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Eco-Driving is a critical technology for improving automotive transportation efficiency.

It is achieved by modifying the driving trajectory over a particular route to minimize required

propulsion energy. Eco-Driving can be approached as an optimal control problem subject to driv-

ing constraints such as traffic lights and positions of other vehicles. Best interpolation in a strip

is a problem in approximation theory and optimal control. The solution to this problem is a cubic

spline. In this research we demonstrate the connection between Eco-Driving and best interpolation

in the strip. By exploiting this connection, we are able to generate optimal Eco-Driving trajec-

tories that could be driven with an autonomous system. Using the simulation tool FASTSim, we

can evaluate the trajectories using conventional, hybrid electric, and fully electric vehicle models.

Our results quantify the energy efficiency improvements that can be achieved with the proposed

approach.
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CHAPTER 1

INTRODUCTION

In the United States., the National Highway Traffic Safety Administration’s (NHTSA) Cor-

porate Average fuel economy (CAFE) requirement is gradually raised on an annual basis to reduce

the adverse consequences of automotive transportation (1). These adverse consequences include

economic costs for petroleum importation and vulnerability to geopolitical stability (2), acceler-

ated global warming due to large amounts of greenhouse gas emissions (3), and adverse effects on

human health due to air pollution (4; 5). To date, the CAFE policy has been shown to be effective

in promoting energy efficiency technology in modern commercially-available vehicles (6).

1.1 Literature Review

In 1977, Schwarzkopf first demonstrated the fuel economy in road vehicles does not only

depend on the drive train but also on the driving pattern (7). Schwarzkopf algorithm was derived

from the Pontryagin Maximum Principle to provide a mathematically optimal driving performance

subject to the driver’s trip time limit. In 1993, Dontchev introduced the problem of the best interpo-

lation in a strip. Dontchev proved that the solution to his problem is a cubic spline which depends

continuously on the data. In 1995, Dontchev and Kolmanovsky presented a method for the reduc-

tion of best interpolation in a strip to an unconstrained minimization problem that can be used in

many optimization applications (8).

In 2001, Ericsson (9) showed that different driving patterns have different effects on vehicle

emissions and fuel consumption. In 2012, the National Renewable Energy Laboratory researchers

showed that implementing Eco-Driving behavior results in fuel economy improvements (10). In

2014, researchers at the University of Minnesota applied a traffic light model to predict future

vehicle velocity with vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) technologies as
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inputs (11). Their research employed Pontryagin’s Minimization Principle which resulted in an

improvement in the fuel economy (FE) with the prediction-with-error scenario. Starting in 2018,

researchers at Colorado State University utilized a speed prediction method utilizing simulated

V2V communication with real-world driving data and a drive cycle database to improve Vehicles

FE using a predictive energy management system (12).

Additionally, research that was conducted at the University of Michigan and then transi-

tioned to Western Michigan University continued to investigate and exploit further methods to

improve FE using different control methods. In 2020, Western Michigan University Energy effi-

cient and Autonomous Vehicles (EEAV) lab and the Department of Mathematics collaborated with

the University of Michigan researchers to apply the “ Best interpolation in a strip ” problem to a

real-life application that resulted in this research.

1.2 Importance of Eco-Driving

Eco-Driving is an effective method of achieving significant energy efficiency improvements

in vehicles. Eco-Driving is the realization of a more energy-efficient drive cycle for a given route. It

is typically achieved by eliminating full stops, maintaining a constant speed, limiting acceleration,

and smoothing the velocity profile (10) (13) (14). Implementing energy-efficient driver behavior

reduces the vehicle propulsion energy required to drive the route.

Energy-efficient driver behavior typically results in longer travel time and it has historically

lower user acceptance by human drivers (10). However, human driver resistance may be reduced

when combined with driving automation technologies. Automation technologies, such as advanced

driving assistance systems (ADAS) and autonomous vehicles (AV) have high user acceptance (15),

and it is likely that users can look past the increased travel time from Eco-Driving in exchange for

not having to do all the driving.

Recent research has shown that when implementing a heuristic set of goals such as remov-

ing stops, traveling at an energy-efficient speed (in general, this could be a higher or lower overall

speed), and limiting acceleration and deceleration magnitudes, it is possible to achieve Fuel Econ-

omy (FE) improvements of approximately 10% for modern vehicles and 30% for fully autonomous

vehicles (13). Also, when Eco-driving is applied to electrified vehicles the result is longer battery-
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life and slower battery degradation (16). Additionally, vehicles without Eco-Driving technology

can still improve their energy efficiency if they follow an Eco-driving equipped lead vehicle (17).

The problem of maximizing the energy efficiency improvements from Eco-Driving can be

formulated as an optimal control problem if a prediction of driving conditions along the route,

such as traffic lights and traffic positions, are available. These predictions are informed by vehicle

sensors and vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communication technolo-

gies. As an example of a typical Eco-Driving study, predictions of traffic light signal phase and

timing (a V2I technology) were used to change driving behavior and demonstrated a fuel economy

improvement of 12-14% (18).

Another study showed that using V2I-enabled traffic lights decreases the energy consumed

in Eco-Driving (17). Other approaches include the optimization of speed and power distribution

between the motor and engine in a connected HEV subject to A/C thermal load (19), imposing

constraints on vehicles that are queued for a green light (20; 21), and using information from the

vehicle in front and traffic light data to avoid red lights (22). Additionally, applications of Model

Predictive Control (MPC) and Dynamic Programming (DP) have been considered in a lead vehicle

following scenario (23). Other connections between control theory and spline interpolation are

illustrated in (24).

1.3 Research Goals and Contribution

Our approach here is unique compared to the past efforts because we demonstrate a con-

nection between Eco-Driving and a problem in approximation theory and optimal control (25; 26).

This problem is called “best interpolation in a strip”. By exploiting this connection, we show that

it is possible to quickly generate optimal Eco-Driving trajectories for real-world driving scenar-

ios with traffic lights and lead vehicle constraints. As expected, these derived optimal trajectories

show significant energy efficiency improvements when used in real-world validated models and

compared to EPA reported FE.

After this chapter, we proceed as follows.

In Chapter 2, we first state the methodology where assumptions are explained, the problem

is formulated graphically, and the optimal control solution derivation and possible solutions to
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the problem explained. Furthermore, we go over the implementation of the problem algorithm on

different routes and using different vehicle architecture. In Chapter 3, we study the Optimal control

solution and the resulting FE and compare these results to the EPA FE for a city route. Finally, we

conclude our research in Chapter 4 and discuss further research.
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CHAPTER 2

METHODOLOGY

We consider a problem of generating an Eco-Driving trajectory subject to real-world driv-

ing constraints of traffic lights and avoiding collisions with a lead vehicle. Since precise vehicle

control is required, this has primary applications in autonomous or assisted control rather than

human driver control.

2.1 Problem Statement and Assumptions

Several assumptions are made:

1. Vehicle trajectory is to be specified as a function of time

Specifically, we assume that we are able to maintain precise control of the subject vehicle

(ego vehicle) velocity on a second-by-second basis, which would be enabled by autonomous

or assisted vehicle control.

2. Minimizing the integral of the square of the acceleration over time increases energy

efficiency

Previous research into Eco-Driving suggests that the Eco-Driving can be achieved without

high-fidelity models of vehicle fuel consumption; instead, it is sufficient to minimize accel-

eration (23; 27; 28) and, whenever possible, pass through the traffic lights when they are

green to avoid braking, stopping and idling. This approach is adopted in this paper as well.

3. Piece-wise linear lead vehicle constraint

We further assume that the ego vehicle is following a lead vehicle which is represented here

with a simple piecewise linear distance vs. time function.
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4. Asynchronous SPaT along a straight drive cycle

We consider asynchronous traffic light signal phase and timing (SPaT) along a straight route

during which the ego vehicle will stop for red lights.

Noting that the optimal solution to this problem would be driven towards extremely low

speeds which is impractical for real world applications. To combat this tendency, we will impose

an additional constraint on travel time to ensure that the vehicle is not a traffic hazard. These

assumptions lead to an optimal control formulation which is also linked to a problem in approxi-

mation theory: the best interpolation in a strip.

2.2 Optimal Control Problem Formulation

Figure 2.1: Visualization of SPaT data of 3 traffic lights where red dashes indicate when each light
is red. Traffic lights are located approximately 1.9, 3.9, and 5.7 tenth of a mile.

To visualize how the optimal control problem is formulated, time is represented by the

x-axis in minutes and distance by the y-axis in a tenth of mile increments. Three traffic lights

are used to represent the red-light phase (Fig.2.1), where the first traffic light occurs at 0.19 miles

and lasts for almost a minute. The lead vehicle trajectory is forecasted as the upper constraints,

represented by the blue line (Fig.2.2). To assure that the ego vehicle always arrives at the traffic

intersection before the light turn red, a lower constraint, represented by the pink line, is forecasted;

it bounds the trajectory window to include time and location just before the traffic light turns red
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Figure 2.2: In (blue) trajectory of forcasted lead vehicle travelling at speed limit and stops at any
red light it encounters. In (pink) the trajectory window just before the traffic light turn red.

but not include red lights in the interior of the trajectory window (Fig.2.2). It can be seen that the

lead vehicle stopped at the first red light phase of the first traffic light, then stopped for almost the

entire duration of the second red light phase of the second traffic light, and, finally, encountered

the third traffic light in a green phase and thus drove through the intersection.

Figure 2.3: Visualization of the gates (double-ended arrows) that constrain the location of the ego
vehicle.

Consider now the ego vehicle’s position vs time, f (t). The location of the ego vehicle is

represented by waypoints. These waypoints lie somewhere within the corresponding gates delin-
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Figure 2.4: Visualization of the location of waypoints (black circles) and velocity of the ego vehicle
(slope of strike through black lines).

eated by orange double ended arrows (Fig. 2.3). These gate locations are set based on changes in

boundary conditions (e.g. the lead vehicle transitions from zero velocity to some constant veloc-

ity). Where f (t) has to connect the waypoints which are designated by black circles in Fig. 2.4,

the ego vehicle velocities at each waypoint are indicated by black lines. The waypoint locations,

the vehicle velocities at the waypoints, and the trajectory “pieces” between the waypoints are de-

termined by the theory of best interpolation in a strip.

Fig. 2.5 shows a visualization of the distance vs time problem geometry with SPaT data of

three traffic lights, lead vehicle trajectory (d(t), blue line) and the trajectory window just before the

traffic light turns red (e(t), pink line). Note that the lower constraint, e(t), is determined based on

trailing red light SPaT phases (in other words, the ego vehicle must pass through each intersection

before the light turns red).

By assigning the orange markers as “gates”, we can now designate the interval between

gates as the “strip”. Shown in the inset dashed green circle in Fig. 2.5 is a strip where the left

boundary (the start time of the strip) is designated as ti and the right boundary (the end time of

the strip) is designated as ti+1. The ego vehicle position at certain time instant f (ti), where i is the

discrete time step index, is bounded above by d(ti) and below by e(ti). Overall, the ego vehicle

trajectory has to adhere to the following constraints:
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Figure 2.5: General problem geometry showing in the green dashed circle a zoomed in strip be-
tween ti = 3.1 and ti+1 = 4.8 mins, the lead vehicle d(t), red light phase constraint e(t).

1. f (t) ≤ d(t), where d(t) is informed by the forecasted lead vehicle position offset by safety

margin;

2. f (t)≥ e(t), where e(t) is informed by the transition of the traffic signal phase to red.

3. Left: Start of the time interval → ti

4. Right: End of the time interval → ti+1

Note that constraints e(t)≤ f (t)≤ d(t) form a strip that has two gates in distance vs. time

that the ego vehicle must pass through similar to the way a slalom skier passes through gates during

a competition. However, unlike a slalom skier, who pursues a minimum time trajectory, we seek

to minimize the L2 norm of the ego vehicle acceleration trajectory which in turn improves energy

efficiency.

The constraints e(t) and d(t) are assumed to be piecewise linear; they are linear functions

of time in each time interval [ti, ti+1], where the time intervals are fixed. There are a few caveats
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regarding this. Firstly, for real-world lead vehicles, this corresponds to an approximated represen-

tation. The theory of best interpolation in a strip does allow for piecewise cubic constraints which

could be incorporated in future research. Secondly, the continuity of e(t) is enforced by not allow-

ing infinite slope in the e(t) function as can be seen in Fig. 2.5. Lastly, it should also be mentioned

that realistically, the d(t) constraint should include a distance margin from a lead vehicle.

To demonstrate the concept of this research, we will use the routes shown in Figs. 2.6 and

2.7 with their associated real-world red light locations and speed limits. We will designate the

Fig. 2.6 route as Kalamazoo Arterial (KA) and the Fig. 2.7 route as Kalamazoo Downtown (KD).

For these routes, real world vehicle velocity was recorded along two different roads in

Kalamazoo, MI: one along Stadium drive to serve as the arterial route and one along Kalamazoo

Mall to serve as the downtown route. A consistent SPaT cycle of 120 seconds was used for this

demonstration since it represents a broad use case (29; 30). This SPaT data then informs specific

piecewise linear upper and lower constraints for the optimal control problem. We note that the

lead vehicle constraints in this paper are defined by speed limits and converted to piecewise linear

functions. Based on results in (25; 8; 26), piecewise cubic constraints can also be handled, but this

is left to future work.

Figure 2.6: Details of the Kalamazoo Arterial route which is used to collect lead vehicle and SPaT
data contraints.

In the above and subsequent developments we assumed that there is either no vehicle trail-

ing the ego vehicle, or such a trailing vehicle does not influence the ego vehicle trajectory. In

principle, this assumption could be relaxed, e.g., the lower constraint on the ego vehicle trajectory
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Figure 2.7: Details of the Kalamazoo Downtown route which is used to collect lead vehicle and
SPaT data contraints.

can be additionally informed by a trailing vehicle trajectory in order to minimize disruption to its

motion.

2.3 Optimal Control Solution

The eco-driving problem set-up exploits the connection with the problem of best interpo-

lation in a strip (25; 8; 26). In particular, the planning of vehicle distance trajectory versus time,

f (t), t0 ≤ t ≤ tN , can be posed as the following problem:

Given time instants t0 < t1 · · · < tN , initial and final slopes s0 and sN , lower and upper

bounding functions e and d satisfying e(t)< d(t) for all t ∈ [t0, tN ] which are continuous on [t0, tN ],

and linear on [ti, ti+1], determine the function f that satisfies the following optimization problem:

Minimize
f (·)

∥ f ′′∥L2
[t0,tN ]

subject to

e(t)≤ f (t)≤ d(t), t0 ≤ t ≤ tN ,

ḟ (t0) = s0, ḟ (tN) = sN .

(2.1)

The computational approach to finding such a function f then decomposes into an outer
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and an inner optimization problems. The outer loop problem is to minimize the function

φ(y,s) =
N−1

∑
i=0

φi(yi,si,yi+1,si+1), (2.2)

where y = (y0, · · · ,yN) and s = (s0, · · · ,sN) are vectors of function values and slopes at ti where

y0, yN , s0 are predetermined constants, sN = 0 indicating the ego vehicle comes to a full stop at the

end of the trip , i = 0, · · · ,N, and φi(yi,si,yi+1,si+1), i = 0, · · · ,N − 1 are computed by solving N

independent inner optimization problems:

Minimize
f (·)

∥ f ′′∥L2
[ti,ti+1]

subject to

f (ti) = yi, f (ti+1) = yi+1

ḟ (ti) = si, ḟ (ti+1) = si+1

e(t)≤ f (t)≤ d(t), ti ≤ t ≤ ti+1.

(2.3)

The function φ can be shown to be a convex and coercive function of the arguments y and

s, and it has a unique minimum (25; 8; 26). The solution to the inner loop optimization problem

(2.3) is a C2 cubic spline that is one of the following types determined by its interactions with the

lower and upper constraining functions e(t) and d(t), ti ≤ t ≤ ti+1:

Case 1: Constraints are inactive;

Case 2: Single touching point on the lower constraint e;

Case 3: Single touching point on the upper constraint d;

Case 4: Single subarc on the lower constraint e;

Case 5: Single subarc on the upper constraint d;

Case 6: Touching pair with the first touching point on the lower constraint e and second touching

point on the upper constraint d;
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Case 7: Touching pair with the first touching point on the upper constraint d and second touching

point on the lower constraint e.

Note that when yi, yi+1, si and si+1 are given, the optimal trajectory of (2.3) is unique and

corresponds to one of the cases 1-7. In order to find this optimal trajectory we evaluate the cost

for each of the cases for which a feasible solution exists and select the case corresponding to the

minimal value. The construction of these solutions involves solving a system of linear algebraic

equations for the coefficients of a piecewise cubic polynomial. In that sense problem (2.3) is solved

as a combinatorial optimization problem.

The candidate solutions of the 7 cases are in the form of one of the below 4 different systems

of equations. In some cases knots are added, which are determined by the points of intersection

of f (t) and the upper or lower bounds. Mathematically, a knot represents the transition between

cubics.

Case 1: the constraints are not active (no knots added);

f1(t) = k1(t − ti)3 + k2(t − ti)2 + k3(t − ti)+ k4 (2.4)

In case 1, Fig. 2.8, there is no active constraints where there are no additional knots other

than the fixed knots [ti, ti+1]. The optimal solution is f (t) which is the vehicles trajectory

between the lower, e(t), and upper, d(t), constraints.

Figure 2.8: No active constraints definition, where a = ti and b = ti+1.
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Case 2 & 3: a single touching point on one of the constraints (one additional knot);

f2(t) =



kl(δ − t)3 + k2(δ − t)2

+ k3(δ − t)+ k4

t ∈ [ti,δ ]

ml(−δ + t)3 +m2(−δ + t)2

+m3(−δ + t)+m4

t ∈ [δ , ti+1]

(2.5)

The case, Fig. 2.9, with one the Eco-Vehicle, f (t), hitting the upper, d(t), or lower, e(t),

constraint. Reaching this case would cause the Eco-Vehicle to decelerate and accelerate over

a given amount of time to maintain optimal solution.

(a) single touching point on lower constraint (b) single touching point on upper constraint

Figure 2.9: Single touching point definition, where a = ti and b = ti+1.

Case 4 & 5: a sub-arc on one of the constraints (two additional knots);

f3(t) =



kl(δ1 − t)3 + k2(δ1 − t)2

+ k3(δ1 − t)+ k4

t ∈ [ti,δ1]

e(t) t ∈ [δ1,δ2]

ml(−δ2 + t)3 +m2(−δ2 + t)2

+m3(−δ2 + t)+m4

t ∈ [δ2, ti+1]

(2.6)
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(a) single subarc on lower constraint (b) single subarc on upper constraint

Figure 2.10: Two touching points, subarc, definition, where a = ti and b = ti+1.

These cases, Fig. 2.10, cause a sub-arc to touch the upper, d(t) or lower, e(t), limit. This

trajectory can simulate a vehicle following the lead vehicle in traffic or possibly the speed

limit while not speeding to maintain optimal FE in order to avoid an upcoming stop light in

traffic. This must happen to make sure the v > 0 to avoid stop lights. In our test it is unlikely

that the solution will contact the lower constraint e(t) to keep momentum in the vehicles to

minimize the change in velocity.

Case 6 & 7: a touching pair (two additional knots);

f4(t) =



kl(δ1 − t)3 + k2(δ1 − t)2

+ k3(δ1 − t)+ k4

t ∈ [ti,δ1]

ml(−δ1 + t)3 +m2(−δ1 + t)2

+m3(−δ1 + t)+m4x

t ∈ [δ1,δ2]

gl(−δ2 + t)3 +g2(−δ2 + t)2

+g3(−δ2 + t)+g4

t ∈ [δ2, ti+1])

(2.7)

This case of two touching points, Fig. 2.11, that adds two additional knots, δ1 and δ2, in

the interval. This is similar to cases 1 and 2. This can simulate bumper to bumper traffic while

maintaining v > 0. Having this oscillation would be the least optimal case due to the drastic

changes in velocity to maintain within the upper and lower constraints, d(t) and e(t). Practically,

the constraint difference could be very small, that the variation in the case will also be small.
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Figure 2.11: Touching pair definition, where a = ti and b = ti+1.

As an example, the candidate solution in case 4 (a single subarc on the lower constraint)

is in the form of (2.6) where the subarc on the lower constraint occurs for t ∈ [δ1,δ2]. In this case

all coefficients k1, k2, k3, k4, m1, m2, m2, m3, m4 and parameters δ1 and δ2 can be computed by

solving linear algebraic equations only. The function (2.2) is computed by adding up the minimum

costs from each interval.

2.4 FE Evaluation

This optimal solution technique is implemented in Matlab and is used to compute the opti-

mal Eco-Driving control for the Kalamazoo Arterial and the Kalamazoo Downtown drive cycles.

Once the optimal trajectory of the ego vehicle has been determined, the FE is evaluated using

established and real-world validated vehicle modeling software. For this study, we chose to use

the FASTSim software which is freely available from the National Renewable Energy Laboratory

(31).

We are interested in quantifying the results of this technique for several different types

of vehicle architecture including Hybrid Electric Vehicles (HEVs), Conventional Vehicles (CVs),

and Electric Vehicles (EVs). To meet these criteria, we chose a 2016 Toyota Highlander Hybrid,

2016 Toyota Camry 4 cylinder, and 2016 Tesla Model S60. We have used the Python version of

FASTSim for greater flexibility. It uses the drive cycle as an input and provides FE as an output.

The optimal trajectory result will be subsequently shown in distance (mi) versus time (min).

In order to apply FASTSim as our validation tool, the second-by-second vehicle velocity time

history was inferred from the optimal position trajectory. The road grade was set to zero.
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CHAPTER 3

RESULTS

The results of this study are the determined upper and lower constraints, the derived Eco-

Driving drive cycle, and the associated FE for the three vehicle models for the Kalamazoo Arterial

and the Kalamazoo Downtown routes.

3.1 Optimal Control Solution

The constraints and Eco-Driving drive cycles for the two routes are shown in Figs. 3.1 and

3.2. The lower constraint (red) is the time window just before the traffic turns red and the upper

constraint (blue) is the lead vehicle. The optimized trajectory is the green spline which in each time

interval, can fall into the seven cases described in section 2.3. Note that Figs. 4 and 5 show two

different drive cycles for each route. This is because the initial condition of the ego vehicle route is

somewhat arbitrary. For both routes, drive cycle 1 (subfigure a) has an initial slope (velocity of the

ego vehicle) determined by the optimizer, whereas drive cycle 2 (subfigure b) has an initial slope

chosen to be half the slope of the upper constraint (lead vehicle velocity). This choice is meant to

provide distinct results and insights into the optimal solution.

Drive cycles KA1 and KA2 cover a total distance of 3.31 miles in 7.5 minutes. Fig. 4a

shows KA1 where the initial slope was chosen by the optimizer. The KA1 trajectory only uses

two of the seven possible cases for the optimal solution: case 1 and case 3. The single touching

point is located towards the end of the drive cycle at t = 5.85 and 6.81 minutes which is the only

additional gate other than the 12 fixed gates located at t = 0, 0.96, 1.96, 2.97, 3.4, 3.96, 4.4, 5.4,

5.8, 6.8, 7, and 7.44 minutes. The KA2 trajectory also only shows case 1 and case 3. The touching

pair is located towards the end of the drive cycle at t = 6.84 and 7 minutes which is the only 2

additional gates other than the 12 fixed gates. Comparing the drive cycle 1 and 2, both trajectories
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Figure 3.1: Kalamazoo Arterial route results for the Eco-Driving solution with an initial velocity
chosen by the optimizer, drive cycle KA1 (a), and an initial velocity assigned as half of the speed
limit, drive cycle KA2 (b).

were approximately similar where both had case 1 and case 3 for the possible optimal solution.

Drive cycles KD1 and KD2 cover a total distance of 0.9 miles in 5.9 minutes. Overall this

route provides tighter upper and lower constraints for the vehicles trajectory to follow. KD1 again

only shows case 1 and case 3. The single touching point is located towards the end of the drive

cycle at t =4.4 and 4.6 minutes which is the only additional gate other than the 14 fixed gates

located at t =0, 0.2, 0.5, 1.3, 1.5, 1.9, 2.6, 2.9, 3, 3.6, 4.1, 4.4, 4.6, and 5.9 minutes. The KD2

trajectory slightly exceeds the speed limit to make the stop light at t = 1.9 minutes. KD2 also has

three cases: case 1, case 2, and case 3. The touching pair is located towards the end of the drive

cycle at t = 1.3 and 4.6 minutes which are the only 2 additional gates other than the 14 fixed gates.
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Figure 3.2: Kalamazoo Downtown route results for the Eco-Driving solution with an initial ve-
locity chosen by the optimizer, drive cycle KD1 (a), and an initial velocity assigned as half of the
speed limit, drive cycle KD2 (b).

3.2 FE Results

MPGe (miles per gallon gasoline equivalent) and MPG are calculated for all derived drive

cycles according to the standard (J1711-201006) (32). Each result is then contrasted with EPA FE

measurements for city driving (33) in Table 3.1. Note that the results vary widely depending on

the vehicle model used.

Table 3.1 shows a significant energy efficiency increase for all vehicles in both routes when

compared to EPA city estimates. Additionally, there is a significant difference in the energy effi-

ciency improvements for the arterial roads vs. downtown. This is because the main-arterial roads

are known to have a better FE since they have greater distances between stop lights and their speed

limit is higher. Downtown routes have closely spaced traffic lights with lots of acceleration and de-

celeration. Both the Toyota Camry and the Tesla Model S show FE increases in drive cycle 1 over
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Table 3.1: Energy efficiency (i.e. FE) of all drive cycles for an HEV, EV, and CV.

3*Drive Cycle 2016 Toyota 2016 Tesla 2016 Toyota
Highlander Hybrid Model S60 Camry 4cyl

(HEV) MPG (EV) MPGe (CV) MPG

2*Main Drive-cycle 1 65.5 220.5 48.6

Arterial Drive-cycle 2 65.8 218.5 45.5

2*Downtown Drive-cycle 1 41.4 243.7 30.6

Drive-cycle 2 45.0 238.6 30.0

EPA FE (city) 27 98 28

drive cycle 2 in both routes. The Toyota Highlander Hybrid on the other hand shows a significant

increase in drive cycle 2 over drive cycle 1 in both routes.
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CHAPTER 4

CONCLUSION

This thesis proposed an approach for increasing the energy efficiency of eco-driving ve-

hicles based on the best interpolation in a strip. Two real-world routes were chosen: Kalamazoo

Arterial and Kalamazoo Downtown. These routes were converted to distance over time constraints

for an optimal control problem to be solvable using the best interpolation in a strip. The optimiza-

tion problem was programmed into MATLAB software and the MATLAB fmincon tool was used

to produce optimized routes for both Kalamazoo Arterial and Kalamazoo Downtown.

Two drive cycles were tested, one drive cycle utilized s0 equal to half the velocity of the lead

vehicle, and the other utilizing the optimizer to determine s0. The Eco-Driving solution was used as

an input to the real-world validated FASTSim models that were used to simulate the performance

of an HEV, CV, and EV. FASTSim results were compared to the EPA reported FE for city driving

Results. There was a significant increase in MPG and MPGeelectric in all drive cycles showing

a significant improvement compared to EPA. This increase can yield to future advancement of

automotive and allows for improvements in the field of advanced driving-assistant technologies.

Additionally, the requirement that e and d are piecewise linear can be relaxed to e and d

being piecewise cubic but the computations become more involved. While an alternative brute

force approach to (2.1) involving time discretization and conversion to a quadratic program is

also possible, the disadvantages of that route include higher dimensionality of the optimization

problem and the potential for “inter-sample” constraint violations (e.g., collisions with lead vehicle

or violation of traffic light rules in extreme cases).

Eco-Driving is an important technology to realize sustainable transportation. The method

presented here can be used in all levels of vehicle automation provided surrounding vehicle and

SPaT data is available. Moreover, Eco-Driving are not only entitled to the improvement of auto-

motive industry technologies but it can reduces the cost of transportation for many industries that
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are heavily based on transportation, and help in the reduction of green house gas emissions.

Future work includes measuring the human driver FE of a vehicle along this route, and

using real-world measured SPaT data specific to these routes. Utilizing the real world SPaT data

and a human driver will help build a high-fidelity model where we can get more accurate results of

our application when applied in day-to-day driving activities.

In real vehicles, there are limits on acceleration and velocity. for example, We know that

in real world instantaneous acceleration is tied to the vehicle structure and build and its limited by

the RpM; vehicles can speed up or slow down only so much in such a short period of time. In

our theoretical solution, the acceleration and velocity seems to comply with the speed limit of the

routes and it seems that a vehicle can implement the acceleration. For further research, We would

like to thoroughly investigate the values of instantaneous acceleration and velocity to be expected

in the solution.

Furthermore, we would like to expand beyond the Kalamazoo routes. To be able to expand

we will need to perform testing in other states or use simulation tools like FASTsim or the Chassis

Dynamometer located in the EEAV lab on different cycles. This will allow us to analyze the

different behaviors a driver might encounter on daily basis in addition that it will expand the scope

of our research to be applied in the automotive industry.

Last but not least we would like to expand the optimization problem formulation to allow

for cubic constraints. Cubic constraints will simulate a better behavior of the (lead vehicle) upper

constraint and lower constraint. In real life, we do not anticipate that drivers (in this case, upper

and lower constraints) maintain constant speed all the time (linear constraints).
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APPENDIX

Matlab Code



%{
strip optimization main

Input: csv file with 6 columns of a,b, l o w e r m, l o w e r b, upper m, upper b

Must s e t Y and S boundary values at endpoints of interval when not an

optimization parameter

%}

% housekeeping
c l o s e a l l ;
c l e a r ;

% setup
csvfname= ’constraintsdatacleanedformatlab.csv’;

Ybv_t0= 0; % y value at the start time
Ybv_tf= 0.9; % y value at the final time
Sbv_tf= 0; % dy/dt (slope) at the final time

% read and process data
[knots ,id,l,lb,n,u,ub]= ecodriving_initialize(csvfname);

plot_constraints

% modify lb and ub for slope as optimization value at t_a, firt time point
lb= [lb,l.cf(1,3)];

ub= [ub,u.cf(1,3)];

% boundary values
Ybv= [Ybv_t0 ,Ybv_tf ]; % position at initial and final point
Sbv= Sbv_tf; % slope at final point
% slope at final time set to zero for zero velocity

% initial guess
S0= z e r o s (1,n-2);
Y0= (lb(id.SY2Y)+ub(id.SY2Y))/2;

s0= (lb( end)+ub( end))/2;
SYs0= [S0,Y0,s0];

% additional paramters
toll= 1e-12;

% optimization
opt_fmincon= optimset;

opt_fmincon.Algorithm= ’sqp’;

opt_fmincon.Display= ’iter’;

opt_fmincon.MaxFunEvals= 5000;

% optimization
[SYs ,fval ,flg_exit , i n f o ]= fmincon( ...

@(SYs) cost_splines_s0(SYs ,id,knots ,l,n,u,Sbv ,toll ,Ybv), ...

SYs0 ,[],[],[],[],lb,ub ,[], opt_fmincon);

% get data
[cost , cons , splines ]= cost_splines_s0(SYs ,id,knots ,l,n,u,Sbv ,toll ,Ybv);

% plot
plot_splines;

f u n c t i o n [knots ,id,l,lb,n,u,ub]= ecodriving_initialize(csvfname)

%{
extract information f o r strip optimization

id: indexing to unwrap S and Y during optimization

lb: l o w e r bound on Y, prevents solver from violating constraints at knots

ub: upper bound on Y, prevents solver from violating constraints at knots

%}

% check file name
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i f (~ endsWith(csvfname ,’.csv’,’IgnoreCase ’,true))

csvfname= [csvfname ,’.csv’];

end

% load data
csvdata= c s v r e a d (csvfname);

% plot_csvdata(csvdata)

% number of intervals
n_int= numel(csvdata (:,1));

n= n_int +1;

% knots
knots= [csvdata (:,1);csvdata(end ,2)];

% initialize
l= struct;

u= struct;

l.cf= z e r o s (n_int ,4);
u.cf= z e r o s (n_int ,4);

% strip bound equations are defined relative to the last point
% shift data
l.cf(1 ,3:4)= csvdata (1 ,3:4);

u.cf(1 ,3:4)= csvdata (1 ,5:6);

f o r ii=2: n_int

b_l= p o l y v a l (csvdata(ii -1 ,3:4),knots(ii));
m_l= csvdata(ii ,3);

b_u= p o l y v a l (csvdata(ii -1 ,5:6),knots(ii));
m_u= csvdata(ii ,5);

l.cf(ii ,3:4)= [m_l ,b_l];

u.cf(ii ,3:4)= [m_u ,b_u];

end

% index and numbers
id= struct;

id.SY2S= 1:(n-2);

id.SY2Y= (n-2+1) :(2*(n-2));

% bounds
lb= - I n f (1,2*(n-2));
ub= I n f (1,2*(n-2));

% set Y bounds
f o r ii=2:(n-1)

% lower
tmp1= p o l y v a l (l.cf(ii -1,:),knots(ii)-knots(ii -1));
tmp2= p o l y v a l (l.cf(ii ,:) ,0);
lb(id.SY2Y(ii -1))= max(tmp1 ,tmp2);

% upper
tmp1= p o l y v a l (u.cf(ii -1,:),knots(ii)-knots(ii -1));
tmp2= p o l y v a l (u.cf(ii ,:) ,0);
ub(id.SY2Y(ii -1))= min(tmp1 ,tmp2);

end

end

f u n c t i o n [cost , cons , splines ]= cost_splines_s0(SYs ,id,knots ,l,n,u,Sbv ,toll ,Ybv)

% Sbv, Ybv: S and Y bounday values at a and b
% l,u: lower and upper constraints (use l.cf(i,:), u.cf(i,:) to get coefficients for the ith

interval)
% Sbv only includes final slope

% unwrap S and Y
S= SYs(id.SY2S);

Y= SYs(id.SY2Y);
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% unwrap s0
s0= SYs( end);

% total position and slope values
S= [s0 ,S,Sbv];

Y= [Ybv(1),Y,Ybv( end)];

% spline calculation
[cost , cons , splines ]= calc_splines(knots ,l,n,u,S,toll ,Y);

end

f u n c t i o n [cost , cons , splines ]= calc_splines(knots ,l,n,u,S,toll ,Y)

% all spline data given knots and slopes

% intial values
cost = 0;

cons= - I n f ;

% storage
splines= struct;

splines.X= cell(1,n-1);

splines.cf= cell(1,n-1);

splines.case= cell(1,n-1);

% step through intervals
f o r ii=1:n-1

%there is a total of n−1 intervals
a= knots(ii);

b= knots(ii+1);

c= Y(ii);

d= Y(ii+1);

s1= S(ii);

s2= S(ii+1);

li= l.cf(ii ,:);

ui= u.cf(ii ,:);

[inc_cost1 , inc_cons1 , cf1] = case1(a,b,c,d,li ,ui,s1 ,s2,toll);

i f (inc_cons1 <=toll)

% unconstrained cubic spline is the solution
splines.X{ii}= [a,b];

splines.cf{ii}= cf1(:) ’;

splines.case{ii}= 1;

cost= cost+inc_cost1;

cons= max(cons ,inc_cons1);

e l s e

cands =[];

[inc_cost2l ,inc_cons2l ,del2l ,k2l ,m2l]= case2l(a,b,c,d,li ,ui,s1,s2 ,toll);

i f (inc_cons2l <=toll)

cands=[ cands;21, inc_cost2l ];

end

[inc_cost2u ,inc_cons2u ,del2u ,k2u ,m2u]= case2u(a,b,c,d,li ,ui,s1,s2 ,toll);

i f (inc_cons2u <=toll)

cands=[ cands;22, inc_cost2u ];

end

[inc_cost3l ,inc_cons3l ,del3l ,k3l ,m3l ,llr3]= case3l(a,b,c,d,li,ui,s1,s2 ,toll);

i f (inc_cons3l <=toll)

cands=[ cands;31, inc_cost3l ];

end

[inc_cost3u ,inc_cons3u ,del3u ,k3u ,m3u ,uur3]= case3u(a,b,c,d,li,ui,s1,s2 ,toll);

i f (inc_cons3u <=toll)

cands=[ cands;32, inc_cost3u ];
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end

[inc_cost4lu ,inc_cons4lu ,del4lu ,k4lu ,m4lu ,f4lu]= case4lu(a,b,c,d,li,ui ,s1,s2,toll);

i f (inc_cons4lu <=toll)

cands=[ cands;41, inc_cost4lu ];

end

[inc_cost4ul ,inc_cons4ul ,del4ul ,k4ul ,m4ul ,f4ul]= case4ul(a,b,c,d,li,ui ,s1,s2,toll);

i f (inc_cons4ul <=toll)

cands=[ cands;42, inc_cost4ul ];

end

i f i s e m p t y (cands)
% no feasible solution exists (abnormal case)
% use unconstrained cubic spline solution
splines.X{ii}= [a,b];

splines.cf{ii}= cf1(:) ’;

splines.case{ii}= -1;

cost= cost+inc_cost1;

cons= max(cons ,inc_cons1);
e l s e

[vmin ,imin]= min(cands (:,2)); %select minimum cost solution from available
options

i f (cands(imin ,1) ==21)

splines.X{ii}= [a,del2l ,b];

splines.cf{ii}= [k2l(:) ’;m2l(:) ’];

splines.case{ii}= 21;

cost= cost+inc_cost2l;

cons= max(cons ,inc_cons2l);

e l s e i f (cands(imin ,1) ==22)

splines.X{ii}= [a,del2u ,b];

splines.cf{ii}= [k2u(:) ’;m2u(:) ’];

splines.case{ii}= 22;

cost= cost+inc_cost2u;

cons= max(cons ,inc_cons2u);

e l s e i f (cands(imin ,1) ==31)

splines.X{ii}= [a,del3l ,b];

splines.cf{ii}= [k3l(:) ’;llr3 (:) ’;m3l(:) ’];

splines.case{ii}= 31;

cost= cost+inc_cost3l;

cons= max(cons ,inc_cons3l);

e l s e i f (cands(imin ,1) ==32)

splines.X{ii}= [a,del3u ,b];

splines.cf{ii}= [k3u(:) ’;uur3 (:) ’;m3u(:) ’];

splines.case{ii}= 32;

cost= cost+inc_cost3u;

cons= max(cons ,inc_cons3u);

e l s e i f (cands(imin ,1) ==41)

splines.X{ii}= [a,del4lu ,b];

splines.cf{ii}= [k4lu (:) ’;m4lu (:) ’;f4lu (:) ’];

splines.case{ii}= 41;

cost= cost+inc_cost4lu;

cons= max(cons ,inc_cons4lu);

e l s e i f (cands(imin ,1) ==42)

splines.X{ii}= [a,del4ul ];

splines.cf{ii}= [k4ul (:) ’;m4ul (:) ’;f4ul (:) ’];

splines.case{ii}= 42;

cost= cost+inc_cost4ul;

cons= max(cons ,inc_cons4ul);
end

end
end

end
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end

f u n c t i o n [cost , cons , splines ]= cost_splines(SY ,id,knots ,l,n,u,Sbv ,toll ,Ybv)

% Sbv, Ybv: S and Y bounday values at a and b
% l,u: lower and upper constraints (use l.cf(i,:), u.cf(i,:) to get coefficients for the ith

interval)

% unwrap S and Y
S= SY(id.SY2S);

Y= SY(id.SY2Y);

% total position and slope values
S= [Sbv(1),S,Sbv( end)];
Y= [Ybv(1),Y,Ybv( end)];

% spline calculation
[cost , cons , splines ]= calc_splines(knots ,l,n,u,S,toll ,Y);

end

%{
p l o t the l o w e r and upper bounds and the 3rd order splines

execute in optimization results workspace

%}

% setup

f i g u r e ;
h o l d on;

% lower and upper constraints
f o r ii=1:(n-1)

% lower
p l o t (knots(ii:ii+1), p o l y v a l (l.cf(ii ,:) ,[0,knots(ii+1)-knots(ii)]),’r--’);

% upper
p l o t (knots(ii:ii+1), p o l y v a l (u.cf(ii ,:) ,[0,knots(ii+1)-knots(ii)]),’b--’);

end

slope = struct;

% spline segments
f o r ii=1:(n-1)

% number of segements in the interval
n_seg= numel(splines.cf{ii}(: ,1));

f o r jj=1: n_seg

tmp1= l i n s p a c e (splines.X{ii}(jj),splines.X{ii}(jj+1) ,20);
p l o t (tmp1 , p o l y v a l (splines.cf{ii}(jj ,:),tmp1 -splines.X{ii}(jj)),’g-’);

%if jj < 20
% slope = (polyval(splines.cf{ii}(jj+1,:),tmp1−splines.X{ii}(jj+1)))−(polyval(

splines.cf{ii}(jj,:),tmp1−splines.X{ii}(jj)))/(tmp1−splines.X{ii}(jj+1)−
tmp1−splines.X{ii}(jj));

% fprintf();
% end

end

end
%extracting the xy data from the plot
h = findobj(gca ,’Type’,’line’);

x= g e t (h,’Xdata ’);
y= g e t (h,’Ydata ’);
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%storing the data in xyarr, the for loop doesnt add the last the point data
iii = 1;

% x{13,1}(20)
f o r i= 13: -1:1

f o r ii= 1:1:19

xyarr(iii ,1)= x{i,1}(ii);

xyarr(iii ,2)= y{i,1}(ii);

iii = iii+1;

end

end

xyarr(iii ,1)= x{1 ,1}(20);

xyarr(iii ,2)= y{1 ,1}(20);

%finding the slope (velocity) and storing it in the 3rd col of xyarr

f o r i=1:1: iii

i f i < iii

xyarr(i,3) =( xyarr(i+1,2)-xyarr(i,2))/(xyarr(i+1,1)-xyarr(i,1));

xyarr(i,4) = xyarr(i,3) *60;

end
end

%finding the aceleration and storing it in the 5th col of xyarr
f o r i=1:1: iii

i f i < iii

xyarr(i,5) =( xyarr(i+1,3)-xyarr(i,3))/(xyarr(i+1,1)-xyarr(i,1));

xyarr(i,6)= xyarr(i,5) *3600;

end
end
xlswrite(’downtownresults.xls’,xyarr);

writematrix(xyarr ,’resultsdowntown.csv’);

% complete
h o l d off;

g r i d on;

box on;

y l a b e l (’Distance ’);
x l a b e l (’Time’);

32



ProQuest Number: 

INFORMATION TO ALL USERS 
The quality and completeness of this reproduction is dependent on the quality  

and completeness of the copy made available to ProQuest. 

Distributed by ProQuest LLC (        ). 
Copyright of the Dissertation is held by the Author unless otherwise noted. 

This work may be used in accordance with the terms of the Creative Commons license 
or other rights statement, as indicated in the copyright statement or in the metadata  

associated with this work. Unless otherwise specified in the copyright statement  
or the metadata, all rights are reserved by the copyright holder. 

This work is protected against unauthorized copying under Title 17, 
United States Code and other applicable copyright laws. 

Microform Edition where available © ProQuest LLC. No reproduction or digitization  
of the Microform Edition is authorized without permission of ProQuest LLC. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, MI 48106 - 1346 USA 

29062232

2022


