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Abstract

Quantum Monte Carlo for Electronic Structure:
Recent Developments and Applications
by
Maria Milagros Soto Rodriguez

Doctor of Philosophy in Chemistry
University of California at Berkeley
Professor William A. Lester, Jr. Chair

Monte Carlo (MC) methods are useful for evaluation of high dimensional integrals,
simulation of random processes (such as diffusion), and to solve equations. In recent years,
quantum Monte Carlo (QMC) methods have been found to give excellent results when applied
to chemical systems. The main goal of the present work is to use QMC to perform electronic
structure calculations. In QMC, we use a Monte Carlo simulation to solve the Schrédinger
equation, taking advantage of its analogy to a classical diffusion process with branching. (The
version of QMC which employs no branching is known as variational Monte Carlo (VMC).)
Importance sampling reduces the variance in the computed averages by directing the walk, by
means of a drift term, towards the most important regions in configuration space where the trial
wave function (¥r) is large. The density of walkers in the diffusion process cannot be negative;
so, the probability density for importance sampling, given by the product of the QMC solution
and the trial wave function, must be positive. This goal is achieved by imposing the boundary
condition that the trial and the exact wave function have the same nodal surfaces, i.e., the
random walk is performed separately in each nodal volume of the trial function by preventing
any configuration from crossing a node; this is known as the fixed-node approximation. There
are many variations of MC for electronic structure and we shall review a few. In the present
work we focus on how to extend the usefulness of QMC to more meaningful molecular systems.
Our study is aimed at questions concerning polyatomic and large atomic number (2) systems.

The accuracy of the solution obtained is determined by the accuracy of the trial wave
function’s nodal structure. Efforts in our group have given great emphasis to finding optimized
wave functions for the QMC calculations. Little work had been done by systematically looking
at a family of systems to see how the best wave functions evolve with system size. In this work
we present a study of trial wavefunctions for C, CH, C.H and C>H,. The goal is to study how to
build wavefunctions for larger systems by accumulating knowledge from the wave functions of its
fragments as well as gaining some knowledge on the usefulness of multi-reference wave functions.

In 2 MC calculation of a heavy atom, for reasonable time steps (in VMC, this is a time

step giving a = 50% acceptance ratio) most moves for core electrons are rejected. For this reason




true equilibration is rarely achieved. A method proposed by Batrouni and Reynolds® modifies the
way the simulation is performed without altering the final steady-state solution. It introduces an
acceleration matrix chosen so that all coordinates (i.¢., of core and valence electrons) propagate
at comparable speeds. A study of the results obtained using their proposed matrix (the inverse
of the Hessian of the “potential” U = —2In|¥r| is chosen) suggests that it may not be the
optimum choice. In our work we have found that the desired mixing of coordinates between core

and valence electrons is not achieved when using this matrix.

1G.G. Batrouni and P.J. Reynolds. Accelerated Green’s function Monte Carlo: Avoiding Critical Slowing
Down in Simulations Containing Large-Z Atoms. unpublished.
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Chapter 1

Introduction to Electronic

Structure Methods

The delerminant is a passionale function.
: D. Husemoller

One hopes that in the future many experiments (e.g., finding stable and non-pernicious
drugs, identifying transient species in chemical reactions) will be complemented by theoretical
methods since physical conditions could be simulated by computations on the given system.
Electronic structure theory, based on solving the Schrédinger equation to get the energy and wave
function which describe the chemical system, has been greatly enhanced by the development of
computer technology (i.e., vector and parallel machines) and astute algorithms to overcome the
difficulties inherent in these problems. The search for novel approaches that take full advantage
of these machines’ capabilities continues. The purpose of this chapter is to introduce the reader
to terms in electronic structure theory which will be used throughout the rest of this work.
In addition, a glossary containing and referencing abbreviations and acronyms used is given in
Appendix A.12. More detailed (and better illustrated) treatises on the subject can be obtained
from the literature[l, 2].

1.1 Hartree-Fock and the correlation problem

We shall present now a short introduction to the solution of the electronic structure
problem using the Hartree-Fock (HF) approach. Good sources for an overview of the HF method

can be found in [3, 4).

To describe a molecule, start with a time-independent Hamiltonian in atomic units (see




Appendix A.1) which we assume to be non-relativistic,

M
ﬂmolecular = ’-Z V2 '_‘V2 ZZ +ZZ""‘+Z Z ZAZB ’ (1 1)

i=1 i=1 A-—l i=l §F>i A=1 B>A

where r;j, 7:4, and R4p are electron-electron, electron-nucleus and internuclear distances, re-
spectively; M is the number of nuclei; N is the number of electrons; and M4, and Z4, Zp are
the mass and atomic number of each nucleus A, B, respectively. The first two terms are the ki-
netic energies of the electrons and the nuclei, respectively. The third term is the electron-nucleus
attraction, and the fourth and fifth are the electron-electron and nuclear-nuclear repulsion terms,
respectively.

A second approximation may be introduced at this point. The Born-Oppenheimer
approximation (for a more detailed description see Appendix A.2) assumes that the nuclei remain
fixed in space with respect to the electrons. Therefore, the second term in the Hamiltonian (i.e.
kinetic energy of the nuclei) can be neglected, and the fifth term (which we will refer to as V4p)
will be constant since the internuclear distance, R4p, is considered fixed for the time scale in

question. We will work with a simpler Hamiltonian:
ﬁmolccular = ﬂel + VAB (12)

where v N
Raz-Ylvi-y o Za 5L (13)
i=l i=1A=1 * i=1j>i Y

is the electronic Hamiltonian, and

M M
=223 25 (14)
| A=1B>4
Using this Hamiltonian in the Schrédinger equation, H¥ = E'Y, allows us to write

(7'2(:1 + VAB)\I’ = Etog\p
" Ha = (Bior — Vap)¥
Ha¥ = ea¥ (1.5)

where €e; = Eyor — Vap. Equation 1.5 is the electronic Schrédinger equation which can be solved
treating the nuclear coordinates as parameters. The nuclear Hamiltonian, ﬁnuc, is found from
Eq. 1.1 to be
z o1
- - 2 -
Hnuc = - Z MVA + (Hel) + VAB
A=l
Mo
= =Y s Vi+Ea({Ra)), (1.6)
A=l 2MA



where (H.i) represents an average over the electronic Hamiltonian, and Eg. is the potential
for nuclear motion which depends parametrically on Ra. The term Fio: constitutes a nuclear
potential energy surface (PES) which describes the energy as a function of nuclear position in
the Born Oppenheimer approximation. This PES is obtained by solving the electronic Schrédin-
ger equation, and this work is concerned mainly with methods to solve the electronic structure
problem.

Going back to the electronic Hamiltonian, ’ﬁc;, we readily see that it can be rewritten

and divided into one- and two- electron parts:

) N N N 1
Ra=Y @+ D — (1.7)
i=1 i=1j3>i ¥

where h(i) is 2 one-electron Hamiltonian which involves both kinetic and potential energies in
the field created by the nuclei in the system. Or in more abstract terms, the Hamiltonian! is a

sum of a one-electron operator and a two-electron operator, ie, H=0,4+0,.

The one-electron operator, O; = Zf‘;l h(3) corresponds to the Hamiltonian of a system

of non-interacting electrons. Since the h(i)’s have a set of eigenfunctions {X;}, known as spin
orbilals, such that ﬁ(i)x,- = g;Xj, the eigenfunctions corresponding to O, are products of these

spin orbitals {;} for each electron,
¥ = x1(F1)x2(F2) - - xw(Ew) - (1.8)

This type of wave function is known as 2 Hartree product, and its eigenvalue is the sum of
the spin orbital energies, &5, mentioned above. However, Hartree products do not account for
instantaneous correlation among electrons, nor satisfy the anti-symmetry required for fermions.
Since electrons are indistinguishable, the anti-symmetry requirement says that the wave function
must change sign with the interchange of two electrons. That anti-symmetry is a reason why
normalized “linear combinations” of Hartree products known as Slater determinanis are used

instead, i.e.,

x1(F1)  x2(F1) - xnl@1)
v = _\/_1_1\77 Xl(:zz) X2(:$2) XNF-'Bz) ’ (1.9)
x1(En) x2(En) - xw(Ew)
or
, X )
¥ = WZ;(—l)P‘P,-{xl(fl)m(sz).--xN(zN)}, (1.10)

1From now on we will refer to H.i as “the Hamiltonjan”, or simply H, and €. as E.




where p; is the permutation nurnber, B, is the permutation operator, and x;’s are spin orbitals.?
One can also write this Slater determinant as [0) = |x1(Z1)x2(F2) - - - xnv(EN)) = Ixa(Dx2(2) - - - xw(N))
using Dirac notation.® Contrary to Hartree products, the Slater determinant does not specifically
assign electrons to spin orbitals. The spin orbitals contain the variational parameters we will
eventually choose to adjust. The spin orbitals have spatial and spin factors specified as follows.
Usually a set of molecular orbitals (MOs) {¥;} is chosen and electrons of & and B spin are then
assigned to these MOs according to the state of the system.* This arrangement will constitute
the reference electron configuration. The individual MOs are expressed as linear combinations
of n basis functions {¢,}, i.e., i
Pi=) ity - (1.11)
p=1

These basis functions usually correspond to each of the atoms in the system.® This is known
as a linear combination of atomic orbitals, or LCAO approximation. A description of options
for these basis functions is given in Appendix A.3. The coefficients ¢,; are known as the MO
coefficients, and they are our variational parameters.

By projecting Eq. 1.5 (where H.; is given by Eq. 1.7) with (¥], and using the variational
principle,® i.e., A
o (A

(¥]¥)

one can find an upper bound to the ground electronic state energy. More explicitly, (\Il|(§1 +
O,|¥) = (¥|E|¥) which for a normalized |¥) implies that

> Ey, (1.12)

E = (9|0,]%) + (¥]0,]¥) . (1.13)
The first term in Eq. 1.13 for a Slater determinant |¥) such as given by Eq. 1.9 is given by'
(LARIE) = D 0 ERMbGE) = DGRl = 3 ks, (1.14)
j=1 ji=1 ' j

where N is the number of spin orbitals (which also corresponds to the number of electrons) in

the Slater determinant (Eq. 1.9), k refers to the coordinates of the k-th electron, and {x;} are

2Notice that Slater determinants satisfy anti-symmetry, but do not account for correlation of electrons with
opposite spins. Instantaneous electron correlation is necessary to account for the fact that electrons repel each

other. This feature is not described explicitly when all electrons are treated on average.

30n occasion one will stop using the symbol for the spin orbital as well, and refer to it just by its index, i.e.,
|%)} = |12--- N), where the order of the indexes will indicate which electron. Since electrons are indistinguishable,
the assignment of electrons to specific spin orbitals will not play a vital role in notation. '

*That is, each electron j may be characterized by x;(7) = ¥:i(i)a(7), or xi(7) = ¥i(7)8(7) depending on its
spin.

3 As a convention, roman letters will be used to index the spin and molecular orbitals, while greek letters will
be used to index the basis functions.

8The variational principle is briefly described in Appendix A.4.



orthogonal. These integrals are called one-electron integrals, since they depend only upon the
coordinates of one electron. The @ operator leads to more complicated two-electron integrals,

1 1 I 1 1
@i = 323 { @I - fu @l 0x@)

n

1 N N
32 0 {GElid) ~ @i} (1.15)
i j

where the (ij]ij) = J;; are known as the Coulomb integrals and the (ij]ji) = K;; are the exchange
integrals. The complete general expression for an upper bound of the ground state energy in a
closed-shell system is

N N N
. \ g \eyae

Eo= (ilkli)+5 D > {(iilis) - @lia)} - (1.16)

ij=1 i 3
We want to find a procedure to minimize this energy with respect to the MO coefficients {c,:}
introduced above. It will be an iterative procedure since one must first guess a wave function with
an initial set of parameters to be varied in order to minimize the energy. The new parameters

are used as initial guess for the second iteration, and so on.

At this point, it is convenient to define two operators,
- - . 1
Jixi = [/ deXj(Q)r_lz'Xj(z)] xi(1) , (1.17)

and
Kix: = [ / dfzx,’@)%m(?)] x;(1), (1.18)

where f_, is a local operator known as the Coulomb operator which describes Coulomb repulsion
between electrons in orbital x; and electrons in orbital x;, and I;’j is a non-local operator known as
the exchange operator which switches electrons between orbitals. These definitions are necessary
because we wish to write the Hamiltonian as a sum of one-electron operators, i.e. H = 27:(1,,
since it simplifies and separates as Hi. = b+ Virr where h includes the one-electron part, the
kinetic energy (—1V?) and nuclear-electron attraction (- M, £a), and Vur = 3; (J; - K;)
is the average potential experienced by an electron in the field of the N — 1 other electrons.
These one-electron operators constitute the Fock operator, #(i) = k(i) + 2 (J; () — K; (),
and lead to the Fock equations, F(3)|x) = Z;N €ij|7), where &;’s are the orbital energies. As
mentioned above, these equations are solved iteratively until convergence, to give us the energy
of a single electron in the field of the other electrons, and, therefore, the procedure is known
as the self-consistent field (SCF) method. The SCF method ignores instantaneous correlation
between electrons since each electron feels the influence of the other electrons only on average.

The term Hartree-Fock limit usually conveys SCF results in the limit of a <l:omplete basis set.




At this point we wish to recall the LCAO approximation we introduced in Eq. 1.11, and

use the linear expansion in the Fock equations,

f'Xi = E&Xi

.- N . :
f(z:c,‘;llt)) = g (Zc,,,-ly)) . (1.19)

p=1 u=1

Multiplying by (v| yields,

N N N
(VI.?-'ZC,,,-I;;) = (Vlsichil#>

u=1

N ) N N
Zcﬂi (VIFlp) = & Zcﬂi(” 1)

u=1 p=X
N - N
ZC,,{F,,,, = €ZS,,,,C”;
u=1 p=1
FC = SCe, (1.20)

where F,; = (v|F|p), and S, = (v]p) are defined as the Fock and overlap matrices, respectively,
€ is a diagonal matrix containing the orbital energies, and C contains the expansion coefficients
{cui} from Eq. 1.11. Equations 1.20 are known as the Roothan-Hall equations[5}.

Now we have the desired iterative procedure to compute the ground-state energy. A
flowchart with the basic algorithm is shown in Fig. 1.1. By repeating the procedure at different
nuclear positions, one can construct the PES of the nuclear motion. In that fashion, equilibrium
geometries which minimize the total ground state energy can be found as well. Computationally
speaking the calculation of the one- and two- electron integrals is the most time consuming step,

as well as very demanding on machine capabilities for fast storage and ‘retrieval.

1.2 Post-Hartree-Fock methods

Even though the HF approximation yields good energies for sn;all systems and is quali-
tatively accurate for others, it fails in describing many important properties, such as dissociation
energies, dipole moments, and other quantities sensitive to electron correlation. These properties
require ins\ta:ntaneous correlation among electrons to be treated explicitly. The correlation energy
is defined as the difference between the exact non-relativistic energy of the system, E.zqce, and

Hartree-Fock energy, i.e.,
Ecorr = Ec:r:act - EHF . (1.21)

Sections 1.2.1-1.2.4 will give a brief survey of some of the most popular and successful methods

available to treat the correlation problem. The methods presented are not chosen just because



Figure 1.1: Iterative algorithm followed by most SCF programs.

Set up Hamiltonian

}

Guess {c,:}

}

Calculate & store

— Form and compute F and S | +~—— integrals:
o overlap
} o one-electron

/ o two-electron
Solve FC = SC¢

}

of their popularity, but also because results using such methods will be presented in Chapter 3
for comparison. More detailed discussions can be found in the literature, and references will be

provided in each section when appropriate.

1.2.1 Configuration Interaction (CI) and Multi-Configuration Self-Consistent
Field (MCSCF)

The configuration interaction (CI) method is the first of the approaches using multi-
determinant wave functions to be introduced in this section. First let us describe how a single-
reference CI calculation is performed. On a HF calculation of an n-electron system described
by an N-function basis set, the result is 2V spin orbitals, N fo‘r each « and @ spin to obtain a
single-determinant wave function, ¥¢ = [x1X2---Xn)- The rest of the spin orbitals which remain
unoccupied (2N — n of them) are known as virtual orbitals. New determinants can be created
by occupying one or more of the virtual orbitals to replace occupied orbitals (while enforcing

the correct spin state of the system). The CI procedure determines the coefficients, ¢;, in the

determinant expansion,

M) = col @) + 9 cEIEE) + > > cIE) +--- . (1.22)

i<j a<d




CI approaches are classified according to how far these substitutions are carried out: e.g. single
substitutions or ¥{, double substitutions or ‘Ifgjb, etc.” In this manner, one has single and doubles
CI (SDCI or CISD) in which both single and double substitutions are used;® and likewise go all
the way to Full CI (FCI). In principle, FCI recovers complete correlation if the one-electron basis
is complete. However FCI is limited in practice by the size of the basis chosen. (See Fig. 1.2.)

) SDCI caleulations are known to overlook the effect of simultaneous pair correlation and
are not size consistent. Size consistency means that “the energy of a many-particle system, even
in the presence of interactions becomes proportional to the number of particles (V) in the limit
N — c0.”[1] For instance, a SDCI calculation on 2 dimer would not allow for double excitations
in each of the monomers since that would imply quadruple excitations. However, if one wants
to compare the dimer with its dissociated products, both dimer and monomers should have
been treated at the same level of theory. Langhoff and Davidson[7] pointed out that quadruple
excitations are not negligible for many electron systems. In a CI study on the N2 molecule[7],
exhaustive calculations were done to determine an empirical formula to account for quadruple
excitations in DCI,

AEguaa = (1 - c3)AEpg , (1.23)
where cg is the coefficient of the SCF determinant in the resulting normalized DCI wavefunction,
AFEquaq is the contribution of quadruple excitations and AEpg is the contribution from the
doubles. This formula, known as the Davidson correction, proved to correct the correlation
energy, such that the resulting energy from the DCI calculation is size consistent, and it holds for
expansions dominated by the reference configuration. For large systems, however, the Davidson
correction breaks down, as ¢1,...,cn = cp-

One does not always need to start a CI calculation from a HF wave function; with the
necessary computer support, multi-reference CI (MRCI or MCCI) calculations are commonly
used. However diagonalization of the CI matrix is not a trivial task and although the accuracy
increases with the addition of configurations, the larger the expansion the slower the convergence
shall be as well. With the availability of large computers and powerful diagonalization procedures

CI calculations have become routine.

Another useful post;Hartree Fock method is that of the multiconfiguration self-consistent
field (MCSCF). MCSCF can be also thought of as 2 “truncated CI expansion” in which orbital
parameters as well as determinant coefficients are optimized. To do an MCSCF calculation one
needs to establish a small number of conﬁgurations, usually chosen to describe the system’s main

features. For instance, if one wished to study the dissociation of a molecule, it would be in order

i k... 15 used for occupied spin orbitals, and xq b,c,... 15 used for virtual spin orbitals. Therefore, ¢ signifies

replacing occupied x; by virtual xa.
8The term quadratic configuration interaction (QCI) is used by Pople et al. [6] for a modified CI procedure

which yields size consistent results while all terms are still second order.



Figure 1.2: Effects of the theoretical model chosen on the quality of the energy results obtained.
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to include configurations which will give proper dissociation to each corresponding species. It is
common practice to use the wave function resulting from an MCSCF calculation as the reference
wave function for a more extensive CI calculation (i.e., MRCI) to follow.

Figure 1.2 shows a popular representation which compares the effectiveness of single
and multi-reference approaches in solving the electronic Schrédinger equation. An excellent
presentation of the CI method is given in [1}, and of the MCSCF method in [8].

1.2.2 Complete Active Space Self-Consistent Field (CASSCF)

CASSCF is an MCSCF in which the MC used constitutes the complete space of all
active configurations.® As mentioned above, HF theory breaks down whenever the electrons
require significant rearrangement, for instance when describing formation or breaking of chemical
bonds. A more complicated description of a wave function that can handle these processes within
the MO model, can be found in MCSCF theory, mentioned in Sec. 1.2.1 above. Roos et al. [9]
suggested the following approach to combine the best of the CI and MCSCF approaches while
keeping in mind which orbitals are important in estimating the quantity of interest.

Their multi-configuration wave function consists of two sets of occupied orbitals: inac-
tive and active. The inactive orbitals are doubly occupied in all determinants in the expansion
and do not become involved in the chemical process of interest.}® The active orbitals define a
subspace in which a full CI is performed. These orbitals should include (but not be limited to)

the orbitals undergoing change during the chemical reaction. For example, they may constitute

9The following overview on the CASSCF method comes from [9].
10Tn practice these orbitals are expected to have occupation number two.
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a full valence CI including all valence orbitals, all excited states, etc. This constitutes the com-
plete active space (CAS) wave function, and natural orbitals (NOs)!! are chosen in order to get
faster convergence of the CIL. Roos et al. state that “NOs are particularly suited to obtaining
‘chemical insight’ into the results of the [CASSCF] calculation[9].” By using a FCI in the active
space, there will be no bias in the choosing of configurations since the FCI contains all possible
distributions of active electrons among the active orbitals satisfying all possible spin couplings
corresponding to the total spin quantum numbers. Once the CAS wave function has been estab-
lished, an MCSCF calculation is performed in which all parameters (i.e., both determinant and

MO coefficients) are variationally optimized.

1.2.3 Many-Body Perturbation Theory

Even though CI systematically improves upon the HF approximation, it is not size-
consistent except at the FCI level. Perturbation theory‘(PT), however, provides an alternative
which 1s size-consistent at each level, since instead of truncating the Hamiltonian matrix, as is
done in limited CI calculations, it is treated as the sum of two parts, one of which is small enough
to be considered a perturbation.

To carry out such a calculation, the total Hamiltonian is divided into a zeroth-order part,
720, which has known eigenfunctions and eigenvalues, and a perturbation V, ie., H =Ho+ V.
The Mgller-Plesset[10] (MP) approach takes 7L to be the exact electronic Hamiltonian operator,__
and Ho as the HF operator, i.e., 2 sum of one-electron Fock operators, Hp = 3°; F(3). Therefore,
the perturbation AV is defined as AV = A(H — Hy), and the eigenvalue to zeroth-order is the HF
energy, ENF, corresponding to a particular Slater determinant, the eigenfunction to zeroth-order,
YHF | One can follow Rayleigh-Schrédinger perturbation theory (RSPT),12

Yeraer = ‘I’I(;IF +A¥; + Az"I’z “+...
Ec_:cact = E(I)-IF -+ AEJ_ + /\2E2 + ... (1.24)

to find each MP correction to different orders, corresponding to the order of A in Eq. 1.24.

The terms MP2 and MP4 refer to the cases where MP theory is carried out to second
and fourth order, respectively. MP2 recovers a large percentage of the correlation energy and
yields a better optimized geometry than HF. A comparison of CI and MPPT methods is given

in [13], which shows the trends in size consistency for MP and the lack of size consistency in CI.

115ee Appendix A.6. ‘
12RSPT can be found in most introductory quantum mechanics books[11, 12].

|
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1.2.4 Gaussian-1 (G-1) and Gaussian-2 (G-2)

The Gaussian-1 (G-1)[14] and Gaussian-2 (G-2){15] methods of Pople, et al. are recent
empirical methods to produce high accuracy results. Their main objective is to obtain equilibrium
geometries, total electronic energies, and harmonic frequencies associated with local minima on
the PES to be used in calculating zero point energy (ZPE) corrections, AE(ZPE). G-1 employs
previous theoretical experience (e.g., geometry optimization techniques and higher polarization
functions) and empirical data (e.g., corrections to obtain exact H and H results) to correct upon

MP4 energies. G-2 improves on G-1 theory by estimating the error in some of the G-1 corrections.

1.3 Quantum Monte Carlo for electronic structure

The rest of this work deals with the implementation of Monte Carlo (MC) methods
to determine atomic and molecular electronic structure. Quantum Monte Carlo (QMC) uses
a random walk to perform electronic structure calculations without directly depending on the
quality (or complexity) of a wave function, but greatly improving on post-Hartree Fock results.
This is accomplished, usually recovering over 90% of the correlation energy, without need of
large basis set expansions nor extensive determinant expansions. The method is easily vectorized
and its structure is easily parallelized as well. The computation and storage of integrals, which
becomes the rate determining step in an SCF calculation, ate not necessary for QMC since the
random walk only requires the calculation of first and second order derivatives of a given trial
function, which provides great flexibility in choosing such a function. The QMC method is

presented in detail in Chapter 2.




Chapter 2

Quantum Monte Carlo

The imaginary numbers aere a wonderful flight of God’s spirii; they are almost an
: emphibian between being and noi being.
Gotterfied Wilheim von Leibnitz, 1702

For something imaginary, they cause an awful loi of trouble.
Joseph B. Rucker, 1989

2.1 Theory

2.1.1 Monte Carlo methods

The main tactic in Monte Carlo (MC) methods is to solve a problem by simulation at a
large number of randomly chosen points. This randomness has earned MC its name in relation
to games of chance. MC methods can be used for solving multi-dimensional problems such as
the simulation of physical processes (e.g., diffusion), the solution of differential equations (e.g.,
the Schrodinger equation) and the evaluation of high dimensional integrals. It is our intention
to give a brief overview of one of these applications to get better acquainted with the power of
MC before attempting to implement it in our electronic structure application.

A common use of Monte Carlo methods is in the evaluation of high dimensional integrals
[16, 17}, which cannot be evaluated using standard quadratures or grid methods. We shall briefly
give an overview of how Monte Carlo is used to evaluate the integrand at a large number of
random points which can be sampled from a known distribution to obtain the integral. Suppose

we wish to evaluate the integral

I = / fdr (2.1)

for a known function f in 2 known volume 7. This integral can be found by evaluating the

function f at N randomly chosen points, which are uniformly distributed in the volume 7. For

- 12
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instance in the one-dimensional case, !

/ ez =~ &2 ")}jf( z:) . (2.2)

i=1

where {z;} are randomly chosen with equal probability in the interval [a,b]. An estimate of the

error for the value obtained from such a procedure is given by the laws of statistics to be

ol ~ -1%-0'} = [NZ (fz:))? - (NZf(z,)) ] (2.3)

i=1 i=1

and it is determined by the deviation of f from its average value within the volume of integration.

Although this method will give us eventually the quantity we desire to obtain, it can
be inefficient if we spend too much time sampling where f is small. We wish at this point to
introduce the concept of importance sampling. The uncertainty in the Monte Carlo quadrature
will be proportional to the variance of the integrand in Eq. 2.2. If we multiply and divide the

integrand by a positive normalized weight function w(z) such that

b
/ dzw(z) = 1, (2.9)
then the integral in Eq. 2.2 can be expressed as
b—a z;
/d:z:w(::)f() ~ )zi((x) (2.5)
i=l ¢

where z is distributed according to w(z). One way to generate points from the distribution w(z)

is to change variables from z to y such that

¥z) = /a i dz'w(z’) , ' (2.6)
such that .
% = w(z);, yz=a)=0; ye=b=1, (2.7)
and the integral becomes
f=@)
r= [olE @8

To evaluate the integral in Eq. 2.8 by Monte Carlo one evaluates f/w at a random sampling of

points distributed according to y over the interval [0, 1]:

=)
I~ -';w(x@,)) (29)

1 ntegral evaluation by Monte Carlo is generally less efficient than most other methods for integrals of low
gr

dimensions.
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If we choose a w which approximates f, f/w is a very smooth integrand, and the variance will
be small. Also in Eq. 2.7 we can readily see that the distribution of points z is dy/dz = w(z).
The points sampled will be concentrated around the most “important” points {2} where w (and
consequently f) is large. The choice of w is determined by our ability to sample from it, either
using Egs. 2.6 and 2.9.
The one dimensional problem can be generalized to the N-dimensional case, I = [dZf(Z)
for ¥ = (z3,22,...,zN), using
I~ —Zf(ﬂ-'x) . (2.10)
i=1
where the components of Z; are chosen randomly and independently according to a known dis-
tribution. A normalized weight function w(Z) can be introduced as for the one-dimensional case

presented above.

2.1.2 Introduction to quantum Monte Carlo

Quantum Monte Carlo (QMC) uses a Monte Carlo simulation to solve the Schrédin-
ger equation, taking advantage of its analogy with classical diffusion processes[18, 19, 20]. The
evolution in (real) time of concentration C can be described by

ac
ot

which is a diffusion equation with first order kinetics. The system described by the concentra-

= DVC — kC ' (2.11)

tion function C can be simulated using this equation. A formal analogy can be made between
Eq. 2.11 and the familiar time-dependent electronic Schrddinger equation 'in atomic units (cf.

Appendix A.1.):
6(I>(R t)
T

The only difficulty with this analogy is found in the complex nature of <I>(R t). We know that

= ——V2<I>(R t) + VO(R,t). (2.12)

®(R,t) = e~*Et$(R), while C is obviously a real non-negative quantity. In order to interpret
the wavefunction (&, t) as a concentration, it has to be a real quantity as well. Therefore, we
consider the Schrddinger equation in imaginary time (1 = it):

_0¥(R,1)

—5 = ~DV?&(& 1) + V(R)<I>(R ) (2.13)

where R refers to a 3-N dimensional vector specifying the coordinates of the N electrons in the
molecule, <I>(R t) is the time-dependent many-body wave function of the system, D = 5, and
V(R) is the potential energy of the molecule given by

V(R) = Z—. - }_':_ }:Z"'_Z"‘, (2.14)

i T
i>7 o oa>p «f
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where r;, are distances from electron 7 to nucleus «, and r;; and rnp are interelectronic and

internuclear distances, respectively. Now Eq. 2.12 becomes an ordinary differential equation with

real variables, and therefore @ can be interpreted as a concentration of imaginary particles called

walkers or “psips.” Anderson introduced the term ¥ particles or “psips” in [18, 21] to differentiate
the imaginary particles in the QMC process from the particles in the physical system.

' Equation 2.13 has the same form as Eq. 2.11. If we have the first term of Eq. 2.13 alone,

the result is Fick’s second law of diffusion:

' 83(R, 1)

ot
which relates a first order derivative in time to a second order derivative in space of the time

dependent wavefunction ®(R,t), with diffusion constant D. On the other hand, if we only

= DV2%%(R,1), ' (2.15)

consider the second term in Eq. 2.13, i.e.,

?3%3’_1) = —V(B) &(B,1), (2.16)

we are left with a first order rate process in which the wavefunction grows or dies off dependingon - -~

the sigﬁ of the rate constant V(ﬁ) Since we are considering the wave function @ in this context
as a density of (imaginary) particles, this rate constant affects the population by determining how
many of these particles are created or destroyed. That is, walkers can be allowed to propagate by
diffusion (Eq. 2.15) and “branching” (Eq. 2.16) in a random walk in order to simulate Eq. 2.13.

The formal solution to Eq. 2.13 can be found by expanding the time-dependent wave-

function (R, ) in a complete set of eigenfunctions of the Hamiltonian:

CP(R.,'[) = ic;qS;(R)e—E‘t (2.17)

i=0
In the long time limit,z — oo, high energy states decay and the only surviving term is the ground

state wavefunction, ¢g, with corresponding energy Ey,
Jim B(R,t) = copo(R)eFot . (2.18)

It is convenient to introduce an arbitrary reference energy, Er, into the imaginary time de-
pendence in Eqs. 2.17 and 2.18 which can be adjusted such that it reduces oscillations in the

exponential term:

o0
@(R,t) = Zc;cﬁ;(ﬁ)e"(E"ET)‘
i=0
Jim &(R,1) = codo(R)e~Fo—Er)t (2.19)

Notice that if Er (to be called the trial energy henceforth) is set to the ground state energy, the

solution loses its time dependence and we are left with an equilibrium solution, i.e., ﬁ’%—f“l =0.
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The evolution of the wavefunction <I>(ﬁ, t) can be simulated using the Monte Carlo pro-
cedure. One must first choose an ensemble of imaginary particles (elsewhere called walkers, psips,
or configurations) to represent the wave function at time zero. Each walker is a 3-N dimensional
vector (ﬁ) representing the positions of all V electrons in the system. These configurations evolve
in a random walk with branching by allowing the electrons to diffuse while the nuclei remain
fixed,? ‘as follows. After taking a time step 7,2 each walker takes a random step AR. The step
is accepted with probability @ * (0 < @ < 1) and branching of the new configuration is decided
according to a multiplicity M o e~Y7, given by first-order kinetics.5 If the new configuration
is accepted with probability @, M copies of the new configuration will appear in the updated
ensemble. The energy can be computed at each step from the averaged potential as shown by
Anderson in [18, 21]. Once equilibration is achieved, these energies can be averaged to obtain the
energy of the system. At long times, the distribution of configurations will represent the ground
state wavefunction, ¢o(ﬁ). Once more it is important to emphasize that because Eq. 2.13 is in

imaginary time, this process does not correspond to any real dynamics.

2.1.3 Importance sampling

Thus far in our discussion, branching depends directly on the potential V(ﬁ). However,
since V(ﬁ) diverges as two particles approach each other, there will be large fluctuations in
the ensemble size causing large variances in the averages. Therefore we introduce importance
sampling in order to use a distribution different from <I>(f?:, ?) and still obtain the same averages,
but reduce the fluctuations by sampling only most probable regions in space.

One can multiply the time dependent Schrddinger equation in imaginary time (Eq. 2.13)

by a known trial function ¥y (ﬁ),

—q:T(R‘)Q‘I’(af;w = Up(R) {-szcp(ﬁ.’,t) + V@(R,t)—ETcp(iz',t)} : (2.20)

Add and substract the terms 2D®(R,t)V2¥7(E) and 2DV®(R,t)VE¥r(R) from Eq. 2.20,

—M?;I’T(Rl = —-D¥7V?® + (V- Er)®¥r + 2DEV¥y — 2D&V3 Uy
+2DVEVEy - 2DVOVYy . - (2.21)

2In principle this method is not constrained by the Born Oppenheimer approximation mentioned in Chapter 1.
However, the QMC approach presented in this work deals only with the solution of the electronic Schrédinger
equation. For instance, Traynor et aL{22] have done QMC calculations without the Born Oppenheimer constraint.

3Notation used in this chapter: t is used for real time, ¢ for imaginary time and 7 for time steps.

* Anderson’s simple algorithm[18] did not have a probability for acceptance/rejection. The configurations
simply were killed if M = 0.

5 As done with the reference or trial energy in Eq. 2.19, an offset or reference potential, V;. 7+ can be used for
this probability[18, 21]. ;




17

And finally, rearrange terms and rewrite Eq. 2.21 in terms of a new distribution, f (R,t) = &(R,t)¥r(R):

RIICEL) (a}:’t) = [-D¥yV?® — D3V?Ur — 2DVUTVE] + [(—DV?¥7 + VU7)® — Er¥r9]
+2DV &V Yy + 2DEV 7

DV + VU7
Yp

= —DV2(<I>11IT)+[ —ET] (3¥7) + DV - (28V¥7), (2:22)

( : ~
to obtain a new equation with diffusion { —DV2f}, branching { (EL(R) — Er)f}, and drift
{DV - (fFq)} terms,

1 2V Y
= —DV2f+ " _ | f4+DV- (f T)
‘IfT ‘I’T
of 2 - .
-5 = ~DViIi+ (EL(R)—Er)f + DV -(fFq) . (2.23)
In Eq. 2.23 we have introduced two new quantities: (1) the local energy, Er (cf. Appendix A.8.),
Eyf) = HrR) _ (T0r(R) + VEz(R)) " (2.24)
Yr(R) Yr(R)
and (2) the quantum force, fq, which is a gradient to a potential field, In [¥7[?,
Lo 9VU(R) o
Fo(R) = ———=~ =Vh|¥r(R)|* . (2.25)
¢ 7 (R)

There are several advantages to importance sampling. First, the new drift term, DV - ( fFo),
imposes a drift velocity so that configurations will move towards the most probable regions
in space where ¥z, chosen to approximate ¢o, is large. Second, the new (first order) rate
term, (Er — Er)f, now depends on the local energy, EL(}i) The local energy EL(R.) is a
smoother function than the potential V(ﬁ), since the kinetic energy term, TUr /¥, can cancel
the singularities in V(R).S (The requirement on ¥y that the local kinetic and potential energies
cancel out singularities is known as the cusp condition[20].) Now the energies averaged are
“local energies.” Hence for a good choice of Wy, Er can be made nearly constant, therefore
keeping the size of the ensemble approximately constant as well, greatly reducing the statistical
fluctuations[23], and thus increasing the sampling efficiency. Also, the ensemble average of Fz
over the asymptotic distribution yields the ground state energy thanks to the hermiticity of the

Hamiltonian:
(Er) = JdR f(Bye S dR ¢o¥r [ﬂ%"-] _ [dR [6oH]¥r
g [dE f(R) [dE ¢o¥r [dE po¥r

8 For example, Anderson'’s first approach did not use guiding functions, and obtained the energies by sampling
from the potential [18, 21]. In [23] he showed improvement by a factor of ten with the inclusion of a trial functjon.

= Eyp. (2.26)
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It becomes obvious from Eq. 2.26 that the choice of trial function affects only the variance of the
average, not the average value itself. This constitutes one of the main strengths of QMC, since
the results of the calculations will be insensitive to the choice of Wy, while still recovering the
" correlation energy. This means that, in principle, choices of atomic basis set, functional form,
etc. will not directly influence the averages. For molecular systems, one usually chooses ¥ as a
product of a linear combination of Slater determinants of molecular spin orbitals (See Sec. 1.1.),
and a correlation function which depends on the interparticle distances. A single determinant
has been found to give excellent results in most cases. (For examples, see Sec. 2.2.11.) Some ¥

choices will be discussed in more detail in Sec. 2.1.44.

2.1.4 Fixed-node diffusion quantum Monte Carlo

The variant of QMC which imposes the short time and fixed-node approximations is
known as fixed-node diffusion quantum Monte Carlo (FNDQMGC or FNDMC)[20]. The term
diffusion Monte Carlo (DMC) is used when at least the short-time approximation is made. In the
following two sections these approximations are described. A presentation of the computational

algorithm and a discussion on trial functions follow. _

2.1.4.1 Short-time approximation

We may write the Schrédinger equation in integral form by slightly manipulating Eq. 2.17.
Expanding &(R, 0) in eigenfunctions ¢y, of the Hamiltonian, then ®(R, 0) = > Cnda(R), where

the ¢, coefficients are given by 4
cn = / dE $:(R)8(F,0) . | (2.27)
Using this last expression for the eigenstate expansion coefficients in Eq. 2.17,
R = Y [ / dR ¢ (R)®(R,0) ] e B4 (R, (2.28)
which is equivalent to (by interchanging the order of integration and summation)

S(R,1) = / dR [Z¢;(§)¢,,(R")e-”3n] 3(R,0) . (2:29)

This equation formally relates the wavefunction ®(&,t) to the initial wavefunction, &(R,0).

Since we recognize Eq. 2.29 as the Schrédinger equation in integral form, we can define
G — E5t) = > 41(R)¢n(R)e En (2-30)
] . ~ :

)
as the Green’s function. (See Appendix A.10.) Although this formal definition is useless for

practical computations since we do not know E;, and ¢, (ﬁ), we can still apply the formalism in
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a more practical form. The evolution of ¢(ﬁ' ,t) is represented by means of the Green’s function

to be : .
SR, t47) = / 4B G(R — B3 1)8(R,1) , (2.31)

where G'(}-Z‘ — R’;7) is the transition probability of moving from configuration R to R in time
7. Since (after introduction of importance sampling) we think of the distribution f(R,t) as
a concentration or density of imaginary particles, we can approximate it with an ensemble of
walkers which will propagate using G(R — R’; 7). For this reason, G(R— R';7)= (R’ le"’ﬁlﬁ)
is known as the “propagator,” since a given distribution f(ff,i) can be propagated for a finite
time interval 7 using the Green’s function. The probability of moving a walker with coordinates
R to position R’ is given by

R
m X G(R R ,T) ) (2.32)

and detailed balance is obtained by using the ratio of the probability of going from R to R’ and
the probability of going back from R'toR (See Eq. 2.38.) as the weight to accept the move. Also,
G is 2 solution to Eq. 2.13 with boundary condition G(E — R';0) = §(R' — R). Unfortunately
we still don’t know how to evaluate G(R — R'; 7).

In general,

G(R— R1) = (RleB|R) = (R T+V)|R) , (2.33)
but since T and V do not commute, Eq. 2.33 is still analytically unsolvable! However, for small
time steps T we may approximate the Taylor expansion of the exponential as follows:

. . 2o, -
eTHY) = (T+V) + 5,—(T+ V)2 + §(T+ Ve o+ .-
2 3 2 3
A 72,00 73 - 7° ~o 753
= T+ 5T° + -5—!'.1'6+---+TV+EV + gV
72 an s
+ -2—,(TV+ VT + ---
~ e TV + O(?) (2.34)
Using this approximation one can solve Eq. 2.33 and get the Green’s function for the short-time
approximation (STA),
Gsta(R — R';1) = (4w Dr)~3N 2¢= (&' ~R)?/4D7 o~(V(R)-Er)Dr , (2.35)
which is a product of the free particle diffusion Green’s function (See Appendix A.10.1.) and a

branching term which determines the multiplicity or (growth/death) of the ensemble. After the

inclusion of importance sampling, our propagator becomes

GéTA(E - R’l; T) — (47rDT)—3N/2e—(ﬁ'—ﬁ—Drﬁq(ﬁ))gl‘!DTe—[(EL(ﬁ)'!-EL (R")/2-Er)D~ . (236)
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This G{ps(R.— R';7) is the short-time approximation which solves Eq. 2.23 for the mixed
distribution f = Up¢.

This approximation leaves us with a first-order error in the energy.” In practice, this ap-
proximation means that several calculations at small time steps are required in order to compute
a DMC energy. These results are extrapolated by linear regression to E(+ — 0). Examples of
these time-step extrapolations will be presented in the present work whenever 2 QMC energy is
determined (e.g., see Fig. 2.3). This dependence of the DMC energy on time step (i.e., non-zero
slope of E vs. 7 curve) is known as “time-step bias.” A discussion on the time-step bias of the
energy and its linearity is presented at length in Ref. [29]. Determining how small the time step
should be in order to get linear dependence of the energy is not always obvious. In practice,
one computes and collects the local energy at each step of the random walk, averaging over the
walkers. The averages along the walk are divided into blocks to eliminate serial correlation, i.e.,
the smaller the time step taken, the larger the block needs to be. When such émall time steps
are taken, it becomes very difficult to obtain uncorrelated averages since the correlation among
blocks increases as 7 gets smaller, and we are forced to consider a new problem. Autocorrelation

will be discussed in more detail in Chapi;er 4.

2.1.4.2 Fixed node approximation

One final consideration comes from the anti-symmetric nature of the wave functions we
must use in describing fermions, i.e., such wave functions must change sign with interchange of
two electrons.® We also know that we must have a positive density of walkers in Eq. 2.23. Since
this density is given by f(ﬁ,t), which is a product of a known trial function, \I’T(ﬁ), and the
unknown exact ground state wavefunction, @o(ﬁ, t), this could pbse a problem where U7 and
Pg differ in sign.

In the “ﬁxed-node” approach presented here, the nodes of ¥7 are imposed on .
This is implemented by rejecting any walker that crosses the nodes of ¥x. In this manner the
simulation is performed in each nodal volume (i.e., volumes defined by the nodes of ¥7), and
the DMC energy will be limited by how well the nodes of the chdsen Yy approximate those
of the exact ground-state function ®o(R,t). If ¥z has the exact nodes of the system, then
feo = ¢o¥r, and the DMC energy will converge to the exact ground-state energy. Otherwise, a
fixed-node state, foo = $o¥7, where gy is the fixed-node solution will be obtained. This is known
as the fixed-node (FN) approximation[20]. The fixed-node method was introduced to electronic

structure problems by Anderson in {21].

"Moskowitz and Schmidt[24] claimed that the Green's function given in Eq. 2.36 was not a correct short-time
approximation (i.e., in the limit of » — 0). Three papers|25, 26, 27] quickly followed to correct the error, and the
contradiction was settled[28§].

8This requirement leads to the “sign problem” in QMC.
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An important repercussion of the fixed-node approximation is that the computed energy
now depends on the nodes of ¥z. For special cases in which the nodes are known from either
spin[30] or spatial[21] symmetry, the fixed-node solution is exact. Unfortunately, little is known
about the complicated geometry: of the nodal hypersurfaces for many-body systems.® Reynolds
et al. showed in [20] that given a set of nodes, the FN energy is a variational upper bound to the
ground-state energy. The fixed-node approximation also leads to an additional time-step bias.
This bias arises when a walker crosses two nodes or the same node twice without being detected
in a single time step. The “cross-recross”[21] error incorrectly increases the population near the
nodes. Table 2.1 shows examples of the quality of results obtained in the past using the FN

approximation.

2.1.4.3 Algorithm

In Sec. 2.1.4.1 we mentioned how the QMC walk is performed at different time steps
by taking many very small steps which are then collected into blocks large enough to eliminate
serial correlation. Our implementation of the DMC algorithm for one block is as follows: .
(0) Choose ¥r
(1) Choose Ny, configurations to form the initial ensemble distributed according to f(R,0) = ¥z
(2) For each step,

(2) For each configuration k,

(1) For each electron 2,
(a) Calculate local energy, Er(R:), and quantum force, Fo(R).

(b) Move electron coordinate according to
B = R + Drfg(f) + %, (2:37)

where ¥ is a normalized random Gaussian number ({x*) = 2Dr).
(c) Calculate new local energy, Er(R}), and quantum force, Fy (RY).
(d) Reject move if node is crossed.

(e) Accept move (B! becomes E;) according to Metropolis-like[19]
weight:

¥ (B2 G(RL— R, 7)

W(E, R;) = — — —
B Bs) = g (B O — Fhr)

(2.38)

and update.
(2) Calculate Er(R'), branching (M = eD7[(BL(R)+EL(R))/2~Erl) and other
quantities of interest.
(3) Add MEr and M to running totals.

9See [31] and references therein.
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Figure 2.1: Evolution of configurations during a random walk. Each box represents a fictitious
walker, with the large circle as the nucleus, and 3 smaller circles as the electrons. The figure

illustrates a diffusion step followed by branching.
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(4) Make M copies of the configuration.

(b) Average local energies, i.e., (Er)x = (MEL)e/(M)s.

(c) Update trial energy.

(d) Print block averages.

Figure 2.1 illustrates a few walkers, and what happens to them during diffusion followed
by branching. In the diffusion step, the electron moves to a new position, and depending on its
probability, the configuration will move on, or die off. The first walker branches to create two
new configurations, while the last one creates three, and one of the walkers dies off. The program
used in this work to implement the above algorithm is called QMagiC and is documented in

Appendix C.
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2.1.4.4 Trial functions

The trial function ¥p plays an important role in the implementation of the FNDMC
algorithm. It is used as the guiding function for the evolution of the ensemble in the FNDMC
process. The branching term in Eq. 2.23 depends on the “excess local energy” [32] (EL(R) — Er),
which for ¥ = Q(R',t) will imply a smooth EL(R‘), and result in a multiplicity M ~ 1.

The second, and perhaps most important role of the trial function in FNDMC, is in
fixing the nodes of the system to approximate the nodes of the exact ground state wave function.
Unfortunately, very little is known about the nodal hypersurfaces involved in this type of com-
putation. Although some work on studying the nodes of trial functions has been done within the
QMC framework[31, 33], there is still a long way to go along these lines.

Ideally one wants a trial function that is as simple and compact as possible since one
needs to compute Uz, its first (9% /9z;), and second (82¥r/8z?) derivatives at each step of the
walk.(See Sec. 2.1.4.3.) The trial function should also be as accurate as possible, give the smallest
possible statistical variance, and have a small time step bias. We know that if the trial function is
the exact wave function, the variance and the time step bias would disappear. Barnett presented
some work related to determining trial functions whose time step biases were negligible in [34]. In
that work, several small systems (such as Hs, Li, Lill) were studied using different wave functions
which satisfied both the electron-electron and (on average) electron-nuclear cusp conditions. It

. was found that the extrapolated energy coincided with the smallest time steps tried, so the time
step bias was considered insignificant. Unfortunately, lack of time-step bias cannot be generally
assumed, even for highly accurate wave functions, especially lacking general knowledge of what
the “smallest” time step ought to be. In Chapter 3 we shall study more closely how the wave
function choice for a family of systems affects the recovery of the correlation energy, variance and
time step bias of QMC calculations.

A popular choice for ¥z has been to use a variational (HF or post-HF) wave function
multiplied by a correlation factor, i.e., ¥r = A -C, where A is a Slater determinant or linear
combination of Slater detemﬁnants, and C is a correlation factor (typically choseﬁ to be an
exponential such that no nodes are introduced) which explicitly includes factors of interparticle
distances. In this type of wave function, the location of the nodes of ¥, which determine the FN
energy, depend on the Slater determinant(s) of molecular spin orbitals (See Sec. 1.1.) obtained
from a previous variational calculation using standard quantum chemistry computer programs.
If A is composed of a single determinant, a spin factorization into « and g electrons is possible,
i.e., A= D*DP to speed up the computation and to incorporate spin into the walk.

At this point it is useful to recall that even though the fixed-node energy is an upper

bound, QMC is not a variational method,® and it directly simulates electron correlation. For

10QMGC is not variational since it does not apply the variational principle to optimize parameters.
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instance, in eb inilio methods one needs large expansions of basis functions and determinants,
ie., these me_thods do not account for instantaneous correlation unless large expansions are
employed to better é.pproximate correlation effects on the results. An example can be found in
the case of a QMC study of Liz[35] wave functions, where a compact (four-determinant) wave
function is sufficient to properly treat dissociation and achieve chemical accuracy. However, it
has been shown[36] that polarization functions can play an important role in properly describing
the system in QMC. For example, state-of-the-art eb initio calculations could include up to g-

functions for an atom such as C[37], while d- functions might suffice for accuracy in QMC.

Since a large basis set slows down the calculation (especially in QMC), our group uses
a cubic spline routine[38], an approach introduced by Garmer and Anderson in [39] to fit the
MOs of the wave function. This procedure is done only once at the beginning of each calculation,
therefore reducing the CPU time it takes to compute a large AO expansion at every step in the
walk. This type of capability also enables one to study and correct the cusp behavior of large
contracted GTO basis sets!! by QMC. In a study on the F atom, it was found that the lack of
cusp of the GTO basis in the region near R = 0 caused serious problems in the calculation of the
QMC energy[38]. In Gaussian orbitals, the wave function’s first derivative is 0 at the origin, while
for Slater orbitals it is discontinuous. This means that during the random walk as electrons get
close to the nucleus, the quantum force will push them away when using Slaters, while if using
Gaussians the electrons might get undesirably close. (This results in non-physically low energies,
which can branch out of control.}2) A solution to this problem was attempted by extrapolating
the correct cusp behavior for each MO, but the procedure proved to be too cumbersome.!® The
good news is that in QMC we can always use STO functions which inherently do not have this
problem, the bad news is that since STO functions are so hard to integrate in ab initio approaches,
there has been little done on obtaining STO-based (single- or multi-determinant) wave functions
for non-linear molecules.
. Let us now turn our attention to the correlation factor, C, mentioned above. Since C
is chosen to have the form €Y, it is always positive and therefore introduces no nodes.!* As a
consequence, the DMC energy will not be affected by the choice of U and its parameters; on the
other hand, U can be chosen to minimize the variance and time step bias of the walk. U can

include both electron-electron and electron-nuclear distances. In the past, U has been chosen

1 Contracted GTO basis sets defined in Appendix A.3.

12Since the branching term exp{—(E; — Ez)] blows up.
13The additional approximation involved finding the point at which the Gaussian’s first derivative changed sign

and then substituting the knots in the spline by those from a Slater until it reached r = 0 to ensure that the first

derivative had proper cusp behavior at the origin.
14The use of linear combinations of Slater determinants with correlation factors on each term of the expansion

has not been fully explored yet. In this type of trial function, the correlation factor would obviously affect the

position of the nodes.
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to satisfy the cusp conditions'® of the Schrddinger equation[20]. One popular form of U is the

linear Padé-Jastrow form,
ary;
1+ br,-j !

where the coefficient a is fixed to satisfy the cusp condition (see Appendix A.S.l), and the second

Ui = (2.39)

parameter b can be optimized in a MC walk. Figure 2.2 shows electron-electron and electron-
nuclear Jastrow functions; their effects on the trial function can be inferred from the Coulomb
interaction between the charged particles. That is, the electron-electron repulsion will make the
wave function small for r;; — 0, while the electron-nuclear attraction will make the wave function
large when ;o — 0.

Other functional forms can be used as well, but we will not go into detail here. Two
other forms will be introduced in Chapter 3. Several papers have been written on parameter
optimization for QMC based on minimization of either the variational energy[40] or its variance
[41, 42]. Efforts to optimize correlation function parameters, Slater determinant and MO coeffi-
cients simulatenously[35] have had limited success in improving the nodes of the trial function.
Such an optimization runs the risk of introducing undesirable new nodes into the trial function.
On the other hand, Umrigar[43] succeeded in a similar all parameter optimization on a more
flexible (more optimized parameters) wave function to lower the QMC energy of some small
systems. As systems get larger, such approaches get prohibitive. |

In Chapter 3, we perform some numerical experiments on how to choose a trial function
for a polyatomic system. We base our study on experience gained from QMC studies on its

fragments. This should give some insight on how to tackle more complex systems.

2.1.5 Variational Monte Carlo

Variational Monte Carlo (VMC) evaluates the expectation values of an operator of a
trial wave function ¥p by Monte Carlo (MC) integration. For instance, the expectation value of
the Hamiltonian is

.. - = B HYE
 (UplAlr) _ JdRfRE, _ SRl [Z=

) = iz = JRFE) [ dRNLP

= (Er) . (2.40)

Since no analytical integration is required, VMC provides an inexpensive and competitive way
of computing properties of wave functions which are computationally too difficult for ad initio
methods[44, 45]. One example of this is obtéining energies of wave functions that include electron
correlation explicitly due to the difficulty in computing the integrals. For instance, the type of
trial functions discussed in Sec. 2.1.4.4 would make integration an insurmountable task. Coldwell

and Lowther presented a VMC calculation using Hylleraas-type functions in [46]. Also, VMC

15See Appendix A.8.1.
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can yield properties such as derivatives[47} and polarizabilities[45] as “pure expectation values,”
which in DMC become “mixed expectation values”[34]. Mixed expectation values are difficult to
obtain at the same level of accuracy of pure expectation values.

Another common use of VMC is for the variational optimization of parameters in the
wave functions. Since VMC samples the local energy, Er, of a known trial wave function,!®
we know that for wave functions other than the exact, the varianée will be non-zero. (See
Appendix A.8.) By minimizing the variance of trial functions, VMC can be used to approximate
the exact solution. '

VMCQC has no time step bias which makes its convergence much faster than for DMC
since larger time steps can be used. This results in shorter, less correlated (i.e., more efficient)
walks, and no time-step extrapolations. Like in DMC, importance sampling can be included in
VMC to bias the walk. That is, the walk can be guided by a drift vector, fq, just as shown
in Sec. 2.1.3. Operationally, the implementation of VMC is identical to the DMC algorithm
presented in Sec. 2.1.4, except for the lack of branching. In VMC there will be no creation or
death of walkers, so the number of walkers is constant. Another difference with the FNDMC
procedure is in the treatment of the nodes, since no attention is being paid to the location of the
nodes in the wave function, or to walkers that cross those nodes. The guided VMC algorithm

will be discussed at greater length in Chapter 4.

2.1.6 Exact QMC methods |

As their name suggests, “exact” QMC methods attempt to perform the simulation
described in Sec. 2.1.4, lifting the short-time and fixed-node approximations. Eliminating the STA
requires sampling from the exact Green’s function without necessarily knowing its analytical form.
Several efforts have proved succesful in this direction; for instance, early work by Kalos[48], and
more recently by Ceperley[49] and Anderson{50, 51]. However, removing the FN approximation,
which was originally introduced as a solution to the fermion “sign-problem,” constitutes a greater

challenge. Recently, there has been 2 surge of different new approaches to this end[50, 52].

2.1.6.1 Sampling the exact Green’s function

Ceperley and Alder[49, 53] succeeded in sampling the exact propagator for small systems
with their Green’s function Monte Carlo (GFMC)'? method. This approach strives to sample

the exact GF, without knowing it analytically by means of intermediate walks. The first step in

16This can be contrasted with DMC which samples the exact ground state wave function and uses the trial

function as a guiding function. )
17Some authors use the term GFMC as a general name for 2l QMC methods which use a Green'’s function in

their random walks. In this work we shall use GFMC for exact GF methods only.
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this endeavor is to relate the exact GF to an approximate trial Green’s function, Gp,'8 given by
Gp(R,R;7) = (47rD-r)"3N/26'(ﬁl’ﬁ'n"ib(ﬁ))al‘w" . (2.41)

An expansion of the exact Green’s function, G, is generated in terms of an approximate Gr, as
G(R, R'ir) = Co(Bs7) + /0 Tt / dB" G(B, By —t)K (B, B3ty (2.42)

which is a Fredholm integral equation of the second kind,!® where GT(ﬁ, R';0) = §(R - R") for

small times 7, and the kernel K, given by
K(R', Et) = - [ﬂ(fz‘”) + %] Gr(R", B0y, (2.43)

provides 2 transition probability to an intermediate R" between R and E'. Equation 2.42 is
averaged over time with probability distribution function (p.d.f.) —};e"/ 4 such that one gets a

time-independent GF,
« _‘_1_7_ CT(ET—I/A) ‘PT(R.)G(R.: R.I; 7)

G(R,R) = ht : 2.44
(R, E) .2 Y7 (B) (2.44)
where & is the Laplace transform of G in time. Equation 2.42 becomes

GRE) = Gr(BF) + b / dB" G(R, RMR(R" /), (2.45)

where Gr and K are defined as G was defined in Eq. 2.44 (i.e., averaged over time); and the

evolution of the probability distribution is
fasi(B) = / AR G(R, B fn(B) (2.46)

where f, is called the n-th generation.
The general scheme of the algorithm is as {follows:
(1) Starting at R, sample 2 time step from p.d.f. %-e"’/ a,
(2) Diffuse and drift with Gp (as in DMC), getting to new R’ in space.
(3) Branch with direct multiplicity,

e IT(R)Gr(R, R'57)

mp(R,R;r)=¢ = — ,
Yr(R)Gp(R, R; T)

(2.47)

obtained from the first term in the integral equation (see Ref. [49]). These will be called direct

configurations.

18 We can readily recognize this as the diffusion Green’s function derived in Appendix A.10.1, after importance

sampling has been added.
195ee Appendix A.10.2 for definition and solution by successive substitution scheme.
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(4) Generate intermediate configurations by branching with multiplicity

K(R,R';7)mp(R, R'; T)A
Gz(R, R T)

m(R,R;7) = (2.48)
This is the first iteration in Eq. 2.45 since G7 has been substituted in the integral as a first
approximation to G. These intermediate configurations are not included in the averages, but
originate new random walks.
(5) The intermediates continue steps (2)-(4)?° to correctly sample G(&, &').
(6) When all intermediates generated have been processed, the f generation has been sampled
and it is time to move on to the second generation. Since a variable time step is used, the time-
step bias is removed and use of larger time steps allows for more efficient sampling. However,
this increase in efficiency is undermined by the creation of intermediate walkers which do not
contribute to averages.

- We next present the GFMC method for nodeless systems by Kalos[54] as recently de-
scribed by Anderson et al. in [50]. Start by expressing the time-independent Schrédinger equation

— DV?¥(R) + V(R)¥(R) = E¥(R) (2.49)
as = .
— VU(R) + kgK%‘R—)\Il(ﬁ) (2.50)
where k? = —E/D. The Green’s function for Eq. 2.50 is
- 1 \3N/2 . -
Golfo )= (52)  (HRE— R x Kanpaa(HE - F (251)

where K, is the modified Bessel function of the second kind. Thus, writing Eq. 2.50 in integral

form,
W(E) = / Go( B, 7)Y &) V(R) (&) diY (2.52)

determines the sampling procedure when solved 1terat1vely.
Importance sampling is included[55] with a positive guiding function ¥¢.2! Multiply
Eq. 2.52 by ¥ and rewrite it in terms of a new function ¢(E&) = lIl(.l‘—Z')‘I!c; (R) to obtain

DY TG(R) =14 V(R) 3 o1l ‘7
#(B)= / R (R B2 g7y dR (2.53)

The energy is determined from distribution qS(ﬁ) samples, and the sampling algorithm is as
{follows: '
(1) Weight of configuration at & in distribution #(R) is multiplied by V(R)/E.

20(m;) < 1 to ensure termination of process.
217t is not necessary that ¥g = ¥p.
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(2) Each configuration having weight W is divided into m = int(W +u) configurationsof W = 1,
where u is a random number in [0, 1]. If m = 0, the configuration is deleted.
(3) The configuration is moved to R’, sampled from distribution Go(R, ).
(4) Weight is multiplied by Ug(R)/¥s(R') to produce a new weight in distribution ¢(&). Repeat

from (1) to continue the sampling.

2.1.6.2 Overcoming the sign problem

Early efforts by Ceperley and Alder introduced a “released-node” approach in [49]. In
the nodal-relaxation method[49], walkers are allowed to live for a few generations after crossing
the nodes of ¥y before being killed. These walkers are followed and a negative sign is assigned
to those that have crossed a2 node an odd number of times, while a positive sign is assigned to
those with even number of crossings. These signs affect their contribution to the averages, and
as a result the Fermi energy can be obtained from the difference between even and odd walkers.
However, this process is not numerically stable since the expectation values will be lost in the
noise as the number of positive and negative walkers increases with each generation (although
the difference between the two may remain constant); For this reason, the released-node energy
is known as a “transient estimate.”

In a different effort, Kalos and Zhang[48, 52] take advantage of the concept of interacting
pairs of positive and negative walkers that Arnow ef al. introduced in [56]. This method uses
different guiding functions for the positive and negative populations, and each walker carries a
sign which identifies them. In their algorithm each walker interacts with the rest of the ensemble,
and equal numbers of positive and negative walkers are kept in order to represent a wave function,
3 = 9+ 4 ¢~ that is anti-symmetric under interchange of like spins. The importance function
of each population is required to bias walkers toward regions in space with corresponding sign.
The algorithm is stabilized by randomly smoothing the population by pérmutation, i.e., positive
walkers become negative walkers after an odd permutation of like spins and vice versa. The
results have been favorable in all test cases, even when poor trial functions were used. Results
for He, Li and Be using this method are presented in [48].

Another recent approach by Anderson and coworkers is presented in [50]. This method
attempts to learn from previous experience and incorporates the best features of both Ceperley
and Alder’s nodal release[49] and Kalos ef al. exact cancellation[52, 56) methods, described above.
The method is applied in [22] for an exact treatment of the hydrogen molecule, in [57] for the
PES of the H + Hj exchange reaction, and in [51] for the He-He interatomic potential. Our
description here comes from [50]. ‘

Start by assigning weights W (W > 0) and signs s (s = =1) to each configuration, and
defining the quantities, Gy = Go(R, él) and G; = Go(R, Rz). The combined distribution of
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moves for two configurations with s; = +1 and s, = —1, weights W), and W», and positions }-2.1

and Ra, is givén by combined weight W and sign s, §uch that
SW = WGy — WaGa ‘ L (259)
RY is chosen as usual (Sec. 2.1.6.1) from Go(R, B}), and the new weight is given by
Wi(new) = max{[W,G, — W>G-),0}/G; . (2.55)
R"z is chosen independently from G2 with new weight,
Wa(new) = max{[W,G2 — WG], 0}/G- . (2.56)

Since ‘
Wl(new)G1 = W1G1 — WG = W, - (2.57)

this procedure gives the distribution W in the positive region, and
Wg(new)Gg = Wsz - W1G1 =W s ) - (2.58)

in the negative region. Overlaping configurations with opposite sign cancel each other while
distant ones will retain their weights. Multiple cancellations are also easily incorporated in the
algorithm as follows: '

(1) A set of cénﬁgurations is selected for multiple cancellation and their R, W, s, and ' are
computed as usual by sampling Go(ﬁ, J-Z")

(2) For each configuration calculate G;W; for its new position R’ and G; W; for all other config-
urations considered at same R’ position. ) . .
(3) If any G;W; > G;W;, the W; for the new configuration is set to zero. If GiW; > GjW; for
all 7, the new weight and sign are ‘
SWet2an i in i SiWs

o (2.59)

C (W) =

(4) Repeat for all configurations in rnultiﬁle cancellation groups.
In practice, configuration space is divided into cells, and cancellation groups are selected within
each cell.

The product YW we mentioned in the previoﬁs section, from where the QMC energy is
con"nputed, is now given by the net density of configurations (positive - negative), and the energy

is given by

T ($2), (B%)
T TisWa,

i¥g;

i, (2.60)
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2.2 Applications

2.2.1 Previous Results

Table 2.1 shows some results for small systems calculated by FNQMC. It is clear from
these numbers that FNQMC does quite well in recovering the correlation energy in most cases,
between 98-100%. Even more accurate results have been obtained with the exact GFMC methods
mentioned in Sec. 2.1.6, but since our work here is in the context of fixed-node diffusion MC, we
wish to show the quality of such calculations. In systems such as H, and HZ, which have no nodes,
QMC will automatically sample the exact energy for any nodeless ¥ employed. Calculations on
other systems such as Li, Lis, LiHl and Be can easily be carried out with compact ¥’s to yield

excellent results.

Table 2.1: Total electronic energies(a.u.) of some small systems, calculated using FNQMC.

System | QMC | % corr. | Ref.
H, | -1.17451(10) | 100(1) 4]
Hf | -1.3433(5) | 100 [40]

-1.34387(5) | 100 [58]

Li | -7.47800(24) | 100.0(5) [34]

LiH | -8.06908(43) | 98.7(5) [34)
Li, | -14.9945(4) | 100" 35)
Be | -14.6657(7) | 98.0(8) [59]
CH: | -40.5063(22) | 97.3(7) [60]
N | -545765(12) | 93.1(6) [61]

Ny | -109.517(79)° | 96(14) (62]
F | -09.727(34)° | 100(12) | - [62)

F- | -99.8273(34) | 92.0 [63]

°Energies computed using fixed-node domain GFMC[62].

2.2.2 The Hj system

The hydrogen exchange reaction, H + Hp = H, + H, is the simplest chemical reaction,
and therefore, one of the systems most studied ever. In 1988, theoretical studies [64] gave
calculated integral cross sections which were in disagreement with experimental results of Nieh
and Valentini[65]. The experimentalist group claimed to have observed resonances in their cross
sections while theoreticians claimed they were a smooth function of the energy. The potential
energy surface used for these calculations was based on the analytical fit function by Truhlar and
Horowitz[66) for the extensive CI calculations done by Siegbahn and Liu[67, 68] in 1978 (LSTH).

Even though there was no evidence suggesting the problem in the cross sections was due to
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the surface, the fact that all scattering calculations based on it gave identical results renewed
interest in reexamining it by other methods. Our initial purpose was to compute the transition
state region for the potential energy surface with QMC to provide additional information in
regions not emphasized by Liu in his calculations or by the fit function. The controversy was
eventually resolved in favor of the theoreticians, and our work concentrated on working along
the reaction path. However this project was a great pedagogical tool to get me started into
the nuts and bolts of the electronic structure QMC game. Therefore, it will be presented in
that context, especially since all the necessary ingredients of a QMC calculation are present:
(1) determination of equilibrium geometry for the calculation (in this case, the transition state,
linear H3); (2) determination of best possible trial function to be used, either from an ab initio
calculation or from the literature; (3) choice of correlation functions and their parameters; and
finally (4) QMC calculation at a set of time steps 7 followed by a time-step extrapolation to

determine the fixed-node energy with (5) estimation of the variance.

2.2.2.1 Transition state and reaction coordinate by QMC

As mentioned before, Liu[67, 69) performed an extensive CI stﬁdy on the PES for
the hydrogen exchange reaction in the linea.r[é?] and 3-d[68] cases. Truhlar and Horowitz[66)
provided an analytical fit for their results in [66). In 1984, Barnett et al.[70, 33] performed a
QMC study comparing different types of trial functions using the energy barrier of the Hs system
as a benchmark.?? Ceperley and Alder also tackled the system with the GFMC with release-node
method in [49]. In 1992, another QMC study on the Hg system was presented by Anderson in
[57], using the latest in exact QMC methods (See Sec. 2.1.6) on 320 IBM RS/6000 workstations
working in parallel. The results obtained by those few studies (without doubt, there have been
countless more) are presented chronologically in Table 2.2.

This work consisted first of a determination of the geometry and energy of the transition
state by DMC as described in Sec. f.l.fi. Two single-determinant trial functions were used, with
DZ and DZP basis sets, taken from [33]. The geometry, i.e., Ry = Ry = 1.757ag determined by
Liu[67], was verified variationally for the DZ basis set. QMC energies were computed for these
two wave functions at the determined geometry, and are shown in Table 2.2, where they are
compared with other results mentioned before. The energy barrier, By = E(Hz)— E(H)— E(H,),
is computed using the exact energies for H (E = -0.5a.u.) and Hs (F = -1.1744746a.u.[71]).
Since H and H; have no nodes, FNDMC provides the exact energy for both systems. As Barnett
found in [33], the DZ wave function does considerably better than its larger counterpart. The
time-step extrapolation of the DZ results, shown in Fig. 2.3, suggests that the time-step bias of

this trial function is very small. Also notice that only an electron-electron correlation function

22We will concern ourselves with the effects of the types of trial functions used to obtain the QMC energy in
Chapter 3, and turn our attention here to the system in question, i.e., Hs.
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Table 2.2: Total energies of Ha (R; = Rz = 1.757ap), and energy barriers (£, = E(Hs) — E(H)-—
E(H,)) for hydrogen exchange reaction. :

Method Energy (2.u.) | Ej (kcal/mole)® | Ref. Year
CI -1.6581 <10.28 [67] 1973
CI -1.65876 <9.86 [69] 1984
exact estimate -1.65919 9.59(6) [69] 1984
QMC (\I:g*‘ -1.65822(41) < 10.20(26) | [70] 1984
QMC (TRHF) -1.65903(40) <0.69(25) | [70] | 1984
GFMC + RN -1.6591(1) < 9.65(8) [49] 1984
QMC (¥7(SD,DZ)) < 9.70(13) [33] 1985
this work, ¥7(DZ) | -1.658840(535) <9.81 - 1989
this work, ¥ (DZP) | -1.658688(778) <9.91 - 1989 /
exact GFMC -1.659154(14) 9.61(1) [57) 1992

@ E, is shown as an upper bound obtained by using the exact energies of H and Hz[71].

with parameters a = 0.5, b = 1.0 was used, and that no electron-nuclear correlation factor was
used.

After establishing the geometry of the transition state, we calculated the energies at sev-
eral other points along the reaction coordinate published by Liu in [67], and compared them with
the QMC results. Figure 2.4 shows such a comparison between the results of the CI calculations
and QMC. The two curves overlap within the error bars of the QMC results, although the CI
results remain slightly below the average QMC energies. Since our QMC energies coincided with
the previous best results,?® and we lacked derivative capability,®* we decided not to go beyond

the calculation of the reaction coordinate.

2.3 Making QMC accessible - size problem

2.3.1 Large Z

Perhaps the most essential variable to slow down a QMC calculation is the nuclear
charge, 2[73]. To deal with the heavy-atom problem in QMC, we need to reduce the esti-
mated computation time, Tes¢, which scales as Test o 26'5[74]. One notices that though core
electrons require the smallest step, the valence electrons largely determine chemical properties
such as bond strengths, polarizabilities, electron affinities, and ionization potentials, as well as

molecular geometries. If one treats only the valence electrons, the computation time no longer

23That is, those considered as best results at the time [67, 69]. The calculations by Anderson shown in Table 2.2

using massively parallel machines were not yet available.
24 Past efforts to obtain derivatives in FNDMC have met with very limited success[72]. This was not an imped-

iment to complete the calculation of 2 PES, just a smali disadvantage when comparing with the current state of

some other methods.




34

depends on Z but on the screened nuclear or effective charge. Under this direction many ap-
proaches have been suggested, such as valence-only methods, (effective core potentials{72, 74],
model potentials[75, 76], pseudo-Hamiltonians{77]), and approximate all-electron methods (in-
cluding all-electron damped-core QMCI78] and effective two-electron potentials[79]). All these
approaches treat core and valence electrons more or less separately which implies that core and
valence electrons have hardly exchanged. However, our studies have shown that core and valence
electrons exchange quite often{80] throughout the random walk. Acceleration algorithms have
been “recently” proposed to speed up convergence of all electrons. We will discuss, and closely

examine one of these methods in Chapter 4.

2.3.2 Polyatomic systems (

In this chapter we have presented the basics of the quantum Monte Carlo method, as
well as some results on a2 benchmark system. As mentioned in Sec. 2.3.1, we are slowed down by
Z and the number of electrons in our systems. Also, efforts have concentrated in optimizing the
approach to do atomie, or small diatomic systems. The obvious questions to formulate at this
point are: (1) Is it possible to do other systems of chemical interest? (2) How competitive is the
QMC accuracy compared with standard ab initio methods? For QMC to survive in this game, it
is time to expand the usefulness of QMC to larger polyatomic systems, such as those routinely
found in laboratories! Some of the work done in the past along these lines includes work done on
the N, molecule[61], Li clusters[29], and on bulk hydrogen at 0°K[81]. Given the extraordinary
amount of computation required to acquire convergence of methods which promise chemical
accuracy, such as CASSCF and CI, and given the type of empirical data needed for the likes of
the G-1 and G-2 methods, it does not seem so unreasonable to spend similar computation effort
and obtain an energy which is exact within its variance, and little (or none) e priori knowledge

included to bias the results.



Figure 2.2: Radial dependence of Jastrow functions.
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Figure 2.3: Time step extrapolation of the QMC energy of the saddle point in the Hjz reaction

coordinate (i.e. transition state).
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Figure 2.4: Reaction coordinate for the H + H; exchange reaction calculated by QMC with DZ

trial function, compared to the ab inifio points computed by Liu.
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Chapter 3

Acetylene system

--. if you are really smari you will be able to solve it with your fingers; if you are
less smart you will need a slide rule; if you are kind of dumb, you can use a

calculator; but if you are really stupid, you will need @ CRAY supercompuler.
Prof. I. Oppenheim

3.1 Introduction :

In quantum mechanics, if one were to know the wave function for a system, one would
be able to determine the observables of that system. Indeed, one of the most important goals of
a quantum chemistry calculation is the determination of the wave function. However, obtaining
an analytical form for the wave function of 2 multi-body system is not 2 trivial task, and the
only exact solution known is for the H-atom.

Our FNDMC calculations pose a different type of requirement on the wave function
chosen. We saw in Sec. 2.1.4.4 that a popular choice of the QMC trial function, ¥, is the form
Y7 = A-C where 4 is constructed from one-electron functions, A = Y (Slater determinants),
which can be obtained from a previous SCF and/or post-Hartree Fock caleulation (see Secs. 1.1
and 1.2) and C = C.. -C.,, of the form C = €Y, is a correlation function which explicitly includes
factors of the interparticle distances. Some choices for U are shown in Table 3.1. Extensive
work has been done on optimizing the parameters for all these functional forms by variationally
minimizing either the energy[40] or the variance[42], with methods such as fixed-sample[41], or
correlated sampling[47].

In QMC since we do not evaluate integrals, we are not concerned about the difficulties
such correlation functions would pose to ab initio calculations. Our only concern is in the location
of the nodes of the trial function in relation to the nodes of the true wavefunction, since in the

approach used here (i.e., FNDMC) we choose to impose the fixed-node approximation. Given

38
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there is little known about the nodal hypersurfaces of most trial functions used, one can use wave
functions obtained from standard quantum chemistry programs and investigate their utility.

In practice, QMC trial wave functions can be wisely chosen to give excellent results.
As mentioned in Sec. 2.2.2, Barnett et al.[33, 70] presented a wave function study using the Hz
system as a2 benchmark. Even in such a small system, it was proven that a poor choice of ¥r
can yield a poor energy. The study in [70] concentrated on deciding which type of SCF trial
function (spin-restricted or spin-unrestricted) has the lower QMC energy. It was found that the
spin-restricted SCF ¥ gave the better nodal description of the ground state wave function. In
[33], a similar study was performed on Hs, this time testing the effects of choice of basis functions.
Among the basis sets used were combinations of SZ and DZ on the central and outer hydrogens;
2 basis including bond-functions; and a basis including up to d-functions on the three hydrogens!
It was found that a DZ basis on all the hydrogens gave the best QMC energy and that the
basis closest to the HF limit was the worst in accuracy as well as efficiency. In this case it was
shown[33] that the higher energy was due to an additional node appearing in the larger wave
function. Wavefunctions need to be examined for the possibility of spurious nodes.

Work by Garmer and Anderson[39, 82] on obtaining the PES for the F + H, — HF + H
reaction showed that for F atom larger basis sets are required. In [39], MCSCF-type wave
functions were tried and found not to contribute much to improving the correlation recovered.,
while undermining the efficiency of the walk. The random walk grew “prohibitively expensive”
as it approached one of Schaefer’s wave function expansions with 214 configurations. Extended
basis sets were compared to minimal STO and DZ basis sets. The MOs were expressed using
cubic splines for efﬁcienc\y and it was found that the expanded basis set gave better results than
the DZ, which in turn performed better than the minimal STO-NG basis set.

Harrison and Handy([59] did an all-electron calculation on the Be system and found
slightly different results as far as the single-determinant (SD) vs, multi-determinant (MD) issue
is concerned. In their work a2 modest two-configuration wave function including a 25 — 2p?
excitation gave better results than the use of a single-configuration trial function (15°2s?), as
expected. Likewise, Christiansen[83] found that a two-configuration wave function did much
better for Be using relativistic effective potentials. Similar results were shown in [84] for the
ionization potential of Mg. Their work found that the MD wave function not only gave better
energy and variance, but it took much less time than the SD wave function. They argued that
although MD wave functions can adversely affect the energy by addition of anomalous nodes
into the wave function, the only nodes relevant to their study would occur when the electrons
approach each other far away from the.nucleus. The situation would clearly be more complicated
as more electrons become involved, or when the core electrons are included.

More explicitly, Sun et al. showed in [35] how great care must be taken in choosing and

optimizing the one-electron part of a trial function when the determinant expansion is small.
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They did calculations with single-determinant and four-determinant wave functions, and then
proceeded to optimize the correlation factors, as well as the MO parameters. They found that a
variationally “optimized” trial function does not necessarily improve on the QMC energy, even
if multi-determinant functions are used.!

In spite of all this and other work, it seems that finding an appropriate trial function
for FNDMC is a rather serendipitous task. We propose in this work to examine closely a well
known family of systems, working with basis sets used in the past for individual fragments, and
see how the wave functions need to evolve as the systems grow.

The acetylene systeﬁl and its dissociation fragments (C2H, CH and C) were chosen for
this study for several reasons. First, there was an interest in reevaluating the dissociation en- .
ergy of the C-H bond in acetylene after experiments by Green et al.[85] found an upper bound
(< 126.647(2) kcal/mole) lying below most previous experimental and theoretical work. A wave
of work followed to verify this result, and our work might have shed some light on thé controversy.
Also, since all fragments in this system have been examined so thoroughly, it offered an excellent
opportunity to use known data (such as equilibrium geometries, basis sets, -and correlation func-
tions) to test our work. A systematic study of wave functions in systems on which an atom is
added 7one at a time (i.e., from C to CH to CoH to C,H,) might suggest a systematic process for
choosing wave functions in the future. Lastly, it would be a useful study of QMC on polyatomic

systems since most exciting work so far has been done on atomic and diatomics.

o

lln variational calculations, the inclusion of more determinants always lowers the energy.
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Table 3.1: Popular choices for correlation functions used in QMC
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3.2 CH containing systems

As done in the Hz study (Sec. 2.2.2), we started by computing the energies with the
simplest possible wavefunction; that is, a single determinant, which is then multiplied by a
correlation function which explicitly depends on interparticle distances. We then studied the
effect of the type of correlation function on the QMC results. The types of correlation functions
used, Jee, Jen, See, and Jeen[86, 87, are shown in Table 3.1. Separate studies were done in order
to examine the effects of the one-particle part of the wave function on the QMC results. In this
context, single and multi-determinant wave functions will be discussed in separate sections for

each CH containing fragment, when appropriate.

3.2.1 Carbon-C

The results for C atom were obtained using a cubic spline routine since large basis sets
were used (See Sec. 2.1.4.4) to approximate the radial part of the MOs used in the formation
of the Slater determinant. Table 3.2 shows the first one-particle basis set used for C atom, and
Table 3.3 shows the energies obtained using this basis set with correlation functions of the J.
and J.., forms. Parameters for J..n, were taken from Ref. [86], and for J.. were optimized to
give the lowest variance.. The purpose of this calculation was to determine if the variance and
time step bias improvement (see Fig. 3.12) attained by computing the larger correlation function

compensates for the amount of CPU time it takes to compute. The amount of correlation
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recovered is irrelevant since the one-particle basis, and therefore the nodes of the trial function,
remained unchanged.

“The time step extrapolation for both types of correlation function used are shown in
Fig. 3.1a. It is clear that the time step bias of the J;,n‘correlation function is better than the
Jee alone, and that the variance of the extrapolated result is better as well. We found that
the variance improved by 25% while the computer time increased by 15%, indicating that the
improvement justifies the extra computational effort.

The third result in Table 3.3 corresponds to a different basis set (Basis B in Table 3.7)
to be introduced in Sec. 3.2.2.2. Figure 3.1b shows a comparison of the results in Fig. 3.1a with
the results from Basis B. Since no correlation function was used to obtain these results, the time
step bias is much worse for the new basis. Even though the time step bias suffered, it recovered

about 5% more of the correlation energy.

Table 3.2: Clementi’s DZ basis set used for carbon atom (3P) calculations

I 1o | 2 | 1r JType| ¢ I
0.91214 | -0.16317 0.0 1s 5.3767
0.09163 | -0.03424 0.0 1s 8.9820
-0.00135 | 0.49825 0.0 2s 1.3089
0.00430 | 0.58156 0.0 2s 2.0131
0.00329 | -0.08564 0.0 2s 5.6319
0.0 0.0 0.24762 2p 0.9554
0.0 0.0 0.57770 2p 1.4209
0.0 0.0 0.23561 2p 2.5873
0.0 0.0 0.01090 2p 6.3438

Table ‘3.3: Energies of C(3P) atom using Clementi’s DZ basis set and various correlation func-

tions, as well as the % correlation recovered.

Basis Correlation Eome % Eeors
Set - Function (a-n.) recovered
Clementi Jee -37.830018(663) | 90.36%
Jeen -37.820454(483) | 90.00%

McLean -a -37.83529(335) 94.8%

¢ No correlation function
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Figure 3.1: (2) Energy vs. time step behavior for C using Jee and Jeen correlation functions. (b)

Time step bias of the results in () compared with those obtained using basis B (Table 3.7) and

no correlation function.
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3.2.2 Methylidene - CH

3.2.2.1 Introduction

Earlier work is summarized in Cade and Huo’s extensive study of the first and second
row hydrides in 1967[88). They established a basis set near the Hartree-Fock limit, on which most
later studies are based on. Their equilibrium radius for the CH radical was R, = 2.124ap, which
agreed with the previous work (both theoretical and experimental) they cited in their paper[88].

Liu and Verhaegen([89] carried out SCF calculations to provide an estimate for energies
of the states of CH. Their “semi-empiﬁcal” calculations do not represent variational calculations
(as CI/MCSCF calculations would), since they used previously published orbitals to establish
correspondence between the AO’s and the MO’s: 1o ~ 1s¢, 20 ~ 2s¢, 30 ~ 3p., 1m ~ 2pc
and 40 ~ lsy. These orbitals were then used to form reference configurations which were
“empirically corrected” for correlation. They used this method to find potential curves for lowest
lying electronic states of CH: 2II, 1E-, 24, 2T, 4% and 25+,

A few years later, Lie and Clementi estimated the exact energy of CH (along with the
rest of the diatomic hydrides) using a semi-empirical functional of the HF-type density[90]. This
result, -38.4863a.u., was compared with the “exact non-relativistic” energy for CH, -38.4761a.u.,

also estimated by Clementi.

Lie ef al.[9]] studied the potential curves of the first five states of CH with CI calcula-

tions. They are:

X0 106%20%30%17

a'S - 10%20%30(172,2 E7)
AR 10%20%30 (172, A)
B*’T™  16%20%30(1722=7)
C3st  10%20°30(1721 BF) .

For the ground state (i.e., X2II) they determined R, = 2.113a, and D, = 3.51eV. At this point,
it may be convenient to briefly present the configuration state functions (CSFs)? they used for
this state, since they will be useful in our own study. First., since HF theory does not lead
to correct dissociat‘ion, one should start with the expected HF CSFs in the limit R = c0. In

this case, these CSFs would be the hydrogen and carbon atoms in their respective ground® and

2See Appendix A.5.
3The association of MOs to AOs done by Liu and Verhaegen is still valid here, so one needs four o~ and one

#— type orbitals: (155, H), (150, C), (254, C), (2pc, C) and (2px, C).
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excited states, as well as (C*, H™) and (C~, H¥) ion pairs:
X20: 10220230217 102302173
10220240217 102402173
10220%(3040, 'ot)lr  10%(3040, Lot)1n3
10220%(3040, 30t)1lmr  10%(3040c, 30t)1x3

(3.1)

The CSFs on the left are needed to dissociate to the 15225%2p® configuration of carbon and
the ground state of hydrogen. The CSFs on the right allow a two reference description of C in
the infinite separation limit: C;15%25?2p% 4+ C,15?2p*. More CSFs were created after defining
valence and external orbitals, and generating all possibilities with the 5 active electrons (in this
case all electrons outside the 1o orbital) distributed in different combinations among the valence
and external sets. This approach was described in detail in Ref. [92] and in Sec. 1.2.

Sieghahn[93] presented a MC-CI (multireference-CI using a CASSCF wavefunction as
the reference) study of the dissociation of acetylene into two CH(2II) radicals. In the CASSCF,
32 configurations were chosen for acetylene to allow for the proper dissociation of the C-C bond,
without altering the C-H bond. The 32 configurations were later used as references for SD MC-
CI calculation for a total of 178,000 configurations and solved approximately using a contracted
CI scheme. The calculations used a contracted basis set? from Dunning-Huzinaga[94, 95). For
carbon, (10s,6p) was contracted to (5s,4p) plus d(¢ = 1.0) polarization, and for hydrogen (4s)
was contracted to (3s) plus p(¢ = 0.65) polarization. He found R, values of 2.096a¢ and 2.111ay
at the CASSCF and MC-CI levels, respectively. )

More recent work includes, CASSCF/MRSD CI calculations with extensive(!) basis sets
by Bauschlicher and Langhofi[96], G-1 of Pople ef al.[14], as well as GFMC work by Subramaniam
et al.[62). Pople et al[14] presented their results for CH as part of the test cases introducing
the “new” G-1 method (see Sec. 1.2.4). Subramaniam et al.[62] used the fixed-node domain
GFMC method to compute binding energies of several hydrides. They obtained an energy of
-37.828(12)a.u. for C atom and -38.465(15)a.u. for CH, which leads to a binding energy (D.) of
3.74(52)eV, and compared their results to many other studies to date.

Even though this summary does not fully assess all work done on this radical, it gives a
good idea of the established values for the equilibrium geometry as well as the binding energy of
CH. Table 3.4 presents a summary containing the values discussed in this section in comparison

with our QMC results to be presented in the next two sections.

3.2.2.2 QMC with single determinant trial functions

Single-reference QMC calculations were done using three basis sets. Table 3.5 shows
the Cade and Huo basis set (Basis C) as given in Ref. [88] and Table 3.7 shows the two other

#Sece Appendix A.3.1.
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Table 3.4: Equilibrium distances (R.) binding energies, (D.), and total energies obtained for the

CH(2II) radical.

Name | Year | R, D. | Total Energy Method Ref.
) (@0) (eV) (a.u.)
Cade and Huo 1967 | 2.124 2.47 -38.2794 SCF - HF limit 88|
Liu and Verhaegen | 1970 [ 2.090 | 3.46° | -38.4786 LCAO-MO-SCF 89
Lie et al. 1973 | 2.113 3.51 -38.41044 Cl . 91]
Lie and Clementi | 1974 | 2.110 3.60 - Functional of 90
‘ 2.124 -38.4863 HF density ‘
Siegbahn 1981 | 2.096 MCSCF [93]
2.111 MC-CI
Bauschlicher 1987 | 2.120 3.46 -38.407880 Full CI [96]
and Langhoff 2.123 3.61 -38.421872 MRSD CI+Q
Pople et al. 1989 3.64 -38.4743 G-1 (+AFE.orr) 14
Subramaniam et al. | 1992 | 2.11 | 3.74(52) -38.465(15) GFMC 62|
this work (QMC) | 1993 | 2.124 | 3.48(4) | -38.45797(118) | Basis C - J..
- -38.46103(231) | Basis C - S.e + Jen
3.61(2) | -38.46213(141) | Basis C - J.ep
3.45(10) [ -38.46199(193) | Basis B
2.116 | 3.36(17) | -38.45892(520) | Basis B
Clementi 1974 | 2.124 -38.4761 Exact Non-rel. [90]
Herzberg 1969 | 2.116 3.65 - Expt. cf. [62]




47

one-particle basis sets used. Basis A was obtained from Ref. [97] and Basis B from a private
communication.® Because QMagiC® is limited to d-functions, we eliminated f-functions from

basis sets obtained from the literature, and reoptimized the MO coefficients by SCF.
First, we did a calculation with the truncated Cade and Huo basis[88] from Table 3.5

using correlation functions of the forms shown in Table 3.1 at R, = 2.124¢,[88]. The correlation
functions used for each calculation were (1) electron-electron Jastrow, J.., only; (2) electron-
electron double exponential function (S..) and electron-nuclear Jastrow (J.,) to be denoted as
See + Jen; and (3) electron-electron-nuclear function of Boys and Handy form[86], Jeer. As with
C atom, the parameters in the correlation functions were optimized variationally[98] with respect
to variance. Results for this series of calculations are given in Table 3.6. We can see that, in
all cases, between 90-95% of the correlation energy was recovered. The variance in the energy
was (also) not improved greatly by more sophisticated forms of the correlation function, while
the amount of CPU time the larger calculation (i.e., for J..,) consumed was increased by over
a factor of 2. Figure 3.2 shows the time step extrapolations for the calculations using a wave
function with each type of correlation function. It is clear that the time step bias improved for the
Jeen correlation function, but not dramatically so, since the uncertainties for both extrapolations
for the J.., and the S.. + J., overlap. The S.. + J.. function did just as well in removing
the time step bias, and took only a fraction of the CPU time Jeen consumed. One conclusion to
draw is that we cannot improve upon the ~90% correlation energy recovery with this particular
one-particle (basis C), single reference wave function.

One possible reason for the poor recovery of the correlation energy by the Cade and
Huo basis set was in eliminating the f-functions, although the MO coeflicients of the functions
ignored were very small in the original basis. From SCF calculations done using the other bases”
(Basis sets shown on Table 3.7) we observe no significant difference in the result with f-functions
and without f-functions. For instance, for Basis B we get Egr = -38.27923501a.u. when f-
functions are used while Egp = -38.27887818a.u. without them; the difference in energy is less
than 0.25 kcal/mole. To be more specific, Fig. 3.5¢ shows a similar comparison, this time finding
the minimum SCF geometry using Cade and Huo’s original basis set, and then that basis set
omitting f-functions. Note some important points: (1) the energy of the truncated basis set
(i.e., without f-functions) is not much higher than that of the non-truncated basis; and (2) the
R, obtained from each one of them are close to each other(R, = 2.0'78a0), and (3) neither one
is close to the one reported by Cade and Huo (R, = 2.124ao)! According to their paper, this

minimum had been found and confirmed previously, both theoretical and experimentally.®

5Basis B was obtained from Dr. A.D. McLean at IBM, Almaden Research Center.
6See Appendix C.

7 Also truncated to d-functions.

8Table XX, p. 642 in Ref. [88).
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Figure 3.5a compares the SCF curves of both Basis sets B and C.% A similar comparison
was done with the Basis B wave functions at $ levels of theory used for the QMC calculations
to be presented in the next section. These results are shown in Fig. 3.5b. As mentioned before,
Fig. 3.5¢c shows the effect of f-functions on the equilibrium geometry using the Cade and Huo
basis set. Once again, there is no obvious choice for the equilibrium geometry.

To examine this aspect (i.e., finding the optimum geometry), we did a calculation us-
ing Basis B at the experirﬁental geometry® and obtained a QMC energy of -é8.45892(520)a..u.
Obviously, this energy overlaps with the R, = 2.124a, energy found previously.

Figure 3.2: Energy vs. time step plot using basis C.

CH - Basis C (SCF)

Comparison of correlation functions

-38.445

-38.45 -

-38.455 4 N

o

Energy(a.u.)
8
-3
[*2]

~38.465 -
-38.47 - -
-38.475 . T — — .
o] 0.002 0.004 0.006
: Time step
L- Jee © See+Jen & Jeen '

3.2.2.3 QMC with multi-determinant trial functions

For CH, we did CASSCF calculations with either 3 or 5 valence electrons and a very
limited active space. To do this we generated all possible configurations using the ALCHEMY 1
programs[99]. The prototype configurations as well as their respective configuration state func-

tions (CSFs) are listed on Tables 3.8 and 3.9. From these tables we can see that they contain

9Note that the plots show some of the curves shilted by a few atomic units for convenience in plotting on the
same scale. This should not be confused as curve crossing, and the legend should be carefully read in order to
figure out which curve is lower. )
19Bven though this did not correspond to a variational minimum in cither of the 3 wavefunctions shown in
Fig. 3.5

'
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most of the configurations considered important in order to get proper dissociation in the CI
study by Lie et al.[91] in Sec. 3.2.2.1 and listed in Eq. 3.1. The procedure they described in Ref.
[91] to generate their CSF's is not very different from our own.

From an ab initio standpoint our modest expansion may seem trivial, but since our
goal is to obtain trial functions for QMC which aside to being optimized for the system in
question should be manageable, it is very reasonable to use such limited active spaces. A large
configuration expansion in QMC would increase the computational effort beyond our capabilities.
The variational and QMC energies obtained for these wavefunctions are shown on Table 3.10,
and compared graphically in Fig. 3.4. It is clear from these numbers that when used for QMC
the single reference wavefunctions do much better in recovering the correlation energy, since
the single reference recovers ~ 92% of the correlation energy while the multi-reference recovers
~ 69%. This should not entirely come as a surprise, since our results depend on the ability of the
trial function in reproducing the nodal structure of the true wa{refunctions, not on the variational
improvement of a wavefunction by adding new configuration states to its expansion, MCSCF or
Cl, as it may be the case. However, more works remain to be done to better understand the large
gap in the resulting energies and to correct any source of error. Tables 3.11 and 3.12 show the
determinant coefficients in each multi-determinant wave function. From these tables, one sees
that the greatest contribution always comes from the reference configuration, which suggests
that even a small addition of lesser configurations (the first coefficient is always > 0.98 while
the second largest coefficient is ~ 0.15) will drastically change the nodes. We show time step
extrapolations for these wave functions in Fig. 3.3.

Some problems were encountered due to bad configurations.!! These bad configurations
were discarded by doing short fixed-node equilibration runs at a large time step (75% acceptance)
followed by 2 VMC run (85% acceptance seemed preferable to 50%[80]) A quantum force cutoff
of 100 was used as well for these problem configurations[80]. (Suggestions on how to prepare an

ensemble and perform QMC runs are summarized in Appendix C.)

11 A configuration is considered “bad” if it always stays (or gets “trapped”)in unfavorable regions of space. For
a better description of what constitutes a bad configuration please see [80].




Table 3.5: Cade and Huo basis set, without f-functions, for CH.

| Basis C |
[ 3e | 20 | 3 | Ir [CTH] Type ¢l

0.12775 | -0.00362 | 0.00147 0.0 X 1s 9.04883
0.92476 | -0.21700 | 0.11652 0.0 X 1s 5.00904
-0.05659 | -0.02541 | 0.00817 0.0 b'e 3s 6.05668
0.00256 | 0.47261 | -0.26272 0.0 X 2s 2.06820
-0.00201 | 0.39416 | -0.34519 0.0 X 2s 1.29799
0.00063 | 0.00331 | 0.00715 0.0 b'e 2p: 6.54292
0.00286 | 0.02351 | 0.12504 0.0 x 2p. 2.74247
-0.00223 | 0.13094 | 0.25644 0.0 x 2p. 1.72601
-0.00049 | 0.07442 | 0.37236 0.0 X 2p. 1.03933

0.0 0.0 0.0 0.00853 || x 2py 6.71077

0.0 0.0 0.0 0.16838 || x 2py 2.78970

0.0 0.0 0.0 0.45717 || x 2p, 1.61117

0.0 0.0 0.0 0.42280 || x 2py 1.02112
0.00036 | 0.01691 | 0.01636 0.0 X 3da;a 2 | 2.34850
-0.00060 | 0.03584 | 0.06354 0.0 X 3da,2_,2 | 1.23876

0.0 0.0 0.0 0.03306 || x 3dy.; 1.58298
-0.00131 | 0.08818 | -0.01952 0.0 X 1s 2.89843
0.00508 | 0.02167 | 0.35731 0.0 X 1s 1.34188
-0.00197 | 0.17537 | -0.02359 0.0 X 2s 2.11216
0.00040 | 0.01893 | 0.00863 0.0 x 2p. 2.22645

0.0 0.0 0.0 0.03171 b'd 2py 1.44660

0.0 0.0 0.0 0.00340 X 3dy. 2.72637
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Table 3.6: QMC energies and % correlation recovered for CH using Basis C for different correla-

tion functions. Binding energies are computed using Clementi basis set with matching correlation

function.
Correlation Eomc % Eeorr
Function (a.u.) recovered | D, (eV)
Jee -38.45797(118) | 90.36% 3.48(4)
See + Jen | -38.46103(231) | 92.34%
Jeen -38.46213(141) | 92.90% | 3.61(4)




Table 3.7: Basis Sets used for CH systems.

Basis Set A°®

Basis Set B®

I
[

folr][[C|]H] Type | ol[njs[JC|H|Type| ¢ |
b'4 x 1s 9.055 X x 1s 9.055
X x 1s 5.026 || x X 1s 5.025
X X 3s 6.081 X X 3s 6.081
x b4 2s 2.141 X X 2s 2.141
X X 2s 1.354 P4 X 2s 1.354
x| x|l x 2p 6.827 || x| x X 2p 6.51
x| x| x 2p 2179 | x| x X 2p 2.6005
x| x|l x 2p 1625 || x| x X 2p 1.4436
x| x| x 2p 1064 || x| x X 2p 0.9023
X X 3d 199175 || x | x | x || x 3d 3.6407
x || x 3d 213462 || x | x| x || x 3d 2.0211
x| x| x| x 3d 1.373
x X 1s 1.2029 || x X 1s 1.6
X b'd 1s 0.97493 || x X 1s 1.0
X X 2p 1.72338 || x X 1s 0.625
x X 3d 1.65 x| x X 2p 2.0
X X 2p 0.7901 J| x{ x X 2p 1.4
X X 3d 231071 | x| x [ x X 3d 2.33

¢ Basis A from Ref. [97].

b Basis B from Dr. A.D. McLean, IBM Almaden Research Center; private communication.
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Table 3.8: Configuration State Functions for CH(*II) with 3 active electrons (5 actual CSFs and

6 determinants). The 4-electron inactive space has configuration 162202,

Prototype Prototype | Determinant | # Actual
Configuration CSF CSFs

Ac?lr 3ot 30517 Q) (1)
401w dog1n™ (2) (2)

: 30%dopln® (3) 715 -3 — 715 -(@)

AoBolw 3odolw 3opdo®ln® | (4)
30%40°1my | (5) | —25-(3)— Zz- (9 +/3-(5)

17 17~ 1wg® (6) (6)
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Table 3.9: Configuration State Functions for CH(?II) with 5 active electrons (18 actual CSFs

and 24 determinants). The 2-electron inactive space has configuration 102.

Prototype Prototype | Determinant | # Actual
Configuration CSF CSFs
20°30%17 20530317 (1) (1)
Ac?Bo?lw 20%40%1w 2054051n” 3) @)
30%40°lw 3ogdogin® 3) (3)
‘ 20530p40%17* | (4) 7 @)=z 6)
20%3c40lr | 20530%4ogln | (5) ,
20§30°40%17p | (6) | ~ (@)~ Z-(6)+/2-(6)
30§20p40% 17 | (T) 7 (N —7-0)
Ac?BoColr | 30%2040lw | 30520%4opln™ | (8)
] 30520%40%1ms | (9) | —d5- (D)= 25 - (8)+1/2-(9)
4052033017 | (10)- 7 N=7-6)
40220301 | 40520%30p17 | (11) :
40520°30%1ms | (12) |~z (- 25 -®)+/3-(9)
20°17> 205 1ng® (13) (13)
Ac?1a3 3071 3oglmg™ (14) (14)
' 401> doglmg® (15) (15)
20%305175% | (16) Z(16) = & - (17)
.20'30'171"37 20830%1ng> | (17)
203017, | (18) | — - (16)— & - (1) + /3 - (18)
20%4oplmg® | (19) -‘-}3 -(19) — %2- - (20)
AoBolr® 2040173 20540175 | (20)
20°40%1ng, | (21) |~ - (19)— & - (20) + /3 - (21)
305405 1nge | (22) =) % ()
3040ln® 3opdolng™ | (23)
3040173, | (24) |~ -(22) - & - (23)+ /3 (29)

Table 3.10: Comparison of QMC energies c;btained for CH using basis A and basis B. SCF denotes
the single reference wavefunction using the SCF MOs; MCSCF(3e) and MCSCF(5e) refer to the

wavefunctions described by the multi-reference expansions with 3 and 5 active electrons.

Wavefunction Basis A Basis B
: Variational | QMC Variational | QMC
SCF -38.278094 | -38.45926(209) | -38.278878 | -38.46199(193)
MCSCF(3e) -38.299271 | -38.42748(469) | -38.300050 | -38.41669(413)
MCSCF(5e) -38.313511 | -38.39825(698) | -38.314224 | -38.41686(503)




Table 3.11: Determinant coefficients for each basis set for CH(2I) with 3 active electrons (5

actual CSFs and 6 determinants)

[ Determinant | Basis A | Basis B ||

3ogln® 0.986354 | -0.986363
40517 -0.035836 | 0.036053
30%4ogln® 0.023440 | 0.024106
3o0pd0* 1™ 0.023440 | 0.024106
30%do“1mp | -0.047277 | -0.048619
1ng® 0.149896 | -0.149137

Table 3.12: Determinant coefficients for each basis set for CH(?II) with 5 active electrons (18
actual CSFs and 24 determinants)

| Determinant | Basis A | Basis B ||
20530517 | -0.980840 | 0.980808
20540517 0.024132 | -0.024035

. 305405 1w® 0.093732 | -0.094534
20530540%17% | -0.007446 | -0.007224
20530%40g1x® | -0.007381 | -0.007166
20530°40%17p | 0.014952 | 0.014512
30520540% 17 | 0.015645 | 0.015844
30520%4oplx® | 0.016172 | 0.016328
30520%40%1mp | -0.032086 | -0.032443
40520p30% 17" | 0.0256450 | -0.025427
40520°30p1x® | 0.027177 | -0.027144
40520%30% 175 | 0.001741 | -0.001731
205 1mg” -0.153648 | 0.153175
3oglmg™ -0.029636 | 0.030320
doglmg™ 0.016937 | 0.017033
20%30p1x5® | -0.017591 | 0.017670
2030%1xg> | 0.012387 | -0.012509
20%30%17gs | 0.005248 | -0.005204
20%40p1mg™ | 0.000709 | 0.000858
20p40%1ng* | 0.004293 | 0.004182
20%40%1mwg, | -0.005044 | -0.005083
30%4oplng® | 0.001658 | 0.001663
3op40o°1ng® | -0.002235 | -0.002221
30%40%1mg; | 0.000582 | 0.000562
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Figure 3.3: Time step extrapolations for CH using wave functions based on basis A and B,

respectively.
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Figure 3.4: Variational and QMC results for three different types of wavefunction at Cade and
Huo’s equilibrium geometry, R, = 2.124ao. (a) Selected QMC results, (b) QMC and variational

results.
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Figure 3.5: CH geometry optimization. (a) SCF comparison with basis B and C. (b) SCF vs
different levels of CASSCF with basis B. (¢) Effect of f-functions on the equilibrium geometry

using basis C.
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3.2.2.4 Binding energy

Binding energies for the CH radical were computed using HF Basis B wavefunctions for
C. For this purpose, the QMC energy of C was evaluated using Basis B, and as it can be seen
from Table 3.13, the improvement observed in the correlation energy recovered for the C-atom
was excellent. Since we do not have a calculation done for carbon atom with comparable (multi-
reference) wave functions, binding energies for MCSCF wavefunctions are not very meaningful.

Binding energies were also computed using Basis C for CH (Table 3.5) and the Clementi
Basis (See Table 3.2). Even though the “quality”!? of the one-particle part of the wave func-
tions is different, the percent correlation obtained in each basis is comparable. All results were
summarized in Table 3.4. Comparing our QMC values for D., we observe that the best result
is 3.61(4) obtained from the Cade and Huo basis using the J.., correlation function, since the

experimental value for the D, of CH is around 3.64.13

Table 3.13: CH(?II) binding.energies using basis B.

System  Wavefunction Eqmc (2.u.) % correlation D, (eV)

CCP) SCF ~37.83529(335) 94.8%
H(2S) -0.50 100%
CH(II) SCF -38.46199(193) 92.4% 3.45(10)

MCSCF(3e)  -38.41669(413) 69.5% 2.21(14)
MCSCF(5¢)  -38.41686(503) 69.6% 2.22(16)

124 is necessary to make clear there is a distinction between the quality of ¥ in variational calculations and
in QMC calculations, especially since there is no direct correlation in the results presented here.
13¢f, Ref. [62].
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3.2.3 Ethynyl Radical - C;H
3.2.3.1 Introduction

Eth’j"nyl radical(C,H) is an abundant interstellar molecule, with lowest states

X3zt 102206230240 %1750
A% 1022023024021 73502

B%xpt 10220230%4017%502 .

C,H is a reaction intermediate in various combustion systems, as well as in the photolysis of
acetylene, and it is abundant in the atmospheres of certain carbon-rich stars. The CoH surface
has a stable minimum at a linear CCH geometry. ‘

Tucker{100] et al. were the first to identify C,H in interstellar space as well as the first
to show that it had a linear geometry in the ground state, 25+. The first significant ab initio
calculations on ethyny! radical were presented by So and Richards[101] using an STO basis and
the ALCHEMY programs. For the X23* state, they found the C-C bond length to be 1.789 A
and the C-H bond length, 1.0576 A.14

Hillier et al[102], optimized the geometry by CI on the two lowest states: 2Z% and
211. The calculations were done at two different levels of basis sets; they used both STOs (DZ
from Clementi[103]) and GTOs (contracted basis from Clementi[102]). They did two types of
calculations: one consisted of an RHF calculation followed by a CI ana the other consisted of
an antisymmetrized product of strongly orthogonal geminals (APSG) calculation. Their final
(equilibrium) geometry, reported from the RHF+-CI method was rcc = 1.209A = 2.285a0 and
rex = 1.065 A = 2.012a,.

Likewise, Shih, et al., [104] presented a theoretical study on the ethynyl radical: SCF
and CI curves using DZP basis sets on the two lowest states, X2Z+ and A2II. The curves in this
study showed different minima for the SCF and CI curves. Their theoretical geometries for CoH,
which many later studies cite were: rcy = 2.008ap and rce = 2.2664a0) for the SCF curve,!® and
rcc = 2.348ay for the CI curve. In a later paper[106] they did more on the calculations of the
potential curves, studied the behavior of CoH with CC stretching and CCH bending vibrations.
Results were compared and found in agreement with the emission spectrum.

Jacox[107] did matrix isolation studies to study the vibrational spectrum of C2H. The
stretching and stretching-interaction force constants of CoH were determined, which were used

to estimate the bond lengths. “The carbon-hydrogen bond was found to be exceptionally strong,

147t was unusual to optimize both bond lengths; most other studies contemporary to [101] only optimized one
bond length. : )

4

35The optimize for 7o, but they take re g from the astrophysical measurement of Barsuhn{105}. In this paper,
they give roy = 2.008a¢ and rgc = 2.2274ap.
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and the carbon-carbon bond is intermediate between that characteristic of ground-state C and
C2H.[107)” It was shown by Andrews and Pimentel that a plot of the C-H stretching force
constant against the C-C bond length is linear over a rather wide range of C-H bond lengths.
Using this finding and making a couple other corrections (addition of stretching force constants
and bond length of neutral CH) they deduced the bond-length for the C-C and C-H bonds. They
also made an estimate of the rotational spacing for C,H assuming a carbon-carbon bond length
of 1.224A (the mean bond lengths for ground state C2 and CoHz) and a C-H bond length of
1.014A. The resulting value agrees well with the value observed from the interstellar medium
data. Years later, Jacox and Olson[108] carried another experiment in an argon matrix where
a different region of the spectrum was studied. They presented “the first spectral survey of the
near infrared absorption band system of C2H” using Fourier transform absorption spectra.

Carrick, et al.[109, 110} deduced rcc using IR spectroscopy to be 1.226A (2.317aq),
assuming rcy = 1.014 A. The experiment was done using a color center laser spectrometer in
which acetylene was radiated to form C,H. They claimed to have problems in detection due to
lots of polyacetylene being formed and blocking the mirrors, since C.H is highly reactive with
acetylene. Hence, argon was flowed in with the mixture in an attempt to prevent large deposits
of polyacetylene on the mirrors.

Harding et al.[111] did an b inilio determination of the rate constant for
Hy + CoH — H 4 CaH,,

and found the equilibrium geometry for CoH in the process of plotting the PES for the above
mentioned reaction. Using spin-optimized generalized valence bond (SOGVB) theory they got
roc = 2.31ag and rey = 2.03a0, using SOGVB-CI they found r¢c = 2.32ap and ey = 2.04ag;
and using polarization configuration interaction (POL-CI) they found rcc = 2.33a¢ and rey =
2.04aq. All calculations were done using a DZP basis set.

Fogarasi et al.[112] presented an ab initio calculation using the 6-311G** basis set and
SDCI. They found an equilibrium geometry of recy = 1.067A and rcc = 1.209A (1.205 and
1.063 if corrected for residual errors), which was in accordance with the experimental rotational
constant. The single rotational constant available at the time was not enough to determine an
experimental geometry, but they did a preliminary check to show that the ground state was linear.
They were inspired by Carrick et al.[109, 110], and their reported estimate for the CC bond of
1.30A, to do the calculation. They argue that “all previous SCF calculations have shown that the
Hartree-Fock approzimalion already gives e reasonable description of ihe elecironic siructure....
In all of our calculations on 1he bent molecule, the CI coefficient of the reference configuration

remained above 0.95.” 6 Previous results are compared with theirs, but the only results they

16This agrees with our previous experience with the CH radical.
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consider of similar quality are those of Hillier et. ol.[102], and So and Richards [101]. They also
provided an excellent survey of work to date, both theoretical and experimental.

White and Schatz[113] developed analytical PESs for the lowest electronic states of
ethynyl (CoH), and acetylene (C2H3) based on fits to accurate ab initio calculations (a large-
scale polarization configuration interaction, POL-CI, from Ref. [114]) for the respective molecular
force fields, and using energies of formation from experiment. The zero point energy of C,H was
found to be 9 kcal/molf111]. The bond lengths used as LEPS parameters for the fitting were
rcc = 2.34799qp and rcp = 2.1163ap The bond lengths obtained from the fitted CoH surface
were rec = 2.3379ap and regy = 2.0284ay. —

Reimers el al.[115], used CASSCF to determine the full PES for C2H using Huzinaga’s
basis sets, and 7 active electrons. The CASSCF wave functions for each state were computed
with different basis sets. Since common methods to produce the C,H radical include photolysis
of C2H; and electric discharges either in C;H; or ovenl polyacetylene[110], the lowest transition
is poorly resolved. . N 7

Kraemer el al.[116), determined the molecular potential of the CCH ground state, 2%,
at 75 internuclear geometries using CASSCF. Their equilibrium geometry was found to be r¢c =
1. 215226(114)A = 2.296aqy and r¢y = 1. 070533(374)15. = 2.023ay. They are the first theoretical
work to give an error associated to their &stxmate of this particular equxhbnum geometry. Yan
et al.[117] presented another spectroscopxc st.udy to examine the excited levels of CoH and give
further information on studying the vibronic coupling between the X and A states.

‘Table 3.14 summarizes work mentioned in this section which offer an equilibrium geom-
etry for the ethynyl radical, as well as work of others who have computed C.H properties in the

process of estimating Dy for acetylene.
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Table 3.14: Equilibrium distances rcy and r¢c, and total energies obtained for ethynyl radical,

C.H (X2z+).
Name Year | Rce—-g | Re-c Energy Method and ZPE Ref.
(ao) (a0) (a.u.) (kcal/mole)
So and Richards | 1975 | 1.998 | 2.228 -76.162256 ALCHEMY 1101
Hillier ei. al. 1975 | 2.012 | 2.285 -76.29797 RHF + CI 102]
(STOs and GTOs)
2.008 | 2.274 -76.12988 quoted from [105]
Shih, et. al 1977 | 2.008 | 2.266 SCF/DZP [104, 106}
2.008 | 2.348 -76.3235 CI
2.03 2.31 SOGVB/DZP
Harding et. al. | 1982 | 2.04 2.32 SOGVB-CI/DZP [111]
2.04 2.33 POL-CI/DZP
SDCI/6-31G™
Fogarasi et. al. | 1983 | 2.009 | 2.277 -76.4008 (corrected for [112]
residual errors)
White and Schatz | 1984 | 2.0284 | 2.3379 - Fitted to PES [113]
. ZPE =9
Kraemer et. al. | 1986 | 2.023 | 2.296 - CASSCF [116]
Perié et. al. 1987 | 2.041 | 2.320 - MRD-CI PES [118, 119}
Osamura et. al. | 1989 | 2.035 | 2.334 -76.22411 MCSCF/DZ [120]
2.041 | 2.307 -76.24730 MCSCF/DZP
Curtiss and Pople | 1989 | 2.012 | 2.230 -76.35347 MP2(full)/6-31G* | {121, 122]
Langhoff et. al. | 1990 | 2.016 | 2.308 -76.976115 CPF [37)
Montgomery -76.59102 QCI + CBS
and 1990 | 2.024 | 2.207 ZPE = 8.4 [123]
Petersson
2.009 | 2.296 -76.41542 MP2/6-311G**
Habibollahzadeh, | 1992 | 2.042 | 2.308 MCSCF/DZP [124]
el. al 2.042 | 2.292 -75.92179 DMol/DNP
2.051 | 2.272 -75.92831 DMol/DN
Jacox 1975 { 1.916 | 2.313 - Expt. (matrix) {107
-+ ab initio
Curl el al. | 1983 | 1.016 | 2.317 - Expt. (IR) (109, 110]
+ ab initio
this work | 1993 | 1.991 | 2.227 | -76.56938(500) | FNDMG - Basis B | -
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3.2.3.2 QMC study of C2H

Since in our experience with carbon atom and the CH radical Basis B gave the best
results, we decided to use it for the rest of our calculations. Most of the earlier work claimed
that the geometries obtained at the SCF level were good enough, but recent work on the species
claims the opposite.!? Given the uncertainty in obtaining derivatives by QMC methods, we
would not be able to perform a geometry optimization for the species, so in order to do a QMC
calculation one depends on experimental values and ab #nitio results. The ALCHEMY program
does not provide the option to automatically optimize geometries at any level. Si;lce we had
also access to the GAMESS program[126], we carried out a gebmetry optimization at the SCF
level with an STO-6G basis mimicking the Basis B given in Table 3.7. The assumption was
that even if the Gaussian-based basis would not be the same as the STO basis obtained from
ALCHEMY, the resulting curves from each program would be parallel to each other. We tested
this assumption by doing a curve varying the Rc_ & bond in each GAMESS and ALCHEMY, near
the minimum found by GAMESS. The resulting curves are shown in Fig. 3.6. We can see from
‘this figure that the curves are not parallel as assumed. An STO-NG basis set is expected to
closely resemble the STO it emulates, therefore gi\:ring curves that should be, if not overlapping,
at least parallel. However, we found that it wasn’t that difficult to obtain a minimum with an
STO basis, using ALCHEMY.!& The section of the PES calculated using ALCHEMY closest to the
minimum (rcc = 2.227ao and rcgy = 1.991ap) is shown in Fig. 3.7.

Figures 3.6 and 3.7 show that the R(C-H) distance is relatively éonstant, while greater
variations occur on the R(C-C) coordinate. This and the equilibrium geometry obtained in the
next section for CoHo, suggest that at the SCF level, the breakingl of the C-H bond does not
affect much the length of the second C-H bond. Or maybe just the fragment does not care for
the existence of any other bonds on the second car]bo_n.19 However we should keep in mind that
this was done as the SCF level, which does not treat dissociation correctly on its own, i.e., we
might not want to extrapolate any conclusions to QMC.

The QMC energy obtained was -76.56938(500)a.u. The time step extrapolation to this

calculation is shown in Fig. 3.8.

17Bauschlicher et al[37, 125} will be presented in Sec. 3.2.4.1 since their work on C2H was done as part of
determining Dp’s for C2H2 and C2H.

18 Actually in terms of wall clock time it proved more efficient to directly do a tight grid of energies using
ALCHEMY than waiting for GAMESS and/or HONDO to produce their geometry optimization. Both optimizations
done on the same IBM RISC workstation. This was the case for the C2Hs optimization as well.

19Here it would have been useful to have results from McLean’s localized orbitals[127].



63

Figure 3.6: SCF energies obtained using STO vs. STO-6G basis sets. Energies from the GAMESS
program have been shifted for convenience in plotting. R(C-C) is held constant at 2.276 ap,
(rcx = 1.991ap and ree = 2.276a0 was the minimum found by GAMESS).

STO vs STO-6G
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Figure 3.7: SCF PES of ethynyl radical using basis B.
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Figure 3.8: Time step extrapolation for C.H with Basis B SCF.
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3.2.4 Acetylene - C,H,
3.2.4.1 Introduction

Lafferty and Thibault[128] provides some of the earliest experimental data for CaHa,.
They were the first ever to do high resolution IR (HRIR) on acetylene with different isotopes of
carbon and determined the equilibrium bond distances to be r.(C-H) = 1.060 A(2.005a;) and
r.(C-C) = 1.203 A(2.273ao).

Carter et al. presented in Ref. [129] a PES for ground-state acetylene, discussing in

detail its dissociation and isomerization. The dissociation channels for acetylene are

H(%S) + C-H(X %T*)
C(3P) + CH»(X3B))
{ C(*D) + CH(A14,) 3.2)
2CH(X 21)
CHy(X D)+ G(X'SH).

CoHy(X !'5]) —

A diagram with the relative energies of acetylene and its dissociation products a.cc‘ording to
Carter el al., is shown in Fig. 3.9. A year later, Siegbahn presented thorough MCSCF and MC-
CI studies of the fourth reaction of Eq. 3.2 in Ref. [93]. This work was already discussed in
Sec. 3.2.2.1 when introducing his results for CH.

Recall also the analytical PES developed by White and Schatz{113] for the lowest elec-
tronic states of ethynyl (C2H), and acetylene (C2Ha). “Ground-state C,H, is characterized by a
stable minimum in the linear acetylene HCCH geometry and 2 higher minimum in the vinylidene
(CCH2) configuration.[113]” AE from dissociation of C2Hp into CzH + H was found to be 131.5
kcal/mole. The bond lengths obtained from the fitted C,H> surface were rce = 2.32ap (2.273ay,
exptl [128]); rcx = 2.0385a0 (2.005a0, exptl [128]).

Wodtke and Lee [130] found the C-H bond dissociation energy (BDE) in acetylene to be
Do(C2H-H) = 132 =+ 2 kcal/mol by studying the photodissociation of acetylene at 193.3nm with
detection by the molecular time-of-flight method. Since C2H was produced in the collission-free
environment of a molecular beam, they assumed that the CoH radical observed corresponds to
the ground-state fragment. Shiromaru et al.[131] determined the bond dissociation energy of
acetylene to be 5.75 = 0.05 eV. This determination deduced the C-H bond dissociation energy

from
Do(R—H) = E,;,(H"') ~I(H), (3-3)

where I(H) is the ionization potential of H, by measuring the threshold energy of Ht in the

process

RH+hv— R+ HY e . (34)
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Figure 3.9: Carter presented the first figure in Ref. [129]. They represent all possible dissociation
channels for CoH,. The second figure compares the last column in the first figure to our QMC

results.
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Peri¢ et al[132] recalculated the C-H curves at a C-C bond length of 2.55¢0 and at
H-C-C angles of 180°, 140° and 120°. The C-H distance was varied between 1.7 and 2.4aq in
intervals of 0.1ag. The potential curves for the C-C stretching vibrations were also calculated at
the same value of the bond angle with the C-H distance held fixed at 2.0ao. The C-C distance was
varied in the region 2.25-2.95a, at intervals of 0.1ap. Their result for the equilibrium geometry
for the (X)' T} state is rexr = 1.080A = 2.041aq and rec = 1.228A = 2.320ao.

In Ref. [121] Curtiss and Pople introduced the G-1 method* and found bond dissocia-
tion energies for ethylene,?! acetylene and vinyl. For CoHz (rcc = 1.216A and rcr = 1.0664)
they got an energy of —77.07614a.u.(MP2(full)/6-31G"), and —77.13994a.u.(MP4/6-311G*"),
which were corrected to -77.18610z.u. In a second paper [122] they concluded that the dissocia-
tion energy is 5.79 eV(133.5 kcal/mole).

Another often cited work on acetylene is that of Fujii ef al.[133, 134]). They studied
decreases in the fluorescence quantum yield, ®;, of acetylene®? to determine a dissociation energy
of Do(C2H-H) = 13242 kcal/mole.

Segall et al.[135) got 127(1.5) keal/mol for the dissociation energy of acetylene by mea-
suring the kinetic energy (KE) of the hydrogen atom fragment using Doppler multiphoton ion-
ization spectroscopy. This result is in agreement w.ith the unpublished work of Benson[136].

In Ref. [85] Green, Kinsey and Field launched the controversy which caused the re-re-
evaluation of the dissociation energy of acetylene.?® Using Stark anti-crossing (SAC) experiments
they determined an upper-bound for the dissociation energy of acetylene of 529.89(1) kJ/mol =
126.647(2) kcal/mol, much lower than the consensus value.

Osamura et al.{120] made an interesting attack on Wodtke and Lee’s[130] conclusions
about evidence of pre-dissociation in C2Ha. The argument is as follows: the electronic excitation
of acetylene caused by UV light starts the process (presumably one obtains a = — #* transition),
the lowest excited singlet state is A1A,(trans-bent structure) which has been identified both
theoretically and experimentally. By assuming a potential energy curve similar to HCN, Wodtke
and Lee suggested that the excited state AlA, predissociates to the ground state of C;H(X?T+)
and H. They used the GAMESS program to perform an b inilio study at the MCSCF level,
doing all possible electron configurations among two bonding and two antibonding C-H orbitals
and four 7 orbitals were taken into account. DZ and DZP basis sets were used, and the zero
point vibrational energy®* (ZPE) corrections were done using the DZ basis set. For C2Ha(X'Z})
with DZ basis at rce = 1.226A = 2.317aq and rcy = 1.075 A = 2.031ag they obtained a

205¢e Sec. 1.2.4 and Ref. [14]:.

21This bond dissociation energy disagrees with Shiromaru, Achiba and Lee in [131}.

2247 sudden decrease in ¢4 suggests dissociative state crossing or coupling to a dissociation continutm.”
23Ref. [137] is a previous study of this group on the acetylene system using Zeeman Anticrossing Spectroscopy.

24Their results for CoH are presented in Table 3.14.
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total MCSCF energy of —76.91617a.u. With a DZP basis at rcc = 1.215 AA = 2.296ap and
rcy = 1.079A = 2.039ao they obtained an MCSCF energy of -76.94180a.u. These results are
summarized in Table 3.15.25 In conclusion, they show that the lowest excited state of acetylene
smoothly connects to the corresponding states of CoH without any surface crossing between the
bound state and the dissociative states. The S; state of acetylene produces the first excited state
of CoH directly. The dissociation energy of 1322 kcal/mole obtained by Wodtke and Lee is the
energy required to form the excited state of CoH(*II) and the H atom.

Ervin et al.[140] used thermodynamic measurements to deduce the bond dissociation of
acetylene and half a dozen other compounds. They got 131.3=7 kcal/mol by using the techniques
of negative ion photoelectron spectroscopy and gas-phase proton transfer kine/tics. Perié et al.
present another ab initiostudy in Refs. [118, 119]. Wu and Carter [141] used ab initio generalized
valence bond (GVB) and correlation-consistent configuration interaction (CCCI) theory within
a DZP basis set and presented their result for acetylene to be 129.7 kcal/mol. They claimed
this method is accurate within 1-5 kcal/mole in giving dissociation energies for single and double
bonds.

Montgomery and Petersson [123] did an ab initio calculation to estimate the bond dis-
sociation of acetylene, a.nci got Do = 131.54 kcal/mole. They also estimated the error associated
with their calculations. Their method consists of extrapolating to the complete basis set limit
(CBS), and using previous results to claim that the associated error is less than 1 kcal/mole. They
used CBS-QCI, the final value includes CBS extrapolations to the SCF, core, valence second or-
der and valence higher-order contributions. Vibrational ZPEs are calculated from ’SCF/ 6—31G*
harmonic frequencies scaled by a factor of 0.8929. Their results for the SCF, QCI and CBS ex-
trapolations of both are given in Tables 3.14 and 3.15 for CoH and C2H,, respectively. They also -
agreed very well with the electron affinity of CCH as found experimentally by Ervin et. al.[140].

‘Baushlicher et al.[37) obtained a value of 130.1:£1.0 kcal /mol using the CASSCF method.
They used MRCI and averaged coupled-pair functional method (ACPF) treatments based on
CASSCF wavefunctions. Vibrational ZPE contributions were computed using coupled-pair func-
tional (CPF) wavefunctions for CoH and CH,. Their calculation also involved extending the
basis sets used to the HF limit. The geometries used for the energy calculations of C2H and
C2H- were as follows: for the molecule, fcé = 2.292a9 and rcy = 2.010aq, and for the ffagment,
rcc = 2.308ap and recy = 2.016ag. Their results are summarized in table 3.15 with others.

In a later study[125] this same group determined the bond dissociation energy of C,H.
Once more they emphasized that a éirfgle-reference-based wave function is sufficient description
for a closed-shell system, but for radicals such as C; and C,H, a MRCI approach is more sensible.

Anyway, since this time the main study was on the bond dissociation of ethynyl rather than

25They also give another reference[138, 139] to an experimental measurement for the geometries of acetylene:
ree = 1.208A = 2.273 ap and roy = 1.061A = 2.005a0.
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acetylene, i.e. they studied the breaking of C,H into C, 4 H, the argument for 2 multi-reference
approach was even stronger, even though they used an experimental geometry for C,. It seems
as if not even the CASSCF approach will give them the right optimized structure for the C,
radical. From their conclusion[125]:

“The experimental value is reduced and in better agreement with theory if the
the;mochemical Dg value for C; is used in place of the spectroscopic value. The
present calculations rule out the previous theoretical results of Wu and Carter thereby
suggesting that the errors in their “correlation-consistent CI” method can be consid-

erably larger when the fragments are not well described by a single reference config-’
uration.”

“The C-H bond dissociation energy of C,H is determined using the experimental
geometry for C; and out previously optimized geometry for CoH. The reference com-
prises 86.0% of the final MCPF wave function for CoH because the !} state of C,
is poorly described by a single-reference approach. This is different from C2H2 where
the reference percentages were very similar for the equilibrium and dissociated ge-
ometries. Since single-reference-based approaches are expected to be less accurate for
the C-H bond energy in CoH we have also employed the CASSCF/MRCI approach.”

(Nevertheless, one must keep in mind that as long as we do not know how these “im-
provements” on the trial function affect the location of its nodes, no benefit can be guaranted
from using these techniques (MCSCF, CI, CASSCF) to obtain trial functions for QMC.)

Balko et al[142] tackled the C,H. problem once more by molecular beam. Their re-
sulting bond dissociation is 131.4+0.5 using mass spectroscopy to analyze their product. They
basically confirmed work done by Wodtke and Lee in [130], this time by examining the H atom
velocity after dissociation instead of the C2H fragment.

Habibollahzadeh et al.[124] used a large range of methods and basis sets to compare
with their density functional theory (DFT) results using a local density approach (LDA). Some
of their results are shown in Table 3.15. They claimed that their DFT-LDA results for Dy show
little dependence upon the computational procedure level used to obtain geometries. In other
words they do their calculations with different geometries, optimized at different levels of theory,
and they found that most results are consistent with each other as expected, i.e., their Dy value
was comparable for all calculations, while for the individual ab inilio energies of the molecule
and the fragment, the results come out very different.

Table 3.15 summarizes results reported in this section.
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Table 3.15: Equilibrium distances rcx and rcc, total and dissociation energies for acetylene,

C.H, (X15H).

Name Year | Ro-g | Re-c Energy Dy Method?® and ZPE
(ao) (ao) (a.n.) (kcal/mole) (kcal/mole)
Lafferty ef al. 1964 | 2.005 | 2.273 - - Expt. (HRIR)
Herzberg 2.003 | 2.273 - - Expt.
Siegbahn 1981 | 1.997 | 2.294 - - MCSCF
2.005 | 2.283 - - MC-CI
Watson et al. 1982 | 2.005 | 2.273 - - Expt
White and Schatz | 1984 | 2.0385 | 2.32 - 131.5 POL-CI; ZPE = 16.4
Wodtke and Lee | 1985 - - - 132(2) molecular beam
Shiromaru ef al. | 1987 - - - 132.6(1) Synchroton radiation
Perié et al. 1987 | 2.041 | 2.32 - - MRD-CI PES
Fujii et al. 1988 - - - < 132.9(1.2) | fluorescence
yield cutoff
Chen el al. 1988 - - - <1323 ZAC
Curtiss and Pople | 1988 | 2.015 | 2.299 -77.18610 133.5 G-1
Green et al. 1989 - - - <126.647(2) | SAC
Osamura et al. 1989 | 2.031 | 2.317 -76.91617 122 MCSCF/DZ
2.039 | 2.296 -76.94180 MCSCF/DZP
Segall et al. 1989 - - - <127(1.5) HCCH + hv
: — CoH + H(X.E.)
Benson et al. ? - - - < 126(1) thermo '
Ervin el al. 1990 - - - 131.3(7) Neg. Ion. Photospec.
Wu and Carter | 1990 - - - 129.7 GVB + CCCl/DZP
Montgomery QCI + CBS
and 1990 | 2.004 | 2.274 -77.30059 131.54
Petersson ZPE = 16.5
Baushlicher 1990 | 2.010 | 2.292 -77.197034 130.1(1.0) MRCI on CASSCF
et al. ZPE = 16.68
Ruscic et al. 1990 - - - 131.6(1.0) CoH~™ + H threshold
Baldwin ef al. 1990 - - - 131(1) H (REMPI) velocity
after dissociation
Balko e al. 1991 - - - 131.4(5) (TOF) Photodiss.
Nicolaides et al. | 1991 - - -77.0766382 - CI-SD (6-31G*")
: ZPE = 184
2.009 | 2.296 -77.14839 140.7 MP2/6-311G**
Habibollahzadeh, | 1992 [ 2.042 | 2.308 - - MCSCF/DZP
el al. 2.042 | 2.292 -16.63777 129.9 DMol/DNP
2.051 | 2.272 -76.64453 130.0 DMol/DN
this work 1993 | 1.991 | 2.230 | -77.29084(376) | 130.74(3.92) | FNDMC

(AZPE=8.23 from [37])

¢ See Appendix A.12 for glossary of abbreviations for methods.
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3.2.4.2 QMC study of CH;

We found an equilibrium geometry by doing a similar calculation on C;H; as that done
for CoH using the ALCHEMY program at the SCF level. The corresponding PES is shown in
Fig. 3.11. Contrary to our experience with CzH, the minimum found by GAMESS and the one
found by ALCHEMY 11 (STO) coincide,?® and has rcy = 1.991a and rcc = 2.230ao. This was
to be expected since the molecule is much better defined by a single reference wave function
than the fragment. Figure 3.10 shows how for the CoH; system the two programs find the same
minimum, even if the curves are not perfectly parallel by about 10~%a.u.

The QMC energy at this minimum geometry is -77.29084(376)a.u. In combination with
the QMC energy at the SCF minimum of C,H and using the estimated ZPE correction from
Ref. [37] of 8.28 kcal/mole, we get Do = 130.74(3.92) kcal/mole. Time step extrapolations for
this geometry and another geometry from the literature[97] are given in Fig. 3.12. Figure 3.13
shows histograms of the QMC energy data at the minimum geometry for each time step in the

calculation.

Figure 3.10: Comparison of SCF energies obtained using STO and STO-6G basis sets for C2Ha.
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Figure 3.11: Two views of the SCF PES computed for acetylene using ALCHEMY 1.
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Figure 3.12: Time step extrapolation for CoH, using basis B (SCF).
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Figure 3.13: Histogram of energy data for CoH, per time step.
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3.3 Discussion

The first aspect of our calculations we wish to discuss here is the choice of the equilibrium
geometry. In [124] Habibollahzadeh et al. used a large range of methods and basis sets which
are compared with density functional theory results. They argued that their DFT-LDA results
showed little dependence upon the computational procedure level used to obtain geometries. In
other words, they did their Dy calculations at different geometries, each optimized at a different
level of theory to be used in that particular calculation. They found that the Dy results were
consistent with others estimated at a different level of theory, although the individual values for
the total energy were very different in each method. We are well aware, however, that findings
from ab initio methods might not necessarily hold true for QMC. For instance, Fig. 3.12 shows
a result for CoHz at a geometry (rog = 2.002a9, rec = 2.281ag) taken from [97] and very close
to the experimental geometry[143).

The CH radical presents 2 challenge in the determination of équilibrium geometries.
The very nature of the open-shell radical suggests that contrary to CzHg(IE;*'), whose ground-
state can be reasonably described by a single reference, the ground state of C, H(?Z+) cannot be
properly described by a single-reference wave function. After the poor performance of CASSCF
wave functions in the QMC calculations of the CH radical, we thought twice before investing into
a CASSCF function for C2H, and preferred to limit the present work to SCF trial functions. The
logical next step is to find CASSCF wave functions for both C,H and C2Ha2, examine the weight
of the reference configuration in the expansion. Only if the leading coefficients are less than 0.85
would we recommend to try such wave functions in further QMC calculations. This suggestion is
based on our experience with the CH radical as well as on resultsypre@cented in Subramaniam et
al[62]. If the coefficients of the reference determinants remain high, a possible course of action
would be to perform a MRCI calculation using the CASSCF wave function as the reference.
This type of approach would introduce new problems, since the expansion keeps growing beyond
QMC computational capabilities to the point that a truncation including only the predominant
configurations would be required.?? This type of truncation may be an additional source of error.
A viable alternative would be a MCSCF limited to the configurations with the highest coefficients
in the CASSCF.

Another point to emphasjze is that the time step bias always exists. One cannot
assume that a large enough basis and/or correlation function will “remove” it. All functions
for all basis have s'hown that the bias is there and that in spite of its linearity and apparent
flatness, to use the smallest time step as an accurate measure of the energy at T = 0, would have

underestimated both the QMC energy and its variance. Inclusion of correlation functions, for

2"The use of parallel systems might help in speeding up this type of computation, but it yet needs to be
determined how large the expansion can be. B
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reduction of variance and time step bias, was explored for C and CH, but not for CoH and C,Ho.

The error bar of the bond dissociation energy calculation of C2Hj is very large, suggest-
ing that further computations are necessary. However, we noticed that after a certain number
of blocks the energies obtained did not contribute to the lowering of the variance, but oscillated
around the already found average energy. It is not clear that further computations would reduce
the statistical error without addition of correlation functions.

A small test was performed on the data to verify the validity of the reported error bar.
Histograms done on the acetylene data were shown in Fig. 3.13. Since they closely resemble

gaussian distributions, one normally reports an error given by

N
o(z) = J F(N_I—T) ;(z,- -z). (3.5)
The jackknife is used to obtain unbiased estimates from a given distribution. A brief introduction
of the jackknife statistic as discussed in [144] is given in Appendix A.11. To apply the jackknife
method to our C2H and C,H; data we follow the steps presented in [145]:

(1) Generate N subsets that contain N — 1 observations from the original N observations, i.e.,
{z1,-..vzic, zigr, .., 2n )}, {71, -« - Tic1, i, Tiga, - -, TN ], et

(2) Calculate the average Z; for each subset.

(8) The jackknife estimate, oyg(z1,...,zN), of o(Z) is

N-1&
ork(zy,...,zn) =N -0(Z) — —I—V—zl: o(Z;) (3.6)
The resulting variances of such a calculation are shown in Table 3.16 at each time step, and
the values extrapolated from these are compared with our previous results in Table 3.17. The
difference in the standard deviations is in all cases ~ 0.00002 a.u., and the difference in the Dy is
merely a 0.01 kcal/mole, while its variance increases by 0.05 kcal/mole. Clearly the bias in the

standard deviation due to the non-gaussian nature of the energy distributions is negligible.

Table 3.16: Jackknife method applied to o of each time step in QMC data to remove bias.

System T #t blocks steps/block  Energy o(%) ork(Z1, ..., TN)
0.001 48 5000 -76.58054 0.00249 0.00251
C.H | 0.0015 40 3333 -76.59308 0.00212 0.00214
0.002 72 2500 ~76.59366 0.00161 0.00162
0.001 81 5000 -77.31037 0.00173 0.00174
C2H, | 0.0015 59 3333 -77.31630 0.00188 0.00189
0.002 47 2500 - -77.32879 0.00163 0.00167
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Table 3.17: Extrapolated energies using QMC data and jackknife estimation of data.

Extrapolated Energies (a.u.) Dy

Cz H Cg Hz (kca.l / rhole)
QMC data | -76.56938(500) -77.29084(376) | 130.74(3.92)
jackknife | -76.56938(506) -77.29086(380) | 130.75(3.97)

3.4 Conclusion and future directions

We found that the quality of the basis set is consistent oh all fragments. That is, using
the same atomic basis set on C and H produced similar results (% correlation energy recovered)
for C, CH, C;H and C,H,. However, our study suggests that a more complicated wavefunction
does not imply a better recovery of the correlation energy. Since we acknowledge that our method
is not variational (i.e. more is better), this does not come as a complete surprise to us. Long
configuration expansions do not imply a better recovery of the energy, even if this were the case in
the strict variational/ab initio sense. Another thing to point out is that the single reference runs
for acetylene were much faster than the multi-reference runs for CH! This was expected given
the difference in number of operations being carried out. This issue of trial function complexity
extends to the correlation function as well. We found that prohibitively large correlation functions
were not necessary in order to obtain good results (See Table 3.6).

In finding total energies, QMC provided results: of similar quality to state-of-the-art
‘methods for CH and CzH, and improved on most other C,H; results available. However, energy
differences are the significant quantity chemically, since total energies are not available from
experiment. Two such differences were computed using QMC: D, for CH and Dy for the C-H
bond in CoHz. The binding energy of CH given by QMC is also competitive with previous results
in the literature (See Table 3.4). The bond dissociation energy obtained for CoHa, on the other
hand, was a bit of a disapointment. The value of Dy = 130.74(3.92)kcal/mole, although agreeing
with the currently acc;apted experimental value, does not contribute to the resolution of the now
old controversy, given its large error bar. A jackknife estimation of the error showed that little
bias is present in our result.

Much work remains to be done in order to reach any useful conclusions on doing QMC
on polyatornic systems. Some of the main issues to be resolved are (1) the determination of
equilibrium geometries; and (2) the reduction of the statistical variance. A direct (and not very
efficient) way to solve the ééﬁilib}ium geometry dilemma in QMC would be to create PES with
given trial functions, similar to the PESs presented in this chapter using ALCHEMY. This would
be computationally expensive when striving for meaningful accuracies. In reality, this problem

could be addressed only by the successful implementation of energy gradient computations within
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the QMC framework. Unfortunately this is not a trivial task, and pursuits along these lines have
met limited success[72].

The second problem might prove to be the easier one to tackle, with the availability
of massively parallel machines. In Chapter 2 we have already mentioned some efforts taking
advantage of these new technologies[50, 51] in exact QMC methods. It remains to be seen if
it is worthwhile to continue the pursuit of the FNDMC method with importance sampling, as
done in this work, on these new systems. For example, in implementing QMC, it will prove
advantageous the use of weights rather than branching in order to minimize the amount of
communication required among processors. Also, larger numbers of walkers and electrons will

become much easier to handle as the number of processors increases.




Chapter 4

Accelerated Variational Monte

Carlo

Cojili pilgilu, dbrili 6jilis, échili polvili, pilgili mortils.
Popular

Here we will study the large-Z problem from the VMC standpoint. As mentioned in
Chapter 2, computational approaches in QMC tend to introduce a separation of core and valence
as Z gets large. This separation is justified by the fact that different step sizes are needed in order
to efficiently sample all regions. Ideally one would want a method which would automatically
differentiate core and valence without introducing any approximations, or biasing the process.
Here we implement an acceleration method proposed by Batrouni and Reynolds [146] to modify
the simulation without biasing it. In this chapter we shall review the theory of VMC, introduce
an acceleration matrix to adjust for the different “velocities”, and discuss the results of such an

implementation.

4.1 Introduction

In 1953, Metropolis et al.[147) introduced an algorithm for performing simulations which
has been extensively used in classical statistical mechanics and in QMC applications. The premise
is very simple: Take a particle at position R in an ensemble and move it to a new position to
generate a trial particle at position R, R’ = R + £, where € can be drawn from a known

distribution.! The new &’ will be accepted with probability
= 5 B
fR)T(R R)) (@)

P(R— R') = I;'xin (1, =
f(R) T(R — )

! For instance, £ can be 2 Gaussian random variable, like x in Eq. 2.37.
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where f(R) is the equilibrium distribution of the ensemble, and the T”s are the transition prob-
abilities of moving in either direction,? which are arbitrarily chosen. In the original Metropolis
algorithm, T was a constant. The better the choice of T, the larger the acceptance probability
P in Eq. 4.1 will be. Ceperley[19] pointed out that the acceptance ratio can be made close to
one by choosing a value of T(E — &') which approximates f(&')/f(R) (where f(R) = ¥2(R)).
Based on this suggestion, many “improved algorithms” have been suggested.?

Among those improved methods, we mention Umrigar’s recent accelerated Metropolis
approach[150]. Umrigar suggested using spherical polar coordinates instead of cartesian coordi-
nates for the Metropolis step, and then to vary the step size along radial and angular components
such that core electrons have smaller radial and larger angular moves. Indeed, in spherical polar
coordinates, the transition probability can be factored into a radial factor Tg and an angular part -
Tq, i.e., T = Tr - Toyr. Since the radial factor is the one that hinders core electron movement,
one may reduce the step size in the radial direction (thereby resulting in an enhanced radial
transition probability Tg) to achieve a move with a reasonable probability of acceptance. How-
ever, this procedure can slow down equilibration in the radial direction even while significantly
accelerating equilibration in the angular direction, if the step size for the radial component is
chosen too small.

A method by Batrouni and Reynolds{146] introduces an acceleration matrix to modify
the way the VMC simulation is performed without altering the final steady-state solution. Their
approach borrows from the Fourier Acceleration method used to treat critical slowing down?!
[151, 152, 153] in choosing an acceleration matrix such that all coordinates move at comparable

speeds.

4.1.1 Equilibration problem in variational Monte Carlo

‘We saw in Sec. 2.1.5 that VMC provides an exact method of computing the expectation
values of any operator for a given wave function. For example, Eq. 2.40 shows how VMC can be
used to evaluate the energy expectation value of a trial function, which is especially convenient
when the trial function includes explicit interparticle correlation in its functional form. Our group
has used VMC in the calculation of derivatives[47], the optimization of trial wavefunctions[41, 40,
35] and the equilibration of ensembles to be used in FNQMC, but others use VMC to compute

energies as well as properties® using increasingly sophisticated wavefunction forms.®

2We can immediately(?) recognize that our Green's function in QMC (Eq. 2.38) corresponds to the transition
probability in Eq. 4.1.

3For example, force bias[148, 149], accelerated Metropolis[150], etc.

4In the VMC case the critical point occurs as the nuclear charge Z — co.

SRecall that since VMC does not involve a mixed distribution, one obtains “pure” (¥r}A|¥s) clements[34].

6For example, Moskowitz and Schmidt work on optimizing very complicated correlated wave functions in
[86, 87]; Umrigar, et ol had done likewise in [42]. Other studies involving uses of VMC are in [45, 154].
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The Schrodinger equation we simulate in VMC,

g{- = DVf + DV -(Fof), (42

is a Fokker-Planck equation which leads to the equation used in the propagation of the trajectories
of the distribution f(R) = [¥r|%:

R' = R + DrFq + V2Dry, (4.3)

where D = % is the diffusion constant, 7 is the time step, fQ = 2VUr /¥ is the quantum
force, and 7 is 2 Gaussian random variable.” Equation 4.3 is a discretized Langevin equation.
The Fokker-Planck equation is the differential equation for diffusion in velocity space, and the
Langevin equation is the stochastic (i.e., one of the terms is a random function) equation for
Brownian motion[155]. The Fokker-Planck equation refers to a distribution while the Langevin
equé.tion refers to the coordinates of the distribution. That is, the Langevin process describes
individual trajectories, while the Fokker-Planck equation describes an ensemble of trajectories.

The transition probability corresponding to Eq. 4.3 is
T(R — R') = (4nDr)=3N/? x ¢ UR'-R)-Dr (R /4D7 (4.4)

and we readily recognize that T(R — R') = Gp (R— R',7), where Gp is the diffusion Green’s
function (see Appendix A.10.1) after addition of importance sampling. A simple overview of the
VMC algorithm is shown in flowchart form in Fig. 4.1. ,

Table 4.1 shows some features for a typical VMC walk of Ne where the electrons are
moved one at a time. The main thing to point out in this example is that the acceptance ratio
for the core electrons is under 10% although the overall acceptance ratio is 83%. Now we would
like to turn our attention for 2 moment to the attempted (AR) value which is what acceleration
methods (like the one to be presented here) attempt to adjust. It is not surprising that core
electrons would have larger attempted moves, since they experiénce larger repulsion from the
nucleus. However, it ls that lafger move which causes them to be rejected more often than
valence electrons. Figure 4.2 shows explicitly how the acceptance ratio goes down as the move
for the innermost electrons goes up. The population and relative density columns also indicate
that the moves by the innermost electrons constitute a sizeable portion of the simulation, even
though they are the ones moving the least.

Since the VMC algorithm does not discriminate between core and valence electrons,
reasonable moves for core electrons will result in inefficient sampling of the valence region, and
vice versa. Generally for VMC, a time step is chosen such that about 50% of the proposed moves

are accepted. There is no a priori principle which justifies this preference, but it is intuitively

7In FNQMC we have used x to denote the Gaussian random variable. Here we follow the following notation:

(x?) = 2D, and {n?) = 1.
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acceptable for a Metropolis walk where there are no different time scales. For our problem, this
choice of time step results in core moves being rejected more frequently, therefore never achieving

a “true” equilibration of the ensemble.® This situation only worsens as Z increases.

8Some work[29, 80] has been done which suggests that the overall acceptance should be >85% before all

electrons move.




Figure 4.1: VMC algorithm
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Table 4.1: Electron movement data of Ne using a guided Metropolis algorithm at 7 = 0.03 and
3000 MC steps. [a,b) is defined as @ < R < b. All quantities are in a.u. (AR) = 0.23241a,.

Average acceptance ratio = 0.83.

R interval | Acceptance | Attempted | Accepted | Population® | Accepted | Relative
Ratio (AR) (AR) (Al) | Density

[0.0,0.1) 0.09547 0.3981 0.02005 1919 55| 0.74953
[0.1,0.2) 0.31099 0.3853 0.07923 2806 17.5 | 0.15657
[0.2,0.3) 0.64854 0.3642 0.19445 1655 32.1| 0.03402
[0.3,0.4) 0.82179 0.3117 0.23766 1401 30.9 | 0.01479
[0.4,0.5) 0.88491 0.2906 0.24793 1669 25.7| 0.01069
[0.5,0.6) 0.92871 0.2861 0.25883 2068 22.2 | 0.00888
[0.6,0.7) 0.95955 0.2820 0.26676 2221 19.6 | 0.00683
[0.7,0.8) 0.97488 0.2840 | 0.27423 2177 17.7 | 0.00503
[0.8,0.9) 0.98318 0.2823 0.27575 2094 15.2 | 0.00377
[0.9,1.0) 0.98809 0.2829 0.27831 1889 13.8 ] 0.00272
[1.0,1.1) 0.98999 0.2802 0.27653 1658 12.3 | 0.00196
[1.1,1.2) 0.99161 0.2856 0.28226 1415 11.5 } 0.00139
[1.2,1.3) 0.99303 0.2848 0.28227 1268 10.7 | 0.00106
[1.3,1.4) 0.99637 0.2798 0.27853 1035 9.5 | 0.00074
[1.4,1.5) 0.99349 0.2837 0.28061 831 9.0 | 0.00051
[1.5,1.6) 0.99636 0.2840 0.28271 746 84| 0.00040
[1.6,1.7) 0.99539 0.2754 0.27377 637 7.7 0.00030
[1.7,1.8) 0.99823 0.2739 0.27328 535 7.2 | 0.00023
[1.8,1.9) 0.99790 0.2797 0.27901 418 7.1 ] 0.00016
[1.9,2.0) 0.99876 0.2800 0.27954 339 6.6 | 0.00012

@ This population is defined as the count of occurrences of an electron falling within each radial interval.

Figure 4.2: Acceptance ratio behavior in different radial intervals, for given attempted (AR). .
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4.1.2 Acceleration methods

Fourier acceleration[151, 152, 153] has been used as a mechanism to overcome slowing
down in Langevin-based simulations of critical phenomena and lattice-field theories, where mul-
tiple length scales are present. It leaves the steady-state distribution unaltered but the sampling
is done more quickly, since the slower coordinates will move faster towards equilibrium. The fol-
lowing treatment comes from the description in [153, 156] of how it has been successfully applied
to scalar field theories. We will attempt to point out the analogy with our case as the similarities
arise.

In a simulation using Langevin updating on a lattice (the usual situation), the lattice

is updated simultaneously. Each configuration is updated by a discrete Langevin equation,

g H(z) = (™ — + Ve™z), (4.5)

645(")( )
k : | ‘
which is analogous to Eq. 4.3. In Eq. 4.5, ¢ is the scalar field evolving, ¢ is the Langevin time

step and 7 is the Gaussian noise, drawn from a distribution
@ Wa = Wamblz —3) - @
Equation 4.5 can also be written in mom;entum space as
Fo(e) = Fp) ~ elp?+ mEe) + VE(o) (47)

where the modes with small momentum elgenvalues will requxre a small time step, slowing down
the algorlthm

Fourier acceleration allows slow modes at low momentum to take large steps. A time
step which depelnds on momentum can be introduced by somehow choosing this time step to be
inversely proportional to momentumn. All modes would now evolve at the same rate and (the?)

critical slowing down is undone. The new updating algorithm would be

$oH(z) = ¢I(n) — [e(y)F Je(p’)'ﬁ'nw(z)] , (4.8)

560™)(z)
where F is a Fourier transform and

e(p?naz + m2a?) '
= . 4.9
C(p) pzaz + m2a? . ( )

The accelerated algorithm is equivalent to introducing a time step which is nonlocal in position

space:

€y = Z ePEYe(p) . - - . (410)
P
An equivalent description can be obtained from the Fokker-Planck equation

a¢§: D - 'a:sgﬂ) + @), ‘ (4.11)
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which, similarly to our Schrédinger equation in Eq. 4.2, will describe the equilibration of a
distribution P({¢},7),

P({¢},7) o Po({¢}) + ZCx'Pi({tﬁ})e""' , (4.12)

not unlike our wavefunction expansion in Eq. 2.17. The eigenvalues ¢; determine both the rate of
approach to equilibrium and the autocorrelation times of the points along the simulation. Near
a critical point, the lowest €; approaches zero and causes critical slowing down, just like when
the electrons in the core approach each other or the nucleus (node). There is an infinite number
of paths which will lead to the same stationary distribution. In other words, Eq. 4.11 can also

be reasoned as

a¢(azr, p / dy (‘Q"vz?%% + Qzin(=, T)) , (4.13)

where Qy represents a positive definite matrix. Fourier acceleration consists of setting Qzy o
A(z — y), where A is the propagator corresponding to the lowest-mass particle. The kernel Q is
local in momentum space, so the convolutions in Eq. 4.13 are evaluated using Fourier transforms

as we have previously seen.

4.1.3 Accelerated variational Monte Carlo

In the VMC case, the critical point occurs at Z — oo. Since the asymptotic distribution
of the walk described by Eq. 4.2 is a steady-state, we can solve for any asymptotic distribution
such that

df

- = DV -(V+F)f = 0. (4.14)

At this point we wish to introduce an acceleration matrix to speed things up. This is readily
accomplished by multiplying Eq. 4.14 by a matrix M, i.e.,

M% = DV-M(V+F)f=0. (4.15)

Notice that in order for the steady state to remain unchanged regardless of the choice of acceler-
ation matrix, M has to be real-symmetric, positive-definite, and independent of the coordinates,
RS Taking notice that M o 7 when we intégrate Eq. 4.15, we readily see that in our new

Langevin equation M o 7 as well:
R = R + DrMFo + V2DrM7 . (4.16)

Equation 4.16 will dictate the new trajectories for our configurations. Now the drift velocity fQ

is replaced by qu, and all electron coordinates contribute to the drift of a single electron for

91n this regard, an analogous implementation of acceleration for FNQMC would be impeded by the branching

-

term which is a function of the coordinates, R.
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2 non-diagonal M. The new Green’s function will be given by

- - 1 (BB 71\2 -
CulR— Rir) = e R DrMFq(R)?/4DTM (4.17)

And, therefore, the new acceptance probability will be given by

[Er(F)P Gl — Fi) )
" ¥ (R)2 Gu(R— R57) )

Am(R — R';7) = min (1
which can be expanded and simplified as
Am(R— R;7)

= min (1 (R 125(Fo(AMPa(R) - Fo(RYMFo(R)) + H(Folf) + Fo(AN(A-A]

" e (R)P
(4.19)
We know that, in general, our quantum force can be written as Fo = VUpp where U is
the “potential” Uy, = —21In |¥7|. Assuming that this potential U is in fact harmonic near the
minimum, we have ‘
U= %aij%"]j . (4-20)

In practice one uses 2 trial function constructed from a Gaussian basis set because one wishes a
potential, U, that is smooth and harmonic; the cusp of the typical Slater type basis functions,
which are commonly used in VMC, would violate this premise. One can immediately notice that
there will be different potentials for the coordinates of different electrons. These differences in
potentials are reflected in the quantum force, as given by Hooke’s law, ﬁQ = agq, in the force
constants a;;. Now all we need to do is choose M such that it cancels out the differences in Fg.

If we choose our matrix M = H~!, where H is the Hessian of U, §2U/dq;8g;, it would

cancel the a’s responsible for the time scales,
MFg = a~la§ = ¢ (4.21)

and when inserted in the new Langevin equation, the result is all modes relaxing at the same
time on only one time scale. This is equivalent to expressing the quantum force in a coordinate
system in which M is diagonal. The eigenvectors of M will be the basis for the new coordinate

system.

In order to implement the choice of M discussed in this section, it is first necessary to
find 2 minimum of the potential U for a given Gaussian trial function and then compute and invert
the Hessian matrix of U. Here the minimization was done by the downhill simplex method[17]
and the Hessian was computed by finite differences. Before incorporating the acceleration matrix
into the random walk it was necessary to modify the walk slightly. The quantum force, fq,
and the Gaussian random variable 7j are treated as vectors since the new move updates normal
coordinates and not individual electron coordinates. It is required to move all the electrons at

once such that their modes could be mixed as required in the acceleration prescription.



87

4.2 Applications

The Batrouni-Reynolds accelerated VMC method was tested on the C, N, O and Ne
atoms. To implement the method an acceleration matrix is introduced as described in the
previous section, and for comparison purposes, the choice of M = 1 (unit matrix) is used as the
non-accelerated case. Section 4.2.1 presents results of this implementation at the microscopic

level,'?, and Sec. 4.2.2 contains autocorrelation results.

4.2.1 Effect on simulation features,

A direct observation and tabulation of the electron movements and their acceptance
is the best way of determining if and when equilibration is achieved. As mentioned before, the
comparisons in this section are done between the choices of M = 1 (unit matrix), which is the
equivalent to moving all electrons together, with the same old Green’s function G (i.e., transition
probability T'), and M = H~! (Batrouni-Reynolds’ choice for acceleration matrix). Ceperley et
al.[19] showed that doing a MC computation where electrons are moved individually is much more
efficient than if all electrons are moved at once, since the Slater determinant can be inverted!?!
twice as fast when a single column (corresponding to the new electron position) has been updated.
Also, when all electrons are moved together, the acceptance ratios are expected to be lower than
when electrons move separately due to: (1) any individual electron’s low acceptance probability
(ie., G(R; — ffj—, 7) small) may cause the entire update to be rejected; or (2) even when the
individual acceptance ratios are reasonably large, the entire update has a lower acceptance ratio
(and, therefore, a larger chance of being rejected) than if the electrons were moving singly since
all n electrons contribute collectively to it (e.g., the expression P,y = H:‘ P(R;)"‘(R‘), where
P(R;) is the acceptance ratio for the i-th R and n; = nx(population in R;)/(total population)
gives a rough estimate of the acceptance ratio for moving all electrons together if the individ-
ual acceptance ratios for each electron are known.). Given the small acceptance ratios of core
electrons, one would expect that very small time steps would be required to achieve an overall
50-85% acceptance ratio.

As expected, when moving all electrons together, large time steps could not be used
without dramatically lowering the acceptance ratio. Take for instance the examples for Ne shown
on Tables 4.1 and 4.2. On Table 4.1 an acceptance of 83% was obtained for r = 0.03, whereas
moving the electrons together (Table 4.2) requires at least + = 0.003 to attain an acceptance
above 75%. Similarly, there was a dissapointing lowering of acceptance when the acceleration
matrix was introduced. This lowering changes from system to system. For example, in carbon

the acceptance ratio decreased by about 4% at each time step, while in neon the decrease was

30More detailed description of this type of study can be found in [80].
HRecall that one needs to compute the quantity E; = H¥p /¥7, and the ¥ used here is a Slater determinant.
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around 1-2%. On the other hand, acceptance probabilities in N and O showed very little change
with addition of acceleration.

When the Batrouni-Reynolds acceleration matrix was implemented, we noticéd very few
changes from the behavior for the unit matrix moving all electrons together, so we cannot say
for certain if the resulting change is an improvement, or simply a statistical deviation from the
regular walk. Figure 4.3 shows a comparison of both non-accelerated and accelerated runs for
Ne atom at 7 = .01 for the average movement in each radial region, as well as the contribution
to the global acceptance from each individual electron. We can see a slight improvement for

_the accelerated case, although the overall acceptance ratio and variance always favors the non-
accelerated runs. Also, we can see in Fig. 4.3b that although the average move in most regions is
enlarged by acceleration, in the core region, i.e. those closest to the nucleus,'? the move is barely
motre (e.g., in the example in Fig. 4.3 this is about 10~2) than that for the non-accelerated case.
One would have hoped the improvement in the core to be much higher.

It has been claimed in [146] that there is a compromise in choosing a time step such
that both the core or the valence are sampled efficiently. This means that small time steps,
which produce reasonable moves for core electrons, result in inefficient sampling of the valence
region. Similarly, large time steps which would correct this problem, produce large moves which
are rejected in the core region, as we have already shown in Table 4.1 and Fig. 4.2. Since one
of the goals of the acceleration matrix is to make all coordinates propagate at the same “speed”
(given their distance R from the nucleus), it is therefore intuitive to desire to make moves AR
which would be proportional to R, regardless of the chosen time step. The quantity AR/R gives
the move relative to the electron’s distance from the nucleus, and gives, therefore, a measure of
who “wins” in the compromise described above. A comparison of this measurement is shown in
Fig. 4.5 for Ne at 7 = 0.005 comparing the acceleration matrix with the case where no acceleration
(i-e., the unit matrix is used) is applied. We observe that the displacement relative to the position
of the electron (i.e., AR/R) only improves for those electrons closest to the nucleus, which might
be more a consequence of the choice of small T than of acceleration. Since the objective of the
acceleration was to improve the sampling of both core and valence, we would have hoped to see
an improvement in all regions, possibly making the ratio AR/R constant for all values of R.
More explicitly, the goal of the acceleration was to choose 2 AR « R. If this were so, Fig. 4.5
would be constant/flat for all values of R. Instead we see a 1/R behavior which clearly indicates
that AR is constant for all R, not necessarily an improvement from the old situation.

Reynolds suggested to study (AR/R) in the core region at the initial stages of the
walk[157). The rationale behind this study was that we had optimized a configuration (which

12 Although we feel reticent about using the term “core” to mark specific electrons since exchange happens so
frequently (see Fig. 4.6), we will continue to refer to the electrons closest to the nucleus (R < 0.1ap) as “core”

electrons.
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minimized U = —In |¥r|? as discussed in Sec. 4.1.3) for which we created our acceleration matrix.
Since we did our averages using that walker as the starting point,!® we should look closely at
the effect of the acceleration matrix in getting that walker out the low ¥ region.!* Presumably,
the configuration would move towards regions of larger ¥z in the first few steps of the walk, we
observed the effect of M on the electrons closest to the nucleus (R < 0.1) during the first ten
steps of this type of walk. These results are shown in Table 4.2. A highest (AR/R) does not
clearly result from either method, although for the smallest values of R, it is mostly dominated
by the acceleration method. Figures 4.4 and 4.5 suggest that the apparent improvement of the
acceleration matrix is really an effect of statistics rather than physics.

' An important thing to point out is that except for carbon, in all instances the accelerated
case does as well or significantly better than the non-accelerated one in moving the inner electrons.
This can be inferred from the {{AR/R) : R € [0,0.1)} as well as the overall average move, (AR),
which is larger for the accelerated cases; even in the case of carbon (AR) is improved in these
first few steps. The bad news is that the effect gets lost almost immediately after the first few
steps...

Another problem is that the acceptance ratio seems to go down in the accelerated
cases, except in the case of carbon in which the acceptance ratio is significantly improved with
acceleration. As the walk progresses the average move as well as the acceptance ratio quickly
increase as the first problematic configurations are moved out of unfavorable positions. As the
walk progresses, the initial advantage the acceleration has, seems. to vanish completely to the
point that even the {{AR/R) : R € [0,0.1)} goes below that of a non-accelerated walk.

Figure 4.4 shows the radial move among the different radial régions for more substantial
runs. In these figures we can clearly see that, at least for the smaller time steps, the average
radial move is constant among both core and valence. It is clear from this data and the individual
electron data (Table 4.3) that exchange among core and valence is to blame for this.

In Table 4.3 we show (R) and {(AR) for the individual electrons in several atoms. All
numbers collected in this table were obtained by allowing a single walker at the minimum con-
figuration obtained for the creation of the acceleration matrix to take 50000 VMC steps. The
important thing this table shows is that there is no distinction between core and valence electrons,
or rather that these exchange frequently during the walk, as Batrouni and Réynolds stated in
[146). For example, Fig. 4.6 shows the high-frequency of electron exchange occurring in a 50-step

walk by a Ne walker (10 electrons).

13This was to avoid any problems which might come about from node crossing[31].
14This should not be confused with the “trapped” electron situation discussed in [158].
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Table 4.2: Effects of acceleration on electron movement (AR) and acceptance ratios (AR) at

beginning of a sample VMC simulation. Observations were done on the first 10 steps of the

Monte Carlo walk from the minimum configuration for which M was computed.

{(AR) : {{AR/R): {(AR) :

Z T Method® || R€[0,0.1)} | (AR)® | R€[0,0.1)} | R€[0,0.1)} | (AR)*
0.003 -j| No Acc. 0.04434 0.072064 | 9379748.87 0.89503 0.89503

C Acc. 0.01421 0.172002 722406.05 0.93471 0.93471
a {| 0.005 || No Acc. 0.05245 0.088024 | 11250141.24 0.85162 0.85162
r Acc. 0.01933 0.221034 | 1313055.14 0.98007 0.98007
b || 0.007 || No Acc. 0.05810 0.099053 | 12563156.59 0.81087 0.81087
o Acc. 0.02192 0.257242 | 1560816.18 0.94732 0.94732
n | 0.01 || No Acc. 0.05281 0.110335 | 18712724.29 0.69891 0.75269
Acc. 0.01788 0.237804 | 1876494.60 0.71412 0.71412

N || 0.001 || No Acc. 0.04172 0.047761 166.60 0.89134 0.90991
i Acc. 0.04259 0.047857 171.37 0.88587 0.90549
t |t 0.002 | No Acc. 0.04967 0.069110 282.29 0.83285 0.88293
r Acc. 0.05090 0.069486 290.46 0.83013 0.88120
o || 0.003 || No Acc. 0.05548 0.083551 388.31 0.78739 0.86513
g Acc. 0.05671 0.083960 399.78 0.78394 0.86282
e j| 0.004 || No Acc. 0.06407 0.097902 434.59 0.83117 0.87406
n Acc. ) 0.06540 0.098204 444.24 0.82667 0.87063
O || 0.001 || No Acc. 0.03815 0.044137 140.22 0.78563 0.86491
X Acc. 0.03815 - | 0.044149 140.22 0.78561 0.86489
y || 0.002 {| No Acc. 0.05067 0.060117 234.55 0.69886 0.82096
g i Acc. 0.05067 - | 0.060134 234.54 0.69882 0.82091
e i 0.003 || No Acc: 0.07221 0.078213 148.67 0.79089 0.82693
n Acc. 0.07221 0.078236 148.67 0.79088 0.82692
0.003 || No Acc. 0.05954 0.076191 4749 |  0.64796 0.77601
Acc. - 0.06291 - | 0.076498 50.74 0.63944 0.76935

N |j 0.005 || No Acc. -0.04795 . § 0.087176 92.72 0:39139 0.66728
e Acc. 0.04818 0.089801 200.20 0.50090 0.70174
o || 0.007 || No Acc. 0.01754 0.060442 450.38 0.11067 0.40915
n Acc. 0.01486 0.059095 477.88 0.08902 0.39405
0.01 || No Acc. 0.01654 0.015057 947.30 0.08763 0.08763

Acc. 0.01302 0.011373 582.33 0.06539 0.06539

@ M = H~! was used for the accelerated case and M = 1 was used in the non-accelerated case.

b (AR) is the average AR of all electrons.
¢ (AR) is the average acceptance ratio of all electrons.
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Table 4.3: Average movement data for individual electrons in several atoms taking 50000 steps

at given values of 7.

No Acceleration Acceleration

T i (R:)e | (AR:)° (R:)* | (AR

1 || 0.620617 | 0.062723 || 0.766009 | 0.064051

2 || 0.689745 | 0.062930 || 0.650934 | 0.063830

3 || 0.701081 | 0.062828 [| 0.692252 | 0.062425

N | 002 | 4 |] 0.675181 | 0.062895 || 0.706517 | 0.062248
5 || 0.723410 | 0.063575 |} 0.699570 | 0.062637

6 ]| 0.156155 | 0.053393 |{ 0.614143 | 0.062320

7 || 0.782154 | 0.065510 || 0.337134 | 0.062320

1 || 0.588490 | 0.055341 || 0.577765 | 0.054620

2 0.627224 | 0.055836 || 0.619178 | 0.055141

3 |1 0.581724 | 0.055094 || 0.598784 | 0.055222

O | 0015 | 4 | 0.596178 | 0.055533 || 0.622888 | 0.055543
5 || 0.545331 | 0.054828 |} 0.616961 | 0.054910

6 || 0.545960 | 0.054760 || 0.504539 | 0.054086

7 |l 0.515449 | 0.054136 || 0.485420 | 0.052864

8 || 0.465596 | 0.053134 || 0.545825 | 0.054626

1 || 0.417705 | 0.041372 || 0.384710 | 0.042089

2 || 0.473877 | 0.042182 || 0.408923 | 0.040374

3 || 0.422525 | 0.041579 || 0.459692 | 0.040901

4 || 0.404492 | 0.041088 || 0.456944 | 0.041036

Ne | 0.005 | 5 || 0.465128 | 0.042103 || 0.415626 | 0.040550
6 j| 0.412031 | 0.041504 || 0.408321 | 0.040824

7 |1 0.396812 | 0.041088 || 0.386719 | 0.040354

8 | 0.422935 | 0.041659 || 0.437765 | 0.042427

9 || 0.488359 | 0.042155 || 0.456371 | 0.040762

10 || 0.395563 | 0.041080 || 0.425235 | 0.040458

@ (R;) is the average distance from the nucleus at which electron { remained
during the walk.
b (AR;) is the average AR electron i moved during the walk.
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Figure 4.3: Comparison of acceptance ratios and accepted (A R)’s for Ne at 7 = .01 when a unit

matrix or M is used in the different radial regions.
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Figure 4.4: Average radial moves for non-accelerated as well as accelerated walks.
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Figure 4.5: {AR/R) vs R for both accelerated and non accelerated walks.
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Figure 4.6: Electron exchange of a Ne walker in 50-step walk.
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4.2.2  Effect on autocorrelation time

As mentioned in Sec. 2.1.4.1, we normally divide the steps in our walk into “blocks,”
and expect the subaverages of the local energy to be randomly distributed, i.e., uncorrelated.

The value of the mean (block energy) for each block is

_ 1 N, -

By, = (F) > E, (4.22)
and the total mean‘of block energies is

; _ o : .

E = (E>§;Eb. | (4.23)
The length of eat;h of these blocks must be larger than the correlation time to guaraiitee no
correlé.tion among them. In our case, we can determine an appropriate number of steps per
block, N, by computing the autocorrelation among steps in the ensemble and using a block
length at least 10 times the value of the autocorrelation length.

The autocorrelation time that Umrigar[150] used to give a measure of statistical inefficiency[159},
{

is defined as

. (a? S
Teorr = lim N, = (4.24)
Ny—o0 o . - I
where : N ,
o = =3 (B~ (E)) (4:25)
i=1
and . o
o} = W‘;Z(Eb—(E))- (4.26)
i=1

For N measures, we will have only N/T,,.r independent measures, so we try using Ny blocks of
N, steps each, where N, = 10T %or- .15 Since we are using a value of N, = 10T¢orr, we will assume
that all Ej = E; are independent and that, therefore, the limit in Eq. 4.24 becomes N;[150]. The

error bars we report are given by

1 N
oe = J N—(N_——l—)'z(zj —-Z)?, (4.27)
ji=1

as for QMC in previous chapters. There is no clear relation between T, and the error, but

one would hope that a less correlated walk would converge faster since fewer steps are required
to gather results and achieve equilibration.
The autocorrelation time as defined above should be a constant. However, since we are

not computing it from a “truly infinite” walk (nor an infinite ensemble), we find that there is an

15Bven though using Ny = Teorr presumably has eliminated all correlation, it is usually preferred to play it safe
and extend the block size beyond the auto-correlation time. Umrigar[150] suggests to use N = 100Tcorr.




96

Table 4.4: Autocorrelation times (Tcor-), energies (Exr, Eiocal) and acceptance ratios (AR) for

C,N,0 and Ne atoms, for different ensemble sizes (N:) and walk parameters (time step, 7, number

of blocks, Np, and number of steps per block, N;).

Euxr Method | N; T Ny x N, Eiocal AR CPU Teorr
(2.u.) (a.n.) time?
No Acc. | 200 | 0.03 | 20x1000 | -37.64131(427) 5539 | 3327.57 | 11.36
C -37.6884 Acc. 200 | 0.006 | 20x1000 | -37.65972(511) 4625 | 3327.53 | 16.27
No Acc. | 400 | 0.03 | 50x1000 | -37.68533(58) .5680 | 11549.81 | 12.59
Acc. 400 | 0.005 | 50x1000 | -37.68683(58) .5563 | 11587.81 | 35.40
N -54.4009 No Acc. | 400 | .02- | 50x1000 | -54.40254(214) 5902 | 21735.02 | 9.30
‘ Acc. 400 | .02 50x1000 | -54.40128(221) 5835 | 21791.11 | 10.21
(0] -74.8094 No Acc. | 400 | .015 | 50x1000 | -74.80309(328) 5667 | 26665.34 | 14.30
Acc. 400 | .015 | 50x1000 | -74.79583(577) .5862 | 26721.11 | 46.06
No Acc. | 200 | .01 20x1000 | -128.54106(1114) | .5474 | 8476.60 | 12.86
Acc. 200 | .001 | 20x1000 | -128.52363(1537) | .4258 | 8470.75 | 33.61
Ne | -128.54701 J| No Acc. | 400 | .01 50x1000 | -128.54416(442) | .5474 | 32583.34 | 14.25
Acc. 400 | .001 | 50x1000 | -128.54642(712) | .4283 | 32266.96 | 37.58
No Acc. | 500 | .01 50x1000 | -128.54582(354) | .5472 | 49817.69 | 12.01
Acc. 500 | .001 j 50x1000 | -128.54180(575) | 4214 | 49707.08 | 31.69

¢ CPU times given in seconds

error associated with its estimation. The results shown in Table 4.4 corresponds to data from
a walk with the specified parameters apd therefore no error bars are shown on the acceptance
ratio (AR) and T¢opr-

The first set of runs (N = 20000) for carbon shows that the acceleration does poorly for
both improving the variance as well as in decreasing correlation among steps. The autocorrelation
function plotted in Fig. 4.7 for carbon (non-accelerated and accelerated), clearly shows this,*®
and the autocorrelation time confirms it numerically. For the second set of runs, on the other
hand, we find that we can achieve equivalent variances in similar CPU time even though the
autocorrelation gets worse. This should be obvious after our short discussion on the compromise
when choosing 7. In order to increase acceptance, one has to bargain with the correlation as
well, i.e., when the acceptance is too high, one increases the time step obtaining therefore a lower
acceptance, lower variance and a shorter correlation. However when the acceptance is too low,
one must reduce the time step and increase the variance as well as the correlation among steps.

Since carbon requires a2 Tnoace & 207 4.c, We expect much more correlated results for such a walk.

16The autocorrelation function is defined as 1 beginning at 0 stéﬁs and reaches 0 when the autocorrelation

among steps disappears entirely.
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For nitrogen the results are a bit more promising than for carbon. As a matter of fact,
both accelerated and nonaccelerated results were equally correlated. However, although of all
four systems studied nitrogen looks the best in terms of both variance and Teorr, it still indicates
that the acceleration is not performing as expected.

The results for oxygen were far more dramatic. The correlation in oxygen is very
strong for the accelerated walk (the autocorrelation extended up to 3500 steps), and it is not
entirely clear why this extreme correlation is caused by the introduction of the acceleration
matrix. It seems that as the number of electrons increases this increase in correlation will be
inevitable (except when more sophisticated wave functions are accordingly used), which worsens
the sampling efficiency as Z gets large. In the case of neon, once more the time steps needed to
achieve comparable acceptance ratios were 7no4ec ¢ 1074cc.

The only consistent result in all cases is that both the correlation and the variance
worsen with our choice of M = H~!. Something to point out is that even in the cases of
high T.orr, plotting the block energies indicates that they are random enoﬁgh to be used in
computing the Eyarc, as can be seen in Fig. 4.8 for oxygen, our most correlated case. It was
also suggested that perhaps the poor variance mig—ht be a sign of 2 non-gaussian distribution of
the resulting energies. However, as shown in Fig. 4.9, they clearly represent normal distributions
of the sampled energies, and therefore, the assigned error bars should unbiasedly match those
from standard deviation calculations.

Now we wish to make some comments on the merit of using the autocorrelation time
for the evaluation of performance,,as well as to compare our results with those recently published
by Umrigar[150]. Umrigar claimed in his accelerated Metropolis paper that the “drawback of
the Metropolis method is that the points sampled are sequentially correlated, resulting in a
loss of computational efficiency,” and therefore, autocorrelation is a good measure of efficiency.
Accordingly he proposes that the autocorrelation time can be reduced by increasing (AR} or
by increasing acceptance. However, we claim here that this might not necessarily mean that
the method is more efficient since another important consideration is how much of configuration
space is being sampled, which a small autocorrelation does not guarantee.

From Umrigar’s paper[150], we can see that the autocorrelation times in his Table I fall
into two categories: (1) all electrons are moved together; or (2) one electron is moved at a time.
The results regarding (1) are the ones that can be directly compared with ours, at least for Ne.
Our accelerated Tiory result (Teorr= 34.29(1.73)) for that system compares with his algorithm 1
(simple Metropolis) for the “good” wave function (Teorr = 37(3.7)), while does much better than
for his “simple” wave function (Ttorr = 84(8.4)), and a little worse than algorithm 2 (Cartesian
directed Metropolis) with a simple wavefunction (Teorr = 28(2.8)). The interesting thing to
notice is that our M = 1 (non-accelerated) case, which is another Cartesian directed method,

should match with his results for algorithm 2, but does much better (Teorr = 13.04(.65)) than his
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simple (Teorr = 28(2.8)), and about the same as his good (Teorr = 11(1.1)) wavefunction case. His
“simple” wavefunction consists of a single determinant multiplied by a simple electron-electron
Jastrow factor, while in the “good” wavefunction the determinant is multiplied by Jastrow factors
containing both electron-electron and electron-nuclear factors. The wavefunction we use for ¥
is not as sophisticated as his “simple” wavefunction, since we do not use any correlation factor.
(We also obtain a much larger average acceptance as well as a lower o value than algorithm 1 in
both instances, but this might be due to the differences in the walk parameters.)

Something different caught our attention regarding category (2). Claiming that it takes
twice as much computer time for the update of individual electrons, he multiplies his values
of T,orr by 2 factor of 2. Although the argument about the factor in the computation time is
correct[19], it is not clear how the autocorrelation time can be dependent on an external circum-
stance, such as computer time. One thing to note, however, is that without this “adjustment,”
his value of T¢,.r for his good Ne wavefunction is under 1, which seems unreasonable. A value
of Teorr < 1 implies that a walker takes less than one step to become decorrelated!

We did similar estimations of autocorrelation times, using the old non-accelerated VMC
method which moves and updates electrons individually, and found some surprises. In order
to compare with the T, values published by Umrigar, we studied the Ne and Ar systems,
and discovered that the autocorrelation length was always invariably small (i.e., Teorr < 1)
For Argon, just like Umrigar’s value for the “good” Ne wave function, our value of T¢,rr was
repeatedly under 1. We cannot speak for Umrigar’s data,'” but we can explain what caused
our low T,.r~. To understand how this is possible one needs to look again at Eq. 4.24 where
Teorr is defined. We found in the data used to compute T¢,. that ocassionally there were huge
fluctuations (or spikes) present among the normal random noise (see Fig. 4.10). These spikes in
the sampled energies contribute little to the individual block rms (g}) for large blocks (i.e., large
N,), but are significant in determining the overall rms (¢) and, therefore, lead to inappropriately
small values of Tiorr. This phenomenon is related to the quality of the wavefunction and the
magnitude of the energy. The quality of the wavefunction in VMC determines how much the
energy will oscillate as one samples space (See Appendix A.8). Note that for the exact wave
function, one would obtain an infinite correlation time, since all the local energies would equal
the exact energy. The second important factor to take into account is that as the total energies
become larger with system, more accurate wavefunctions are needed in order to reduce these
oscillations and get more meaningful results. For instance, in the case of carbon the largest
oscillation present was of the order of .5 a.u., while for argon there were oscillations of several
hundred a.u. present. To illustrate this, Fig. 4.10b shows also a similar plot of the accelerated

VMC implementation.

17Umrigar’s values were computed by following a single walker for a million steps.
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Figure 4.7: Typical autocorrelation functions for non-accelerated and accelerated runs of carbon

atom.
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Figure 4.8: Block energies for non-accelerated and accelerated oxygen calculations.
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Figure 4.9: Energy distribution of non-accelerated and accelerated runs for oxygen. 400 walkers,

50000 steps.
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Figure 4.10: Energies along sample VMC walks.

Argon - VMC

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Steps

Carbon - AVMC
400 walkers -
-36.8 —

-371

-37.21

[
®

»

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Steps

e e - —

102



103

4.3 Conclusion and future directions

We have implemented the Batrouni-Reynolds acceleration method based on an acceler- -
ation matrix and found dissapointing results. The core electrons, which are responsible for the
bottleneck in the equilibration of the ensemble are not being consistently moved, as hoped. The
acceleration matrix failed to move the electrons by an amount proportional to their distance from
the nucleus, while the autocorrelation of the walk was greatly increased. These results suggest
one must rethink the choice of matrix used.

A different approach by Sun et al.[160] delivers better results in differentiating between
core and valence, by taking second derivatives of the pseudopotential P = —In|¥z|? into acount
in addition to the commonly used first derivatives (or quantum force). Preliminary results sug-
gest that this might be a simpler and unbiased alternative to acceleration. With this method,
acceptance in the core has been increased for Ne, Ar and KCI by a factor of five by adding only

diagonal elements.




Epilogue

) Persons altempting lo find a motive in this narrative will be prosecuted; persons

atiempling 1o find a moral in it will be banished; persons atiempling o find a plot in
i will be shot.

Mark Twain - “The adventures of Huckleberry Finn”

In spite of the limited success of the work presented here, I believe QMC still has a very
promising future. It is clear that knowledge about the nodes of the wavefunction, which is the
only truly meaningful information to be known, is very limited by our current means. Perhaps in
the future it will be possible to indirectly examine the location of these infamous nodes, but until
then, the efforts on “optimizing” wavefunctions should be redirected towards more productive
efforts in speeding up the algorithm.

Parallelization of Monte Carlo codes promises to speed up somewhat the process of
obtaining the results. However, the claims of the speed up factor might be more luscious than
the actual results. Only after parallel machines are made widely available as well as more stan-
dard compilers which will make codes portable among machines and operating systems without
excessive effort (i.e., extensive rewrite of algorithms), we will know if the parallel architecture is

really as exceptional as promised.
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Appendix A

Definitions

Quidguid latine dictum sil, allum vidilur
Source unknown

The purpose of this section is to provide essential definitions which are fundamental in the
preceding work. Rigorous proof of the arguments hereby presented is beyond the scope of the

present work, and references to their source will be given in each section.

A.1 Atomic units

In molecular calculations, quantum chemists generally work in a system of units known
as atomic units (a.u.). The electronic Hamiltonian for a molecular system with N electrons and

M atomic centers is written explicitly as

N X ZAC N N e?
- ‘; om; ¢ ;AZ; dmeoTia ;; y——— (A1)

where Z4 is atomic number of nucleus A, 7;; is the distance between electrons i and j, and ri4
is the distance between electron 7 and nucleus A. Introducing a set of units such that 2 = 1,
m=1,e=1, and kg = 4mep = 1, Eq. A.l becomes

N M

_Slvr- PP zz—. (a.2)

i==1 i=1 A=1 i=1 j>i

O] =

Many other physical quantities such as distance, energy and time may be expressed using the
four basic defined units above. The Bohr radius gy defines the atomic unit of length, known as
the bohr and is given by N

dmegh?

—5 = 1. (A3)

ay =
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Similarly, energy is defined in terms of the hartree as
met
h2

E= =1 hartree . (A4)

Ko
The ground state of the hydrogen atom is -1 hartree. A list of atomic units and their significance
is given in Table A.1. Table A.2 gives some common energy unit conversions.

A.2 Born-Oppenheimer Approximation

The Hamiltonian of a molecular system is given as follows:

H = T+ Tr+ V(7 Ra) (A.5)
where
(5:)* L
T = ; 2m; ég S ¥ (4-6)

is the kinetic energy of the electrons (5; and m; are the momentum operator and mass for electron

i),

R Noawe (13,1)2 Nnpue ﬁz .2

is the kinetic energy of the nuclei, and
V(Fn -R.A) = IZ:c + 1r”/rm + Vi (A-s)

is the potential energy which has electron—electron nuclear-nuclear, and electron-nuclear contri-

butions, given by

18, e -
Vc == T= =1 (A..Q)
¢ 2 ;fg |7 — 75l
N, N,
. 1 nuc iVnuc CZZAZB
V,—;n = -3 == (A].O)
and
Nc Nnuc
Vnc = - ‘ (A.ll)
et

respectively. Using Eq. A.5, the Schradinger equation becomes

T, (7%, Ra) + TrY(F, Ra) + V(R Ra) = EY(F, Ra) (A.12)
Assume that the eigenfunctions ¥(7, ﬁA) of the Hamiltonian  are separable in the following
form (called a Born-Oppenkeimer product):!

(7 R) = Ry R) . (A.13)

11t may seem that this is what we ultimately want to prove. However, this is a common practice when a

separation of variables is desired.
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Quantity Natural Unit SI equivalent

Mass m=1 9.1091 x 10™°! kg
(electron mass) :

Charge le}=1 1.6021 x 10~° C

Angular momentum

Permittivity

Length

Energy

Time

Speed

Electric potential

Magnetic dipole
moment

Electric dipole
moment

Electric
polarizability

Electric field

Wave function

(electronic charge)
h=1
Ko =4meg =1

koh?/me® = ag = 1 (bohr)
(Bohr radius)

Eo = met /3R = e2[/kpap = 1 (hartree)
(twice the ionization energy
of atomic hydrogen)

k283 met =1
(period of an electron in the
first Bohr orbit)

e?/roh =1

(speed of an electron in the
first Bohr orbit)

me3 [k2h® = efKoap =1
(potential energy of an electron

in the first Bohr orbit)

eh/m=1
(twice a Bohr magneton)

eag =1
e2af;?

£ae_1aa'1

~3/2

1.0545x 10734 J. s
1.1126 x 10~1° C%. J~1. m™!

5.20167 x 10~ m

435944 x 1018 J

2.41889 x 10~17 s

2.18764 x 106 m - s~

27211V

1.85464 x 10722 J.T?
84784 x 1073 C-m
1.6488 x 104 C?m?J-1!

5.1423 x 101* V - m~!

2.5978 x 1015 m—3/2

%Taken from Refs. {1} and [11].
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Table A.2: Conversion factors for energy units used throughout this work.

eV hartree (au) em™? keal mol™?
levV= 1 3.675 x 107% 8065 96.48
1 hartree (au) = 27.21 . 1 2.195 x 105 627.51
lem=!= - 1.2399 x 10~% 4.556 x 10— 1 ‘ 2.859 x 103
1keal mol™! =  4.337 x 10~2 15936 x 10~3 3498 1

Now substituting Eq. A.13 into Eq. A.12 we get

$RTH(FR) + Tre(R)W(7, B) + VFE RSB B) = BJRWFER) . (A.14)
Since
Tad(R)U(7, R) = $(R)Trd(7, R) + ¥(7, B)Trg(R) - ;—A%ms(é)ﬁm(ﬁ R), (a.15)

Eq. A.14 becomes

{— > fl Vad(R)-Vab(7 B) + $(BYTro(7, ft)}
A A . : .
+ ¥(F, RYTrd(R) + $(R)T-o(7, R) + V(7 R)$(R)(F, R) = EH(R)w(7, R). (A-16)

Neglecting the terms in brackets corresponds to the adiabatic approximation, i.e. the electrons

change positions many times before the nuclei shift their positions by any considerable. amount:

< [¥Tré] (A.17)

_ XA:A’% [6A¢-6A%] + ¢T,%¢

which holds when |V 49(7, Ba)| < |Va¢(R4)].2 Equation A.16 becomes

eé + [T + V]v = By (A.18)

Terms in brackets constitute the Hamiltonian for fixed-nuclei (i.e., Tr = 0), which is also known
as the elecironic Hamiltonien, Hy = T. + V(F, ﬁ) The functions, ¥(7, ff) are chosen to be

eigenfunctions of ﬂcz,
TH(FR) + V(7 B¢ R) = e(By(, R), (A.19)
and the energy eigenvalues, e(fi) depend parametrically on R. Usiﬁg Eq. A.19, Eq. A.18 becomes

Tré(R) + e(R)$(R) = E¢(R). (A.20)

2This is so since changes in electronic coordinates are much larger than changes in nuclear coordinates.
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Assuming that the adiabatic approximation holds, the problem reduces to the following

system of equations:

Toe(F R) + VFE R R) = ex(B)ye(7 R) (A.21)
Tréu(B) + ex¢pr(R) = Endu(R) . (A.22)

A stationary state of the system is given by
Uo7, R) = (7 R)dui(R) (A.23)
where ;. are the eigenfunctions of the “electronic” Hamiltonian,
Ha = T+ + V(7 R), (A.24)
and ¢y are the eigenfunctions of the “nuclear” Hamiltonian,
Haue=Tr + 'ek(R:) . (A.25)

The nuclear Schrédinger equation, Hawe¥n = E¥,,, is solved to describe the vibration, rotation

and translation of the molecular system.

A.3 Slater-type and Gaussian-type orbitals (STOs and
GTOs)

In Sec. 1.1 we mentioned the basis functions which are used to describe the AOs in
the LCAO approximation in 2 very vague fashion. It is clear that many types of functions could
be used, from simple exponentials to the complex Hylleras expansions[161]. However the two
types of basis functions which are most used in molecular electronic structure calculations are
the Slater-type orbitals (STOs) and the Gaussian-type orbitals (GTOs). The general form of the
Slater-type function (STF) is,

xs = 2%’ ™"  or  xs= Y™ (8, 4)rle S, (A.26)

in Cartesian and spherical polar coordinates, respectively. Table A.3 shows a transformation
between the spherical polar and the Cartesian orbitals. This table is particularly useful to those
who use quantum chemistry codes based on Gaussian orbitals to obtain wave functions.3 These
programs output 6-d(z?, y?, 2%, zy, zz, yz) functions instead of the 5 physical ones(3r? —
r2, zz, yz, zy, z2 —y*), and likewise there will be 10-f functions instead of 7, and so on. The

Cartesian Gaussian-type functions (GTFs) are, similarly, given by

xe = 2%yt zerle=tem (A.27)

3Such as GAMESS and HONDO which we use in QMC to obtain the trial function.
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Even though STFs provide a more accurate description of the cusp behavior in the orbitals, they
are much more difficult to integrate. This is why most computations are performed with linear

o e . . . : .
combinations of Gaussian functions* which are fit to resemble the correct cusp behavior.

A.3.1 Nomenclature

At this point it is useful to say a few words about the nomenclature used in the literature
to label these basis sets. Clementi provides a good source of atomic STO basis sets in Ref.
[103]. Similarly, Huzinaga[94], Dunning[95, 162] and Pople have provided atomic GTO basis
sets. Pople’s nomenclature corresponds to linear combinations of contracted Gaussians. The
first type of basis sets are the Slater-type orbitals expanded in K Gaussians, or STO-K G, where
K is the expansion number®. Larger exponents ¢ will produce tighter orbitals, while smaller
(’s bring about orbitals which are diffuse. These properties are used in the linear combination
to approximate the cusp of the STO’s they try to emulate. As K increases, the better the
approximation becomes. Huzinaga introduced the terms double-zeta (DZ), triple zeta (T2), etc.,
where the number of zeta refers to the number of basis functions added for each AOS.

Since increasing the number of functions also increases the number of integrals to be
computed, it is wise to limit the expansions, or at least to choose the functions involved carefully.
This gives rise to the so-called split valence basis sets. The idea here is to get rid of the extra-
functions in the core region, since they are not that important in bonding anyway. The notation
for these “split valence” basis sets is given by a K-LMNG symbol where K is the number
of functions in the core; LMN describe the number of primitives used to expand the valence
funétions; and G simply means that all basis functions are expanded in terms of Gaussians.

The next level of expansion is the inclusion of polarization functions[163]). These po-
larization functions are functions beyond the AOs which are needed in the ground state atomic
configuration, e.g., p-functionsrfor H atom, d-functions for C atom, etc. In the Huzinaga nomen-
clature the inclusion of polarization functions is added to the DZ, TZ, QZ terms to become
DZP, TZP, etc. to imply double-zeta-+polarization, etc. The Pople nomenclature becomes K-
LMNG?" to indicate polarization on “heavy atoms,” i.e., Z > 1; and K-LMNG** whén there is
polarization on everything including H-atom.

In general, to indicate the level of the calculation, the conven'tio'n of “(level of the-
ory)/(basis set)” is used. For example, HF/STO-3G means 2 Hartree-Fock calculation done at
the minimal STO basis set level, and MP2/6-31G means that the Mgller-Plesset method to second

order with a 6-31G basis has been used. When a geometry optimization has been performed, it is

4These functions are usually said to be formed by “contracted primitive” Gaussians.
3 Although K 2 2, the standard minimal STO basis set is the STO-3G, and the largest used is STO-GG.‘
8 «Zeta” comes from the greek letter ¢ used to denote the exponent in the radial part of the wave function.



111

Table A.3: Slater Type Orbitals in Cartesian coordinates and in spherical polar coordinates,

according to the type of molecular bond to which they contribute.

Orbital n | m Y™(8,¢)re " zoybzerle¢r Bond Type
Is 1 0 et o
2s 2 0 O re~¢r o
2p; 1 0 rcosfe" ze~$" o
2pz 1 rsinfeie¢r ze ¢r T
2py -1 | rsinfei?e~¢" ye~$r Y
3s 3 0 0 r2e=¢r o
3p: 1 0 r2cosfeér rze (T o
3p: 1 r2sinfe’?e=¢" rzeST T
3py -1 r2sinfe=*?e¢" rye~¢" s
3dz,a_p2 2 0 r%3cos?f—1)e ¢ (322 — r2)e¢" o
(222 = 22— y?)e~¢"
3d_. 1 r2sinfcosfei®e¢" zze™¢" T
3dy. -1 r2sinfcosfefe~¢" yze=S$T T
3d;2_y2 .2 r2sin®fe?Pe¢T (z2 = y?)e¢r ]
3dzy -2 r2sin®fe=HPe ¢ zye~¢T 6
af 3 0 133cos®d—cosf)e™t" 3323 — zr?)e~¢" ;
((2° —z?z— y?Z)e "
1 73(5cos20 — 1)sinfe®e=¢"  (5z%z — zr?)e ‘" T
(4z%z — 28 — zy?)e~¢"
-1 r3(5cos?8 — 1)sinfe~i%e~¢"  (5z%y — yr?)e~¢" T
(4y2* —yz* = )¢
2 r3cosfsin? feiPe¢" (zz%z — zy?)e™¢" 5
-2 r3cosfsin® fe= e ST 2ryze ¢ §
3 r3sin® ge3%e—C" (z3 — 3zy?)e~¢" é
-3 r3sin®ge3¢e¢r (3z2y — y?)e=¢ é
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common to see the // symbol between two such descriptions. For instance, MP4/6-31G*//STO-
6G means that an MP4 calculation was carried out with a 6-31G™ basis set, on a geometry found
using HF/STO0-6G.”

A.4 The variational principle

The variational principle, given by

J O HYdr

E=

allows us to compute upper bounds to the ground-state energy, Ey, for any given trial function. A
consequence of the variational principle is that by minimizing the variational energy with respect
to the (variational) parameters in the trial function, one will get closer to the exact ground-state
energy. However, one might find poor trial functions, that is poor in describing the system, which

still give very good variational energies.

A.5 Configuration State Functions

In electronic structure theory, the. electrons are assigned to orbitals to specify a given
configuration. This configuration may be characterized by a a set of occupation numbers describ-
ing the assignment and number of electrons in each orbital. An orthonormalset of configuration
state functions (CSF’s) [92, 164] is associated with each configuration. These CSF’s are eigen-
functions of S2 and S, and may be 2 linear combination of Slater determinants. The n-particle
basis of a CI calculation is built by CSF"S formed from different configurations of same symmetry
and spin eigenvalues. A better description of how CSF’s are defined and generated is given in
[92].

A.6 Density matrices and natural orbitals

One can write the expectation value of 2 physical quantity[165] as

N N N
1 1
Qop = QO"*"E + 31 E Qij+'3—,' E Qijp+--- (A.29)
i=1 Tixj=1 Ci>i>k=1

and evaluate this expression in terms of density matrices[165],

(QOP) = (‘I’lQopl‘I') = /dx \I"Qop\lf

7Notice that an HF/STO-6G calculation can be abbreviated to simply STO-6G.
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= +/dx1917(xi[x,)+/dx1dx2 I(x}x5x1x2)
-+ / dxydxadxs Qaal(x)x5x5|x1%2%x3) + - -+ (A.30)
where ‘
7(x} x1) = N/dxzdx3 ceedxy U (x], X2, ,xN')\If‘(xl,xz, -, XN) , (A.31)

and 7(x} |x1)dv; is the probability of finding any of the electrons within the volume dv; around

point r; having spin o; where all the other particles have arbitrary positions and spin; and

; N
P(x]x5[x1%2) = ( ] ) /dx;;dm coodxy Ut (X)), %5, X3, -+, XN) ¥ (X1, X2, X3, -+, XN) »
(A.32)

and T(x}x}|x;x2)dv; is the probability of finding any of the electrons within the volume dv,
around point r; having spin o) and another electron within volume dv» around point r2 having
spin o2, when all others have arbitrary positions and spins. 7(x}|x:) is known as the first-
order reduced density matrix and I'(x}x5]x;x2) is the second order reduced density matrix. The

general expressions for the density matrix is

P(xix5-- -x;,lxlm -+ -Xp)

N :
= ( ) /dx,,.H -eedxpy UT(x)x5-- “XpXp41 *° -xN)¥(X1X2 - -+ XpXpy1 - XN) (A.33)
p

D(x}xh - - - X |xyx2 -+ - Xp) = W* (X)X - - -x, ¥ (x1%2 - - - Xp) (A.34)

All their diagonal elements are positive definite, and have normalization,
Javir(xafx) =N (A.35)

J dvidva D(xixa|x1%2) = ( 1; ) . (A.36)

~ may not be diagonal, but one can always find a linear transformation to diagonalize it. The
elements of 7 in diagonal form are the naiural spin orbitals. Natural orbitals (NOs) give the most

rapidly convergent CI wavefunctions.

A.7 Dissociation energies

A.7.1 Zero Point Energy

The “correct” way of estimating the zero point energy (ZPE) is by computing exactly

by how much the first vibrational level differs from the bottom of the electronic well. Therefore,
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to estimate the zero point energy, one is required to know the vibrational frequencies of the
system in question (all modes included), which is not always the case. One approximation very
commonly used is

Do=D, — (we/2 —w.z./4) (A.37)

where w, are the harmonic frequencies and z. are the anharmonicity constants, both hopefully®
obtained spectroscopically.

The result with some systems is that anharmonicities are either not easily available
for all species involved, or the experimental data available does not necessarily agree, as is the
case for CoH. In the case of the bond dissociation of CoHo, theoreticians have used the accepted
experimental frequencies for C;H» and compute (when their computational method allows it,
which is NOT the case for QMC) the frequencies for CoH. The difference of their respective
ZPEs gives the offset from D..

A.7.2 Isodesmic and isogyric reactions

In an isodesmic reaction the reactants and the products contain the same types of bonds,
so they allow us to get bond energies without ever breaking the bond. Because of this, one gets
cancellation of errors due to incomplete basis sets and deficient correlation. For example, Zhao
and Francisco[166] calculated the AH? for the reaction FO + HOH — HO + FOH (which retains
its total of one OF and two .OH bonds throughout the reaction) at different basis sets and levels
of theory, and found little difference among the results.

In isgyric reactions the number of electron pairs (and therefore, the number of unpaired
electrons) is conserved. These reactions allow to compare bond dissociation energies (BDEs)
computed by very accurate ab initio methods(e.g. G-1, GFMC) with heats of formation estab-
lished from calorimetry. For instance, Pople ef al. used this concept in Ref. [167] to determine
atomization energies of molecules of the form AH,. They reduce the baéis functions usually
assigned the hydrogen to determine the breaking of the A-H bond by determining each bond
energy relative to Ho, and then convert it to atomization energies by using the exact energy of

the hydrogen molecule. For this purpose, the isogyric reaction AH + H — A 4 Hj is considered.

A.8 Local energy

The quantity
= HU(R)

EL(R) = %) (A-38)

8For some systems, such as C2H for instance, one has trouble finding agreement for such data.
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known as the local energy, is a constant for the exact wavefunction at all points in space. However
for an approximate wavefunction the local energy is not a constant, and it will not converge
during a stochastic MC simulation. Nevertheless, the variance, which depends on the quality of
the wave function, will converge to a specified value which decreases as the approximate wave

function approaches the exact.

A.8.1 Cusp condition

If ¥ is an approximate wave function, the local energy has, in general, infinite singu-
larities for r;; = 0 and rijq = 0 in the poi':ential V(R) of Eqn. 2.14. These singularities can be
cancelled by the kinetic energy by in;’posing the cusp conditions[168, 169], which describe the
correct discontinuity in the derivative of the wave function. These conditions can be summarized
as in the limit of two particles (electron or nucleus) of masses m; and m; with charges ¢; and g;

respectively, approach other,®

1 9(%) _ :
[‘—Il- Or;; Jr,-,-=o R (4-39)
where p;; = mym;/(m; + m;) is the reduced mass and (¥) is the average of ¥ around an

infinitesimal sphere around r;; = 0. For 2 ¥ of foorm ¥ = A - C where only C is a function of

interparticle distances, this translates into the conditions,

3

| ou =3 for i of equal spins
-‘i’-.aTtJ- rij=0 - 2 1 .s . . (AAO)
D=3 for ij of opposite spins
when the particles are two electrons and
1 8Y e2
ot I Rl (41

for an electron and a nucleus. For instance, Eqs. A.40 and A.41 translate to a wave function
T o e'ris/1D (for opposite spin electrons), which can be satisfied in practice by choosing the
leading term in a correlation function of the form eV to be a = 1. Similar arguments are used

to choose the electron-nuclear correlation.

A.9 Growth estimator

In practice, the average of the local energy, (Er), does not give a good estimator for

Ep. If we consider the initial populations fo = ¢o and f) = e~(Bo—Er)" 4, and take their ratio,

8This is known as Kato's cusp condition.
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fl/.fOr
f _ By
- fo ¢
In (%) = —(E - Er)r=(Er - Ey)r -
Eo = Ep-— %ln (%) (A.42)

we can notice that the population ratios should determine the value for the new reference energy.
This constitutes the growth estimator and it is the only estimator for some systems, such as the

particle-in-a-box.

A.10 Green’s functions

The differential equation which we are interested in solving is of the general form
Lu = —f (A.43)

where L is a differential operator{170]. In our specific case, L will be associated with the Hamil-
tonian in Sec. 2.1.4.1. In order to solve Eq. A.43 it will be convenient o associate an inverse

operator L™! to the operator L such that
LL7' = L7lL =1 (A.44)

where I is the identity operator. If this is possible, it becomes obvious that a solution to Eq.
A .43 will be

u = =L71f. (A.45)
It is known that the inverse of a differential operator is an integral operator. If we introduce the

integral operator G defined over the domain0 < 2z < [ by

I
Gf = /0 £(z)G(=, y)dz (A.46)

we see that —G may be interpreted as the inverse operator L=1. The Green’s function G(z,y)
associated with the differential operator L is called the kernel of operator G. It is also true that

the Green’s function should satisfy all homogenous boundary conditions, i.e.

LG(z,€) = 0 for =z # €. (A.47)

A.10.1 Free Particle Green’s function

Let us start with the Schrddinger equation for the free particle(V = 0):

B _, . d¥
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and rewrite it as a diffusion equation of form V2u = I‘,—%‘;,
2m 0¥
2 -_— — —

V= (4.49)
where D = 5’%, is the imaginary diffusion coefficient. We know the solution for such a particle
to be

i 1 P =
¥ = ex?*  and VU3 = ——omert " A.50
¥ = omh 3 = Grh)yl (450

in one-dimension and three-dimensions, respectively. In addition, we know the Fourier transforms

between coordinate and momentum space in one dimension to be,

¢(2) = @_W%Wi[-:eipt/ﬁ¢(p) dp . ' (A.51)
é(p) = _-—(2”;)1 7 /_ : e~ "P=/Ray(z) dz . (A.52)

It is also well known how the wavepacket [¥(0)) evolves with time. By inserting unity it can be

writen in momentum representation we get

PO} = [ i I)EiEO)

= / dp |p)é(p,0) . (A.53)
And by then applying the time evolution operator, .
Ui,0) = e~ iBUR = G H2mB (for the free particle, H = 5%) (A.54)

to Eq. A.53 and get [¥(2)),

(@) = U, 01¥%(0)
= [uc.ol) 6.0
= / e/ ) ¢(p, 0) dp
e@) = / P’ t2mh D) §(p,0) dp, - (A.55)

which can then be transformed to coordinate representation by projection with (z],

(=l0@) = Ue0) = [0, dp

1

(Grh)i/Z /_ e heiP"H/2mRg(p,0) dp . (A.56)

Now we are ready to use the Fourier transforms in Eqs. A.51-A.52 to get

o0 {>o]
¥(z,t) = 2—% / dz' / dp =i t/2mAgip(z=2)A (5! () . (A.57)
! -0 -0
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We can write this expression using a Green’s function,
o
Y(z,t) = / dz’ Go(z,z’;1,0) ¥(’,0), (A.58)
)
where we introduce Go(z,z';t,0) as the Free Particle Green’s function:
' 1 [ —ip?t/2mh ip(z—z')/h
Go(z,z";1,0) = — dpe™*? e'’? . (A.59)
21h J_

We can evaluate this expression by completing the square in the exponential. To a.ccomp]ish this,

rearrange the exponent as follows

_;f;_ [p2 - p(:c—:c')]

2m

— {alp— 0] — a8?)
= —%.{ap2 — 2apb} (A.60)

where @ = ¢/2m and 6 = m(z — z)/2¢. The integral then can be solved as a simple Gaussian

integral (Can use [°2_e~%° dp = /7 from the friendly neighborhood table of integrals):

Go = 1 oo e~ T [p=miz—=" W]’ jim(z—2'y /25 dp
27h J_o
= _l_efm(z—zl)772ﬁ2 /oo e—'n—";"h-[p-—m(:x:—,.-,-')/t]2 dp
27h oo

i 2mwh eim(z—z')’)2fxt
2wh it

M im(z—z')3/2 7
Go = ‘/27”‘12,!6 (z—=")"[2A¢ (A.61)

Now we should be able to get the diffusion Green’s function by using the diffusion coefficient

defined above (Using the definition for D, D '= ii/2m, one can solve for k: # = —2imD.):

— ,
Gp = 4/ e T Y’/4Dt (A.62)

The free particle Green’s function represents the spreading of the wave packet.

A.10.2 Integral equations

In integral eguations,’® the unknown appears under the integral sign. In Fredkolm
equations, the range of integration is fixed, and likewise, in Volterra equations the range is not

fixed. A Fredholm equalion of the first kind with kernel )&(z,z) is defined as

b
f@) = [ Ko dz, (4.63)

10This section comes from [170] with some help from [171].



119

and those corresponding to a Fredholm equation of the second kind have the unknown function y

outside the integral as well, i.e.,

Y
f@) = ye) + / Rz, 2)u(z) dz , (A.64)

Equation A.64 is also known as a non-homogeneous Fredholm equation of the second kind with

kernel ﬁ(x, z). For our purposes, Eqs. A.63 and A.64 can be written in a2 more general form as

Ky—-dy=7f, (A.65)

where A = 0 refers to the Fredholm equation of the first kind, and A = 1 to the Fredholm
equation of the second kind. When f(z) = 0, Eq. A.65 is an eigenvalue problem where A are the
eigenvalues and y(z) are the eigenfunctions of linear operator xn

Second kind integral equations (like Eq. A..64) are easier to handle and can be solved by
a method of successive approximations.1? That is, y(z) can be found by expansion in approximate

yi(z) as follows. Let us modify Eq. A.64 using the general notation from Eq. A.65 and write

f@) = u() =2 [ Riz,2)u(2) do (A-66)
f=y—=Xy. (A.67)

Equation A.67 can be rewritten as y = f + AKy. Taking the zeroth-order approximation to be

yo(z) = f(z) one can get the first-order approximation to be
n=7F+If (A.68)

Equation A.68 can be used to obtain the second-order approximation, and so on. Similarly, the

nth-order approximation can be found from the recurrence relation
¥n = f+ Atn-1 - (A.69)

When these approximations tend to a limit as n — co, this limit provides a solution to Eq. A.67.

A.11 The jackknife statistic

If 4, and 6, are estimators for any statistical quantity 6, then for any real R # 1, one
can define the generalized jackknife[144],

s 2« 01— Rb,
G(61,62) = ———~ . A.T0
61,0y = 222 (A.70)
11n Sec. 2.1.6, we can associate y(z) ‘with the trial wave function and/or STA Green's function, K with the

Hamiltonian, and f(z) with the exact GF.
12This method is used in Sec. 2.1.6 to obtain the exact Green's function when only an approximate Green's

function is known.
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A useful theorem says that if the bias of . is given by

E[6] =6 + bi(n,6) , k=1,2 (AT1)

2"18 ?

where b2(n,0) # 0 and R = Hﬁi} then E[G(f;,02)] = 0. This implies that G(6,,65) is an
unbiased estimator for 6, if R is known and given as above. In many cases although G(6,,6) is
not unbiased, it contains less bias than either 51 or &,.

In the method of Quenouille, §; and §, are chosen as follows. Suppose § is an estimator
defined on the random sample {z;,z2,...,Z,}, and then partition this sample into N subsets of
size M, i.e., NM = n. A new random sample can be formed by deleting one subset from the
original sample. We now define an estimator 6 to be the estimator § defined on the new sample,
and the estimators J;(f) and J(f) be defined as

J:(6) = N6 — (N — 1)§* , | (A-72)
and
16) = 5L 70)
= Néz:l(zv - 1§, (A.73)

where i = 1,...,N. J(f) is known as the jackknife and Ji(8) are known as the pseudo-values
of the jackknife. J(8) and J;(8) are special cases of G(8,,8,) where R(N) = %—1—2, 6, = 6 and
b, = e YN 6 =6, and the bias of J(d) is lower than the bias of 4.
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Reference
ACPF averaged coupled-pair functional method [37]
APSG antisymmetrized product of strongly orthogonal geminals [102]
CASSCF complete active space self-consistent field 1.2.2
CBS complete basis set 1.1
CCCI correlation-consistent CI [141]
CI configuration interaction 1.2.1
CSF configuration state function [92]
DFT-LDA density functional theory - local density approximation e.g., [124]
DMC diffusion Monte Carlo 2.1.2
DZ double zeta A3.1, A3
DZP double zeta + polarization A3l
FCI full configuration interaction cf. 1.2.1
FNA fixed-node approximation 2.14.2
FNDMC fixed-node diffusion Monte Carlo 2.1.2
FNDQMC fixed-node diffusion quantum Monte Carlo 2.1.2
G-1 Gaussian-1 1.2.4, [14]
G-2 Gaussian-2 1.2.4, [15]
GFMC Green’s function Monte Carlo 2.1.6
GFMC + RN Green’s function Monte Carlo with Release-Node 2.1.6
GTO / GTF  Gaussian-type orbital/function A3
GVB generalized valence bond (theory) [172]
HF Hartree-Fock 11
HRIR high resolution infrared (spectroscopy) [128]
LEPS London-Eyring-Polanyi-Sato semiempirical potential surface  Ref. [173]
MBPT many-body perturbation theory 1.2.3,[10]
MC Monte Carlo/multi-configuration 1.2.1,2.1.1
MCSCF multi-configuration self-consistent field 1.2.1
MP2, MP4 Mgller-Plesset perturbation theory to 2nd and 4th order 1.2.3, [10]
MRCI multi-reference CI 1.2.1, eg., [37]
PES potential energy surface 1.1
POL-CX polarization configuration interaction [113)
QCI quadratic CI (6]
QMC quantum Monte Carlo 2.1.2
RHF restricted Hartree-Fock e.g.[1]
SAC Stark anti-crossing {85)
SCF self-consistent field 1.1
SDCI singles and doubles CI 1.2.1
SOGVB spin-optimized generalized valence bond [172]
STA short-time approximation 2.1.4.1
STO / STF Slater-type orbital/function A3
TOF time-of-flight (spectroscopy) e.g., [130, 142]
UHF unrestricted Hartree-Fock {1]
VMC variational Monte Carlo 2.1.54.1.1
ZAC Zeeman anti-crossing [137]
ZPE zero point energy A7l




Appendix‘ B

Other results

5

Due to budgel cuis, the light at the end of the lunnel has been turned off.
Source unknown

B.1 Fluorine

The work on F atom was done by Terray[38] as part of the spline study, but I finished
collecting the data and computing the results. Unfortunately, aside from this short summary,
there is no other written record of this work.

Two QMC energies were computed for F atom using large basis sets, taking advantage of
the spline capabilities. The single-determinant calculation gives Equmc = —99.70631(154)a.u. for
alinear fit of the data and Equmc = —99.71239(137)a.u. for a quadratic fit. The multi-determinant
calculation gives Equc = —99.70085(185)a.u. using all time steps (shown in Fig. B.la), and
Eqmc = —99.715085(3045)a.u. if using only values of 7 = 0.001-0.003 (shown in Fig. B.1b).

The single determinant calculation was done using a QZ‘basis set from Clementi[103]
multiplied by a correlation function of the J.., form, with parameters optimized by Moskowitz
and Schmidt in [86]. The multi-determinant was done using a trial function with 11 determi-
nants from a Gaussian-based CI calculation, obtained from the NASA-Ames group, multiplied
by Jee and Jen factors. The expansion was truncated to all determinants with expansion coef-
ficients > 0.03. The energy calculation of the F~ species was not completed. The energies at
7 = 0.005, 0.008 were computed using Clementi’s DZ basis set, and correlation factors of J,. and

Jen form.
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Table B.1: QMC energies at different time steps for F using single- and multi-determinant trial

functions

F F-
T SD | MD

0.001 [[ -99.722875(652) | -99.735473(2137)

0.002 {| -99.730701(470) | -99.7574(16)

0.003 | -99.742894(4927) | -99.777107(1404)

0.005 || -99.769198(640) | -99.838676(7501) || -99.895092(1374)
0.008 || -99.811701(681) | -99.929457(3548) || -99.935111(1621)

Table B.2: Basis set used for F (1s°2s*2p®) single-determinant calculation

LI [ 2 [ 2% [Type]] ¢ |
0.94710 | -0.22694 0.0 1s 8.5576
0.03718 | -0.00530 0.0 1s 14.9766
0.00013 | 0.23918 0.0 2s 1.8214
0.00093 | 0.68592 0.0 2s 2.6730
0.00068 { 0.31489 0.0 2s 4.9007
0.02602 | -0.21822 0.0 2s 6.5736

0.0 00 017830 2p 1.2657
0.0 - 0.0 0.56185 | 2p 2.0580
0.0 0.0 0.33658 | 2p 3.9285
0.0 0.0 0.01903 | 2p 8.2041




Table B.3: Ga.ussian basis set used for F multi-determinant calculation

it ¢ | Contraction coefficients
1s
103109.5 | 0.000063 | -0.000014 | -0.000018 | -0.000732
15281.01 | 0.000503 { -0.000116 { -0.000133 | 0.000608
3441.539 | 0.002669 | -0.000614 | -0.000737 { 0.000293
967.0948 | 0.011196 | -0.002582 | -0.003011 | 0.005563
314.0353 | 0.039106 | -0.009197 | -0.011067 {- 0.010287
113.4423 | 0.112250 | -0.027425 | -0.031769 | 0.046675
44.64473 | 0.247226 | -0.066403 | -0.084499 | 0.127204
18.94287 | 0.367951 | -0.121494 | -0.142888 | 0.152680
8.532743 | 0.290898 | -0.147909 { -0.252759 | 0.594124
3.919401 | 0.078119 | -0.010708 | 0.148094 | -1.301773
1.568157 | 0.003627 | 0.370578 | 1.140773 | -0.961524
0.623290 | 0.000828 | 0.513164 | -0.064733 | 2.992322
0.240861 | 0.000153 | 0.258116 | -1.048755 | -1.853800
2p
245.3303 | 0.000950 | -0.001054 | -0.001310
56.91901 | 0.007954 | -0.008808 | -0.012466
17.60457 | 0.039133 | -0.043291 | -0.056793
6.274995 | 0.129617 | -0.154371 | -0.246869
2.447030 | 0.268628 | -0.377441 | -0.552836
0.995060 | 0.341639 | -0.250014 | 0.344794
0.403973 | 0.309840 | 0.267864 | 0.815206
0.154810 | 0.169633 | 0.491699 | -0.330665
0.059326 | 0.043328 | 0.290617 | -0.595629

Table B.4: Trial function used for F~ (1s? 2s® 2p®) calculation

[ 1s | 2 | 2 [Type|¢ [
0.89308 | -0.20022 | 0.0 1s | 8.93600
0.03498 | -0.00852 | 0.0 1s | 14.84990
0.00446 | 0.62675 | 0.0 2s | 3.27783
0.08884 | -0.09809 | 0.0 % | -8.10301
-0.00055 | 0.48432 | 0.0 2 | 1.85159
0.0 0.0 |047039 || 2p | 2.07537
0.0 0.0 |030842| 2p | 3.93342
0.0 0.0 (009885 2p | 1.46603
0.0 0.0 |024705{ 2p | 0.95683
0.0 0.0 |o0.0168 || 2p | 8.32950
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Figure B.1: Energy vs time step for F using single- and multi-determinant trial functions.
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Appendix C

Programs

If builders buill buildings the way programmers wrile programs, then the first
woodpecker that came along would destroy civilization.
Weinberg’s Second Law

This appendix presents the ab mzizo and QMC programs used in this work. The latest
version of the QMC program, QMagiC 7.53, is throughly documented. The ab initio programs

are documented elsewhere.

C.1 Monte Carlo Programs

C.1.1 QMagiC

This section contains a short description of the different versions available, how they
differentiate from each other, an»d what they each do. Historically, there have been several
versions of QMagiC, as well as other QMC codes running in our group,! for both.single and
multi-determinant wave functions. To make life easier for any newcomer who might need to
choose a code to get started, here I will go over some of the ones that are still around in
Sec. C.1.1.1. Section C.1.1.3 will contain the input specifications for the most current multi-
determinant version of QMagiC, used for the calculations in Cha.pter 3. Section C.1.1.2 will give

an overview of how to perform a QMC run. ,

C.1.1.1 A bit of history

After version 7.2, well documented in Dr. Hammond’s thesis[72] for both single- and
multi-determinant ¥p’s, the single-determinant code diverged from the multi-determinant code.

In an effort to make the codes more modular (i.e., easier to add and modify outside modules, such

le.g., Barnett's QMC code and Owen's QMagic 9.0 programs.
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as ECPCTL, DRVCTL, OPTCTL) independently of the main QMC procedure, version 7.4 moves
the link to these options to a higher level, i.e., before the QMC walk is setup. With this upgrade,
also came an upgrade in the input. To make it more HONDO-like, the QMCFLG flag in the
$CNTRL namelist became a RUNFLG flag to indicate which of the outside modules (available
in the specific version) to run (see NAMELIST &CNTRL in the next section). Likewise, the old
RUNFLG in the SWALK namelist became QMCFLG to indicate which type of QMC walk was
to be performed.

There exist versions of QMagiC 7.5 which run on UNICOS, CTSS, and VMS, all cur-
rently stored in CFS. This version was the one modified to include the acceleration method and
the C and F atom calculations in Chapter 4 and Appendix B.1. Version 7.53 made available
by Dr. B.L. Hammond was used for the rest of the calculations in Chapter 4, given its multi-
determinant capabilities. Version 7.5 and 7.53 have several differences, due to the single- and
multi- determinant nature of their algorithms, as well as difference in options for correlation
functions (See Table C.1).

Conversion between machines can be accomplished by substituting the subroutines at
the end of the program, by the equivalent system calls in the new system. Adjustments may
be necessary to comply wit.h. the precision of the new machine. Table C.1 shows the different
versions of the program which I have knowledge of and that can be found stored at NERSC in
CFS (ID# 030334).

Some important changes in the latest upgrade (version 7.5 to 7.53) to make conversion
easier to those who are familiar with version 7.5 and/or find input decks for the 7.4-7.5 versions
(most input decks found in CFS correspond to v7.5) are:

(1) Namelists and data sets begin now with “&” instead of “3”.

(2) BLOCK DATA DEFAULT in 7.5 and previous versions became SUBROUTINE SETDEFS
in version 7.53. This is where the default values for the input variables are stored.

(3) Inclusion of IPUNFMT variable in the &CNTRL namelist to control the format of the XX
files (inxx and outxx).

(4) Unit 1 should be called “inxx,” and it must exist in the working directory even if the ensemble

is to be generated randomly.

C.1.1.2 How to perform a QMC calculation

In order to do any MC (VMC or FNDQMC) run using QMagiC, one needs two separate
input files: \
(1) unit 5 - input deck describing the trial function ¥z and the parameters for the walk(s); and
(2) unit 1 - (fort.1 for v7.5, inxx for v7.53) XX file containing an initial ensemble and guesses for

trial energy, Er, and initial random number.
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Table C.1: Versions of QMagiC currently available (and stored in CFS)

Version | SD | MD | S.. | Jeen | Spline | UNICOS | CTSS | VMS
7.0 x x X
7.1 x X X b'd

7.2¢ b'd x X X
7.2 x X X x x b

7.3-731 | x x e

74-742 1 x b'4 X X b'4
7.5¢ x ] ox x X x X

7.53de X X b'd b'd

7.6/ x x x X X

¢ used for Hy work (Sec. 2.2.2)

b used for multi-determinant work on F atom (Appendix B.1)

< used for work on C atom (Sec. 3.2.1)

4 ysed for work on CH, C2H and C2H> in Chapter 3

¢ Documented here (Appendix C.1.1.3)

J Version 7.5 was modified to include acceleration and become version 7.6

Regardless of the version of QMagiC being used, the following steps are recommended
to perform a QMC calculation:
(0) Choose the trial function: use, if necessary, the codes mentioned in Sec. C.2 to obtain the
appropriate MO vectors, and include in DATA &VEC using correct format (See Sec. C.1.1.3).
(1) Prépare input file for chosen trial function as described in Sec. C.1.1.3, preferably not from
scratch.
(2) Do a VMC calculation (RUNFLG=0) to verify the input and to generate an ensemble (start
with IGUESS=-1). ‘ ’
(3) Do a short fixed-node calculation with a large time step (one to give about 75% acceptance
ratio) followed by 2 VMC run to discard the least favorable configurations and reequilibrate the
ensemble.
(4) It is recommended to do a fixed-node calculation to estimate the serial correlation among
steps and therefore determine the size of the blocks and the time step one might want to use
for the extrapolation. This can be done by performing a fixed-node calculation with 50000 steps
and using that data compute where the auto-correlation function becomes 0. The block size for
that time step should be multiplied by at least 10 to give blocks which will be uncorrelated.
(5) Now you are ready to do the first time step.
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Data sets are defined to resemble NAMELIST format (i.e., starting with a &name and

ending with &END.

DATA &BANNER - one line (80 characters) title for run

DATA &BASIS

Let us start with Example 1. The numbers to the left indicate line numbers to be used

for input description to follow.

Example 1 - CH(?II) basis set shown in Table 3.7 without f-functions

0 &BASIS
1 *¥EPRREEE Methylidyne - MD fn - 3 active B.S.1 ¥¥¥reresx
2 C1 6. 0. 0. 0. 0.0000 0.10
3 1S 9.055
4 1S 5.025
5 3S 6.081
6 25 2.141
7 2S 1.354
8 2P 6.510
9 2P 2.6005
10 2P 1.4436
11 2P 0.9023
12 3D 3.6407
13 3D 2.0211
14 3D 1.373
i5
16 H1 1 0. 0. 2.124 0.0000 0.10
17 1S 1.600
18 1§ 1.000
19 15 0.625
20 2P 2.000
21 2P 1.40
22 3D 2.33
23

24 &END

0.



Line
number

2

3

15
16 - 23

24
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Input Description
title 80-character line with description of basis set

SYMB, Z,z, ¥4, 2, A\, v description of atom #1 in free format

SYMB atomic symbol (up to 3 characters)
Z atomic number

z, 9 2 cartesian coordinates

A v Jen parameters

TYPE, ¢ : basis set for atom #1 in free format
TYPE orbital type,

i.e., Slaters: 1S, 25, etc.; Gaussians: G1S, G2S, etc.
will allocate number of functions in shell,
i.e., 1 for s-shell, 3 for p-shell, and 6 for d-shell.
¢ orbital exponent {
assign to all functions in each shell.

blank line indicating that we are done with an atom
new atom, repeat as for atom #1 in lines 2-15

&END indicates basis input is done

NAMELIST &PSIT

EECFLG

EECF
EECF(1)
EECF(2)
EECF(3)
EECF(4)

Example 2
&PSIT

=0 use Jastrow function for electron-electron correlation
(Jee in Table 3.1)
=1 use double exponential form for electron-electron function

(Sec in Table 3.1)

contains parameters for electron-electron correlation function
a (DEFAULT = OE+00)
b (DEFAULT = 1.E+00)
intended for @, in quadratic Jastrow (DEFAULT
intended for b, in quadratic Jastrow (DEFAULT

OE+00)
OE+00)

EECF=0.5,1.0,0.0,0.0,

EECFLG=0,
&END
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DATA &WFN Describes the electronic configuration in each determinant. The configuration given
by WFN should match with the number of AOs in each MO given by &VEC. A
line contains the input for each determinant as follows:

DETCO(), (SPING, ), 7 = 1,NMO), for i = 1, # determinants

DETCO coefficient of Slater determinant:

SPIN UoC empty MO
ALP MO occupied by « electron
BET MO occupied by S electron
DOC full (doubly occupied) MO

Example 3 - C(3P) atom
&WFN
1.0 DOC DOC ALP ALP
&END

Example 4 - CH(*II) with the data from Table 3.11
ZWFN

-0.986363 DOC DOC DOC UOC ALP UOC
0.036053 DOC DOC UOC DOC ALP UOC
0.024106 DOC DOC ALP BET ALP UOC
0.024106 DOC DOC BET ALP ALP UOC

-0.048619 DOC DOC ALP ALP BET UOC -

-0.149137 DOC DOC UDOC UGC DOC ALP
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DATA &VEC  The MO coefficients are input in this data set using standard HONDO
format. As mentioned before, there will be 3 p orbitals ordered p:, py, p:
for each p-function listed in &BASIS, and 6 d orbitals ordered d.-, dyy,
d::, dzy, dzz, dy. for each d-functions listed in &BASIS.

WARNING Basis sets based on 5§ spherical polar functions require transformation to 6 cartesian
d-functions using Table A.3 according to which type of bond they contribute before
being entered to QMagiC.

Format : For each MO include 5 coefficients per line preceeded by the MO##, and the line# of
the MO.

Example 5 See here U7 put together using NAMELIST &PSIT and DATA sets &BASIS,
&WFN and &VEC ‘

&BASIS
H3 -- double-zeta
Hi 1. 0. 0. 0.
1S 0.925
18 1.275
2P 1.700
H2 i. 1.757 0. 0.
1S 0.925
1s 1.275
2P 1.700
H3 1. 3.514 0. 0.
1S 0.925
1s 1.275
2P 1.700
&END
&PSIT EECFLG=0, EECF=0.5,1.0, ZEND
&WFN
1.0 DOC ALP
&END
————— ORBITALS FROM -UHFOP- —-——-—-
&VEC

1 1-0.20954905E+00-0.27364559E+00-0.24217891E-01 0.00000000E+00 0.00000000E+00

1 2 0.15493964E+00-0.47114330E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00

1 3-0.20954905E+00-0.27364559E+00 0.24217891E-01 0.00000000E+00 0.00000000E+00

2 1-0.74489537E+00-0.65921496E-01~0.37165521E~-02 0.00000000E+00 0.00000000E+00

2 2 0.00000000E+00 0.00000000E+00 0.46624546E~01 0.00000000E+00 0.00000000E+00

2 3 0.74489537E+00 0.65921496E-01-0.37165521E-02 0.00000000E+00 0.00000000E+00
&END .

i TR, T —— P g e A P A7 i ad KN e e e G T e TS Ty
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NAMELIST &CNTRL

RUNFLG =0 MC walk (run QMCCTL) (DEFAULT)

=1 optimization of trial function parameters (run OPTCTL)
NOPRP =0 do not compute properties (DEFAULT)

=1 compute properties
IPRINT normal printing (DEFAULT)

0
1 print averages after every block
2 print debug information

IPUNFMT determines format of punch files inxx and outxx

IPUNFMT(1) =0 inxx file is 2 sequential unformatted file (do not use on Cray)
=1 inxx file is a sequential formatted file
IPUNFMT(2) =0 outxx file is a sequential unformatted file (do not use on Cray)
= outxx file is a sequential formatted file
IPUNCH =-1 do not create new file
=0 write MO vectors to outxx file (only) at end of run
(outxx file is overwritten)
= +1 add MO vectors to the end of the outxx file after every block
ISTART (Not sure it works on Cray.)
=0 read only XX vectors and MO spline
=1 read all data but execute new walk
=2 continue old walk
STATOL  smallest AO coefficient to be included in an MO
(DEFAULT = 1.E-06)
REETOL smallest .. allowed if IGUESS = —1 or ICHECK = +1 in &GUESS

(DEFAULT = 1.E-01)

RENTOL smallest r., allowed if IGUESS = —1 or ICHECK = +1 in &GUES
(DEFAULT = 1.E-01) :

PSITOL smallest |¥r| allowed if IGUESS = —1 or ICHECK = +1 in &GUESS
(DEFAULT = 0.E+00)

DETOL determinant zero value used to avoid dividing by zero when computing
1/¥7 near a node
(DEFAULT = 1.E-25)

FQTOL cutoff on quantum force
(DEFAULT = 1.E+25)
ACCINV (DEFAULT = 1.E-03)
" TINY (DEFAULT = 1.E-37)

Example 6 &CNTRL RUNFLG=0, IPRINT=1, IPUNFMT=1,1, &END




NAMELIST &WALK

QMCFLG(10)

NUMBLK(10)

BLKTIM(10)

TSTEP(10)

KONORM

KONMAX

KONMIN
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Program is capable of doing up to 10 consecutive MC walks. Param-
éters for each run are given in this namelist; i.e., #-th run is described
by QMCFLG(Z), NUMBLK(z), BLKTIM(Z) and TSTEP(z) as follows:

=0 do VMC walk
=1 do fixed-node walk

number of blocks of each one of the walks requested using QMCFLG

time in (1/hartree’s) for each block such that
BLKTIM/TSTEP = number of steps per block in each walk

time step to be used in each walk

number of walkers in the ensemble
(DEFAULT = 100)

maximum size of ensemble; if a fixed-node walk has been requested in
QMCFLG, program will make sure that KONMAX > 2xKONORM if
ensemble overflows (i.e., branches beyond maximum number of walkers
allowed in the ensemble, KONMAX), it will be renormalized to KONORM
" (DEFAULT = KONORK for VMC walk)
(DEFAULT = 2xKONORM for FN walk)

minimum size of ensemble
(DEFAULT = KONORM/4)

initial random number (between 0 and 1)

=0 create initial RAN from time and date it IGUESS = -1
read in from inxx file if IGUESS = +1

>0 RAN is used

trial energy to be used in QMC walks for branching
factor by which trial energy is updated using the average local energy

from the previous block (i.e., ETRIAL = ELOCALXETW)
(DEFAULT = 0.5E+00)

Example 7 Sample walk used for CH(?II) with 400 walkers

&WALK

RUNFLG= O, 1,
NUMBLK= 25, 50,

BLKTIM= 5.0, 10.0,

TSTEP= 0.050, 0.003,
KONORM=400, KONMAX=800, ETRIAL=0.0,
ETW=0.5,

&END
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NAMELIST &GUESS

IGUESS = -1 generate initial configurations at random (DEFAULT)
= +1 read initial configurations from inxx
IFILL =1 fill ensemble by making copies of configurations available in inxx
(DEFAULT)
=0 do not fill ensemble - if not enough configurations in the inxx file,

program stops and an error message is printed

ICHECK =10 do not check configurations (DEFAULT)
=1 check for “bad” configurations using tolerances in &CNTRL,
i.e., electrons too close to each other, or to a nucleus.
arranges configurations in order of descending ¥z
and keeps upper half
Example 8

&GUESS
IGUESS=+1,ICHECK=0,IFILL=1,EGUESS=0.0,
&END
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NAMELIST &SPLINE

ISPLINE

NSPLIN

SSCALE

SSTEP

IPRNT

ITENS

LSPMAX(20)

LSPMMAX

NPARM

NGRID

Example 9
&SPLINE

0 do not use spline for MOs (DEFAULT)
1 use spline to approximate radial part of MOs

i

number of knots to be used when generating the cubic spline
(DEFAULT = 500)

SSTEP xNSPLIN

(DEFAULT = 1.E+00)
SSCALE/NSPLIN

(DEFAULT = 2.0E-03)

=0 (DEFAULT)

=1 print TELL-A~-GRAF input of spline to unit
=2 print some information from fitting

=3 print debug information

used for adjustment of the tension in the spline
=1 cubic spline (DEFAULT)

™ number of maximum shell included, e.g., 0 for s, 1 for p.,
2 for_py, 3 for p, and so on.
(DEFAULT = 4)

Number of parameters
(DEFAULT = 5)

Number of data points to be printed out in TELL-A-GRAF input file
when IPRNT=1; we recommend to make NGRID = NSPLIN

ISPLINE=1, NSPLIN=500, LSPMAX=4, LSPMMAX=4, SSTEP=0.002,
SSCALE=1.0, IPRNT=0, ITENS=1, NPARM=4, NGRID=0,

&END




NAMELIST &FIX
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Option to be used to fix the Gaussian behavior around the origin by
replacing knots of the spline in the region near 0. New knots need to
be provided by user from file unit 8. The connecting points of the two
functions may not be smooth and any discontinuity in the derivatives of
the curve will create problems. To verify the derivatives match every-
where, one can print out the first and second derivatives of the spline
as well with a simple modification of the subroutine SMOOTH: add
FP and FPP to the write statement which prints out the grid points
to the TELL-A-GRAPH file.

IFXFLG(MO #, angular momentum) =0 do not change knots

NFXKNOT(MO)

NSUM
YFXF1(MO)

YFXS1(MO)

=1 change knots for IFIX file (unit 8)

number of knots changed for each 1 appearing
in IFXFLG

number of lines in fort.8 = ) NFXKNOT
First derivative of the new MO

Second derivative of the new MO
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C.1.2 Acceleration routines

As mentioned in Sec. C.1.1.1, the acceleration modules (min.f and hss.f) link to a
modified 7.5SD version of QMagiC (qmc76.£), and use °$* notation (instead of &) for NAMELIST
and DATA groups. )

. C.1.2.1 Input specifications for QMC76
NAMELIST $ACC

ACCFLG No acceleration is used, i.e., M and M?*/? are set equal to unit matrix

Acceleration matrix is read from input file (unit 5)
Matrix is input in HONDO format
(see DATA SAMAT1 and SAMAT?2)

i1
Lol v

EIGMAX maximum eigenvalue of acceleration matrix
DATA S$8AMAT1 includes the M matrix in HONDO format, as output from HESSIAN module
DATA S$AMAT2 includes the M!/? matrix in HONDO format, as output from HESSIAN module

NAMELIST &HSS

DELTA A value used in computing the Hessian of the wave function.
by finite differences
(DEFAULT = 0.00002xmax (|R|, 0.001))

CUTOFF minimum eigenvalue of acceleration matrix
(needed to invert M and compute M*/2)

C.1.2.2 How to perform an accelerated VMC calculation

In order to perform an accelerated run on a given system, the following steps must be
taken:

[1] Compile and link “gmc76.f” “min.f” and “hss.f”.
[2] Obtain M and M*/2 as follows:
(2) Choose good Gaussian-based ¥z (using HONDO or GAMESS) for the system of

interest.

(b) Run qmc76 with option RUNFLG=3 to obtain minimum of potential U (See
Sec. 4.1.3). Minimum configuration is stored in units 4 and 6.

(c) Copy minimum configuration to XX file and run qmc76 again with options
RUNFLG=2 and QMCFLG=2. Output is in the form of two data sets SAMAT1
and SAMAT?2 printed to units 6 and 8.

[3] Data sets SAMAT1 and SAMAT? should be copied to unit 5.

[4] We are finally ready to do an AVMC calculation: run qmc76 using ACCFLG=1.
Any ¥ may be used for the acceleration walk.
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Table C.2: Ab initio programs used in this work, and contact person (e-mail address) to obtain
code and documentation.

Program  Contact

ALCHEMY adm2464@ibm.com
GAMESS  mike@si.fi.ameslab.gov
HONDO  michel@kgnvma.vnet.ibm.com

C.2 Ab initio programs
C.2.1 ALCHEMY Il, HONDO and GAMESS

QMC with importance sampling requires us to have previously chosen a trial function
by standard methods. As mentioned in Sec. C.1.1.3, the MO vectors needed for &VEC can be
obtained from a canned ab initio program. The programs used in this work were ALCHEMY
11[99], HONDO[174, 175], and GAMESS[126]. HONDO was used to obtain wavefunctions for the
Hj work (Sec. 2.2.2) and the acceleration runs (Chapter 4). ALCHEMY and GAMESS were used
for work in Chapter 3. HONDO amd GAMESS are based on Gaussian orbitals. The ALCHEMY
program provides the capability of computing Slater-type wvae functions for linear molecules,
which suited our needs for the CaHz system and its fragments. Table C.2 shows where to find
documentation for these programs.
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