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1. Introduction

In order to perform a finite element analysis, one may be required to connect two meshes
at a shared boundary. Such requirements are common when assembling system models
from separate subsystem models. One approach to connecting the meshes requires that
both meshes have the same number of nodes,v the same nodal coordinates, and the same
interpolation functions at the shared boundary. If these requirements are met, then the two
meshes can be connected simply by equating the degrees of freedom of corresponding nodes
at the shared boundary. As might be expected, connecting meshes in this manner often
requires a significant amount of time and effort in mesh generation.

An alternative to such an approach is to use the concept of “tied contact” to connect the
meshes. With this concept, one of the connecting mesh surfaces is designated as the master
surface and the other as the slave surface. For problems in solid mechanics, the meshes are
connected by constraining nodes on the slave surface to specific points on the master surface
at all times. Although this approach is appealing because of its simplicity, overlaps and gaps
may develop between the two meshes either because of non-planar initial geometry or non-
uniform displacements. For example, a node on the master surface may either penetrate or
pull away from the slave surface during deformation even though the slave node constraints
are all satisfied. As a result, displacement continuity may not hold at all locations on the
master-slave interface.

Several methods currently exist for connecting finite elements or meshes of elements.

Mesh grading approaches allow two or more finer elements to abut the edge of a neighbor-

ing coarser element [1]. Although such approaches generate conforming element boundaries,




they are not applicable to the general problem of connecting two dissimilar meshes. Other
methods [2-3] for connecting meshes based on constraint equations or Lagrange multiplier
approaches are applicable to a much broader class of problems, but they generally do not
ensure that mesh boundaries conform during deformation. Finite element approaches devel-
oped specifically for contact problems can also be used to connect meshes. These [4] include:
(i) Lagrange multiplier methods; (ii) penalty methods; and (iii) mixed methods. Many of
these methods are based in part on the master-slave concept.

Regardless of the method used to connect two meshes, it is important to address the
issues related to continuity at the mesh boundaries. One such issue is the first-order patch
test [5]. In general, meshes that are connected using existing methods based on constraint
equations or penalty functions alone fail the patch test. A general method for connecting
finite element meshes in two dimensions that passes the patch test was developed recently
by the authors [6]. This study investigates an extension of that method to three dimensions.
The basic idea is to redefine the boundaries of elements on the slave surface to achieve
a conforming connection with the master surface. The same idea was used recently at the
element level to obtain a conforming transition between hexahedral and tetrahedral elements
[7].

The present method combines the master-slave concept with the uniform strain approach
for finite elements [8]. As with the standard master-slave approach, nodes on the slave
surface are constrained to the master surface. In addition, the boundaries and formulations
of elements on the slave surface are modified to ensure that first-order patch tests are passed.

Consequently, results obtained using the method converge with mesh refinement.

A useful feature of the method is the freedom to designate the master and slave surfaces




independently of the resolutions of the two meshes. Standard practice commonly requires
the surface designated as the master to have fewer numbers of nodes than the slave surface.
The present method allows one to specify either of the mesh boundaries as master while still
satisfying the patch test. It is shown in Section 3 that improved accuracy can be achieved
in certain instances by allowing the master surface to have the greater number of nodes.
Thus, there may be a preferred choice for the master surface in certain cases. Methods of
mesh refinement based on adaptive subdivision of existing elements may also benefit from
the method. For example, kinematic constraints on improper nodes could be removed while
preserving displacement continuity between adjacent elements.

Details of the method are presented in the following section. The presentation includes
a discussion of the uniform strain approach and the geometric concepts upon which the
method is based. Example problems in three-dimensional linear elasticity are presented in
Section 3. These examples highlight the various capabilities of the method. Comparisons
made with the standard master-slave approach demonstrate the superior performance of the

method.
2. Formulation

Consider a generic finite element in three dimensions with nodal coordinates z;; and nodal
displacements u;; fori =1,2,3and I =1,..., N. The spatial coordinates and displacements
of a point in the global coordinate direction e; are denoted by x; and u;, respectively. For
isoparametric elements, the same interpoiation functions are used for the coordinates and

displacements. That is,

;= zidi(n,m,ns) (1)




u; = uidr(m,n2,m) (2)

where ¢; is the shape function of node I and (#;,72,73) are isoparametric coordinates. A
summation over all possible values of repeated indices in Egs. (1-2) and elsewhere is implied
unless noted otherwise.

The Jacobian determinant J of the element is defined as

321/8711 61172/8111 61133 /6171
J=det | 0z,/0n> 0xy/0ns Oz3/01n0 (3)
0z1/0n; Oz2/0ns Oz3/0ns

The volume V of the element can be expressed in terms of J by

V= Jdv (4)

Vo
where V}, is the volume of integration of the element in the isoparametric coordinate system.
It is assumed that V' is a homogeneous function of the nodal coordinates. It is also
assumed that a linear displacement field can be expressed exactly in terms of the shape
functions. Under these conditions, the uniform strain approach of Ref. 8 states that the

nodal forces f;; associated with element stresses are given by
fi = O"iij (5)

where 0;; are components of the Cauchy stress tensor (assumed constant throughout the

element), and
o

B =
i &vﬂ

In addition, one has

V=g;B;; for j=1,2,3 (7)

where there is no summation over the index j in Eq. (7).
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Closed-form expressions for Bj; are presented in Ref. 8 for the 8-node hexahedron. Similar
expressions can be derived for other element types, but they are quite lengthy for higher-
order elements. As an alternative to deriving closed-form expressions for specific element
types, one can use Gauss quadrature to determine B;; for any isoparametric element in a
systematic manner.

By substituting Eqs.v (1), (3) and (4) into Eq. (6), one finds that the functions g;; used

by the quadrature rule to evaluate B; are given by

gu = ¢11(T22T33 — T32T23) + Gra(T23T31 — T33T21) + r3(T21T32 — T31T22)  (8)

Gor = Gr1(T32T13 — T12T33) + Gra(T33T11 — T13731) + d13(T31T12 — T11232)  (9)

gs1 = Gr1(T12T23 — T22%13) + G12(T1,3T21 — T23711) + O1,3(T11T22 — T21712) (10)
where

¢1; = 001/0n; (11)

zi; = 0z:/n; = zir(0¢1/0n;) (12)

and g;; is evaluated at each of the quadrature points. Exact values of B;; can be obtained
using 2-point Gauss quadrature in three dimensions (8 quadrature points total) for the 8-
node hexahedron. For the 20-node serendipity or 27-node Lagrange hexahedron, 3-point
Gauss quadrature in three dimensions (27 quadrature points total) is required. Exact values
of B;; for the 4-node linear tetrahedron can be obtained using a 1-point quadrature rule for
tetrahedral domains while the 10-node quadratic tetrahedron requires a 5-point quadrature

rule. Quadrature rules for integration over tetrahedral domains are available in Ref. 5.




Following the development in Ref. 8, one can show that

dV = By

(13)

where (2 is the domain of the element in the global coordinate system. Based on Eq. (13),

the uniform strain €* of the element is expressed in terms of nodal displacements as

where

and
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Elements based on the uniform strain approach have the appealing feature that they pass

first-order patch tests.

Boundaries of three-dimensional elements are defined either by planar or curved faces.

Elements with interpolation functions that vary linearly, e.g. the 4-node tetrahedron, have

planar faces. In contrast, elements with higher-order interpolation functions, e.g. the 8-node

hexahedron and 10-node tetrahedron, generally have curved faces. That being the case, it

may not be obvious how to connect two meshes of elements which use different orders of

interpolation along their boundaries.




Difficulties can arise using the standard master-slave approach even if the boundaries of
both meshes are defined by planar faces. As was mentioned previously, even though the
slave nodes stay attached to the master surface, there may not be any constraints to keep
a node on the master boundary from penetrating or pulling away from the slave boundary.
Such problems are addressed with the present method by requiring the faces of elements on
the slave boundary to always conform to the master boundary. In order to explain how this
is done, some preliminary geometric concepts are introduced first.

Notice from Egs. (6), (14) and (16) that the relationship between strain and displacement
for a uniform strain element is defined completely by its volume. Consequently, the uniform
strain characteristics of two elements are identical if the expressions for their volumes are
the same. This fact is important because it allows one to consider alternative interpolation
functions for elements with faces on the master and slave surfaces. By doing so, one can
interpret the present method as an approach for generating “conforming” finite elements at
the shared boundary by carefully accounting for the volume (positive or negative) that exists
due to an imperfect match between the two meshes both initially and during deformation.

Consider an 8-node hexahedral element whose six faces are not necessarily planar. Each
point on a face of the element is associated with specific values of two isoparametric coor-
dinates. Both the spatial coordinates and displacements of the point are linear functions of
the coordinates and displacements of the four nodes defining the face. The specific forms of
these relationships are obtained by setting either 7, 7, or 93 equal to one of its bounding
values in Egs. (1-2).

Consider now an alternative element in which each face of the original 8-node hexahedron

is triangulated with n, facets. Each vertex of a triangular facet intersects one of the curved




faces of the hexahedron. A center node ¢ is introduced in the interior of the element.
Although the precise location of ¢ is not important, its coordinates can be expressed in

terms of those of the hexahedron as

8
Tie= Y zis/8 (18)
=1

The center node along with the three vertices of each triangular facet form the vertices
of a 4-node tetrahedron. Thus, the domain of the hexahedron can be divided into 6n;
tetrahedral regions. Within each of these regions the interpolation functions are linear. In
other words, the displacement of a point in a tetrahedral region is determined by its location
and the displacements of the four nodes defining the tetrahedron. One may approximate the
boundary of the original hexahedron to any level of accuracy by increasing the number of
triangular facets.

Although the two elements described in the previous paragraphs are significantly dif-
ferent, their uniform strain characteristics are approximately the same. In the limit as n,
approaches infinity, the uniform strain characteristics of the two elements are identical. By
viewing all the element faces on the master and slave surfaces as connected triangular facets,
one can develop a systematic method for connecting the two meshes that passes first-order
patch tests. We note that the alternative element satisfies the basic assumptions of the
uniform strain approach. That is, the element volume is a homogeneous function of the
nodal coordinates and a linear displacement field can be expressed exactly in terms of the
interpolation functions.

We are now in a position to present the method for modifying elements with faces on the

slave boundary. Changes to elements with faces on the master boundary are not required.




The concept of alternative piecewise-linear interpolation functions was introduced in the
previous paragraphs to facilitate interpretation of the method as a means for generating
conforming elements at the master-slave interface. These alternative interpolation functions
are never used explicitly to modify the element formulations.

Figure 1 depicts the projection of an element face Fj of the slave surface onto the master
surface. The larger filled circles designate nodes on the slave surface constrained to the
master surface. Smaller filled circles designate nodes on the master surface. Circles that are
not filled designate the projections of slave element edges onto master element edges.

Although there are several options for projecting slave element entities onto the master
surface, we opted for the following in this study. Nodes on the slave surface that are initially
off the master surface are repositioned to specific points on the master surface based on a
minimum distance criterion. That is, a node on the slave surface is moved and constrained
to the nearest point on the master surface. For each element face of the slave surface, one
can define a normal direction at the center of the face. If an element edge of the slave surface
is shared by two elements, the normal direction for the edge is defined as the average of the
two elements sharing the edge. Otherwise, the normal direction is chosen as that of the
single element containing the edge. A plane is constructed which contains two nodes of the
slave element edge and has a normal in the direction of the cross product of the element
edge and the element edge normal. The projection of the slave element edge onto a master
element edge is simply the intersection of this plane with the master element edge.

Let P denote the element face of the master surface onto which a node S of the slave
surface is projected. The projection of S onto P can be characterized by two isoparametric

coordinate values 7,5 and 725. As a result of constraining S to P, the spatial coordinates of




S are expressed as
Tis = LiKAKS (19)

where K ranges over all the nodes defining P. The coefficient axs in Eq. (19) can be

expressed in terms of 115 and 725 by the equation

axs = i (ms, Ts) (20)

where ¢%; is the shape function of node K on face P.

The basic idea of the following development is to replace F; with a new boundary which
prevents the possibility for overlaps or gaps between the two meshes. The new boundary is
composed of two parts. The first part is denoted by F,,, and consists of the projection of F}
onto the master surface (see Figure 1). The second part is denoted by F, and consists of
ruled surfaces between the edges of F; and their projections onto the master surface. These
two parts of the new boundary are discussed in greater detail subsequently.

Using the divergence theorem, element volume can be expressed in terms of surface

integrals over the faces of the element as

Ny
V= Z/ a:jnde for 7=1,2,3 (21)
k=1 Fi

where Ny is the number of element faces, F; denotes face k, and n* = n;?ej is the unit
outward normal to Fy. Let V denote the volume of a uniform strain element obtained by

replacing F; with the new boundary. It follows from Eq. (21) that
v=v- | S — [ ampds+ [ zmids for j=1,23 (22)

where n™ = n7'e; is the unit outward normal to F;, and n” = nje; is the unit outward

normal to F,. Notice that a negative sign is assigned to the third term on the right hand
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side of Eq. (22) because n™ points into the slave element. The analog to Eq. (6) for the

uniform strain element is given by
4
Bjt = 5—
z;

The index I is used instead of I in Eq. (23) to remind the reader that ¥V depends on the

(23)

coordinates of the original element nodes as well as the nodes defining F;,,. To be specific,
the index I takes on all values of I for the original element except the numbers of nodes
constrained to the master boundary. In addition, I takes on the numbers of all nodes defining
F.

Substituting Eqgs. (19) and (22) into Eq. (23), one obtains

- 6 ,

+é—f; ([ amsas— [ ampas) for j=123 (29)
where the index S takes on the numbers of nodes constrained to the master boundary. Notice
that B;;=0if I refers to a node on the master boundary. In addition, a is is zero if I refers
to node numbers of the original element. The terms involving surface integrals on the right
hand side Eq. (24) can be calculated using numerical integration as described in the following
paragraphs.

The coordinates of points on F; can be expressed as

T = Tis$s(M, n2) (25)

where ¢s is the shape function of node S on F;. Using Eq. (25) and a fundamental result

for surface integrals, one obtains

0
al‘js

/Fx]—n;d5'=/A PS€jkmTr1TmadA for 7=1,2,3 (26)
1 7l
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where €;ir, is the permutation symbol and A, is the area of integration for F in the n;-7,
coordinate system. Exact values of the integral on the right hand side of Eq. (26) can be
obtained using 2-point Gauss quadrature in two dimensions (4 quadrature points total) for
the 8-node hexahedron. For the 20-node and 27-node hexahedron, 3-§oint Gauss quadrature
in two dimensions (9 quadratﬁre points total) is required. Exact values for the 4-node
tetrahedron can be obtained using a 1-point quadrature rule for triangular domains while
the 10-node tetrahedron requires a 7-point quadrature rule. Quadrature rules for integration
over triangular domains are available in Refs. 5 and 9.

The projection of F; onto an element face of the master surface is shown in Figure 2. For
each such master element face, the boundary of the projection is defined by a closed polygon
consisting of straight-line segments in the isoparametric coordinate system of the master
element face. This polygon is decomposed into triangular regions (again in the isoparame£ric
coordinate system of the master element face) as shown to facilitate the calculation of surface
integrals.

The coordinates of points on the element face can be expressed as

T; = l’iM¢M(771, 7)2) (27)

where ¢y is the shape function for node M on the element face. From Eq. (27) one obtains

0
6sz

/1; xjnjl-dS=/:4 Prr€ikmTr1Tm2dA for 7=1,2,3 (28)
1f nf

where Fi; denotes the projection of F; onto the element face and Ay is the area of integration
of the element face in the 7;-1; coordinate system. The integral on the right hand side
of Eq. (28) is determined by adding the contributions from each triangular region. The

surface integrals can be calculated exactly for each triangular region by using the following
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quadrature rules for triangular domains: 1-point for 4-node tetrahedron, 4-point for 8-node
hexahedron, 7-point for 10-node tetrahedron, 13-point for 20-node hexahedron, and 19-point
for 27-node hexahedron. Surface integrals in Eq. (24) over the domain F,, are obtained from
Eq. (28) by summing the contributions from all involved element faces on the master surface.

Recall that the second part of the boundary to replace F; consists of ruled surfaces
between the edges of F} and their projections onto the master surface. These surfaces must
be considered only if the edges of F; do not lie entirely on the master surface. By including
these surfaces, the “new boundary” of the slave element is ensured to be closed.

An edge of F; and its projection onto the master surface is shown in Figure 3. The spatial

coordinates of points along the edge can be expressed as

Tie = CEiSCf’Se(fz) (29)

where ¢g. is the shape function of node S on the edge of interest.

The projection of the edge onto a participating element face of the master surface appears
as one or more connected straight-line segments in the coordinate system of the element face.
For each such segment, the isoparametric coordinates of points along the segment can be

expressed as

m = a+bé (30)

N2 = a2+b (31)

where the coeflicients a and b appearing in Egs. (30-31) are determined from the projections

of nodes and edges of F; described previously. Thus, the spatial coordinates of points along
the segment can be expressed as

Tig = Tirg@ar(a1 + 512, ag + b26o) (32)
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where @) is the shape function of node M on the element face.
The ruled surface between the segment and the edge is denoted by Fg.. Spatial coordi-

nates of points on this surface are given by

T = (1 = &)zig + §1Tie (33)

where 0 < & < 1. The bounding values of £, which define Fy, are determined from the

projections described previously. It follows from Eqgs. (29-33) that

0
ntdS = / mFr1Ema(l—6)dA for j=1,2, 4
Oz;m /Fge it Agr OuEkmTr1Tma(l = &) or J 3 (34)
0 , .. )
3%'5 /I;ge xjnjds = /Agr ¢Se6jkmxk,1$m,2€1dA for 1= 1, 23 (35)

where A, is the area of integration for Fy. in the §;-&; coordinate system, and

Zi1 = ZTispse — TimPum(ar + bi€a, az + b262) (36)

Zio = Tipm[(OPar/Om)by + (Odnr/0n2)b2)(1 — &1) + Ti5(0se/02)E1 (37)

The integrals on the right hand sides of Eqgs. (34-35) can be calculated exactly using a 2-point
Gauss quadrature rule in the &; direction. For edges on the slave surface with three or fewer
nodes, the following quadrature rules for the & direction are sufficient: 3-point for a 4-node
tetrahedron or 8-node hexahedron with a face on the master surface, 4-point for a 6-node
tetrahedron or a 20-node hexahedron, and 6-point for a 27-node hexahedron. The surface
integrals in Eq. (24) over the domain F; are obtained from Egs. (34-35) by summing the
contributions from all involved segments on the master surface.

If the slave surface consists entirely of uniform strain elements, then all the necessary

corrections are contained in Bj ;- By using Egs. (24) to calculate ij for elements with

14




faces on the slave surface, one can perform analyses of connected meshes for both linear and
nonlinear problems. A general method of hourglass control [10] can also be used to stabilize
any elements on the boundary with spurious zero energy deformation modes.

The remainder of this section is concerned with extending the method to accommodate
more commonly used finite elements on the slave surface. Although we believe the method
can be extended easily to nonlinear problems, attention is restricted presently to the linear
case. Needless to say, many problems of practical interest are in this category.

Prior to any modifications, the stiffness matrix K of an element with a face on the slave
surface can be expressed as

K=K,+K, (38)
where K, denotes the uniform strain portion of K and K, is the remainder. The matrix K,
is defined as
K,=VCTDC (39)
where D is a material matrix that is assumed constant throughout the element. Recall that
V is the element volume and C is given by Eq. (16). Substituting Eq. (39) into Eq. (38) and
solving for K, yields
K,=K-VvCTDC (40)
Let u! denote the vector u (see Eq. 17) obtained by sampling a linear displacement field at

the nodes. The nodal forces f' associated with u! are given by
fl= K4 (41)
For a properly formulated element, one has

Kau'=f! (42)
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and

Kul=0 (43)

If Eq. (42) does not hold, then K, u' # f* and elements based on the uniform strain approach
would fail a first-order patch test. Equation (43) implies that K, does not contribute to the
nodal forces for linear displacement fields.

The basic idea of the following development is to alter the uniform strain portion of the
stiffness matrix while leaving K. unchanged. Let 4 denote the displacement vector for nodes
associated with the index [ (see discussion following Eq. 23). Based on the constraints in

Eq. (19), one may express u in terms of @ as
u=Gi (44)

where G is a transformation matrix. The modified stiffness matrix K of the element is
defined as

K=VvCTDC +GTK, G (45)

where C denotes the matrix C (see Eq. 16) associated with Bj ; (see Eq. 24). The stiffness

matrix K, obtained using the standard master-slave approach is given by
Kms = GTKG (46)
Comparing K with K., one finds that
K—Kn,=VCTDC - GT(VCTDC)G (47)

The right hand side of Eq. (47) is simply the difference between the uniform strain portions

of K and K. If continuity at the master-slave interface holds by satisfying Eq. (44)
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alone, then the surfaces integrals in Eq. (24) sum to zero and K = K,,,. Thus, under such
conditions, the present method and the standard master-slave approach are equivalent.

Prior to element modifications, the strain € in an element on the slave surface can be
expressed as

e =Cu+ Hu (48)

where Cu is the uniform strain (see Eq. 14) and Hu is the remainder. The modified element

strain € is defined as

é¢=Ci+ Hu (49)

Equation (49) is used to calculate the strains in elements with faces on the slave surface.
One might erroneously consider developing a modified stiffness matrix K; based on

Eq. (49). The result is
K. =VéTDE + /Q [6"DHG + GTHTDC + G*HTDHG] dV (50)

where {2 denotes the domain of the element with face F} replaced by the new boundary. The
difficulties with using K: for an element formulation are twofold. First, it may not be simple
to evaluate the integral in Eq. (50) because the domain Q) could be irregular. Second, and
more importantly, such an element formulation does not pass the patch test. To explain this
fact, let @' dénote the vector @ obtained by sampling a linear displacement field. In general,
one has K@ # K4 since the product Ct! is not necessarily zero.

In summary, the present method alters the formulations of elements on the slave surface
by accounting correctly for the volume between the two meshes that is present either initially
or during deformation. A method that does not require changes to element formulations

for elements on the master or slave surfaces may be preferable in certain instances. We
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are currently investigating such a method based on constraint equations and the volume

accounting principles explored in this study.
3. Example Problems

All the example problems in this section assume small deformations of a linear, elastic,
isotropic material with Young’s modulus E = 107 and Poisson’s ratio v = 0.3. In this case,

the material matrix D can be expressed as

[ 2G + A A A 0 00
A 2G + A A 0 0 O
A A 2G+X 0 0 O
D=1 0 0 G 0 0 (51)
0 0 0 0 G O
0 0 0 0 0 G|
where
E
T 2(1+v) (52)
and
A= Ev (53)

(1+v)(1-2v)

Five different element types are considered in the example problems. These include
the 4-node tetrahedron (7'4), eight-node hexahedron (H8), ten-node tetrahedron (7°10), 20-
node hexahedron (H20), and 27-node hexahedron (H27). Stiffness matrices of the various
elements are calculated using numerical integration. The following quadrature rules in three
dimensions are used for the hexahedral elements: 2-point for 8-node hexahedron, 3-point
for 20-node hexahedron, and 3-point for 27-node hexahedron. Single-point and 5-point
quadrature rules for tetrahedral domains are used for element types 74 and 710, respectively.

Two meshes connected at a shared boundary are used in all the example problems.
Mesh 1 is initially bounded by the the six sides z, = 0, 2y = hy, 2 =0, 29 = hy, 23 = 0
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and x3 = h3 while Mesh 2 is initially bounded by z; = h;, 2, = 2hy, 2 =0, 2o = hy, 23 =0
and z3 = h3 (see Figure 4). Each mesh consists of one of the element types described in the
previous paragraph. The number of element edges in direction ¢ for mesh m is designated
by 7im- Thus, all the meshes in Figure 4 have ny; = ny; = n3; = 2 and njp = ngy = nzy = 3.
Specific mesh configurations are designated by the element type for Mesh 1 followed by the
element type for Mesh 2.

Calculated values of the energy norm of the error are presented for purposes of comparison
and for the investigation of convergence rates. The energy norm of the error is a measure of
the accuracy of a finite element approximation and is defined as

1/2
e= [Z/ (/¢ — =) T D(efe — 2o dV (54)
ke 7
where £ is the domain of element &k and e/¢ and €2**¢* denote the finite element and exact
strains, respectively. The symbol 7 denotes the set of all element numbers for the two
meshes. Calculation of energy norms for hexahedral and tetrahedral elements is based on

the quadrature rules for element types H20 and T'10, respectively.
Example 3.1

The first example is concerned with a uniaxial tension patch test and highlights some of
the differences between the standard master-slave approach and the present method. The

boundary conditions for the problem are given by

u1(0,$2,1‘3) = 0 (55)
u2(0,0,0) = 0 (56)
u3(0,0,0) = 0 (57)
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u3(0,h2,0) = 0 (58)

and

011(2h1,T2,23) = 1 (59)

The exact solution for the displacement is given by

ui(r1,22,73) = 71/E (60)
up(z1, T2, 23) = —vxa/E (61)
U3(IL‘1,$2,$3) = —V$3/E (62)

The exact solution for stresses has all components equal to zero except for o1; which equals
unity. All the meshes used in the example have hy =5, hy =10, h3 =10, n1; =ngy =n31 =n
and nj2 = ng2 = ngx = 3n/2 where n is a positive even integer.

Several analyses with n = 2 were performed to evaluate the method. Using all five
element types for Mesh 1 and Mesh 2 resulted in 25 different mesh configurations. Nodes
internal to the meshes and along the master-slave interface were moved randomly so that all
the elements were initially distorted. Following the initial movement of nodes, nodes on the
slave boundary were repositioned to lie on the master boundary. It is noted that gaps and
overlaps still remained between the two meshes after repositioning the slave surface nodes
(see Figure 5). The two meshes were alternately designated as master and slave. In all cases
the patch test was passed. That is, the calculated element stresses and nodal displacements
were in agreement with the exact solution to machine precision.

The remaining discussion for this example deals with results obtained using the standard
master-slave approach with Mesh 1 designated as master. The minimum and maximum

values of o7, at centroids of elements with faces on the slave surface are shown in Table 1 for
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mesh configurations H8H8, H20H20, T4T4 and T10T'10 for a variety of mesh resolutions.
It is clear from the table that refinement of the meshes does not improve the accuracy of
the solution at the shared boundary. In addition, the errors in stress at the interface are
greater for mesh configuration H20H20 than for H8HS8. Figure 6 shows the values of 013
for mesh configuration H8H8 with n = 4. The same information is shown in Figure 7 for
mesh configuration H20H20.

Plots of the energy norm of the error for mesh configurations H8H8 and H20H20 are
shown in Figure 8. It is clear that the energy norms decrease with mesh refinement, but the
convergence rates are significantly lower than those expected for elements in a single uncon-
nected mesh. The slopes of lines connecting the first two data points are approximately 0.51
and 0.50 for H8H8 and H20H 20, respectively. In contrast, the energy norms of the error for
a single mesh of H8 or undistorted H20 elements have slopes which asymptotically approach
1 and 2, respectively, in the absence of singularities. The fact that displacement continuity
is not satisfied at the shared boundary severely degrades the convergence characteristics of
the connected meshes.

We note that the results presented in Table 1 and Figures 6-8 are for the “best case”
scenario of connecting two regular meshes that conform initially. In general, two dissimilar
meshes will not conform initially at all locations if the shared boundary is curved. Use of

the standard master-slave approach in such cases may result in even greater errors.
Example 3.2

The second example investigates convergence rates for the present method. The specific

problem considered is pure bending. The problem description is identical to Example 3.1
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with the exception that the boundary condition at x; = 2h; is replaced by
0'11(2h1,$2,.'1.‘3) = h2/2 — X2 (63)

The exact solution has all of the stress components equal to zero except for o;; which is
given by

o11(x1, %2, T3) = ha/2 — zo (64)

In all cases Mesh 1 was designated as master.

Plots of the energy norm of the error are shown in Figure 9 for mesh configurations H8 H8
and H20H20. The slopes of lines connecting the first two data points are approximately 1.00
and 1.76 for H8H8 and H20H?20, respectively. Notice that a convergence rate of unity is
achieved by mesh configuration H8H8. Although the slopes of line segments are greater for
mesh configuration H20H 20, the optimal slope of 2 is not achieved. One should not expect
to obtain a convergence rate of 2 with the present method since corrections are made only
to satisfy first-order patch tests. Nevertheless, the results for mesh configuration H20H20
are more accurate than those for H8H8. Although the asymptotic rate of convergence for

H20H?20 is not clear from the figure, it is bounded below by unity.
Example 3.3

The final example demonstrates the freedom to designate master and slave boundaries
independently of the resolutions of the two meshes. We consider again a problem of pure
bending for mesh configuration H8H8 with Mesh 1 designated as master. The boundary

conditions are given by

U2($1,0,$3) = 0 (65)
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43(0,0,0) = 0 (66)

1(0,0,h3) = 0 (68)
and
o2(x1, he,23) = by — 74 (69)

The exact solution has all of the stress components equal to zero except for o9o which is
given by

022(Z1,%2,%3) = hy — 1, (70)

All the meshes used in the example have h; = 1, hy = 10, h3 = 1, ny; = ny;p = n and
nay = n3p = n. T'wo different cases are considered for the mesh resolutions in the 2-direction.
For Case 1, ny; = 5n and nyy = 10n. For Case 2, ny; = 10n and ngy = 5n. Thus, for Case 1
the mesh resolutidn in the 2-direction of the slave surface is twice that of the master surface.
In contrast, the mesh resolution in the 2-direction of the master surface is twice that of the
slave surface for Case 2. Mesh resolutions in the 1 and 3 directions for Meshes 1 and 2 are the
same for both cases. Results for Case 1 are identical to those obtained using the standard
master-slave approach since the meshes are conforming in this case.

Plots of the energy norm of the error are shown in Figure 10 for Case 1 and Case 2. Notice
that Case 2 is consistently more accurate for all the mesh resolutions considered. In order
to investigate the cause of these differences, the shear stress component o5 was calculated
at the centroids of elements with faces on the slave surface. Results of these calculations are
presented in Figures 11 and 12 for n = 2. The exact value of oy, for this example is zero

over the entire domain of both meshes. Notice that the magnitudes of o2 are significantly

23




smaller for Case 2 than Case 1. It is thought that results for Case 2 are more accurate than
those for Case 1 because fewer degrees of freedom are constrained at the shared boundary.
This example shows that there may be a preferred choice for the master boundary in certain

instances.
4. Conclusions

A systematic and straightforward method is presented for connecting dissimilar finite
element meshes in three dimensions. By modifying the boundaries of elements with faces on
the slave surface, corrections can be made to element formulations such that first-order patch
tests are passed. The method can be used to connect meshes with different element types.
In addition, master and slave surfaces can be designated independently of the resolutions of
the two meshes.

A simple uniaxial stress example demonstrated several of the advantages of the present
method over the standard master-slave approach. Although the energy norm of the error
decreased with mesh refinement for the master-slave approach, the convergence rates were
significantly lower than those for elements in a single unconnected mesh. Calculated stresses
in elements with faces on the shared boundary had errors up to 13 and 24 percent for
connected meshes of 8-node and 20-node hexahedral elements, respectively. For 4-node and
10-node tetrahedral elements, the errors were in excess of 21 percent. Moreover, these errors
could not be reduced with mesh refinement.

A convergence rate of unity for the energy norm of the error was achieved for a pure
bending example using connected meshes of 8-node hexahedral elements. This convergence

rate is consistent with that of a single mesh of 8-node hexahedral elements. More accurate
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results were obtained for connected meshes of 20-node hexahedral elements, but a conver-
gence rate of two was not achieved. The optimal convergence rate of two was not achieved
in this case because element corrections are made only to satisfy first-order patch tests.
The final example showed that improved accuracy can be achieved in certain instances
by allowing the master surface to have a greater number of nodes than the slave surface.
Standard practice commonly requires the master surface to have fewer numbers of nodes.
By relaxing this constraint, improved results were obtained as measured by the energy norm-

of the error and stresses along the shared boundary.

25




References

1. K. K. Ang and S. Valliappan, ‘Mesh Grading Technique using Modified Isoparametric
Shape Functions and its Application to Wave Propagation Problems,” International

Journal for Numerical Methods in Engineering, 23, 331-348, (1986).

2. L. Quiroz and P. Beckers, ‘Non-Conforming Mesh Gluing in the Finite Element Method,’

International Journal for Numerical Methods in Engineering, 38, 2165-2184 (1995).

3. D. Rixen, C. Farhat and M. Géradin, ‘A Two-Step, Two-Field Hybrid Method for the
Static and Dynamic Analysis of Substructure Problems with Conforming and Non-

conforming Interfaces,” Computer Methods in Applied Mechanics and Engineering, 154,

229-264 (1998).

4. T.Y. Chang, A. F. Saleeb and S. C. Shyu, ‘Finite Element Solutions of Two-Dimensional
Contact Problems Based on a Consistent Mixed Formulation,” Computers and Struc-

tures, 27, 455-466 (1987).

5. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, Vol. 1, 4th Ed.,

McGraw-Hill, New York, New York, 1989.

6. C. R. Dohrmann, S. W. Key and M. W. Heinstein, ‘A Method for Connecting Dissimilar
Finite Element Meshes in Two Dimensions’, submitted to International Journal for

Numerical Methods in Engineering.

7. C. R. Dohrmann and S. W. Key, ‘A Transition Element for Uniform Strain Hexahedral
and Tetrahedral Finite Elements,’ to appear in International Journal for Numerical

Methods in Engineering.

26




8. D. P. Flanagan and T. Belytschko, ‘A Uniform Strain Hexahedron and Quadrilateral
with Orthogonal Hourglass Control’, International Journal for Numerical Methods in

FEngineering, 17, 679-706 (1981).

9. M. E. Laursen and M. Gellert, ‘Some Criteria for Numerically Integrated Matrices and
Quadrature Formulas for Triangles,” International Journal for Numerical Methods in

Engineering, 12, 67-76 (1978).

10. C. R. Dohrmann, S. W. Key, M. W. Heinstein and J. Jung, ‘A Least Squares Approach
for Uniform Strain Triangular and Tetrahedral Finite Elements’, International Journal

for Numerical Methods in Engineering, 42, 1181-1197 (1998).

27




Table 1: Minimum and maximum values of o1; at centroids of elements with faces on the slave
surface for Example 3.1. The results presented were obtained using the standard master-
slave approach for different resolutions of mesh configurations H8HS8, H20H20, T4T4 and
T10710. The exact value of ¢y; is unity.

n HBHS8 H20H20 T4T4 T10T10
min max min max min max min max
0.9406 | 1.1196 | 0.7697 | 1.1009 | 0.7872 | 1.1350 | 0.7898 | 1.1082
0.9313 ] 1.1298 | 0.7644 | 1.1064 | 0.7689 | 1.1649 | 0.7858 | 1.1209
0.9305 | 1.1294 | 0.7642 | 1.1061 | 0.7651 | 1.1687 | 0.7854 | 1.1208

0.9304 | 1.1292 | 0.7642 | 1.1061 | 0.7639 | 1.1694 - -

CoO O N
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slave node

\

/ master node

Figure 1: Projection of an element face F; of the slave surface onto the master surface. Larger filled circles
designate nodes on the slave surface constrained to the master surface. Smaller filled circles designate nodes
on the master surface. Circles that are not filled designate the projections of slave element edges onto master
element edges.




Figure 2: Projection of F; onto an element face of the master surface (see top left corner of Figure 1). In the

coordinate system of the element face, the triangular regions have straight edges and lie in a single plane. The
domain of the projection of F; onto the element face is divided into triangular regions for the purpose of cal-
culating surface integrals over F,,.




Figure 3: An edge of F; (solid line) and its projection onto the master surface (dashed line) viewed from a
direction nearly orthogonal to F;. The edge shown spans three different element faces on the master surface.
The projection of the edge onto the master surface is a piecewise continuous line with possible discontinui-
ties in slope at edges on the master surface. The solid and dashed lines appear as straight lines in the coordi-
nate systems of element faces on the slave and master surfaces, respectively.
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Figure 4: (a) Mesh configuration H8T4 with ny; =ny; = n3; =2 and n;» = ny, = n3, = 3, (b) opened view of
meshes revealing shared boundary.




Figure 5: Opened view of mesh configuration H874 with distorted elements. Although the slave nodes are

repositioned to lie on the master surface, gaps and overlaps still remain between the two meshes because of
the distorted element faces. Patch tests for this mesh configuration and others were passed in all cases using
the present method.
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Figure 6: Stress component G at centroids of elements with faces on the slave surface for Example 3.1.
Results presented are for mesh configuration H8H8 using the standard master-slave approach.
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Figure 7: Stress component 0 at centroids of elements with faces on the slave surface for Example 3.1.
Results presented are for mesh configuration H20H20 using the standard master-slave approach.
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Figure 8: Energy norms of the error for Example 3.1 obtained using the standard master-slave approach.
Slopes of lines connecting the data points are shown above the line segments.
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Figure 9: Energy norms of the error for Example 3.2 obtained using the present method. Slopes of lines
connecting the data points are shown above the line segments.
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Figure 10: Energy norms of the error for Example 3.3 obtained using the present method.
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Figure 11: Stress component G, at centroids of elements with faces on the slave surface for Case 1 of
Example 3.3.
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Figure 12: Stress component G, at centroids of elements with faces on the slave surface for Case 2 of
Example 3.3.




