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Abstract

A hybrid vortex method is presented for computing flows about objects that accurately resolves the boundary layer
details while keeping the number of free vortices at a reasonable level. The method uses a wall layer model close to
the body surface and discrete vortex blobs in the free wake. Details of the wall layer implementation are presented,
and results of sample calculations are compared with known analytical solutions and with calculations from other
vortex codes. These results show that the computed boundary layer details are accurate to approximately 0.3 percent
of analytical soluttons while using three orders of magnitude fewer vortices than other vortex simulations.

1. Introduction

In the present work we consider a hybrid vortex method for calculating the two-dimensional fluid flow
over bluff bodies, such as tube bundles. The motivation for this work arises from the need to develop a
predictive computational capability for the accurate modeling of the coupled fluid and structural dynamics
of highly flexible structures. Engineering applications for such a capability include deepwater drilling and

production risers, tubular heat exchangers, submarine-towed sensor arrays, and flow around parachute
ribbons.

We have had good success using gridless vortex methods to model unsteady, high Reynolds number flow
over various engineering devices. These simulations have included the prediction of performance of, and
fluid forces on, vertical-axis wind turbines [22, 23]; the calculation of wake development behind aircraft
[8] and submarines [20]; and the prediction of flow over simple axisymmetric parachute shapes [18]. In
contrast to conventional grid-based computational fluid dynamics methods, the gridless vortex method is
noniterative, artificial viscosity is not required for stability, numerical diffusion is minimal, and moving
boundaries may be easily treated. A salient feature of the method is that the computational domain only
includes those regions where there is vorticity. For higher Reynolds numbers this domain is increasingly
reduced, since vorticity occupies a smaller and smaller fraction of the fluid volume.

Methods for transporting the vorticity from the surfaces
of bodies during the computation can be grouped into a
few general categories. The first is the injection of vor-
ticity at prescribed surface injection points (Figure 1).
Examples of these methods are cited by Sarpkaya [16].
While these methods are extremely efficient since they
minimize the number of vortices injected into the flow-
field, the user must guess a priori the flow separation
points, and the method cannot account for secondary
flow separation.

Figure 1. Prescribed Surface Injection Points
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A second category can be called blanket surface flux.
In these methods large numbers of very small dis-
crete vortex elements are placed next to the surface at
each time step (Figure 2). Examples include the work
of Koumoutsakos [12], Lin er al. [14], and Shih er al.
[17]. While these methods can accurately compute
flow separation points, they also have some disad-
vantages. One is that a large number of vortex ele-
ments must be added at each time step. The vortex
diameters must be some fraction of the boundary
layer thickness, and for high Reynolds number flows,
the required number of vortex blobs becomes pro-
hibitive. Another is that unless the element density
close to the surface is very high, the details of the
boundary layer are not accurately modeled. Figure 2. Blanket Surface Flux (from Ref. 17)

A third approach being developed by Marshall and
Grant [15] alleviates some of these problems by us-
ing anisotropic blobs that have thicknesses that are a
fraction of the boundary layer thickness and lengths
that are on the order of the surface panel length.

wall layer

The best approach is to use a wall-layer model
(Figure 3), which produces a robust algorithm that is
compatible with discrete vortex methods while at the
same time yielding good resolution of the vortic-
ity/velocity field near the wall. Outside of the wall
layer the vortex elements are discrete circular blobs
with diameters on the order of the surface panel
length, h. The vortex elements defined in each region Figure 3. Wall Layer Model

are able to smoothly interact with the elements of the

other region and transition from one region to the other. The details of the wall layer, the interactions be-
tween the wall layer and the free vortex blobs, and the transition of vorticity into and out of the wall layer
are given below. A different implementation of the wall layer concept has also been used by Chou [5]. The
present method is intended to yield good resolution of the diffusion and convection processes close to the
body without generating any free vortex blobs that are smaller than O(h).

2. Wall Layer Description

The wall layer is a thin meshed region adjacent to the wall within which circulation is modeled using quad-
rilateral elements (mesh cells) that are elongated in the stream-wise direction as compared with their thick-
ness normal to the wall (Figure 4). It is composed of three distinct sublayers, 0 <y < h, h <y < 2h, and 2h
< y < 3h, where y is the distance normal to the wall. Within the first sublayer, 0 < y < A, all circulation is
contained within the mesh cells. The second sublayer, A < y < 2h, is a transition region where circulation
can exist either within the mesh cells or as discrete vortex elements. When vorticity has been convected
and diffused outward from the wall into the outer regions of Sublayer 2, it is converted to a discrete vortex
blob. This conversion conserves the total circulation and the first and second moments of vorticity. The
third sublayer, 2k < y < 3h, is an overflow region designed to catch any vorticity that “leaks” out of the top
of the wall layer during a time step before a discrete vortex can be constructed. Any vorticity that enters
Sublayer 3 is immediately converted into a vortex blob.




The mesh within the wall layer is defined using
orthogonal, curvilinear coordinates. This allows
one to march outward from the wall and obtain the
velocity field from the local vorticity field without
having to explicitly consider the vorticity in the
wake. Diffusion and convection of vorticity is
accomplished using a Lagrangian-Eulerian
scheme. At each time step the grid moves with the
vorticity during diffusion and convection. The
solution is then mapped back onto the original
orthogonal grid. Circulation is explicitly con-
served during each step in this process. After the
remap step vorticity is generated at the wall to body surface

satisfy the prescribed boundary conditions. Figure 4. Wall Layer Details

The linear nature of vorticity allows us to split the

wall-layer vorticity into its positive and negative

components. Each component is diffused and remapped independently. Both components are convected
with the total convection velocity. This splitting greatly improves the numerical stability of the code when
computing problems that have both signs of vorticity. The equations for vorticity generation, diffusion,
convection, and remapping are developed in the following sections.

3. Convection Velocity
The equations used to compute the convection velocity within the wall layer are derived from the defini-
tion of vorticity in terms of the curl of the velocity field, @ =V XV, and the continuity equation,

VeV =0. Expressing these equations in orthogonal, curvilinear coordinates; combining them with the
derivative chain rule; and restricting the integration to lines of constant £ we obtain
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where £ and 77 are orthogonal, curvilinear coordinates (at the body’s surface & is parallel to the wall, and
1 is normal to the wall); h5 and h,, are the transformation scale factors defined as hé =l8?/8§| and
h, = |8F/ anl ; and 7 is the position vector. Equations (1) and (2) can be integrated from the wall, w, where

the velocity is known, to obtain the values of Vg and Vn at any point, p, in the wall layer.

4. Diffusion Velocity

Diffusion of vorticity can be accomplished by one of several means. The diffusion method we use is based
on the diffusion velocity concept of Kempka and Strickland [11, 21]. The diffusion velocity is specified
such that the circulation within a given boundary remains constant with time if that boundary moves at the
diffusion velocity plus the local fluid velocity. In Reference [11] the diffusion velocity, #,, is shown to be
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For two-dimensional flow this reduces to
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In orthogonal, curvilinear coordinates this equation becomes
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where £ and 7j are the unit vectors.

5. Vorticity Generation and Diffusion into the Wall Layer

Vorticity is generated at the wall at each time step in order to satisfy the velocity boundary conditions.
There are several ways to obtain formulations aimed at the satisfaction of these boundary conditions.
However, some methods will lead to unsatisfactory results. Kempka ez al. [10] provide a discussion of
some of the problems associated with satisfying velocity boundary conditions and present a formulation in
which the no-slip boundary condition is satisfied explicitly, and the normal boundary condition is satisfied
mmplicitly.

In the present work the normal-velocity boundary condition is satisfied explicitly by placing a vortex sheet
on the body surface. The no-slip boundary condition is used to split the calculated vortex sheet into two
vortex sheets that lie at distances *€ on either side of the body surface. This method is somewhat similar to
one outlined by Strickland [18] in which a stream function formulation was used to satisfy velocity bound-
ary conditions for axisymmetric flow over thin shells.

Assuming that the diffusion at the wall is predominately one-dimensional and switching to Cartesian coor-
dinates for notational simplicity, Equation (5) becomes

)
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where y is measured normal to the wall. The flux of the circulation y per unit length of x across the wall
during a computational time step is simply the product of the diffusion velocity at the wall and the added
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which means that the vorticity gradient at the wall is
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We have examined several numerical models for diffusing the vorticity into the flow at the wall. In a re-

cent paper by Koumoutsakos, Leonard, and Pepin [13] conceming vorticity generation at a wall, an algo-
rithm for updating the particle strengths in a particle strength exchange (PSE) method was presented for




finite panels with curvature. In the context of the present one-dimensional model, the vorticity that would
be introduced into the domain from the wall during a time Az is
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where @™ is the vorticity at the time ¢ + Ar, and @' is the vorticity at time ¢. We note that Equation (9)
is identical to the exact solution for an impulsively started flat plate [6]. Adding all of the circulation to the
first wall layer element at the beginning of the time step is roughly equivalent to using Equation (9) at the
end of the time step.

Am___wtﬂk\‘ _

+Ar

Since the diffusion equation is linear, we may obtain the vorticity distribution associated with the flux
from the wall at the end of time Ar by superimposing the impulsive solutions via the following convolution
integral,
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Assuming that 8}’/81‘ is constant over the time interval Af and defining y* = y/ vVAt , Equation (10)
can be integrated numerically to obtain the curve labeled as “Exact” in Figure 5. The resulting distribution

can be fitted with a curve given by
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where

For comparison the distribution given by a single im-
pulse at the mid-time is also plotted in Figure 3, identi- R

fied in the legend by 0.5Az. The major difference in | :

the two curves is their distributions near the wall. 10 -b""»d——-Exact 0_2' Zm ]
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that one has to sometimes take much smaller time
steps when using the impulsive representation in order y

to obtain satisfactory distributions near the wall. We

therefore recommend the use of Equation (11). Figure 5. Distribution of Wall Vorticity




6. Mesh Movement and Remapping

Vorticity within the wall layer is convected and diffused at each time step using a Lagrangian-Eulerian
scheme. In the Lagrangian step each mesh node is moved a distance equal to the sum of the local diffusion
and convection velocities times the time step Az. The total circulation within each grid cell is held constant
during this movement. In the Eulerian step the vorticity field is mapped back onto the original orthogonal
mesh using an implementation of the second-order, conservative, remapping scheme of Dukowicz and
Kodis [7]. A first-order remapping scheme is much too diffusive for practical use. A complete description
of this scheme is beyond the scope of this work, and the reader is referred to 7] for a complete derivation
and discussion of the method.

7. Discrete Vortex Blobs

After each remapping step the circulation with the wall layer is examined for possible formation of discrete
vortex blobs. Discrete blobs are formed whenever either one of two criteria are met: (1) If an outer cell of
the second wall sublayer contains circulation after the remapping step, then all of the circulation within the
cells of that mesh column and within that sublayer is converted into a discrete transition blob; or (2) if any
vorticity has moved into the third wall sublayer, then all vorticity within that mesh column and within that
sublayer is also converted. The conversion process preserves the total circulation and the first and second
moments of the converted vorticity. The first moment determines the blob’s location. The second moment
determines the blob’s core radius. The converted vorticity is removed from the wall layer. Positive and
negative vorticity are treated separately.

A discrete vortex blob is classified as a free or transition blob depending upon its location. If a blob’s cen-
ter is within wall Sublayer 2, that blob is a transition blob. Once the blob has moved outside Sublayer 2, it
is a free vortex blob. This classification is primarily for code bookkeeping. The only meaningful difference
between transition and free blobs is the means for computing their convective velocity. The convective
velocity for free blobs is computed from the Biot-Savart law using a Greengard-Rokhlin fast solver {19, 3].
For transition blobs the convective velocity is interpolated from the wall layer convective velocities. Blobs
can move freely into and out of the wall layer, and their classification is changed accordingly. If a blob
moves into wall Sublayer 1, it is absorbed into the wall layer.

In order to compute convective velocities using Equations (1) and (2), all vorticity along the integration
path must be included. For these calculations all blobs that overlap the wall layer are mapped into the
layer. Because a Gaussian distribution does not have finite support, the blob distribution for this mapping
is assumed to be a right-circular cone. The conical distribution is computed by preserving the total circula-
tion and the first and second moments of the Gaussian blob’s vorticity.

8. Example Calculations

In order to verify that our wall layer implementation accurately models the fluid mechanics in the vicinity
of a solid boundary, we compare the calculated results with two classical fluid flows that have known so-
lutions: (1) flow over a semiinfinite flat plat (Blasius flow) and (2) flow next to an oscillating flat plate
(Stokes’ second problem). Since the purpose of these calculations was to verify the wall layer coding, no
free vortices were used. All of the vorticity was contained within the wall layer. The Blasius solutions used
45 cells normal to the plate. The oscillating plate solution used 30 cells normal to the plate. For both cal-
culations the maximum error in computed vorticity and total velocity is on the order of 0.3 percent.

Figure 6 compares the calculated vorticity distribution normal to the wall with the Blasius distribution. The
variables have been nondimensionalized to remove the dependence on Reynolds number. U, is the
freestream velocity. While we only show results for one calculation, we made several calculations at dif-
ferent local Reynolds numbers. All gave the same nondimensional results. Figure 7 compares the tangen-

tial velocity profile, and Figure 8 compares the normal velocity profile for the same calculation. All show
excellent results. '
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Figure 6. Vorticity Distribution for Blasius Solution
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Figure 8. Normal Velocity Profile for Blasius
Solution

Figure 9 compares the vorticity distributions normal
to a flat plate undergoing sinusoidal motion at three
different phase angles during a cycle. Sufficient time
has passed so that the solution has stabilized to a
periodic solution. U, is the maximum velocity of the
plate; n is the plate’s oscillation frequency. Figure 10
shows the tangential velocity profiles for the periodic
solution at these same phase angle. Figure 11 shows
the vorticity distribution during the initial start-up
phase at one phase angle. The flow stabilizes after
approximately five cycles. Again all comparisons
show excellent agreement.

Figure 12 compares the results from our current vor-
tex-based implementation with calculations by Chang
and Chern [4] and Koumoutsakos [4] for the drag
coefficient of an impulsively started circular cylinder
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Figure 7. Tangential Velocity Profile for
Blasius Solution
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Figure 13. Calculated Wake Behind an Impulsively Started Circular Cylinder (Re = 90,000)

during the first two diameters of travel. C, is nondimensionalized by the free stream dynamic pressure and
the cylinder’s cross-sectional area. The Reynolds number, based on cylinder diameter, for these calcula-
tions was 9500. Also shown is the theoretical result of Bar-Lev and Yang [1] for the first radius of travel.
Although not an exact match, our calculations are in reasonably good agreement with the other results. The
oscillations in the current simulation in the latter half of the run occur due to the formation of discrete
vortex blobs. We have been successful in reducing the magnitude of these oscillations through code im-
provements, but more work needs to be done. The extremely large numbers of vortices used by Chang and
Chemn and by Koumoutsakos give a smoother force. It should be noted that the simulation of Koumoutsa-
kos required over 500,000 vortices [12]. Our current simulation using the wall layer required less that 300.

Figure 13 shows the computed wake behind an impulsively started circular cylinder for a Reynolds number
based on cylinder diameter of 90,000. The computed side force and axial force coefficients are shown in
Figure 14 and Figure 15, respectively. Both coefficients are nondimensionalized by the free stream dy-
namic pressure and the cylinder’s cross-sectional area. For this simulation the cylinder was modeled using
40 surface panels. We also made simulations using 20 and 80 surface panels. The simulations with 40 and
80 panels gave the same results. The simulation using 20 panels gave different results, indicating that the
surface paneling and/or the wall layer mesh was too coarse. The time step for the simulation was chosen
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such that the body moves no more than one panel length during a time step. For this simulation, a time step
of 0.05 was used.

After the impulsive start the flow remains reasonably axisymmetric for approximately four diameters of
travel. After that time the wake asymmetries begin to appear. The von Karman vortex street is well devel-
oped during the last ten diameters of travel. The Strouhal number during the last ten diameters of travel,
computed from the side force period in Figure 14, is approximately 0.22, which compares favorably with
the published value of 0.2 [2]. The average axial force coefficient during the final five diameters of travel
(Figure 15) is approximately 1.0. This is slightly lower than the more accepted number for subcritical flow
of 1.17 [9).

9. Summary and Conclusions

We have presented a description of a hybrid computational fluid dynamics vortex scheme for computing
flows about objects that accurately resolves the boundary layer details while keeping the number of free
vortices in the calculation at a reasonable level. The scheme uses a wall layer model in which the flow in
the vicinity of the body is modeled using a Lagrangian mesh. Circulation is treated as field variable within
the mesh and is assigned to the mesh cells. Outside the wall layer the flow is modeled using discrete vortex
blobs. Vorticity is able to smoothly transition between the wall layer and the free wake. Comparisons of
the results of calculations using this scheme, with flows that have known solutions, indicate that the solu-
tions are accurate to approximately 0.3 percent. Comparisons with other calculations for flow over an im-
pulsively started circular cylinder show good agreement while using a factor of 10’ fewer vortices.
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