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Abstract. Two Chebyshev recursion methods are presented for calculations with
very large sparse Hamiltonians, the kernel polynomial method (KPM) and the
maximum entropy method (MEM). They are applicable to physical properties in-
volving large numbers of eigenstates such as densities of states, spectral functions,
thermodynamics, total energies for Monte Carlo simulations and forces for tight
binding molecular dynamics. This paper emphasizes efficient algorithms.
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1. Introduction

Many computational physics problems involve calculations with very large sparse
Hamiltonian matrices. Finding all eigenvectors and eigenvalues requires cpu time
scaling as O(N?) and memory scaling as O(N?), which is impractical. For ground
or isolated eigenstates the preferred method is Lanczos diagonalization, which
uses only matrix-vector multiply operations and requires cpu and memory scal-
ing as O(N). But new O(N) methods are needed for properties involving many
eigenstates such as the density of states (DOS) and spectral functions, and for
quantities that can be derived from DOS such as thermodynamics, total energies
for electronic structure and forces for molecular dynamics and Monte Carlo simu-
lations. In such applications, limited energy resolution and statistical accuracy are
often acceptable provided the uncertainties can be quantified. Maximum entropy
(MEM) [1,2] has been a popular approach to such problems, usually fitting power
moments of a DOS or spectral function. However, the non-linear convex optimiza-
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tion algorithms required to find MEM solutions may be difficult to implement for
large numbers of power moments and for singular structures in DOS.

Calculation of Chebyshev moments is much less sensitive than power moments
to the limitations of machine precision. Chebyshev series are also preferred because
of their isomorphism to Fourier series which enables use of advanced methods of
Fourier analysis such as FFT’s, Gibbs damping, etc. This paper discusses the gen-
eration of Chebyshev moment data, describes a simple linear Chebyshev approxi-
mation termed the kernel polynomial method (KPM) [3,4], and then it presents an
efficient MEM algorithm [5].

Consider the DOS as representative of the properties of interest. The first step
is to scale the Hamiltonian, H = aX + b such that all eigenvalues z, of X lie
between —1 and +1. The DOS is then

N
D(z) = % ZJ(&: —2zn) . (1)

n=1

The data about D(z) consists of Chebyshev moments,

1
fim = Tr{Tn(X)} = / Tp(2)D(2)ds . 2
-1
Calculation of moments uses Chebyshev recursion,
Tn41(X) = 2XT (X) — Tn—1(X) ®3

requiring the same optimized matrix-vector-multiply algorithm in Lanczos meth-
ods. Unlike Lanczos recursion, Chebyshev recursions are numerically stable to
arbitrarily large numbers of moments without any need for expensive reorthogo-
nalization. Exact evaluation of M moments uses cpu time o« O(N2M). A stochastic
method [3], scaling as O(NMN,.), uses estimators

~ 1
r
r

where |r > are N, Gaussian random vectors. Such data have calculable statistical
variance proportional to (N N;)~!. If the Hamiltonian has only local off-diagonal
elements, as in tight-binding Hamiltonians, a non-stochastic locally truncated ap-
proximation to the Hamiltonian H; may be adequate [6]. The estimator,

B Y < iTn(Xi)li> (5)
i

generates data with a systematic error determined by the truncation range. Cpu
scales as O(N M J), where J is the average number of states in the truncation range.
Exact moment derivatives (which are related to forces) can also be calculated.

2. The Kernel Polynomial Method

Cpu time and memory limit the number of moments M and their statistical and
systematic errors. Given such limited data, KPM and MEM are two ways to esti-
mate DOS. KPM [3,4] provides a linear Chebyshev approximation to a DOS with
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a uniform resolution in ¢ = cos™!(z). It is based on an exact moment expansion,

D(z) = 711_—§ luo +2 Y pmTm (m)} : (6)

m=1

The KPM truncates this expansion at M moments and introduces a factor g to
damp the Gibbs phenomenon,

M
1
D = 2 md M T, . 7
k() = = [uo+ nglu g (fc)] (7)
Let D(¢) = sin(4)D(X) and Tr(z) = cos(m¢). Then Dk (4) is both a simple
convolution and a truncated Fourier series,

w M
Dg(4) = 2 0k (9~ ¢o)D(do)ddo ; Ok($) = % [go +2 Z oM cos(qu)]
0 m=1
(8)

The “kernel” dx (¢) is a 2m-periodic polynomial approximation to a Dirac delta
function, analogous to the resolution function of a spectrometer. Resolution is
uniform in ¢ with width A¢ ox M~1.If g™ = 1, at large |@| the kernel is oscillatory
with period A¢ = m/M within an envelope function decreasing slowly as 1/¢2.
The result is the Gibbs phenomenon of a lack of uniform convergence at singular
structures in DOS. An optimal g¥ can be determined variationally by requiring
the kernel to be a polynomial of degree M, strictly positive, normalized and have
minimal variance in ¢ [7]. Specifically, by the Fejer-Riesz theorem

M
Z a,ev?

v=0

2 M-m
’ gnlt;!: Z Qly4m - (9)

v=0

i(d) = 5

To obtain the best energy resolution minimize the variance,
T T
Af’= | ¢Px($)dp~ | (2—2cos(d))ix(d)dd=2g0—201 ,  (10)
—r -7

subject to a normalization constraint, ffﬂ, dx (¢)dé = 1, or equivalently g¥ = 1.
That is, the variational problem,

M-1 M
Q=g1—Ago= Z aQyay41 — /\Z ayay , (11)
v=0 v=0
results in
6Q
— =0 = Ay — 2/\a,,+1 +a,=0 . (12)
da,
The solution to Eq. (12) is
Uy A i
a=—2® gy hh) o, )

SM U2 sin(4x)




4 R. N. SILVER ET AL.

Si 216 Atom Supercell

200 moments
2500.0 , . '
) e
——- EER /Er N
20000 | 4xDyE) / N

1500.0

1000.0

Figure 1. KPM DOS and band energy calculation for Si 216 atom supercell.

where the U, are Chebyshev polynomials of the second kind. The same kernel is
also obtained by minimizing the uniform norm [8]. Its envelope function decreases
exponentially at large [4].

Figure 1 illustrates the application of KPM to the electronic structure of a 216
atom Si supercell using a tight binding Hamiltonian [7] based on the parameteriza-
tion of Goodwin, et al. [9]. This system is small enough to be exactly diagonalized.
Vertical lines are at the energies of the exact eigenstates and their height is pro-
portional to their degeneracy. The solid line is the KPM approximation to the
DOS obtained for 200 Chebyshev moments. A Fermi energy Ep is the energy at
which the cumulative DOS Cx (E) equals the number of electrons. The total band
energy Ep is then the cumulative energy Ex(F) at Ep. For band energies KPM
converges o< M~2 reaching 10~ relative accuracy at about M = 150.

KPM can be applied to other properties such as spectral functions [7],

1 1
— T & I - o
Alw) = ,,l_;'utl)l-i- wIm{< TolO w—H —1ip %o >} ’ (14)

where O is an operator. KPM approximations use moments p,(,? =< |01 T}, (X) O[T, >.
Applications to thermodynamics use a rapidly converging Fourier-Bessel ex-

pansion of the partition function [3],

Z =¢e PP [Io (Ba) +2 i L, (ﬁa)pmJ . (15)

m=1
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The I, (Ba) are modified Bessel functions. The partition function involves integral
rather than pointwise convergence, so the optimal choice is g¥ = 1.

3. The Maximum Entropy Method
MEM uses the same Chebyshev moment data as KPM. The entropy,

" D(¢)
s= [ [ow-pi0-own (20w . s
[ |p6) - D9 - Doy (55 ) | a6 (16)
Here D,(¢) is a default model for the DOS in the absence of data. Consider first
the case where the data are subject to Gaussian independent statistical noise,

ﬁm =tm+ N ; Enm =0 ; Efmnm = Uyzn‘smm’ . (17)

(E denotes the statistical expectation value of the random variable that follows
it.) In case the data are exact, o, represents the numerical precision required of
the MEM fit to the data. The primal optimization problem is to maximize entropy
as a function of D(¢) constrained by the known moments. That is, maximize

X o~ ((Bm = pm )
Q=5—5-; x2=z<"’—am—m) . (18)
m=0

The statistical regularization parameter o sets a balance between the fit, measured
by x?, and an information measure, —S, of distance between the inferred D(¢) and
the default model D,(4). (Alternatively, 1/« is a Lagrange multiplier.) The m = 0
term is included to constrain normalization, fip = 1. Taking the limit o9 — 0
strictly enforces normalization.

Our MEM algorithm consists of three nested loops: iterations in ¢, until a
stopping criterion is reached; at each «, Newton-Raphson iterations of a dual
optimization problem to solve for the MEM D(¢); at each a and MEM D(¢)
conjugate gradient iterations to apply the Hessian onto a vector.

Popular stopping criteria for « are x? = M and x%>—2aS = M, although many
other criteria are discussed in the literature. However, the algorithm for finding
the MEM D(¢) tends to be unstable if initiated at such small c. Instead, start
at large o' ~ x2, and use D, (@) to initiate the optimization of D!($). Progress
down in & such that o*+! = /2. If this is unstable, halve the step down in «
repeatedly until stability is reached. At each «, use D¥(4) as the starting point
for the optimization of D*+1(g). Once the stopping criterion is passed, perform a
golden search for the optimal a.

In the case of exact moment data, set oy, to the numerical precision required,
which can be very small. In our applications to electronic structure, errors of one
part in 10° or smaller were used. Iterate & — 0 until the entropy S saturates at
an a-independent value.

Given an «, a variety of algorithms have been developed to find MEM solutions
[10,11]. The primal optimization problem maximizes Q, as a function of D(¢),

6@ _ 1 (D@ N~ Bm—pm o
5D() ~ " (Do(¢)>+n§ ooy, Smd)=0, (19
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which has a unique solution. Define parameters X by

~

Bm — ftm + 002 Am =0 . (20)
Then the D(¢) satisfying Eq. (19) is

M
D(¢) = D,(¢) exp (— Z Am cos(m¢)) . (21)

m=0

This form is also obtained by maximizing entropy subject to Lagrange contraints
on moments with Lagrange multipliers \.

However, a dual optimization problem as a function of the M Lagrange mul-
tipliers [12] solves the same problem, and it is more stable numerically than the
primal problem. The X of the dual problem vary more slowly than the D(¢), and
they are a finite rather than a continuous set of variables. The quantity,

Qi=l ( /0 " D(¢)d¢> +mé [ﬁmAm + a—a’zg'\—'z"] ; (22)

is maximized as a function of the X when Eq. (20) is satisfied. Away from the
maximum, define
6Qa _

—L = = s — 2
N &m = Im — ptm + a0 Am . (23)
Then,
M 2
Qu=Qp+ Y, o (24)
m=0 m

The Hessian of the dual problem is a positive definite M x M matrix and a simple
function of the moments,

?Qu_ _ Hmim + Pmemi]

Hm' = a5 aa = 3

+ aafndmm: . (25)

A solution to Eq. (20) may be found by Newton-Raphson iteration. Beginning
with some starting A%, the n 4 1°th step is

Xntl = X g (26)

The quantity, H'lé-: may be calculated, e.g., by conjugate gradients. In view of
Eq. (24), converging bounds at the n’th iteration are Q7 > @ > @p where
Q% =limp0{QF, @ }. This provides stopping criteria for the iteration.

For electronic structure applications, high numerical precision (e.g. = 107%) is
needed for accurate energy derivatives. Careful attention to how the MEM algo-
rithms are discretized then becomes very important. Practical fast Fourier trans-
form (FFT) algorithms calculate the p, = foﬂ cos(me)D(¢)dé by sampling the
domain 0 < ¢ < 7 at a discrete set of N, equally spaced points. The Shannon
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Figure 2. Comparison of KPM and MEM for the DOS of a polaron formation problem using
200 moments.

sampling theorem says that such naive discretization corresponds to representing
a DOS in a Np-order truncated Chebyshev series. In effect, MEM is used to infer
an Ny-order Chebyshev approximation from knowledge of M true moments.

But typical DOS contain singular structures such as §-functions, van Hove sin-
gularities, band edges, etc. These structures are properly described by an infinite
order Chebyshev expansion. As discussed previously for the KPM, abrupt trun-
cation of a Chebyshev expansion at N, terms results in the Gibbs phenomenon;
i.e. singular structures in the true DOS at ¢, induce oscillations in Chebyshev
approximated DOS of period A¢ = n/N, with an envelope function decreasing
slowly as 1/(¢ — ¢,)%. While the moment data satisfy the Hausdorff conditions for
the existence of a positive solution [1], the added requirement that the solution
be an Np-order Chebyshev series is stronger. For the exact moment problem, the
a-iteration may have difficulty forcing x? — 0 and saturating the entropy S.

Fortunately, the kernel polynomial method (KPM) provides a solution to this
discretization problem. In the MEM problem replace the M Chebyshev moment
data fi,, by modified moments 7, umgm , where the gm are the Gibbs damping
factors in Eq. (9). In other words, change the goal of the MEM algorithm to the
inference of a Ny-order KPM approximation to the DOS. Iteration toward x2 — 0
and saturation of S becomes easy.

By choosing N, 3> M, MEM can achieve significant resolution enhancements
over KPM from the same M moments. In tests with tight binding Hamiltonians
for the electronic structure of Si [5], band energies converge approximately 4 times
faster with MEM than with KPM. For the example in Fig. 1, MEM reaches 103
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accuracy at M = 35. Setting N, > 4M is adequate to achieve this gain. The cpu
time required by MEM scales as O(M?2), and it is negligible compared to the cpu
time required to generate the moment data. Use of MEM cuts the overall cpu
requirements by at least a factor of 4 over KPM. Isolated features in DOS, such
as individual states and band edges, may converge even faster.

Figure 2 compares MEM and KPM for the DOS of a 1D polaron formation
problem [5]. The Hamiltonian consists of an electron placed into a 10,000 atom
chain with a Peierls distortion, which is then allowed to relax resulting in the
polaron state at £ = 1.0. MEM achieves dramatically better energy resolution
than KPM for isolated states and band edges, but it tends to “ring” (or oscillate)
in smooth positive regions of a DOS when singular structures, such as Van Hove
singularities, are nearby. For such regions of a spectrum, MEM may converge more
slowly than KPM. A solution to the ubiquitous MEM ringing problem most likely
will require a modification to the entropy functional to include local smoothness
constraints [13].
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