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NONLINEAR SPECTRAL MIXING THEQORY TO
MODEL MULTISPECTRAL SIGNATURES :

Christoph C. Borel
Astrophysics and Radiation Measurements Group, NIS-2, MS C323,

Los Alamos National Laboratory
Los Alamos, New Mexico 87545, USA

Nonlinear spectral mixing occurs due to multiple reflections and transmissions between
discrete surfaces, e.g. leaves or facets of a rough surface. The radiosity method is an en-
ergy conserving computational method used in thermal engineering and it models nonlinear
spectral mixing realistically and accurately. In contrast to the radiative transfer method the
radiosity method takes into account the discreteness of the scattering surfaces (e.g. exact
location, orientation and shape) such as leaves and includes mutual shading between them.
An analytic radiosity-based scattering model for vegetation was developed and used to com-
pute vegetation indices for various configurations. The leaf reflectance and transmittance
was modeled using the PROSPECT model for various amounts of water, chlorophyll and
variable leaf structure. The soil background was modeled using SOILSPEC with a linear
mixture of reflectances of sand, clay and peat. A neural network and a geometry based re-
trieval scheme were used to retrieve leaf area index and chlorophyll concentration for dense
canopies. Only simulated canopy reflectances in the 6 visible through short wave IR Landsat
TM channels were used. We used a empirical function to compute the signal to noise ratio
of a retrieved quantity.

1 Introduction

The radiosity method has found several applications in remote sensing over the last five years (e.g. Borel et
all (1991, 1994), Gerstl and Borel (1992), Goel et al (1991)). In this paper we discuss a dataset we created
using an analytical model for single and N-layer canopies in conjunction with the leaf model PROSPECT
(Jacquemoud and Baret (1990)) and soil spectra taken from SOILSPEC (Jacquemoud et al (1992)) aver-
aged over the 6 Landsat channels from 0.45 p to 2.35 u. One goal was to investigate various commonly
used vegetation indices and test which could extract the leaf area index best. Another goal was to develop
multi-spectral retrieval algorithms to retrieve the canopy chemistry (water content C,, and chlorophyll con-
centration C,44) and the leaf structural parameter N,. To make the model more realistic we varied the soil
background using random mixtures of sand, clay and peat.

2 The Canopy Radiosity Models

The theoretical models make use of the radiosity method and basic probability theory. The radiosity method
is used to compute the amount of emitted, reflected and transmitted energy per unit time and area leaving
the leaf and ground surfaces. The present model assumes that all surfaces are Lambertian reflectors, but
allows to treat leaves with side specific reflectances and transmittances. The models are developed stepwise
starting with a single layer of horizontal leaves, then N-layers with horizontal leaves and finally including
arbitrary leaf angle orientations. For each model we develop analytical solutions or simple formulas to
compute the BRDF’s.

!Presented at the Eleventh Thematic Conference and Workshops on Applied Geologic Remote Sensing, Las Vegas, Nevada,
27-29 February 1996.




2.1 Review of the Basics of the Radiosity Method

The radiosity equation (1) of Borel et al. (1991) expresses the radiative energy B; leaving a surface S;
as the sum of the emitted radiative energy E; and the reflected and transmitted energies from all other
visible surfaces. The scattering characteristics are assumed to be Lambertian, i.e. independent of incident
and reflected directions. Furthermore the radiosity and emission are assumed to be constant over all finite
surface patches S;. Using these assumptions the radiosity equation can be rewritten as:

2N
B:iS; = B S; + x: », Bj Fyi S; ,i=1,2,...,2N, (1)
i=t

where

X = pi, if(f;-7;) < 0
* T, if (R;-7;) > 0

B; : Radiosity of the finite area S;: the sum of emitted, reflected and transmitted radiative energy per unit
time and area leaving a surface i, unit: [Wm~2].

E; : Emission of the finite area S;: the radiative energy per unit time and area emitted from a surface
source, e.g. a light source within or on the surface, unit: [Wm~=2].

p; = Hemispherical reflectance of the finite area S;: the fraction of the hemispherically incident radiative flux
which is reflected back into the top hemisphere surrounding surface %, unitless.

7; ¢+ Hemispherical transmittance of the finite area S;: the fraction of the hemispherically incident radiative
flux onto the bottom surface which is transmitted through the surface into the hemisphere surrounding
the top of surface %, unitless.

7i; ¢ The normal vector on a surface 7 pointing outward.

Fji = View factor or form factor: the fraction of radiative energy leaving the finite surface S; that reaches
the finite surface element S;, sometimes the notation Fs;.s; is used, unitless.

N: Number of discrete surfaces (e.g. plant leaves), where 2N is the number of (single sided) surface compo-
nents S;.

The radiosity method assumes that:

1. The angular distributions of the radiances leaving the participating surfaces are Lambertian, i.e. con-
stant in all directions.

2. For finite surfaces the magnitude of the emitted radiant flux density (radiosity) does not vary across
the respective surfaces.

Using these assumptions and a reciprocity relationship, eq. (1) can be rewritten as:

2N
B; = Ei+x: ) _B; F;; ,i=1,2,...,2N. (2)
j=1

As shown elsewhere (e.g. Borel et al (1991)) eq. (2) can be solved using the Gauss-Seidel method. Note
that in our implementation we treat each leaf as a light source through assigning each leaf an “emission”
term. This allows us to use a more precise method to compute the amount of illumination on each surface
and also to compute the amount of multiple scattering inside the canopy.




2.2 Review of the Single-Layer Radiosity Model

In this section we repeat some of the derivations from Borel, Gerstl and Powers (1991) because there was
a typographical error in one of the radiosity equations, which caused the analytical solution to be wrong
as well. Analytic expressions for the BRDF in the hot spot direction and away from it are also derived. A
simple linear reflectance model for soil is used to compute the reflectance. Vegetation indices are computed
using two wavelengths in the red and near infrared part of the spectrum.

For a single-layer canopy of horizontal and non-overlapping Lambertian disks above a Lambertian surface,
the three radiosity equations can be written. From Borel , Gerstl and Powers (1991) we obtain equations
for the layer-averaged radiosity of the top surface of the leaf layer (B;), the underside (B2) and the ground
surface (Bs):

By = plai By + 7 loi B3
By = 7Tlat By + plai Bs
By = Ps (1 - Iaz) Eo + Ps Bz, (3)

where Fj is the total incident solar power per unit area in [Wm=?], lai is the leaf area index of a leaf layer

without overlapping leaves in [m?m~2], p and T are the hemispherical reflectance and transmittance of the

leaves, and p, is the soil reflectance. Note that in this case the lai is also equal to the green fractional cover.
The analytical solution of the set of linear equations (3) is:

B, = Eolaip + Bolairp, [M]

1— pp,lai

1 — ppslai
1+ lai(r — 1)
1—ppslai |~

B, = BEolai [—“T“Lpp‘(l — l“i)]

B: = Ep p,[ (4)

One can show (Borel et al (1994)) that the BRDF of a single layer canopy away from the hotspot direction
is given by:

+ (7 — 1)lai)?
1—pplai

BRDF(6y # 0556y # ¢5) = -'E1—0[31+(1-—-lai)33] = plai + p, (5)

2.3 Review of the N-Layer Model

The N-layer model has been described elsewhere in detail and thus we repeat only the final result in a form
easy to implement in IDL or Fortran. The following is a listing of the IDL procedure:

function nlayerfcn,rho,tau,rhos,xlai snlayers,bminus,bplus
; compute radiosity N-layer model

bminus : layer averaged radiosity in downward direction

; INPUTS:

;7 rho, tau : leaf reflectance and transmittance

; rhos : soil background

;7 xlai : non-overlapping leaf area index of a single layer
; nlayers : number of layers in model

; OUTPUTS:

; bminus : layer averaged radiosity in upward direction

H

H

np=n_elements(rho) & brdf=fltarr(np)
bplus=fltarr(np,nlayers+l) & bminus=fltarr(np,nlayers)
;N-layer model (see 1990 RSE paper and Bill Powers derivation in appendix)




Table 1: Bandlimits and Soil Reflectances used

Channel | Lower Bandlimit | Upper Bandlimit Pclay | Psand | Ppear
Number | in [pm] in [um]

1 0.45 0.52 0.417 | 0.336 | 0.096
2 0.52 0.60 0.466 | 0.382 | 0.097
3 0.63 0.69 0.524 | 0.415 | 0.146
4 0.76 0.90 0.576 | 0.447 | 0.280
5 1.55 1.75 0.646 | 0.500 | 0.546
7 2.08 2.35 0.603 | 0.451 | 0.452

g=xlai*(tau-1.)+1,
a=sqrt ((1.-tau) “2-rho*rho) & b=xlai*a*(sqrt((a*xlai) “2+4+g)-a*xlai)/ (2.*g)
bp=1+b & bm=1~-b & d=(1.-rho*rhos*xlai)
gl=g*bp-1. & g2=1.-g+bm & rl=rho*xlai & g3=gg*rhos+rlisd & g4=g*gl-bp*rlsrl
ti=g-bm*d & t2=d+bp-g & bpn=bp~(nlayers—2) & bmn=bm" (nlayers-2)
terml=rl*t2+bpn+bpn+bp & term2=(2.*g3*g4+b+rl*t1+bp) +bpn+bmm
term3=2.*(d*(1.~b*b)*(g-1.)+g*(1.~g+(1.~b*b))~2.*g3+rlxb*b) *bpn*bmn
term4=gl*t1sbmn*bmn*bm+g2+t2¥bpn*bpn+bp
cl=(termi+term2) /(term3+termd) & c2=(ci*g2-rl)/gl
c3=(2.*rl*c1+b*t2+g4+t2) ¥bpn/ (gi*(t2¥bpn+ti%bm)) & c4=c3*t1xbmn/ (+2+bpn)
free0=1.0
for j=0,nlayers-1 do begin

if j eq 0 then begin

bmnext=1.0 & bpnext=1.0
endif else begin
bmnext=bmlast*bm & bpnext=bplast*bp

endelse

bplast=bpnext & bmlast=bmnext & free=free0*(1.-xlai) & freeO=free

bplus (¥, j)=c1*bmnext+c2+bpnext & bminus (%, j)=c3+*bmnext+c4*bpnext-free
endfor
bplus (*,nlayers)=rhos*(c3*bmext+c4*bpnext)
bplus(*,#*)=bplus(*,*) ; omitted the 1./!pi term because we want reflectances
bminus (*, *)=bminus (¥, *)
brdf (*)=bplus(*,0)
return,brdf
end

Note that this model is discrete in the vertical direction and quasi-continuous horizontally because the
information about the location of the individual leaves in a layer is lost by defining the horizontally averaged
quantity lai. The radiosity and emission are also averaged over each layer. The emission term is actually
set to the layer averaged energy directly incident from a point source in direction (6:, ¢:) and allows one to
compute the contributions from multiple reflections and transmissions.

3 Generation of a Canopy Multi-Spectral Dataset

The following data was used in two programs to compute canopy reflectances in 6 Landsat TM channels
The soil reflectances were computed using the SOILSPEC database and a FORTRAN implementation of
the BRDF calculation based on Hapke’s model kindly provided by Ranga Myneni (NASA-GSFC). The look
direction was nadir and sun angle was at 30 degrees of zenith to compute the soil reflectance of three soil types
(clay, sand and peat) for a medium wet soil with smooth surface. The BRDF of the sand was normalized to
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Figure 1: Scatterplot of canopy reflectances in TM-3 (red) and TM-4 (NIR) for a single canopy layer model
above ground.

reach a maximum of 0.5 since the BRDF was above unity. The TM-band averaged reflectances are given in
Table 1. The soil reflectance p, was computed using:

Ps = fclaypcla.y + fsandPsand + fpcatpycat

where fclay + faa‘nd =+ fpcat =1

The soil fractions (feiay, fsana and fpeat) were computed using uniform random numbers.

The leaf reflectances and transmittances were computed using an IDL version of the PROSPECT model.
The PROSPECT model uses the following parameters as input and we used uniform distributed parameters
between the ;in and ;07 limits:

e Leaf structure N,: N; pmin = 2., N¢maz = 3.
e Chlorophyll pigment concentration: Cj,y; in [rgem=2): Cotbmin = 7.86, Caypmar = 34.24
e Water content Cy, in [cm]: Cy min = 0.008, C,,,maz = 0.014

Leaves with large N, and small C, 44 and small C,, are typical for senescent (yellow) leaves. Large chlorophyll
content indicates a healthy green leaf.

The randomly distributed LAI ranged from 0. to 1. for the single layer model which is typical for
agricultural crops in the early growing stages. For a 20-layer canopy the LAI ranged from 1. to 5. which is
typical for deciduous trees. A scatterplot of the red/NIR reflectance is shown in figure 1 for all 1000 cases.

4 LAI Retrieval using Vegetation Indices

Vegetation indices are commonly used to estimate LAI using the red (TM-3) and NIR (TM-4) channels. A
common problem is the effect of the background (soil) on the canopy reflectance which is often treated by
defining a soil line (e.g. WDVI, SAVI).




The following vegetation indices (VI’s) were used (e.g. see Goel and Qin (1994)):

1. Simple ratio index:

nir

VI=—

red
2. Normalized difference VI: i 4
NDVI = M
nir + red

3. Weighted difference VI:
WDVI=nir—a-red

where
o ps(nir)
ps(red)
4. Soil adjusted VI (original):
3 nir—red
SAVI = 2 nir + red + 0.5

5. Soil adjusted VI (1):

nir — red

SAVII=(14+L0)——m
AVIL=(1+ )nir+red+L

where L=1—2.12- NDVI-WDVI
6. Soil adjusted VI (2):

SAVI2 = nir + 0.5 — /(nir + .5)2 — 2(nir — red))
7. Nonlinear VI:
.257) — (red — 0.125)

_ (-
GEMI= 1—red

where
o= 2(nir? — red?) + 1.5nir + 0.5red

nir 4+ red + 0.5

8. Nonlinear VI:
nir? — red

Ll=———
ol nir? 4 red

where Z denotes an average over z. The band averaged reflectances in TM-3 and TM-4 channels were used
as red and nir.

To investigate the performance of a VI we followed the work of Goel and Qin (1994) which is based on
a signal-to-noise concept proposed by Leprieur et al (1994):

maz(VI;zy,.., éva)(; ;;in(VIiﬂ,...,N) , (6)

SNR;(VI) =

where VT; denotes the average of VI in the i-th interval of the parameter of interest (e.g. if LAI varies from
0. to 1. and N = 10 then the 5-th interval is from 0.5 to 0.6 ). o(VI); is the standard deviation of VI for
all VI's in the 4-th interval of the parameter of interest. The interpretation of SN R is such that an SNR of
less or equal to unity makes it impossible to retrieve a parameter. For large SNR’s (e.g. greater than 2) it
is possible to retrieve an unknown parameter such as LAI.

We found that the GEMI index by Pinty and Verstraete (1992) performed very well with SNR’s of more
than 5 over small LAI’s and also performs well for LAI’s between 1. and 5 as shown in figures 2 and 3. Note
that the GEMI index was not modified for the TM bands.
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Figure 3: Signal-to-noise ratio of various VI’s for a 20-layer canopy.
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Figure 4: Mean and standard deviation of classes: a) LAI, b) N, ¢) Cy and d) Cqys, found with a neural
network clustering algorithm for a single (left 4 panels) and N-layer canopy (right 4 panels).

5
5.1

Retrieval of Canopy Chemistry Parameters

Neural Network Clustering Approach

To retrieve canopy chemistry parameters it has been observed that more than two spectral bands are neces-

sary.
1.
2.

The first approach taken here consists of the following steps:
Compute the principal components of the 6 Landsat TM channel reflectances: Xi, 1=1,2,3,4,5,6.

Based on the values of the Eigenvectors choose 2 principal components: x; and x2.

. 'The canopy spectra are projected on the 2 principal components x1 and xo.

. A neural-network (NN) is trained using all pairs of points and calculates weights using a learning

algorithm.

. The neural-network clusterer is used to classify each spectrum.

. For each class compute mean and standard deviation of the parameters of interest and sort them in

ascending order and graph them.

The results using this method were (see figure 4):

1.

2.
3.

The LAI of a single layer could be retrieved well and for the 20-layer model up to a LAI of about 2.
The leaf structure parameter was not retrievable for both canopy types.

The leaf water content can be distinguished for dense canopies but more or less just in senescent and
wet canopies. There is much overlap between the classes except for higher water amounts where the
standard deviation is small and allows better retrievals.

. The chlorophyll concentration was retrievable for dense canopies but not significant for single layer

canopies.

. The fractions of soil could not be estimated with this method.
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Figure 5: Geometry of the distance and area measures that relate chlorophyll concentration to the green
peak of vegetation reflectance for a yellow and green leaf.

5.2 Geometry Based Approaches

The second approach is based on geometry. A sequence of reflectances, e.g. TM(1,2,3) to describe the green
peak or TM(2,3,4) to describe the chlorophyll absorption or TM(4,5,7) to describe leaf water content, is
used. The reflectance-triplets together with the center wavelengths in um are interpreted as triangles. Two
measures were found to successfully retrieve chlorophyll concentration:

1. The area A of the triangle formed by the points (W1, R1), (W2, R2) and (W3, R3).

2. The perpendicular distance d of the middle point (W2, R2)from a line described by the points between
the minimum (W1, R1) and maximum (W3, R3) wavelength.

Figure 5 visualizes the distance and area measures for a spectral peak similar to the green peak of green
vegetation. Note that for dense dark vegetation the distance or area become small because the green peak
is less pronounced. As the chlorophyll concentration is decreased the leaf becomes more reflective in the
green and the distance/area measure increases. In figure 6 we show the geometric measures as a function
of chlorophyll concentration. Note that the SNR’s allow a retrieval of chlorophyll using both measures. In
practice however it may be difficult to sense the green peak of vegetation with sufficient dynamic range. An
advantage of the area and distance measures is that they are less sensitive to the background signals from
the atmosphere and soil.

6 Conclusions

We have shown that the radiosity method together with physical models for leaf reflectance/transmittance
(PROSPECT) and soil reflectance (SOILSPEC) can be used to generate datasets for multi-spectral sensors
such as Landsat. The dataset were used to test the performance of various vegetation indices (VI, NDVI,
WDVI, SAVI, SAVI1, SAVI2, GEMI and NLI) in the retrieval of leaf area index. The GEMI index proved to
perform best for single and N-layer canopies. More sophisticated algorithms based on principal components
and neural network clustering were used to successfully retrieve LAI for sparse canopies. A neural network
based method applied to dense vegetation simulated reflectance data retrieved chlorophyll concentrations and
distinguishes between dry and wet canopies. Geometric measures (distance and area) retrieve chlorophyll
concentrations for dense canopies given three bands (TM-1, TM-2 and TM-3).
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