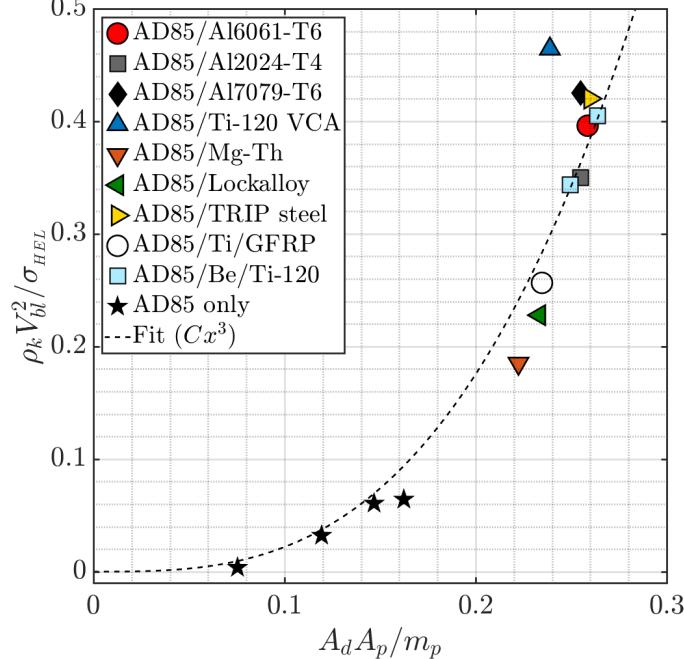

10 Wilkins noted that the B₄C/Al6061 target system performed significantly better against the
 11 smallest 6.35-mm diameter conical-nosed projectiles, and his proposed ad-hoc scale factor was
 12 not able to account for this underprediction in V_{bl} (-14%). The dependence of the ballistic
 13 performance of B₄C on its fabrication process was given as the primary reason for such a
 14 discrepancy. Due to the different grain sizes and porosities within the B₄C ceramic resulting
 15 from these fabrication differences, a significantly increased strength and ballistic performance
 16 was observed. Likewise, the HEL differences were not accounted for in this case since a singular
 17 value of 15.0 GPa was used, thereby leading to the same underprediction in Figure 2.

18 This discrepancy due to incorrect material properties aside, we note that the areal density ratio
 19 parameter can effectively collapse the data regardless of the projectile caliber or target thickness
 20 regime. In both datasets W1 and W2, the collapsed dimensionless data fall along a cubic curve,
 21 and for both datasets, the backing plate was made of 6061-T6 aluminum alloy. We show the
 22 same cubic relation for a different backing material in dataset W3.

23
 24
 25
 26
 27 *Dataset W3: Conical-nosed projectiles impacting AD85/glass fiber reinforced polymer targets*

28

Projectiles in this dataset had nominal diameters $D = 7.62$ mm, and mass $m_p = 8.32$ g. Projectile velocities ranged between 200–1000 m/s. Alumina AD85 (manufactured by Coors) plate thicknesses h_1 ranged between 3–9 mm. Rear backing plate material was REPCO woven roving glass fiber reinforced polymer (GFRP), with density $\rho_2 = 1750$ kg/m³ and laminate total thicknesses h_2 between 3–12 mm. Frontal and backing plates were bonded using Scotchcast 221 polyurethane adhesive. Ballistic perforation results for monolithic AD85 target plates are also included for reference in Figure 3.


Figure 3: 7.62-mm diameter conical-nosed steel projectiles impacting AD85/GFRP targets. Fit parameters $C = 22.92$, $R^2 = 0.995$.

This cubic relation between dimensionless parameters appears generalizable to various combinations of ceramic-faced bicomponent systems, suggesting that the V_{bl} is more strongly dependent on the ceramic plate's material and mechanical properties within the regime of experimental parameters examined. This is further explored for several a broad range of backing materials with an AD85 alumina ceramic strike face.

Dataset W4: Conical-nosed projectiles impacting AD85 backed by various materials

In the third progress report, Wilkins et al. presented a dataset for 85% purity alumina (AD85, manufactured by Coors) backed with a broad variety of materials [5]. As with previous datasets, the projectiles had a nominal diameter $D = 7.62$ mm, and projectile mass $m_p = 8.32$ g. Projectile velocities ranged between 600–950 m/s. All alumina AD85 frontal plates were of thicknesses $h_1 = 8.64$ mm. Certain backing plates comprised two separate materials – these are considered in this study as one monolithic backing plate. Frontal and backing plates were bonded using

1 Scotchcast 221 polyurethane adhesive. For reference, the ballistic perforation results for
 2 monolithic AD85 target plates are also included (Figure 4).

4 **Figure 4:** 7.62-mm diameter conical-nosed steel projectiles impacting AD85 alumina backed
 5 with different materials (Dataset W4). Fit parameters $C = 22.09$, $R^2 = 0.993$.

6 The most significant outlier is the AD85/Ti-120 VCA (Ti-13V-11Cr-3Al) bicomponent plate,
 7 which appears to far outperform all other ceramic-front combinations for its weight. This
 8 suggests some overall synergistic structural effects due to target construction that were not
 9 explicitly examined, although the data is still well-predicted by the cubic curve for a majority of
 10 the collated data points.

11 *Dataset W5: Conical-nosed projectiles impacting various ceramics backed by Al6061-T6*

12 In the fourth progress report, Wilkins et al. presented a dataset for various ceramics backed by
 13 Al6061-T6 plates [6]. As with previous datasets, the projectiles had a nominal diameter $D = 7.62$
 14 mm, and projectile mass $m_p = 8.32$ g. Projectile velocities ranged between 600–950 m/s. All
 15 Al6061-T6 backing plates were of thicknesses $h_2 = 6.35$ mm. Frontal and backing plates were
 16 bonded using Scotchcast 221 polyurethane adhesive.

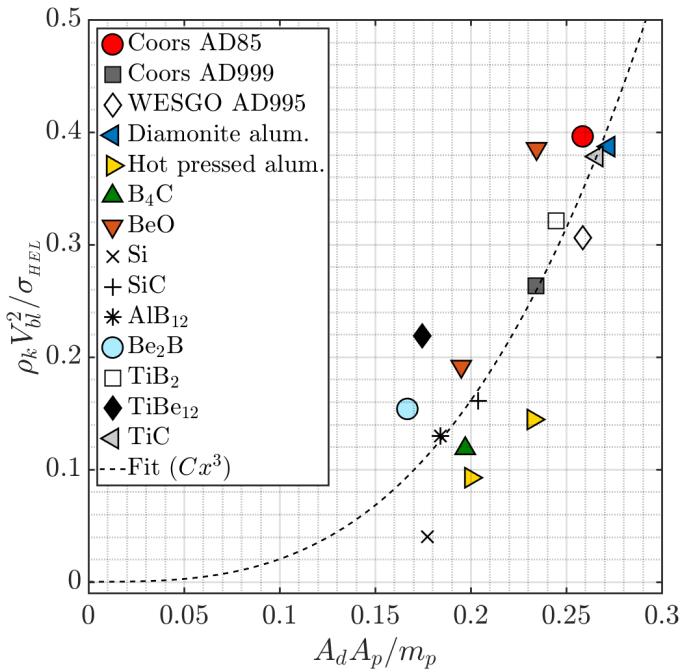
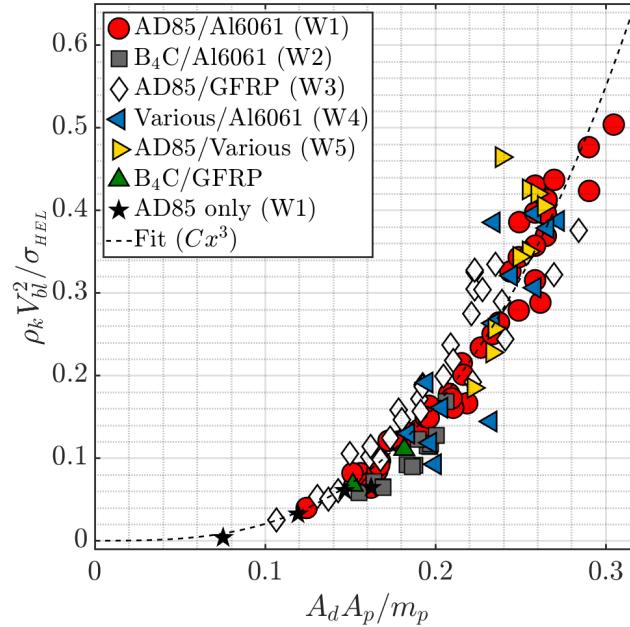



Figure 5: 7.62-mm diameter conical-nosed steel projectiles impacting various ceramic/Al6061-T6 targets. Fit parameters $C = 19.57$, $R^2 = 0.766$.

Collapsing the data (Figure 5) offers some valuable insight into the relative performance of a certain target system, i.e., how well a ceramic-faced armor target *should* theoretically perform with a certain Hugoniot elastic limit. This may be exemplified with the two data points for Carborundum hot pressed alumina/Al6061-T6 target plates with $h_1 = 4.83$ and 6.35 mm, $h_2 = 6.35$ mm, and ballistic limits of 630 and 775 m/s respectively. For a frontal ceramic HEL of 14.0 GPa, the predicted V_{bl} velocities should be 838 and 1040 m/s respectively. This likely indicates either possible underperforming or a slight difference in failure mode due to processing parameters. On the other hand, the titanium compounds TiB_2 and $TiBe_{12}$ appear to outperform similar ceramic-faced bicomponent constructions for the same weight.

Ensemble data collated from Wilkins' experiments

Despite the complex impact mechanics of ceramic-faced bicomponent target systems, Datasets W1 to W5 have shown that it may be possible to collapse their ballistic performance along a singular cubic curve for first-order predictions. Indeed, by collating ballistic data across multiple combinations of frontal ceramic and backing materials, for different target plate thicknesses, relative ceramic thicknesses, and different conical projectile calibers, the data collapses neatly along a singular cubic curve (Figure 6). Other than datasets W1 to W5, additional data points for $B_4C/GFRP$ have also been included. By using the Hugoniot elastic limit as the characteristic strength term for all ceramics considered in this study, the ballistic performance can be reasonably predicted using a perfectly cubic curve.

4 **Figure 6:** Ensemble of Wilkins ballistic impact data collapsed using dimensionless parameters
5 along a cubic curve. Cubic fit coefficient $C = 20.32$, $R^2 = 0.900$.

8 *Dataset M: Conical-nosed projectiles impacting AD85/various backing materials*

9
10 The ballistic data reported by Mayseless et al were collapsed in the same fashion as the Wilkins
11 data (Figure 7). Since no database of experimental values were available for this study, plate
12 thicknesses and corresponding ballistic limit velocities were digitized from scanned plots in Ref.
13 [9] and may result in slight deviations from their actual value. Compared to Wilkins, Mayseless
14 used much larger conical-nosed projectiles of diameter $D = 12.7$ mm and mass $m_p = 30$ g [9].
15 The projectiles had an apex cone angle of 60° and a slightly higher Rockwell hardness of $60 R_c$.
16 Projectile velocities ranged between 100–700 m/s. Frontal AD85 alumina plates have an
17 assumed HEL = 6.0 GPa and density $\rho_1 = 3410$ kg/m³ [31], which were values previously
18 reported by Rosenberg. The alumina AD85 plate thickness h_1 was held constant at 6.35 mm.
19 Several materials were used for backing plates: resin-impregnated Kevlar 29 ($\rho_2 = 1200$ kg/m³),
20 aluminum alloy 6061-T6 ($\rho_2 = 2700$ kg/m³), aluminum alloy 2024-O ($\rho_2 = 2780$ kg/m³), mild
21 steel alloy SAE 1020 ($\rho_2 = 7870$ kg/m³), and a hardened steel alloy SAE 4130 ($\rho_2 = 7850$ kg/m³).
22 Backing plate thicknesses h_2 ranged from 3–12.7 mm. Frontal and backing plates were bonded
23 using an unspecified adhesive.
24

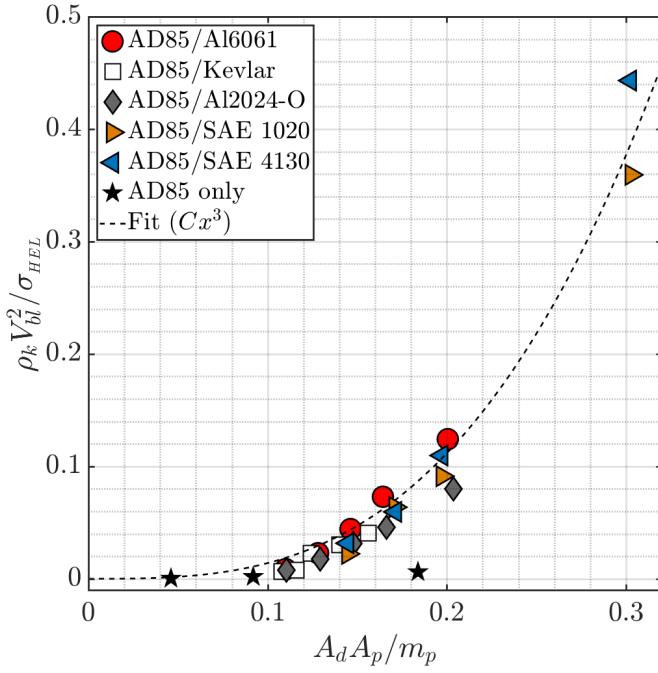


Figure 7: 12.7-mm diameter conical-nosed steel projectiles impacting AD85 alumina backed with different materials. Cubic fit parameters $C = 13.95$, $R^2 = 0.969$.

Due to the large mass of the projectile used by Mayseless et al, the collapsed ballistic data generally populates the lower regimes of mass ratios. The ceramic-faced bicomponent data still strictly follows a cubic trend regardless of backing material. The clear underperforming outlier is a 12.7-mm thick monolithic AD85 ceramic target, with an extremely low V_{bl} of 103 m/s for its areal mass. The results are qualitatively similar to Figure 6, but the Mayseless curve ($C = 13.95$) lies slightly below the Wilkins curve ($C = 20.32$). While Mayseless generally attributed this to the larger mass and the slightly higher hardness of their impinging projectile, we briefly discuss the influence of possible experimental parameters that might affect the prediction curve.

The first and biggest dissimilarity between the Wilkins and Mayseless datasets lies with the projectile physical dimensions, specifically the calibers and their corresponding masses used in each study. Mayseless described a rudimentary form of mass scaling between their data and Wilkins' data. This suggests that the areal mass ratio parameter Π_1 should sufficiently capture these mass differences between the two studies, as it did with projectiles of different calibers in datasets W1 and W2 (Figures 1 and 2). The next dissimilarity in physical geometry, though not discussed by Mayseless, is the projectile apex cone angle. Similarly, the projectile apex cone angle is implicitly included in the parameter Π_1 (Equation 1). Moreover, the slight difference in cone angle (55° vs. 60°) is unlikely to have such a significant effect.

The next consideration is the difference in projectile hardness (54–56 vs. 60 R_c for Wilkins and Mayseless, respectively). As Wilkins briefly discussed in the final report [7], projectile strength effects dominate in impact scenarios where the projectile is much stronger than the target. Conversely, when the target material is stronger than the impinging projectile, the perforation

1 process is mostly governed by the projectile mass and striking velocity. In the case of all of
2 Wilkins' datasets W1 to W5, the steel projectile is considerably weaker than the strike face
3 ceramics tested, which explains why the ballistic performance can be collapsed using only the
4 projectile mass and velocity. Although the effects of projectile strength were qualitatively
5 discussed in terms of their respective ballistic limit velocities, Wilkins did not give a quantitative
6 comparison of projectile material strengths relative to the target ceramic material. Relating the
7 projectile hardness to the ballistic performance necessitates a discussion of the projectile failure
8 mode, and such an effort is qualitative at best without strength metrics. Regardless, even though
9 such relative strength effects should be further studied and quantified, it is somewhat unlikely in
10 this case that such a minute difference in projectile hardness would constitute a significant
11 change in ballistic performance.

12 An oft-overlooked factor when comparing ballistic data across different ceramic plate
13 perforation studies is the difference in target mounting methods. In Wilkins' experiments, the
14 target plates of dimensions 152 mm \times 152 mm were clamped at the corners; in Mayseless'
15 experiments, circular alumina plates of diameter 130 mm were fixed to backing plates of
16 diameter 140 mm. The bicomponent target plates were clamped around the entire circumference
17 with clamping diameter 114 mm. Clearly, in a high velocity impact scenario where mechanical
18 waves (e.g., transverse shear, dilatational, flexural) are propagating at varying timescales from
19 the point of impact, boundary conditions have to play a role in the local and global deformation
20 of the target. The influence of experimental setup on the measured ballistic performance has
21 been well-documented in a prior literature review by Walley [33]. Likely, the difference in the
22 Wilkins and Mayseless datasets are a result of a combination of these individual factors, some
23 more so than others. Nonetheless, within the same study and all other conditions held constant,
24 the data points are collapsed along a cubic curve as well.

27 *Limitations of current datasets*

28 The data examined thus far agree with Wilkins' observations that, for the same backing material
29 the whole target perforation process is mostly governed by the projectile mass and striking
30 velocity when the ceramic material is stronger than the impinging projectile. For such a
31 projectile-target interaction, the collapsed experimental data can be grouped along a single cubic
32 curve as demonstrated when applying the same dimensionless parameters to the Mayseless
33 dataset. The results are generally surprising, considering that the prediction curve was formulated
34 only with rudimentary mass and kinetic energy terms regardless of the relevant material and
35 mechanical properties of the backing. In other words, for the datasets discussed herein, the
36 bicomponent target performance is *mainly* dominated by the ballistic impact response and
37 interaction of the frontal ceramic and the steel projectile, while the rear plate contributes through
38 its areal mass within the regime of experimental parameters examined in this work.

39 Collapsing the experimental ballistic perforation data for a broad range of materials allows us to
40 perform parametric scaling based on the similarities in the entire impact phenomena. In other
41 words, for some sharp projectile impacting some arbitrary bicomponent target plate with a
42 stronger frontal ceramic material than the projectile material, the initiated ballistic impact
43 responses are similar, and the ballistic limit data points will lie on the same cubic curve. In the
44 present discussion, the failure modes of either the ceramic, backing, or projectile have not been
45 explicitly considered. The results from the current work seem to imply that certain strength-
46 dependent mechanics of ballistic perforation can be considered somewhat negligible within the
47

1 regime of examined structural parameters. While these other effects may contribute to the overall
2 ballistic performance, their respective order of magnitude may not be as large as the dependence
3 on the dynamic failure strength of the ceramic.

4
5 Such an assumption clearly will not hold across all projectile/target material pairs, as evidenced
6 by Wilkins' dataset for projectile materials of different strengths impacting AD85/Al6061-T6
7 plates [6]. Additionally, in the case of B₄C/Al6061-T6 and the Mayseless datasets, some sort of
8 difference in ballistic response or component failure modes must be addressed. Likely, the
9 effects of the relative strengths result in a slightly different failure mode and impact response,
10 and manifest themselves in the cubic coefficient C term. More ballistic limit velocity data for
11 different projectile materials would reveal more predictive trends.

12
13
14 **Further discussion**

15
16 In a previous work by Rosenberg & Yeshurun, the ballistic limit velocities for several ceramics
17 (some of which are included in Figure 5) were shown to fall on a single curve that decreases with
18 increasing density [34]. This was attributed to the differences in ceramic thicknesses in order to
19 achieve the same areal densities of the final bicomponent products. For the same ceramic areal
20 density, a less dense ceramic will be thicker and vice versa, and this larger thickness leads to
21 longer dwell times before complete ceramic failure, which consequently results in a better
22 ceramic performance. In the V_{bl} plate perforation test, these interdependent effects are difficult to
23 isolate.

24 To circumvent these problems related to plate perforation tests, a thick-backing technique was
25 developed to isolate the effects of compressive strength during ballistic impact by eliminating
26 two main issues with the V_{bl} test configuration: the influence of the backing material, and the
27 tensile bending stresses on the rear free surface [35]. With this proposed testing configuration
28 (termed the depth of penetration test, or DOP), a standardized method was developed to rank the
29 relative performance of these different ceramics via an ad-hoc dimensionless ballistic efficiency
30 metric

31
32
33
34 (7)
35

36 where P_{ref} is the reference penetration depth of a projectile penetrating a thick monolithic
37 backing block (usually aluminum) at some impact velocity, P_{res} is the residual penetration depth
38 of the block with a ceramic tile front, $\rho_c h_c$ is the areal density of the ceramic tile, and h_{min} is the
39 minimum ceramic thickness for zero residual penetration. This ballistic efficiency metric has
40 proven extremely effective for materials selection in the design of armor systems via an
41 objective, test-independent criterion.

42
43 The DOP test configuration provides an objective measure of the ceramic tile's ballistic
44 efficiency without the influence of any complicating factors. On the other hand, the V_{bl} test
45 provides a direct, quantitative measure of the ballistic performance of a target plate system
46 configuration under deployment against a specific projectile threat. In other words, the ballistic
47 limit V_{bl} measured is a function of all the parameters involved in the construction of the target
48 plate as necessary to defeat a particular high velocity impinging projectile. Since Equation 7 does

1 not explicitly contain a ballistic limit velocity, it can be difficult or near impossible to back out a
2 direct quantitative measure of the target plate performance without *a priori* knowledge of the
3 reference DOP test parameters such as impact velocity and reference penetration depth.
4 Conversely, the performance of a particular plate construction against a specific ballistic threat
5 can be approximated using known material properties via the proposed dimensionless parameters
6 in this work.

7
8 Although Rosenberg's study claimed to have collated Wilkins' experimental data for several
9 ceramics with equal areal density backed by a 6.35-mm thick Al6061 rear plate, we were unable
10 to find the same experimental data points that were used to demonstrate the inverse relation to
11 the frontal ceramic density. We further discuss this in the Appendix. Nonetheless, we used our
12 collated experimental dataset for all ceramics backed with a 6.35-mm thick Al6061 rear plate
13 (Table I). Note that the Spearman correlation coefficient is used here instead of the usual R^2
14 coefficient, since the relations between variables are monotonic, but not necessarily linear.
15 Clearly, the ballistic limit velocity V_{bl} as a standalone metric is only weakly dependent on the
16 ceramic Hugoniot elastic limit strength value. However, if the V_{bl} is normalized with respect to
17 the ceramic areal density to account for the combined effects of the ceramic thickness and
18 density, the HEL becomes a stronger influencing factor in the final performance prediction.

21 **Table I:** Spearman's correlation coefficient ρ values of various factors
22 collated from Wilkins' data.

Variable 1	Variable 2	Spearman's ρ
h_I	V_{bl}	0.90
ρ_I	V_{bl}	-0.02
$A_{d,I}$	V_{bl}	0.47
HEL	V_{bl}	0.11
HEL	V_{bl}/ρ_I	0.67
HEL	$V_{bl}/A_{d,I}$	0.71

24
25 Rosenberg et al. discussed the dependence of η on both the density and strength of the ceramic
26 tile [36], a conclusion that is also highlighted in this current work, albeit in a different form.
27 Specifically, in their work, a comparison was drawn between two alumina ceramics, AD85 and
28 BC90G, and their resultant ballistic efficiency metrics η were related qualitatively to their
29 respective Hugoniot elastic limits. As such, the parametrization efforts detailed herein are
30 complementary to their work. It may even be possible to unify the dimensionless parameters
31 along with the ballistic efficiency metric for rapid design and deployment of ceramic-faced
32 bicomponent systems.

36 Conclusions

37
38 Two dimensionless parameters are shown to collapse the experimental ballistic data for a broad
39 range of material and mechanical properties, target structural parameters, and projectile
40 dimensions along a singular curve. The Hugoniot elastic limit of the ceramic strike face was used
41 as a strength metric for dimensionless parametrization. The results suggest that, for
42 projectile/target pairs exhibiting similar overall ballistic impact response, the complex high-

1 velocity perforation mechanics of such ceramic-faced bicomponent systems can be sufficiently
2 described using the two dimensionless parameters. The first-order approximations provided by
3 the current work will provide a means for rapid deployment of similar light armor systems
4 without necessitating the constituent properties and structural parameters of the target plate,
5 which may otherwise be unavailable. These efforts may further prove useful for future data-
6 driven methods of performance prediction and optimization.

9 **Declaration of Competing Interest**

10 The author declares no known competing financial interests or personal relationships in the
11 publication of this paper.

15 **Acknowledgments**

16 Work was supported through the INL Laboratory Directed Research & Development (LDRD)
17 Program under DOE Idaho Operations Office Contract DE-AC07-05ID14517.

21 **References**

- 23 [1] A.L. Florence, T.J. Ahrens, Interaction of projectiles and composite armor (AMRA CR
24 67-05F), 1967.
- 25 [2] A.L. Florence, Interaction of Projectiles and Composite Armor Part II (AMMRC
26 CR 69-15), 1969.
- 27 [3] M. Wilkins, C. Honodel, D. Sawle, An Approach to the Study of Light Armor
28 (UCRL-50284), Livermore, CA, 1967.
- 29 [4] M.L. Wilkins, Second Progress Report of Light Armor Program (UCRL-50349),
30 1967.
- 31 [5] M.L. Wilkins, Third Progress Report of Light Armor Program (UCRL-50460),
32 Livermore, CA, 1968.
- 33 [6] M.L. Wilkins, C.F. Cline, C.A. Honodel, Fourth progress report of light armor
34 program (UCRL-50694), (1969) 56. doi:10.2172/4173151.
- 35 [7] M.L. Wilkins, R.L. Landingham, C.A. Honodel, Fifth Progress Report of Light
36 Armor Program (UCRL-50980), 1970.
- 37 [8] M.L. Wilkins, Mechanics of penetration and perforation, Int. J. Eng. Sci. 16
38 (1978) 793–807. doi:10.1016/0020-7225(78)90066-6.
- 39 [9] M. Mayseless, W. Goldsmith, S.P. Virostek, S.A. Finnegan, Impact on ceramic
40 targets, J. Appl. Mech. Trans. ASME. 54 (1987) 373–378. doi:10.1115/1.3173022.
- 41 [10] R.L. Woodward, A Basis for Modelling Ceramic Composite Armour Defeat (AR
42 005-713), Ascot Vale, 1989.
- 43 [11] R.L. Woodward, A simple one-dimensional approach to modelling ceramic
44 composite armour defeat, Int. J. Impact Eng. 9 (1990) 455–474.
45 doi:10.1016/0734-743X(90)90035-T.
- 46 [12] P.C. den Reijer, Impact on ceramic faced armour (Doctoral dissertation), Delft
47 University of Technology, 1991.
- 48 [13] J.G. Hetherington, B.P. Rajagopalan, An investigation into the energy absorbed

1 during ballistic perforation of composite armours, *Int. J. Impact Eng.* 11 (1991) 33–40.
2 doi:10.1016/0734-743X(91)90029-F.

3 [14] J.G. Hetherington, The optimization of two component composite armours, *Int. J.*
4 *Impact Eng.* 12 (1992) 409–414. doi:10.1016/0734-743X(92)90145-J.

5 [15] B. Wang, G. Lu, On the optimisation of two-component plates against ballistic
6 impact, *J. Mater. Process. Technol.* 57 (1996) 141–145.
7 doi:10.1016/0924-0136(95)02050-0.

8 [16] R. Zaera, V. Sánchez-Gálvez, Analytical modelling of normal and oblique
9 ballistic impact on ceramic/metal lightweight armours, *Int. J. Impact Eng.* 21 (1998)
10 133–148. doi:10.1016/S0734-743X(97)00035-3.

11 [17] I.S. Chocron Benloulo, V. Sánchez-Gálvez, A new analytical model to simulate
12 impact onto ceramic/composite armors, *Int. J. Impact Eng.* 21 (1998) 461–471.
13 doi:10.1016/S0734-743X(98)00006-2.

14 [18] G. Ben-Dor, A. Dubinsky, T. Elperin, Optimization of two-component composite
15 armor against ballistic impact, *Compos. Struct.* 69 (2005) 89–94.
16 doi:10.1016/j.compstruct.2004.05.014.

17 [19] G. Ben-Dor, A. Dubinsky, T. Elperin, Improved Florence model and optimization
18 of two-component armor against single impact or two impacts, *Compos. Struct.* 88 (2009)
19 158–165. doi:10.1016/j.compstruct.2008.02.015.

20 [20] R. Chi, A. Serjouei, I. Sridhar, G.E.B. Tan, Ballistic impact on bi-layer
21 alumina/aluminium armor: A semi-analytical approach, *Int. J. Impact Eng.* 52 (2013)
22 37–46. doi:10.1016/j.ijimpeng.2012.10.001.

23 [21] A. Serjouei, R. Chi, I. Sridhar, G.E.B. Tan, Empirical Ballistic Limit Velocity
24 Model for Bi-Layer Ceramic–Metal Armor, *Int. J. Prot. Struct.* 6 (2015) 509–527.
25 doi:10.1260/2041-4196.6.3.509.

26 [22] A. Serjouei, R. Chi, Z. Zhang, I. Sridhar, Experimental validation of BLV model
27 on bi-layer ceramic-metal armor, *Int. J. Impact Eng.* 77 (2015) 30–41.
28 doi:10.1016/j.ijimpeng.2014.11.001.

29 [23] R.T. Tang, H.M. Wen, Predicting the perforation of ceramic-faced light armors
30 subjected to projectile impact, *Int. J. Impact Eng.* 102 (2017) 55–61.
31 doi:10.1016/j.ijimpeng.2016.11.008.

32 [24] M. Shaker, H. Abou-Elela, A. Riad, A. Fayed, Numerical investigation of a high-
33 speed projectile penetration into bi-layered lightweight targets, in: 15th Int. Conf. Appl.
34 Mech. Mech. Eng., Military Technical College Kobry El-Kobbah, Cairo, Egypt, 2021.

35 [25] P.M. Cunniff, Dimensionless parameters for optimization of textile-based body
36 armor systems, in: Proc. 18th Int. Symp. Ballist., 1999: pp. 1303–1310.

37 [26] Z. Guo, W. Chen, First-Order Approximations of Dynamic Material Strengths for
38 the Ballistic Perforation of Aluminum Target Plates, *J. Dyn. Behav. Mater.* (2021).
39 doi:10.1007/s40870-021-00304-9.

40 [27] Z. Guo, W. Chen, Dimensionless parameters for the perforation of ductile plates
41 by armor-piercing rounds, *Int. J. Impact Eng.* 156 (2021) 103952.
42 doi:10.1016/j.ijimpeng.2021.103952.

43 [28] A. Tate, A theory for the deceleration of long rods after impact, *J. Mech. Phys.*
44 *Solids.* 15 (1967).

45 [29] Z. Rosenberg, On the relation between the Hugoniot elastic limit and the yield
46 strength of brittle materials, *J. Appl. Phys.* 74 (1993) 752–753. doi:10.1063/1.355247.

47 [30] S. Bavdekar, G. Parsard, G. Subhash, S. Satapathy, An improved dynamic
48 expanding cavity model for high-pressure and high-strain rate response of ceramics, *Int. J.*

1 Solids Struct. 125 (2017) 77–88. doi:10.1016/j.ijsolstr.2017.07.014.

2 [31] T.J. Holmquist, A.M. Rajendran, D.W. Templeton, K.D. Bishnoi, A Ceramic

3 Armor Material Database (TR 13754), 1999.

4 [32] M. Lee, Y.H. Yoo, Analysis of ceramic/metal armour systems, Int. J. Impact Eng.

5 25 (2001) 819–829. doi:10.1016/S0734-743X(01)00025-2.

6 [33] S.M. Walley, Historical review of high strain rate and shock properties of

7 ceramics relevant to their application in armour, Adv. Appl. Ceram. 109 (2010) 446–466.

8 doi:10.1179/174367609X422180.

9 [34] Z. Rozenberg, Y. Yeshurun, The relation between ballistic efficiency and

10 compressive strength of ceramic tiles, Int. J. Impact Eng. 7 (1988) 357–362.

11 doi:10.1016/0734-743X(88)90035-8.

12 [35] Z. Rosenberg, S. Bless, Y. Yeshurun, K. Okajima, A new definition of ballistic

13 efficiency of brittle materials based on the use of thick-walled backing plates, in: Proc. Int.

14 Conf. Impact Load. Dyn. Behav. Mater., Bremen, 1987: pp. 491–496.

15 [36] Zvi, Rosenberg, Erez, Dekel, Terminal Ballistics, in: Termin. Ballist., Springer

16 Berlin Heidelberg, 2012: p. 336. doi:10.1007/978-3-642-25305-8.

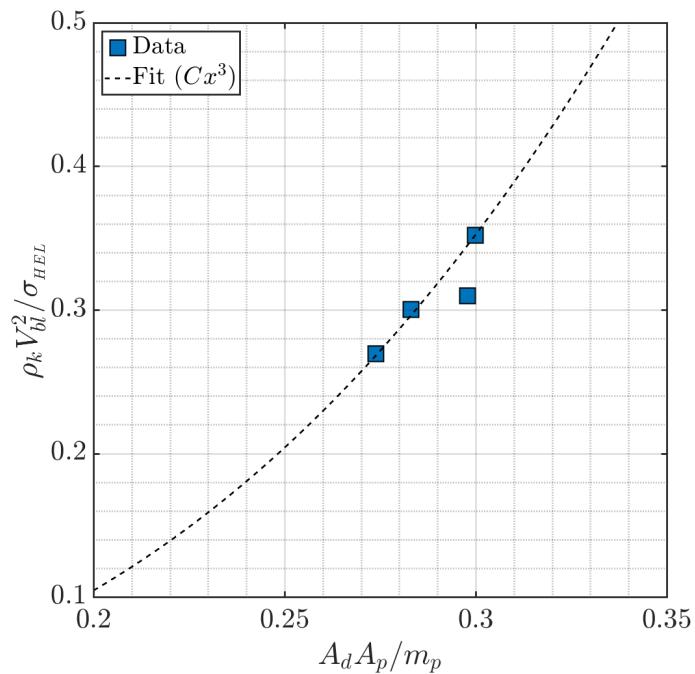
17 [37] B. Klein, N. Frage, E. Zaretsky, M.P. Dariel, Dynamic Response of Titanium

18 Carbide-Steel, Ceramic-Metal Composites, in: AIP Conf. Proc., AIP, 2002: pp.

19 1119–1122. doi:10.1063/1.1483734.

1 **Appendix A: Additional datasets**

2


3 *Conical-nosed projectiles impacting alumina/Al5083 targets (Lee & Yoo)*

4

5 Lee & Yoo [32] tested a relatively small dataset for alumina/5083 aluminum alloy plates,
 6 focusing on the effects of the alumina/aluminum thickness ratio on the ballistic limit velocity of
 7 the overall system. Material data and dimensions were largely unreported, and so most of the
 8 parameters reported in this section were either inferred or calculated using reported values. Steel
 9 projectiles had diameters $D = 12.5$ mm and mass $m_p = 40.7$ g. The nose shape was not specified,
 10 but presumed to be sharp, conical-nosed projectiles, as stated in a subsequent study by Tang &
 11 Wen [23].

12

13 The frontal ceramic material was alumina, with density $\rho_1 = 3380$ kg/m³. The density indicates
 14 that the alumina was likely 85% purity, and so the Hugoniot elastic limit was assumed to be 6.0
 15 GPa (as per Wilkins). Since all the target plates would be scaled by the same strength value, the
 16 actual σ_{HEL} value in this case is not especially critical. Alumina plate thicknesses were much
 17 thicker than the other studies, with h_1 ranging between 9–25 mm. Aluminum alloy 5083 (temper
 18 not specified) was used as backing material, with plate thicknesses h_2 between 6–25 mm. The
 19 actual plate dimensions were not reported by Lee & Yoo, but approximate plate thicknesses were
 20 solved for using a system of simultaneous equations with constant total areal density as a
 21 constraint. Based on calculations, the total areal density of the target system ranges between
 22 90–100 kg/m², with deviations likely resulting from under-reporting of material data. The
 23 collapsed data points fall broadly along a cubic curve (Figure A2).

25

26

27 **Figure A2:** 12.5-mm conical-nosed steel projectiles impacting AD85/Al5083 targets. Fit
 28 parameters $C = 13.05$, $R^2 = 0.944$.

29

1 **Appendix B: Raw ballistic limit data**

2

3

4

Table B1: Raw ballistic data for AD85/Al6061-T6 (Dataset W1).

D_p [mm]	m_p [g]	Front	σ_{HEL} [GPa]	ρ_1 [kg/m ³]	h_1 [mm]	Rear	ρ_2 [kg/m ³]	h_2 [mm]	V_{bl} [m/s]
7.62	8.32	AD85	6.0	3430	3.18	Al6061-T6	2765	6.35	405
7.62	8.32	AD85	6.0	3430	4.06	Al6061-T6	2765	3.18	275
7.62	8.32	AD85	6.0	3430	4.06	Al6061-T6	2765	4.95	400
7.62	8.32	AD85	6.0	3430	4.06	Al6061-T6	2765	6.35	490
7.62	8.32	AD85	6.0	3430	4.06	Al6061-T6	2765	7.16	510
7.62	8.32	AD85	6.0	3430	4.06	Al6061-T6	2765	7.57	520
7.62	8.32	AD85	6.0	3430	4.06	Al6061-T6	2765	9.40	580
7.62	8.32	AD85	6.0	3430	5.33	Al6061-T6	2765	6.35	565
7.62	8.32	AD85	6.0	3430	6.35	Al6061-T6	2765	3.18	425
7.62	8.32	AD85	6.0	3430	6.35	Al6061-T6	2765	4.95	535
7.62	8.32	AD85	6.0	3430	6.35	Al6061-T6	2765	6.35	645
7.62	8.32	AD85	6.0	3430	6.35	Al6061-T6	2765	7.09	675
7.62	8.32	AD85	6.0	3430	6.35	Al6061-T6	2765	9.40	755
7.62	8.32	AD85	6.0	3430	7.87	Al6061-T6	2765	3.18	525
7.62	8.32	AD85	6.0	3430	7.87	Al6061-T6	2765	4.52	615
7.62	8.32	AD85	6.0	3430	7.87	Al6061-T6	2765	5.66	690
7.62	8.32	AD85	6.0	3430	7.87	Al6061-T6	2765	6.35	790
7.62	8.32	AD85	6.0	3430	7.87	Al6061-T6	2765	7.72	845
7.62	8.32	AD85	6.0	3430	7.87	Al6061-T6	2765	9.40	910
7.62	8.32	AD85	6.0	3430	8.13	Al6061-T6	2765	6.35	810
7.62	8.32	AD85	6.0	3430	8.13	Al6061-T6	2765	6.35	730
7.62	8.32	AD85	6.0	3430	8.64	Al6061-T6	2765	3.18	545
7.62	8.32	AD85	6.0	3430	8.64	Al6061-T6	2765	4.95	705
7.62	8.32	AD85	6.0	3430	8.64	Al6061-T6	2765	5.74	855
7.62	8.32	AD85	6.0	3430	8.64	Al6061-T6	2765	6.35	870
7.62	8.32	AD85	6.0	3430	8.64	Al6061-T6	2765	6.35	825
7.62	8.32	AD85	6.0	3430	8.64	Al6061-T6	2765	6.35	905
7.62	8.32	AD85	6.0	3430	8.64	Al6061-T6	2765	6.35	775
7.62	8.32	AD85	6.0	3430	8.64	Al6061-T6	2765	7.09	915
7.62	8.32	AD85	6.0	3430	8.64	Al6061-T6	2765	8.43	960
7.62	8.32	AD85	6.0	3430	8.64	Al6061-T6	2765	9.40	990
6.35	4.70	AD85	6.0	3430	7.19	Al6061-T6	2765	5.33	887
7.62	8.12	AD85	6.0	3430	8.64	Al6061-T6	2765	6.35	869
11.43	27.58	AD85	6.0	3430	8.64	Al6061-T6	2765	9.53	588
7.62	8.12	AD85	6.0	3430	5.77	Al6061-T6	2765	6.35	579
11.43	27.58	AD85	6.0	3430	6.35	Al6061-T6	2765	9.53	488
7.62	8.12	AD85	6.0	3430	4.24	Al6061-T6	2765	6.35	488
11.43	27.58	AD85	6.0	3430	5.33	Al6061-T6	2765	9.53	412
7.62	8.12	AD85	6.0	3430	3.56	Al6061-T6	2765	6.35	427
7.62	8.32	AD85	6.0	3430	4.01	-	-	-	80
7.62	8.32	AD85	6.0	3430	6.35	-	-	-	237
7.62	8.32	AD85	6.0	3430	7.81	-	-	-	326
7.62	8.32	AD85	6.0	3430	8.64	-	-	-	335

Table B2: Raw ballistic data for B₄C/Al6061-T6 (Dataset W2).

D_p	m_p	Front	σ_{HEL}	ρ_1	h_1	Rear	ρ_2	h_2	V_{bl}
-------	-------	-------	----------------	----------	-------	------	----------	-------	----------

[mm]	[g]		[GPa]	[kg/m ³]	[mm]		[kg/m ³]	[mm]	[m/s]
7.62	8.32	B ₄ C	15.0	2500	3.18	Al6061-T6	2765	6.35	405
7.62	8.32	B ₄ C	15.0	2500	4.06	Al6061-T6	2765	3.18	275
7.62	8.32	B ₄ C	15.0	2500	4.06	Al6061-T6	2765	4.95	400
7.62	8.32	B ₄ C	15.0	2500	4.06	Al6061-T6	2765	6.35	490
7.62	8.32	B ₄ C	15.0	2500	4.06	Al6061-T6	2765	7.16	510
7.62	8.32	B ₄ C	15.0	2500	4.06	Al6061-T6	2765	7.57	520
7.62	8.32	B ₄ C	15.0	2500	4.06	Al6061-T6	2765	9.40	580
7.62	8.32	B ₄ C	15.0	2500	5.33	Al6061-T6	2765	6.35	565
7.62	8.32	B ₄ C	15.0	2500	6.35	Al6061-T6	2765	3.18	425
7.62	8.32	B ₄ C	15.0	2500	6.35	Al6061-T6	2765	4.95	535
7.62	8.32	B ₄ C	15.0	2500	6.35	Al6061-T6	2765	6.35	645
7.62	8.32	B ₄ C	15.0	2500	6.35	Al6061-T6	2765	7.09	675
7.62	8.32	B ₄ C	15.0	2500	6.35	Al6061-T6	2765	9.40	755
7.62	8.32	B ₄ C	15.0	2500	7.87	Al6061-T6	2765	3.18	525

1
2

Table B3: Raw ballistic data for AD85/Glass fiber reinforced polymer (Dataset W3).

<i>D_p</i> [mm]	<i>m_p</i> [g]	Front	σ_{HEL} [GPa]	ρ_1 [kg/m ³]	<i>h₁</i> [mm]	Rear	ρ_2 [kg/m ³]	<i>h₂</i> [mm]	<i>V_{bl}</i> [m/s]
7.62	8.32	AD85	6.0	3430	4.06	GFRP	1750	3.18	235
7.62	8.32	AD85	6.0	3430	5.33	GFRP	1750	3.18	338
7.62	8.32	AD85	6.0	3430	4.06	GFRP	1750	6.35	354
7.62	8.32	AD85	6.0	3430	5.33	GFRP	1750	4.45	369
7.62	8.32	AD85	6.0	3430	6.35	GFRP	1750	3.18	469
7.62	8.32	AD85	6.0	3430	5.33	GFRP	1750	6.35	491
7.62	8.32	AD85	6.0	3430	6.35	GFRP	1750	4.45	500
7.62	8.32	AD85	6.0	3430	4.06	GFRP	1750	9.53	512
7.62	8.32	AD85	6.0	3430	5.33	GFRP	1750	7.62	552
7.62	8.32	AD85	6.0	3430	7.87	GFRP	1750	3.18	567
7.62	8.32	AD85	6.0	3430	6.35	GFRP	1750	6.35	582
7.62	8.32	AD85	6.0	3430	7.87	GFRP	1750	4.45	604
7.62	8.32	AD85	6.0	3430	5.33	GFRP	1750	9.53	631
7.62	8.32	AD85	6.0	3430	6.35	GFRP	1750	7.62	671
7.62	8.32	AD85	6.0	3430	8.64	GFRP	1750	3.18	613
7.62	8.32	AD85	6.0	3430	8.64	GFRP	1750	4.45	646
7.62	8.32	AD85	6.0	3430	7.87	GFRP	1750	6.35	728
7.62	8.32	AD85	6.0	3430	6.35	GFRP	1750	9.53	735
7.62	8.32	AD85	6.0	3430	7.87	GFRP	1750	7.62	796
7.62	8.32	AD85	6.0	3430	5.33	GFRP	1750	12.70	716
7.62	8.32	AD85	6.0	3430	8.64	GFRP	1750	6.35	848
7.62	8.32	AD85	6.0	3430	8.64	GFRP	1750	6.35	820
7.62	8.32	AD85	6.0	3430	8.64	GFRP	1750	6.35	850
7.62	8.32	AD85	6.0	3430	8.64	GFRP	1750	6.83	823
7.62	8.32	AD85	6.0	3430	8.64	GFRP	1750	7.62	872
7.62	8.32	AD85	6.0	3430	7.87	GFRP	1750	9.53	832
7.62	8.32	AD85	6.0	3430	6.35	GFRP	1750	12.70	796
7.62	8.32	AD85	6.0	3430	8.64	GFRP	1750	9.53	905
7.62	8.32	AD85	6.0	3430	7.87	GFRP	1750	12.70	899
7.62	8.32	AD85	6.0	3430	8.64	GFRP	1750	12.70	963

Table B4: Raw ballistic data for AD85/various materials (Dataset W4).

3
4

<i>D_p</i> [mm]	<i>m_p</i> [g]	Front	σ_{HEL} [GPa]	ρ_1 [kg/m ³]	<i>h₁</i> [mm]	Rear	ρ_2 [kg/m ³]	<i>h₂</i> [mm]	<i>V_{bl}</i> [m/s]
------------------------------	-----------------------------	-------	-------------------------	----------------------------------	------------------------------	------	----------------------------------	------------------------------	--------------------------------

7.62	8.32	AD85	6.0	3430	8.64	6061-T6 aluminum alloy	2700	6.35	869
7.62	8.32	AD85	6.0	3430	8.64	2024-T4 aluminum alloy	2655	6.35	823
7.62	8.32	AD85	6.0	3430	8.64	7079-T6 aluminum alloy	2655	6.35	907
7.62	8.32	AD85	6.0	3430	8.64	Ti-120 VCA	4396	3.18	869
7.62	8.32	AD85	6.0	3430	8.64	Mg-Th alloy	1725	6.35	640
7.62	8.32	AD85	6.0	3430	8.64	Lockalloy	2040	6.35	694
7.62	8.32	AD85	6.0	3430	8.64	TRIP steel	7768	2.29	762
7.62	8.32	AD85	6.0	3430	8.64	1.57-mm Ti-120 VCA/3.18-mm GFRP	2779	4.75	694
7.62	8.32	AD85	6.0	3430	8.64	6.35-mm Be/1.57-mm Ti-120 VCA	2332	7.92	915
7.62	8.32	AD85	6.0	3430	7.87	6.35-mm Be/1.57-mm Ti-120 VCA ^a	2332	7.92	846

^a Frontal AD85 thickness for this test was 7.87 mm

Table B5: Raw ballistic data for various ceramics/Al6061-T6 (Dataset W5).

D_p [mm]	m_p [g]	Front	σ_{HEL} [GPa]	ρ_1 [kg/m ³]	h_1 [mm]	Rear	ρ_2 [kg/m ³]	h_2 [mm]	V_{bl} [m/s]
7.62	8.32	B ₄ C (Mat. #202)	15.0	2500	7.37	Al6061-T6	2765	6.35	823
7.62	8.32	BeO	8.50	2840	6.35	Al6061-T6	2765	6.35	762
7.62	8.32	Coors AD85 alumina (Mat. #602)	6.00	3430	8.64	Al6061-T6	2765	6.35	869
7.62	8.32	Coors AD999 alumina (Mat. #705)	8.40 ^a	3960	6.35	Al6061-T6	2765	6.35	811
7.62	8.32	WESGO 995 alumina (Mat. #704)	8.40	3850	7.70	Al6061-T6	2765	6.35	875
7.62	8.32	Diamonite alumina	8.00	3720	8.64	Al6061-T6	2765	6.35	966
7.62	8.32	Carborundum h.p. alum. (Mat. #703)	14.0	3920	6.35	Al6061-T6	2765	6.35	777
7.62	8.32	Si	8.50	2330	6.35	Al6061-T6	2765	6.35	366
7.62	8.32	SiC (Mat. #105)	8.00	3090	6.35	Al6061-T6	2765	6.35	663
7.62	8.32	AlB ₁₂	9.60	2530	6.35	Al6061-T6	2765	6.35	686
7.62	8.32	Be ₂ B	6.70	2030	6.35	Al6061-T6	2765	6.35	655
7.62	8.32	TiB ₂ (Mat. #302)	5.40	4460	5.99	Al6061-T6	2765	6.35	692
7.62	8.32	TiBe ₁₂	5.40	2250	6.35	Al6061-T6	2765	6.35	686
7.62	8.32	Pure TiC	5.87 ^b	4880	6.35	Al6061-T6	2765	6.35	762

^a assumed to be same as WESGO 995 alumina

^b values obtained from Klein et al. [37]

Table B6: Raw ballistic data for AD85/various materials (Dataset M).

D_p [mm]	m_p [g]	Front	σ_{HEL} [GPa]	ρ_1 [kg/m ³]	h_1 [mm]	Rear	ρ_2 [kg/m ³]	h_2 [mm]	V_{bl} [m/s]
12.7	30.0	AD85	6.0	3410	6.35	Kevlar	1200	3.18	116
12.7	30.0	AD85	6.0	3410	6.35	Kevlar	1200	4.75	132
12.7	30.0	AD85	6.0	3410	6.35	Kevlar	1200	6.35	232
12.7	30.0	AD85	6.0	3410	6.35	Kevlar	1200	9.53	281
12.7	30.0	AD85	6.0	3410	6.35	Kevlar	1200	12.70	338
12.7	30.0	AD85	6.0	3410	6.35	Al-2024-O	2780	1.59	113
12.7	30.0	AD85	6.0	3410	6.35	Al-2024-O	2780	3.18	172
12.7	30.0	AD85	6.0	3410	6.35	Al-2024-O	2780	4.75	235
12.7	30.0	AD85	6.0	3410	6.35	Al-2024-O	2780	6.35	285
12.7	30.0	AD85	6.0	3410	6.35	Al-2024-O	2780	9.53	381
12.7	30.0	AD85	6.0	3410	6.35	SAE 1020	7870	1.59	168
12.7	30.0	AD85	6.0	3410	6.35	SAE 1020	7870	2.38	275
12.7	30.0	AD85	6.0	3410	6.35	SAE 1020	7870	3.18	320
12.7	30.0	AD85	6.0	3410	6.35	SAE 1020	7870	6.35	591
12.7	30.0	AD85	6.0	3410	6.35	SAE4130	7850	1.59	201

12.7	30.0	AD85	6.0	3410	6.35	SAE4130	7850	2.40	266
12.7	30.0	AD85	6.0	3410	6.35	SAE4130	7850	3.18	351
12.7	30.0	AD85	6.0	3410	6.35	SAE4130	7850	6.35	657
12.7	30.0	AD85	6.0	3410	3.18	-	-	-	22
12.7	30.0	AD85	6.0	3410	6.35	-	-	-	57
12.7	30.0	AD85	6.0	3410	12.70	-	-	-	103

1
2
3
4

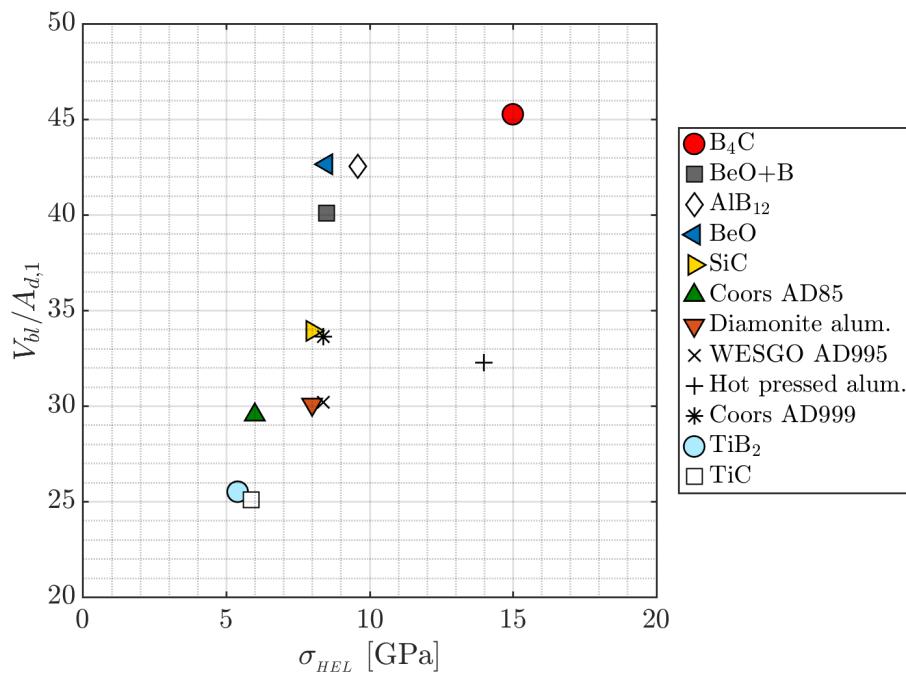
Table B8: Raw ballistic data for alumina/Al5083 targets (Lee & Yoo) [32].

D_p [mm]	m_p [g]	Front	σ_{HEL} [GPa]	ρ_1 [kg/m ³]	h_1 [mm]	Rear	ρ_2 [kg/m ³]	h_2 [mm]	V_{bl} [m/s]
12.5	40.7	AD85	6.0	3380	9.91	Al5083	2260	25.40	751
12.5	40.7	AD85	6.0	3380	15.05	Al5083	2260	19.05	777
12.5	40.7	AD85	6.0	3380	20.96	Al5083	2260	12.70	824
12.5	40.7	AD85	6.0	3380	25.00	Al5083	2260	6.35	758

5
6

1 **Appendix C: Discussion of Rosenberg & Yeshurun's data**

2
 3 In a previous work by Rosenberg & Yeshurun, the ballistic limit velocities for several ceramics
 4 were shown to fall on a single curve that decreases with increasing density [34]. For the same
 5 ceramic areal density, a less dense ceramic will be thicker and vice versa, and this larger
 6 thickness leads to longer dwell times before complete ceramic failure, leading to better ceramic
 7 performance. We were unable to find the same experimental data points used by Rosenberg &
 8 Yeshurun to demonstrate the inverse relation to the frontal ceramic density.


9
 10 Nonetheless, we have digitized the data points in their study and back-calculated the respective
 11 V_{bl} and ceramic thicknesses h_1 , assuming a constant areal density for all ceramic fronts of about
 12 15.88 kg/m^2 (using BeO+B from Table 3 in Wilkins' fourth report [6] as a reference data point).

13
 14 **Table C1:** Digitized and back-calculated data from Rosenberg & Yeshurun [34].

Front	σ_{HEL} [GPa]	ρ_1 [kg/m ³]	h_1 [mm]	Rear	ρ_2 [kg/m ³]	h_2 [mm]	V_{bl} [m/s]	Metric
B ₄ C (Mat. #202)	15.0	2500	6.39	Al6061-T6	2765	6.35	723	1.00
BeO+B	8.50	2840	6.36	Al6061-T6	2765	6.35	724	1.00
AlB ₁₂	9.60	2530	6.31	Al6061-T6	2765	6.35	679	0.94
BeO	8.50	2840	5.59	Al6061-T6	2765	6.35	677	0.94
SiC (Mat. #105)	8.00	3090	5.18	Al6061-T6	2765	6.35	543	0.75
Coors AD85 alumina (Mat. #602)	6.00	3430	4.64	Al6061-T6	2765	6.35	470	0.65
Diamonite alumina	8.00	3720	4.29	Al6061-T6	2765	6.35	480	0.66
WESGO 995 alumina (Mat. #704)	8.40	3850	4.12	Al6061-T6	2765	6.35	479	0.66
Carborundum h.p. alum. (Mat. #703)	14.0	3920	4.05	Al6061-T6	2765	6.35	512	0.71
Coors AD999 alumina (Mat. #705)	8.40 ^a	3960	3.99	Al6061-T6	2765	6.35	531	0.73
TiB ₂ (Mat. #302)	5.40	4460	3.56	Al6061-T6	2765	6.35	405	0.56
Pure TiC	5.87 ^b	4880	3.26	Al6061-T6	2765	6.35	399	0.55

17
 18 Similarly, with the digitized and back-calculated data from Rosenberg, we note that the Hugoniot
 19 elastic limit has a strong influence when the ballistic limit is normalized by the frontal areal
 20 density (Figure C1), a trend also demonstrated in Table I.

21
 22

Figure C1: Trend of increasing $V_{bl}/A_{d,1}$ with an increasing Hugoniot elastic limit for digitized data points from Rosenberg & Yeshurun [34].