
Toward designing effective exascale scientific computing
workflows: experiences and best practices

Mark Coletti
Russell B. Davidson

Ada Sedova
colettima@ornl.gov
davidsonrb@ornl.gov
sedovaaa@ornl.gov

Oak Ridge National Laboratory
Oak Ridge, Tennessee

ABSTRACT
Many fields within scientific computing have embraced advances in
big-data analysis and machine learning, which often requires the de-
ployment of large, distributed and complicated workflows that may
combine training neural networks, performing simulations, running
inference, and performing database queries and data analysis in
asynchronous, parallel and pipelined execution frameworks. Such a
shift has brought into focus the need for scalable, efficient workflow
management solutions with reproducibility, error and provenance
handling, traceability, and checkpoint-restart capabilities, among
other needs. Here, we discuss challenges and best-practices for de-
ploying exascale-generation computational science workflows on
resources at the Oak Ridge Leadership Computing Facility (OLCF).
We present our experiences with large-scale deployment of dis-
tributed workflows on the Summit supercomputer, including for
bioinformatics and computational biophysics, materials science,
and deep learning model optimization. We also present problems
and solutions created by working within a Python-centric software
base on traditional HPC systems, and discuss steps that will be
required before the convergence of HPC, AI, and data science can
be fully realized. Our results point to a wealth of exciting new pos-
sibilities for harnessing this convergence to tackle new scientific
challenges.

CCS CONCEPTS
• Software and its engineering → Software design engineer-
ing.

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-
00OR22725 with the U.S. Department of Energy. The United States Government retains
and the publisher, by accepting the article for publication, acknowledges that the
United States Government retains a non-exclusive, paid-up, irrevocable,world-wide
license to publish or reproduce the published form of this manuscript, or allow others to
do so, for United States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance with the
DOE Public Access Plan (http://energy.gov/ downloads/doe-public-access-plan).

ACM acknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
SEA 2022, April 4-8, 2022, Virtual
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

KEYWORDS
Scientific computing, workflows, high performance computing,
software design

ACM Reference Format:
Mark Coletti, Russell B. Davidson, and Ada Sedova. 2022. Toward designing
effective exascale scientific computing workflows: experiences and best
practices. In Proceedings of SEA’s Improving Scientific Software Conference
(SEA 2022) (SEA 2022). ACM, New York, NY, USA, 11 pages. https://doi.org/
10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Emerging scientific computing efforts that make use of leadership-
class high performance computing (HPC) resources have begun
to incorporate complex, heterogeneous tasks that may run asyn-
chronously on the resources, and may require multiple different
tasks that each use the resources in different ways. This shift away
from large, synchronous, homogeneous computing patterns that
have traditionally been deployed on leadership systems is due in
part to the increasing use of artificial intelligence (AI), such as
deep learning, together with traditional HPC simulations [6, 33, 54].
The use of AI together with HPC simulation promises to provide
increases in both accuracy and efficiency, and has been demon-
strated for climate modeling [38], molecular simulation and ma-
terials science [30, 34], fluid dynamics modeling [10] and plasma
simulations [3]. In addition to these types of hybrid simulation/AI
workloads, some computational methods employ complex strate-
gies to efficiently sample parameter spaces or simulated poten-
tial energy surfaces. Examples include optimization algorithms
and hyperparameter tuning [13, 14, 40] and replica-based “en-
hanced sampling" schemes [9] in molecular dynamics simulations
[11, 25, 28, 32, 36, 49, 51].

As leadership-class scientific computing enters exascale, these
large hetergeneous workloads will require efficient workflow man-
agement schemes to enable both effective deployment and the abil-
ity to address fault tolerance, and error handling and provenance
analysis when running tens of thousands of potentially asynchro-
nous tasks of different types with complex dependencies on each
other. Here we describe our experiences deploying several different
examples of such workflows at scale on the pre-exascale Summit
supercomputer at the Oak Ridge Leadership Computing Facility
(OLCF), and discuss how these experiences will translate into ef-
ficient workflows on larger systems such as the Frontier exascale

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

supercomputer soon to be deployed at the OLCF. However, while
our experiences are derived from work targeting leadership-scale
deployments, our software approach, strategies, and lessons learned
are applicable muchmore broadly, andwill be useful for deployment
of workflows on cloud resources and academic clusters.

2 BACKGROUND
The term “workflow" can have a number of different meanings
from serial tasks in a particular order, to a set of jobs that may be
performed on different resources. For business applications, work-
flows are generally seen as software that provides a formal way to
describe a small set of repetitive tasks performed in a particular
order [23]. Scientific workflows, in an analogous way, can be de-
scribed as a defined set of tasks that must be completed in order
for a scientist to go from a given set of data or a scientific problem
to a scientific product. Scientific computing workflows will often
involve many computationally intensive, heterogeneous tasks and
are often data-oriented rather than control-flow oriented [5]. Here,
in the context of HPC-based scientific computing workflows, we
focus on large, parallel workloads that are deployed on the same
parallel computing system, potentially having some components
that may be performed in consecutive steps. Generally, these work-
flows will use a dataflow execution model, where compute resource
units are given the next task in a queue when they become available.
Any workloads that are complex or large enough will often require
the use of a workflow manager, or top-level program that manages
parallel distributed tasks and then reduces the data into a final form.
For simple sets of completely parallel tasks, home-made scripts can
be used. However, as the workflow becomes more complex these
scripts create impractical amounts of work and potentially can
back-up shared launch-nodes and file systems. Therefore, workflow
management software created to explicitly manage task dispatch,
work distribution, error analysis and fault tolerance, and other
needs, is developed.

2.1 Workflow management software
In the realm of scientific computing workflows, a number of so-
lutions have been developed, some of which are focused on more
specific needs such as simulations for materials science or climate
modeling [1, 18, 19, 21, 29, 50]. Some domain-specific tools for
molecular simulations in biophysics aimed at increasing the sam-
pling of the physical phase space have also emerged [8, 41]. Several
of these solutions have used database management software as the
underlying engine that manages connections between tasks.

Use of database management software for workflows. As far back
as 1998, Ailamaki and co-workers noted that a database manage-
ment system (DBMS) has many essential properties of a workflow
management system and with a data-object view of scientific work-
flows the DBMS could be used to manage parallel computational
tasks [4]. Since then, several scientific workflow management pro-
grams have incorporated DBMSs into their software design. For
instance, Copernicus [42] uses the Python interface with sqlite,
and Fireworks [29] and Radical Pilot [35, 48] use MongoDB for
task management. Efficiency trade-offs stemming from the use of
DBMS in scientific workflow programs has been discussed in re-
cent literature within the context of HPC and massively parallel

distributed solutions [46], noting that the analytical capabilities that
the DBMS provides, while useful for analyzing workflow output
and performance, can reduce efficiency of the workflow.

2.2 Scientific Workflows on HPC Systems
It is now being realized that a need for HPC and leadership-scale
workflow managers exists. Some recent solutions have focused
on task dispatch rate for very large numbers of short tasks, and
scaling to large numbers of tasks [7, 52]. The Swift/T program is
such a solution, but requires the use of a special-purpose compiler
to compile the workflow into the MPI framework. Reported task
dispatch rate exceeded 60 thousand tasks/sec and Swift/T was able
to use 64 thousand cores at greater than 90 % efficiency. However,
the use ofMPI reduces the ability of theworkflow to be fault tolerant
to the failure of workers [20].

Radical Pilot was deployed at scale on the Titan supercomputer at
the OLCF for molecular dynamics simulations [36]. The MongoDB
DBMS was tested for resiliency with respect to the connections
required to launch over 15,000 tasks on the OLCF Summit super-
computer [37]. In later work, FireWorks was deployed at scale on
OLCF Summit for structure-based drug discovery simulations for
COVID-19 research [26]. While the resiliency tests succeeded on
Summit, they required the launching of MongoDB on a compute
node in order to access the ability to set the node ulimit to a large
value (∼64K). Launching of FireWorks was performed through an
external interface with another compute cluster known as the Slate
Marble system, a container orchestration system built on Kuber-
netes and OpenShift.1 In this case, ulimit settings and connection
failures caused some inefficiency and a more efficient dispatch was
provided with an in-house workflow script using an in-memory
DBMS.

Most recently, solutions based on pure Python with no third-
party DBMS software have been deployed on HPC systems. The
Parsl parallel scripting library enables the flexible creation of paral-
lel workflows and has been shown to scale to 250000 workers across
more than 8000 nodes [7]. The Dask parallel library also provides
a scripting API for parallel task dispatch [43]. Dask has been used
on Summit for launching large HPC workflows for evolutionary
algorithms including the LEAP library [15].

2.3 Workflow Needs for Evolutionary
Algorithms

Evolutionary algorithms (EAs) provide a scalable, efficient means
for performing optimization and parameter exploration on parallel
computing resources by not only exploiting the naturally paral-
lelizable nature of EAs, but by doing so in an asynchronous man-
ner [45]. On HPC systems (as opposed to cloud resources), a job
allocation must be efficiently used without long periods of idle
resources. Therefore, efficient deployment of EAs on HPC systems
require some algorithmic modifications to prevent idle nodes. One
such solution is the asynchronous steady-state evolutionary al-
gorithm (ASEA), described in detail in section 3.1.1 below. More
complex combinations of different EA-driven neural network train-
ing schemes can require the workflow to enable communication

1https://docs.olcf.ornl.gov/services_and_applications/slate/overview.html

2

https://docs.olcf.ornl.gov/services_and_applications/slate/overview.html

Training
Data

MENNDL

Model

Gremlin

Figure 1: This depicts the circular workflow between MEN-
NDL and Gremlin. MENNDL learns a model from an initial
set of training data. Gremlin finds feature sets where the
model performs poorly. The training data is updated to in-
clude more examples that correspond the feature sets. The
cycle then continues withMENNDL resuming training from

between several different programs that each run on a large re-
source set.

One example of a complex High Performance Computing (HPC)
workflow between two ML components is shown in Fig. 1, and
shows how gaps in training data can be filled in by using an ad-
versarial EA to find those gaps. There, the EA Multi-node Evolu-
tionary Neural Networks for Deep Learning (MENNDL) trains a
deep learner (DL) model using the given training data; it will also
perform hyperparameter and architecture optimization by evaluat-
ing thousands of different DL model configurations in parallel on
Oak Ridge National Laboratory (ORNL)’s Summit supercomputer
[39, 40, 53]. Then Gremlin takes the best model from MENNDL,
which finds a set of features where the model performs poorly. This
information is exploited to adjust the training data to add more
examples corresponding to those poor performing feature sets. The
cycle continues when MENNDL then resumes training with the
updated training set. The challenge here is that these two EAs can
be run consecutively, but it may be more efficient to have them
running simultaneously with a work-flow tool intelligently man-
aging their respective resources and ensuring that the two EAs
work with one another effectively. Implementing such a complex
HPC workflow on a system like Summit, and its successor Frontier,
remains a challenge.

2.4 Workflow Needs in Computational
Biosciences

Biological molecular processes are some of the most complex to
model, as they are highly non-linear, multiscale, and often mod-
eled non-deterministically. Exponential growth in the number of
known sequenced genomes, driven by decades of advances in gene
sequencing technology, has created a widening technology gap:

that of extracting evolutionary information and biological function
from these sequences. In order to break through the data processing
barrier in bioscience research, we require a multi-pronged com-
puting strategy that can deal with heterogeneous problem sizes
of computational molecular evolution, protein structure predic-
tion, biomolecular simulation and structural analysis. Simulation
tools, methods to analyze the flood of sequence and structure data,
and the recent incorporation of AI have enabled advances in our
ability to design and predict biomolecular systems for medicine,
bioenergy and biosecurity. HPC can provide a way to help bridge
some of the technology gaps caused by the data explosion. HPC
workflows in biology can use a combination of tools such as deep
learning based protein structure prediction, sequence alignment,
and modeling/simulation, deployed at the genome scale [24].

2.5 Workflow Needs in Computational
Chemistry and Materials Science

A recent explosion of data and AI driven methods in chemistry and
materials science [2] has opened the door for the combination of
HPC simulation, data science and machine learning [16, 54]. Recent
work in this direction by our team has involved the deployment of
programs for training neural network models of physical potentials
for running fast molecular simulations with higher accuracy on
larger systems. This creates a requirement for deploying complex
workflows that launch training and simulation in parallel in order to
create an optimized model that represents as much of the complete
physical phase space as possible.

2.6 Software Considerations for HPC
Workflows

In the following, we will describe some of the programming con-
siderations, software design strategies and optimizations we de-
veloped to enable the creation and deployment of workflows on
HPC systems for a number of different efforts, and work-arounds
for problems we encountered, using the Dask parallel library. We
discuss steps we took to deploy these workflows at large scale on
the Summit supercomputer, and envision potential strategies for
even larger deployments on upcoming exascale systems based on
our experiences.

3 USING DASK TO SUPPORT LARGE
SCIENTIFIC WORKFLOWS

Dask is a popular python package for distributed processing that
scales from laptops to supercomputers [17]. In this section we
describe two Dask-supported scientific workflows that have been
demonstrated to scale on HPC platforms. We also relate difficulties
encountered while scaling Dask along with associated workarounds
and solutions.

3.1 Two Dask-supported HPC Scientific
Workflows

Here we share two HPC workflows that we have implemented
using Dask. The first workflow describes is where new tasks are
added during a run – e.g., for an evolutionary algorithm where new
individuals have to be added to the task queue for evaluation. The

3

Figure 2: This figure shows an example of an HPCworkflow
where new tasks are added during the run — in this instan-
nce this is for the ASEAworkflow. The rounded box is a pop-
ulation of evaluated individuals, where an individual repre-
sents a specific set of features for a problem of interest. The
GPU icons represent Dask workers that evaluate offspring.
Grey individuals have been evaluated where red are under-
going evaluation. The gray dotted outline individual repre-
sents a parent that was selected with replacement to be used
to create a new offspring by being cloned and thenmutating
that clone.

second workflow style entails processing a single, large batch of
data for a fixed number of pre-defined tasks, and which was used to
manage biomolecular workloads running structure prediction with
AlphaFold2 [31] and molecular dynamics simulation with OpenMM
[22] on Summit.

3.1.1 Dynamic workflows with Dask. Figure 2 depicts the workflow
for an ASEA, which is an example of a workflow where new tasks
are dynamically added while the workflow progresses. In this work-
flow, a single population, shown in the rounded box, is updated
during a run. Individuals are evaluated on Summit nodes, repre-
sented by the GPU icons. When an individual is finished evaluation,
it is compared with a randomly selected individual in the current
population; the best of the two gets to stay in the population. The
HPC resource used to evaluate that individual is now idle, so a
random individual is selected from the population, cloned, and that
cloned mutated to create a new, unevaluated offspring, which is
then assigned to that resource to get it active again.

The code in Listing 1 is an implementation for the ASEA work-
flow shown in Fig. 2. In lines 1–2 an initial random population
is created and then distributed to all the Dask workers via the
client.map() call, where eval_ind() is a function that evaluates
a single individual, and init_pop is a list of the initially generated
random individuals. client.map() returns a list of futures that
is used to get a Dask iterator in line 3; this iterator is used in the
for loop in the next line to cycle through each individual as a Dask

1 init_pop = create_initial_pop ()
2 futures = client.map(eval_ind , init_pop)
3 as_compl_iter = as_completed(futures)
4 for finished_task in as_compl_iter:
5 result = finished_task.result ()
6 print(f'Evaluated individual: {result}')
7 update_population(population , result)
8 offspring = create_offspring(population)
9 future = client.submit(eval_ind ,
10 offspring)
11 as_compl_iter.add(future)

Listing 1: This python code shows howDask can be used
to implement the ASEA workflow shown in Fig. 2.

worker completes an evaluation. Normally a Dask user would call
Client.gather() to wait on all the futures, but we want to capture
each individual as it is evaluated so that we can consider inserting
it into the population, and then we want to create and assign a
new offspring to its Dask worker so that it is busy again. Lines 5–6
updates the population with the new individual, either by replacing
a current individual in the population with the new individual or
discarding the new individual if its fitness is inferior. Line 8 a new
individual, or offspring, is created, usually by randomly selecting
an individual with replacement from the population, then that indi-
vidual, or parent, is cloned, and then mutated, thereby creating an
entirely new individual. This individual is then assigned to the pre-
viously idle Dask worker associated with finished_task so that
it resumes work; this is done by calling client.submit() with
the new offspring and the previously used eval_ind() function.
However, of particular note is that the returned future is then used
in line 11 to notify the iterator, as_compl_iter, of the new task.
This is why we captured that iterator in line 3 so that we could later
call its add() member function. (For those that use python 3.8, or
greater, you can use the new walrus operator to assign and use the
iterator variable in the for loop declaration. 2)

This workflow is better suited for HPC environments than the
more traditional by-generation EAs. That is, progress to the next
generation with the by-generation approach cannot proceed until
all the new individuals of that generation have been evaluated; this
is problematic if some individuals finish processing early, which
means their corresponding HPC resources will idle until the next
generation. By contrast, with the ASEA approach when an individ-
ual is finished processing a new offspring is immediately generated
and assigned to that resource, thus minimizing idle time [45]. This
workflow has been successfully scaled to run on the Summit super-
computer [14].

3.1.2 Static workflows with Dask. The workflow described in §3.1.1
took a great deal of trial and error to get fully functional on ORNL’s
Summit supercomputer, primarily because of its Power9 architec-
ture, but also because Dask required some tuning to get it to scale
to 1,000 nodes, which are described in more detail in §3.2.2. How-
ever, evidence of Dask’s flexibility came when a need arose to scale
Alphafold2 to run on Summit in that existing code for the ASEA
implementation was repurposed to support AlphaFold2 in only a

2https://docs.python.org/3/whatsnew/3.8.html

4

https://docs.python.org/3/whatsnew/3.8.html

Figure 3: This diagram depicts a common workflow for pro-
cessing biophysics data, in this case proteins, which are rep-
resented by the icons of strands of circles. The rounded box
represents a queue of proteins awaiting evaluation, and the
GPU icons correspond to Dask workers processing a pro-
tein. When a worker finishes processing, the next protein
is popped from the queue and assigned to it to begin pro-
cessing.

day and a half. Moreover, this proved to be a template of sorts in
that this code was repurposed again to support massively parallel
OpenMM runs on Summit. We describe this simpler, but useful,
workflow here.

Figure 3 shows this workfow, that is, one for a static workflow
instead of the dynamic workflow described earlier. That is, we
would know ahead of time the entirety of data that needs processed,
and no new data to be processed will arise during a run’s course.
Here, a simple flat file of proteins is read, then they are fanned
out to Dask workers for processing — in this case, AlphaFold2
was called as as Python subprocess to work on a given protein.
When a task was completed, the next protein was popped from
the Dask scheduler’s queue, and assigned to the completed tasks’s
Dask worker, thus ensuring it remained busy. This process would
continue until the queue was empty.

1 all_items = read_items ()
2 futures = client.map(process_items , all_items)
3 for finished_task in as_completed(futures):
4 result = finished_task.result ()
5 print(f'Finished processing: {result}')

Listing 2: Example code demonstrating how to
implement the workflow shown in Fig. 3.

Listing 2 shows corresponding python code implementing this
workflow, and which is much simpler than the code shown in
Listing 1. Here, in line 1, read_items() will read the flat file of
items to be processed. (In the case of AlphaFold2, this was a list of
proteins.) Then, as before, these items are fanned out to available
Dask workers via client.submit()where process_items()will
compute on each item in parallel. If the number of items exceeds
the number of queues, then items not yet processed are held in
the Dask scheduler’s queue. Items are popped from that queue and

assigned to a Dask worker for processing as a worker completes a
task.

We could have used client.gather() instead of the for loop,
but the loop allows for tracking completed tasks. (Alternatively we
could have implemented a Dask worker plugin that would mon-
itor completed tasks3, but this approach is simpler and easier to
understand.)

This workflow has also proven to be flexible enough to be readily
applicable to other, similar problems. For example, it has success-
fully be reapplied to allowing for massively parallel processing of
molecular dynamics models using OpenMM. We anticipate using
this as a form of template for other problems that have similar
computational needs.

3.2 Encountered Dask issues and their
solutions

While scaling our Dask applications to work on Summit, we would
occasionally encounter problems. Here, we describe some of those
problems and their respective solutions or work-arounds.

3.2.1 Invoking Dask with class member functions. As seen ear-
lier, submitting tasks to Dask for work involves invoking either
client.submit() or client.map() with a single function and an
item or items on which to apply that function per Dask worker.
However, it may be the case that from time to time one will need
to pass in a class member function to those functions, instead. This
was the case for our EA that used the Library for Evolutionary
Algorithms in Python (LEAP) toolkit because one requirement is
implement a class that has a member function, evaluate() that is,
in turn, directly called by Dask workers.

1 class ExampleLEAPProblem(ScalarProblem):
2 def __init__(self , model_fpath: str):
3 super().__init__ ()
4 # Load the model here so we don't

reload for each evaluate (),
5 # but this is actually bad.
6 self.model = Model()
7 self.model.load(model_fpath)
8

9 def evaluate(self , phenome) -> int:
10 """
11 Evaluate the phenome with the given

model.
12 :param phenome: is named tuple

describing state
13 :returns: score for model performance

for this state
14 """
15 fitness = self.model.predict(list(

phenome))
16 return fitness

Listing 3: Example code showing a LEAP Problem class.

Listing 3 shows an example of a LEAP Problem class where a
model must be run with a given set of features per Dask worker.
3https://distributed.dask.org/en/stable/plugins.html#worker-plugins

5

https://distributed.dask.org/en/stable/plugins.html#worker-plugins

That is, the task a Dask worker gets is to accept a set of features,
here the phenome, and then calls the associated evaluate() with
that argument. Models are generally large, so this version of the
class tries to mitigate the load times by loading the model once in
the constructor, and then just referring to the model in the function
call.

However, though this is what normally happens, things are a
little different using Dask. In this case, when the Dask worker
gets a new phenome, it actually copies over the entire object to
invoke it, which means the model comes along for every single
invocation. And since this sometimes means being transmitted over
the network, this could greatly impair performance. Fortunately,
Dask is good at warning about this scenario when it detects that an
onerous amount of data is being sent to workers for each new task.

One solution that works is to move the model creation and load,
which corresponding to lines 6–7, into evaluate(). This is not
satisfying because now the model is created and loaded for every
evaluation, so network load has been exchanged for additional
computing burden.

1 def evaluate(self , phenome) -> int:
2 worker = get_worker ()
3 fitness = worker.model.predict(list(

phenome))
4 return fitness

Listing 4: Updated evaluate after use of client.scatter().

Another solution would be to use client.scatter(). That is,
on the Dask client the model is created and loaded, and then
client.scatter() is used to transmit that model to the work-
ers so that it is stored locally. Then evaluate() can refer to the
model stored in the worker, thus saving network and compute re-
sources. The updated evaluate() that assumes the Dask client has
done this is shown in Listing 4. Now the model is indeed loaded
once in each worker, but as the scatter() documentation warns 4,
this is still not the ideal approach because the model still has to be
transmitted to all the Dask workers, though admittedly this only
occurs once.

1 def setup_worker(model_path=None):
2 """ setup worker to run model """
3 worker = get_worker ()
4 worker.model = Model()
5 worker.model.load(model_path)
6

7 with Client () as client:
8 client.run(setup_worker ,
9 model_path='some/model.pkl',
10 wait=True)
11 # ... regular Dask tasking follows

Listing 5: Using run to have Dask workers load models
at start of run.

Listing 5 shows the ideal solution. There, a helper function,
setup_worker(), will instruct a given Dask worker to create and
4https://distributed.dask.org/en/stable/api.html#distributed.Client.scatter

load the model. Then, later, the client.run() invokes that func-
tion for all the workers, and which is done before the actual desired
tasking starts. Make particular note of line 10, wait=True, because
by default client.run() works asynchronously such that it may
be the case that a worker has not yet loaded a model before it
gets tasking that expects its model to be loaded and ready. Using
that wait=Truemeans that the run() will not proceed until all the
workers have loaded their respective models.

3.2.2 Tuning Dask configuration files. When an HPC application
that uses Dask is run for the first time, it creates two YAML-formatted
configuration files in your home directory. These are:

~/.config/dask/dask.yaml General Dask configuration
~/.config/dask/distributed.yaml Distributed Dask con-

figuration

Most of the values in these files will be commented out, which
is convenient to see what variables exist, and maybe a hint as to
their function. Adjusting some of the configuration variables found
in these files becomes critical on very large HPC platforms like
Summit. We will give suggestions for some variables to set and
why, but we strongly encourage performing your own sensitivity
studies since these settings will be tightly coupled to the systems on
which Dask tasks are run. As an aside, these configuration variables
are documented on the Dask web site5, and we strongly encourage
reviewing them before trying to adjust these settings.

~/.config/dask/dask.yaml is the smallest of the configuration
files, and the only option of interest to us is temporary-directory.
By default, Dask will create scratch directories in the current direc-
tory from which the executable processed is launched. On a system
like Summit, this usually means the high-speed GPFS filesystem.
However, Dask I/O is better served by, instead, writing to /tmp
since, in the case of Summit, that is on the same node as the Dask
worker. This may be similar to your HPC setup for running jobs.
A viable alternative is to use a very fast solid-state drive that is
local to workers, if such is available on your systems. For Summit,
the burst-buffer is just such a device, with the handy side-effect of
automatically cleaning up the Dask scratch directories upon job
completion.

However, most of your attention will be on tuning parameters
found in ~/.config/dask/distributed.yaml. In that file most
of the attention should be given to variables that control time-
outs, heartbeats, and time-to-live (TTL). The timeouts are fairly
self-descriptive, but the heartbeats bear some discussion. First, the
client will periodically send a “heartbeat” to the Dask scheduler; if
the scheduler has not heard from the client in a span of time, then it
will assume the client is gone and unregister that client. This span
of time is controlled by distributed.client.heartbeat and de-
faults to 5 seconds, and for Summit we increased that to 30 seconds.
However, it is not the client heartbeat that will be the cause of
the most potential woe, but rather a similar heartbeat for the Dask
workers. Just as with the client if the scheduler does not get a heart-
beat from a worker within a span, it will assume the worker is dead,
and so will unregister it and reassign its task to another worker. The
variable controlling this is distributed.scheduler.worker-ttl,

5https://docs.dask.org/en/latest/configuration.html#configuration-reference

6

https://distributed.dask.org/en/stable/api.html#distributed.Client.scatter
https://docs.dask.org/en/latest/configuration.html#configuration-reference

which is a little counterintuitive since naturally you would be look-
ing for worker-heartbeat, which does not exist. In any case, when
running jobs with hundreds or even thousands of workers, the num-
ber of heartbeats the scheduler has to “listen” to can be overwhelm-
ing, so dialing up this variable may be very helpful, particularly if it
is observed during sensitivity runs that workers are getting unreg-
istered when they are actually still active. (However, if your Dask
workers appear to be mysteriously dying, we suggest looking at this
site for guidance: https://distributed.dask.org/en/stable/killed.html)
It also may take a while for connections to be made especially if
a lot of workers, say thousands, are coming online. So other vari-
ables to address are distributed.comm.timeouts.connect and
distributed.comm.timeouts.tcp, which both default to 30 sec-
onds. For Summit, we have had to greatly increase those to 1800
seconds for large numbers of workers, but those values will differ for
other systems, of course. We also recommend ensuring that worker
stealing is on by setting distributed.scheduler.work-stealing
to True; there is more discussion on worker stealing in the next
section.

4 PERFORMANCE TESTING OF DASK
WORKFLOWS AT SCALE

There are a number of parameters that can be tuned to enable Dask
to both run successfully on large numbers of nodes, and to use
these resources efficiently. An important functionality within Dask
is the ability for workers to steal tasks from the pre-determined
task lists that are created on initialization and assigned, and may be
sub-optimal.6 With a dataflow execution model, if tasks have a vari-
ability in runtime, this can help significantly with reducing worker
idle time and filling all available compute resources with work, espe-
cially if the initial task list creates an unbalanced assignment. Exact
details about initial task assignments and work stealing policies are
decided within settings connected with the scheduler, and may be
difficult to tune and understand exactly. Some of the factors that
Dask uses to determine how work stealing is performed is based on
metrics that are used to determine runtimes of a particular function,
and detectable locations of the data the workers will require to per-
form their task. Dask uses a moving average over function runtimes
to obtain an approximation for how long a task is expected to run.
If a particular function can have highly variable runtime based on
input type, it is possible that this method will provide an inaccurate
estimate. In addition, Dask tries to understand the communication
requirements of distributed calculations and data locality, for treat-
ing partitioned matrix calculations and other distributed tasks with
dependencies and data-sharing and communication requirements;
for completely parallel tasks, these calculations may not be help-
ful for performance. In addition to the Dask decisions about task
dispatch, it is possible that user-modifications to the list passed to
Dask could also influence performance. To test these factors, we
create a list of simple tasks with a large variation in time to solu-
tion, by specifically including a waiting step of a variable number
of seconds drawn randomly from a distribution. We used this task
list to query the final task order that Dask dispatched, and how
much idle time resulted. We also tested the effects of turning the

6https://distributed.dask.org/en/stable/work-stealing.html

work stealing function on and off, and how a task list pre-sorted by
runtime affects the Dask workflow that is dispatched.

Figure 4 shows the results of running the test workflow with
work stealing turned on and on an input list of tasks that was
sorted by runtime size, and one that was not. In many cases an
approximate runtime can be predicted if a calculation scales as
some function of the input’s characteristics. For protein structure
prediction, for instance, runtime is dependent on sequence length.
Figure 4 A shows the distribution that was drawn from to create
the task runtimes for the test workload. B shows the distributions
of idle times for each worker when using the sorted (green) and
unsorted (blue) input list. Here, the sorted input list added to the
overall efficiency by reducing the worker idle times. C and D show
the worker tasks that were run for each set-up; the first set of tasks
elucidates the initial task list that is created by Dask. In the case
where wok stealing is turned on and sorting is applied, it seems the
initial task list distributes in a round-Robbin manner, assigning a
task from the list to each worker before returning to add a new task
to the first worker’s list. Thus, the larger tasks are assigned to all
workers first. Following this, some smaller tasks seem to have made
their way in between two consecutive large tasks, and it would
appear that some rearrangement of the task list must have occurred.
For the unsorted input, the initial tasks appear to also be random,
and for some workers during the workflow run, several consecutive
large tasks were also assigned to workers.

Figure 5 shows the measured idle time for workers, for both the
sorted and unsorted input lists, when work stealing is turned off.
Behavior is very different this time, with the sorted input leading
to substantially more idle time for the workers. An inspection of
the two initial task assignments showed that in the sorted situation,
tasks were not distributed in a round-Robin manner from the list,
but rather the first, largest tasks were assigned to the first 45 work-
ers. The last workers received only small tasks, and without the
work stealing option turned on, no optimization of the queue was
performed and many workers remained idle after completion of all
of their tasks, while the first workers remained occupied with large
jobs. On a system like Summit, this inefficiency is also expensive,
in that there is no elasticity in the batch job scheduling system and
a large job request will continue to use all requested nodes even
when these nodes may be idle.

While these tests have demonstrated default Dask behavior, there
are a number of parameters that can be set to control how the
scheduler makes task lists, decides on work stealing procedures,
and howwork is prioritizedwhen there aremore tasks thanworkers.
It is clear that performance and efficiency relies heavily on all of
these setting and the decisions that Dask is making about how to
distribute and execute work in the workflow. We see that in this
case, it is more efficient to use the work stealing features even when
tasks have no dependencies, no communication needs, and almost
no data to be moved.

4.1 Deployment at Scale for Molecular
Dynamics Simulations

Atomic-resolution structural models of biomolecules, such as pro-
teins, nucleic acids, and membranes, can provide key insights into
the system’s function and relevance in biochemical processes. Yet,

7

https://distributed.dask.org/en/stable/killed.html
https://distributed.dask.org/en/stable/work-stealing.html

Figure 4: Demonstration of task sorting. (A) Distribution of task processing times. A static set of 3000 tasks were performed
to benchmark the behavior of distributing heterogeneous tasks evenly across all available workers. (B) Distribution of time
where workers are idle after completing their allotted tasks for the sorted and unsorted tasks lists, shown in green and blue,
respectively. (C) and (D) Worker schedules for the sorted and unsorted runs. Pre-sorting tasks based on their expected compu-
tational expense can aid the efficiency of the overall workflow. Work-stealing was active during this set of tests.

these molecules are inherently dynamic with complex free energy
surfaces that describe the system’s conformational states. Molecular
dynamics (MD) is an efficient method to sample the conformational
states of biomolecules by numerically propagating Newton’s equa-
tions of motion for atomic systems. The calculations performed
during MD simulations are prime for GPU-acceleration and paral-
lel computing methods on HPC resources. Furthermore, the Dask
workflows presented here have been used to run massive amounts
of MD simulations, making traditionally-expensive protocols like
Replica Exchange MD, Adaptive Sampling, and other free energy
calculations much more feasible.

To demonstrate a basic Dask workflow’s capability, a series of
MD simulations are run as tasks. The OpenMM [22] simulation
engine was used for running NVT simulations of the SARS-CoV-2
Mpro enzyme with a bound ligand and a solvent box of TIP3P water
molecules [44]. The Amber ff19SB[47] and GAFF force fields were
used as parameter sets for the protein and ligand, respectively. The
Langevin dynamics thermostat was used to maintain a 310 K tem-
perature. Particle mesh Ewald (PME) was used to approximate long
range interactions with an explicit nonbonding interaction cutoff

of 12 Å. The integration time step was 2 fs. Trajectory frames were
written every 50,000 steps with a total of 250,000 steps performed
(0.5 ns of simulation per task). Each MD simulation is given 1 GPU
and 1 CPU core as resources.

The Dask pipeline was tested on 1 to 1000 Summit nodes, with 6
workers per node. The number of tasks were scaled by the number
of workers, 3 per worker. The client waited for all workers to spin
up before tasks began processing. Figure 6 shows the worker sched-
ule of the MD workflow running on 45 nodes (270 workers). Red
lines indicate the start and end of the Dask workflow while green
bars indicate times during which a worker is running a MD sim-
ulation. The empty slots represent overhead times during startup
of the Dask scheduler, Workers, and Client as well as the shut-
down overhead as tasks finish and communications are stopped.
Minimal overhead is seen between tasks as they are handed off
to workers. Table 1 shows the average and standard deviation of
these overhead times for the MD Dask workflow across a range
of nodes. Generally, all overhead times increase as the number
of nodes increases although this behavior is not linear. As more

8

Figure 5: Distribution of worker idle times for Dask work-
flows where work stealing is set to false (work-stealing :
False) in the configuration file. The same set of tasks were
run as shown in 4A. The same sorting is performed on
the tasks shown in green, resulting in a small number of
workers receiving an inordinate number of time consuming
tasks.

workers are provided to perform more tasks, the Dask Scheduler re-
quires more CPU cores and communications between the Scheduler,
Workers, and Client become more time consuming. For 1000 nodes,
the dask-scheduler command was provided 20 cores rather than
the 10 provided for the other runs of the workflow.

In terms of MD efficiency, the Mpro trajectories were obtaining
189.5 ± 0.5 ns day−1. Since each task is performed independently,
this simulation efficiency is not affected by scaling to large num-
ber of nodes. Therefore, each node can perform six trajectories of
≈190 ns in a day. Once scaled to hundreds or thousands of nodes,
this Dask workflow can easily obtain hundreds of microseconds
and up to milliseconds of MD simulation of biomolecular systems
within a single day in the form of independent MD simulations,
which overcomes potential pitfalls of an equivalently long single
MD simulation. This amount of sampling is often required for
experimentally-accurate quantitative analysis of a biomolecule’s
conformational free energy landscape and/or the system’s kinetics
[12, 27].

Table 1: Worker overhead times in seconds.
Nodes Start End Between

(Workers) Task

1 (6) 62.6109 ± 0.0003 8. ± 4 1.6458 ± 0.0002
2 (12) 64.2754 ± 0.0004 3. ± 4 0.6018 ± 0.0002
45 (270) 78.763 ± 0.008 8. ± 2 3.748 ± 0.008
500 (3000) 91.49 ± 0.09 100 ± 10 31.6 ± 0.2
1000 (6000)† 203.4 ± 0.2 30 ± 20 27.9 ± 0.5
† CPUs provided to the Scheduler were increased to 20 cores to handle
the increased communication overhead.

Code is available to recreate this Dask workflow at https://github.
com/BSDExabio/OpenMM-on-Summit

Figure 6: Walltime plot of Dask workers processingMD sim-
ulation tasks on 45 Summit nodes. Red lines indicate the
start and end times for the submission script that spins up
the Dask scheduler, workers, and client. Tasks handled by
the workers are run using a subprocess call to a separate
python script. Overhead time can be seen at the beginning
and end of the job, with negligible overhead in between
tasks.

5 DISCUSSION AND CONCLUSIONS
We have shown that the Dask parallel Python library can be ef-
ficiently used to launch large workflows on HPC systems both
statically, where all tasks are defined completely at the launch of
the workflow, and dynamically, where idle workers are assigned
a new task that is created on-the-fly based on the current state of
the workflow. The latter is a strategy for optimization algorithm
deployment such as in the use of asynchronous steady-state evolu-
tionary algorithms. There are many configuration parameters and
run options that can be set or adjusted to enable better performance
and scaling to larger numbers of compute nodes.

We also shared Dask-related problems related to using class
member functions when managing onerous common resources,
such as using a model to make predictions within a Dask task. We
also related the necessity of tuning certain Dask configurations for
timeouts, heartbeats, as well as specifying where Dask temporary
files are written to address potential performance issues. Along the
way we pointed the reader to supporting Dask documentation that
may otherwise have been easily missed.

9

https://github.com/BSDExabio/OpenMM-on-Summit
https://github.com/BSDExabio/OpenMM-on-Summit

We found that enabling work stealing was important to perfor-
mance when all other worker task assignment related parameters
were used in their default settings, using benchmark tests with
variable runtimes. Timeout settings and numbers of compute cores
provided to the dask-scheduler helped prevent workflow failures
for higher node counts. We demonstrated a large deployment of
molecular dynamics simulations on OLCF Summit with 1000 nodes.
While overhead times increased about 10 times when going from
45 to 1000 nodes, the total overhead is a small fraction of the total
runtime for these simulations when used in production, and there-
fore is not a concern. Overall, it seems that using a Python parallel
framework with no third-party database management software
is an effective solution with a simpler installation for large-scale
deployments on HPC systems. In conclusion, we have found that
reusable, scalable workflows can be deployed with a similar, light-
weight Python framework for many different types of scientific
computing efforts across many disciplines, and this approach can
provide a strategy to manage the complex, heterogeneous work-
loads that are emerging as HPC simulation converges with machine
learning.

ACKNOWLEDGMENTS
This research was sponsored by the Laboratory Directed Research
andDevelopment Program at Oak RidgeNational Laboratory (ORNL),
which is managed by UT-Battelle, LLC, for the U.S. Department of
Energy (DOE) under Contract No. DE-AC05-00OR22725, and used
resources of the Oak Ridge Leadership Computing Facility, which
is a DOE Office of Science User Facility supported under Contract
DE-AC05-00OR22725. We thank .

REFERENCES
[1] Carl S Adorf, Paul M Dodd, Vyas Ramasubramani, and Sharon C Glotzer. 2018.

Simple data and workflow management with the signac framework. Computa-
tional Materials Science 146 (2018), 220–229.

[2] Ankit Agrawal and Alok Choudhary. 2016. Perspective: Materials informatics
and big data: Realization of the“fourth paradigm" of science in materials science.
Apl Materials 4, 5 (2016), 053208.

[3] Xavier Aguilar and Stefano Markidis. 2021. A Deep Learning-Based Particle-in-
Cell Method for Plasma Simulations. In 2021 IEEE International Conference on
Cluster Computing (CLUSTER). IEEE, 692–697.

[4] Anastassia Ailamaki, Yannis E Ioannidis, and Miron Livny. 1998. Scientific
workflow management by database management. In Proceedings. Tenth Inter-
national Conference on Scientific and Statistical Database Management (Cat. No.
98TB100243). IEEE, 190–199.

[5] Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew Jones, Bertram Ludascher,
and Steve Mock. 2004. Kepler: an extensible system for design and execution of
scientific workflows. In Proceedings. 16th International Conference on Scientific
and Statistical Database Management, 2004. IEEE, 423–424.

[6] Rick Archibald, Edmond Chow, Eduardo DâĂŹAzevedo, Jack Dongarra, Markus
Eisenbach, Rocco Febbo, Florent Lopez, Daniel Nichols, Stanimire Tomov, Kwai
Wong, et al. 2020. Integrating deep learning in domain sciences at exascale. In
Smoky Mountains Computational Sciences and Engineering Conference. Springer,
35–50.

[7] Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S Katz, Ben Clifford, Rohan
Kumar, Lukasz Lacinski, Ryan Chard, Justin M Wozniak, Ian Foster, et al. 2019.
Parsl: Pervasive parallel programming in python. In Proceedings of the 28th
International Symposium on High-Performance Parallel and Distributed Computing.
25–36.

[8] Vivekanandan Balasubramanian, Iain Bethune, Ardita Shkurti, Elena Breitmoser,
Eugen Hruska, Cecilia Clementi, Charles Laughton, and Shantenu Jha. 2016.
Extasy: Scalable and flexible coupling of MD simulations and advanced sampling
techniques. In 2016 IEEE 12th International Conference on e-Science. IEEE, 361–370.

[9] Rafael C Bernardi, Marcelo CR Melo, and Klaus Schulten. 2015. Enhanced
sampling techniques in molecular dynamics simulations of biological systems.
Biochimica et Biophysica Acta (BBA)-General Subjects 1850, 5 (2015), 872–877.

[10] Mathis Bode, Michael Gauding, Konstantin Kleinheinz, and Heinz Pitsch. 2019.
Deep learning at scale for subgrid modeling in turbulent flows: regression and
reconstruction. In International Conference on High Performance Computing.
Springer, 541–560.

[11] Nicolae-Viorel Buchete and Gerhard Hummer. 2008. Peptide folding kinetics from
replica exchange molecular dynamics. Physical Review E 77, 3 (2008), 030902.

[12] John D Chodera and Frank Noé. 2014. Markov state models of biomolecular
conformational dynamics. Current Opinion in Structural Biology 25 (apr 2014),
135–44. https://doi.org/10.1016/j.sbi.2014.04.002

[13] Mark A Coletti, Shang Gao, Spencer Paulissen, Nicholas Quentin Haas, and
Robert Patton. 2021. Diagnosing autonomous vehicle driving criteria with an
adversarial evolutionary algorithm. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion. 301–302.

[14] Mark A. Coletti, Shang Gao, Spencer Paulissen, Nicholas Quentin Haas, and
Robert Patton. 2021. Diagnosing Autonomous Vehicle Driving Criteria with
an Adversarial Evolutionary Algorithm. In Proceedings of the 2021 Genetic and
Evolutionary Computation Conference Companion (Lille, France) (GECCO ’21).
Association for Computing Machinery, New York, NY, USA, 301–302. https:
//doi.org/10.1145/3449726.3459573

[15] MarkA. Coletti, Eric O. Scott, and Jeffrey K. Bassett. 2020. Library for Evolutionary
Algorithms in Python (LEAP). In Proceedings of the 2020 Genetic and Evolutionary
Computation Conference Companion (Cancún, Mexico) (GECCO ’20). Association
for Computing Machinery, New York, NY, USA, 1571–1579. https://doi.org/10.
1145/3377929.3398147

[16] Juan-Pablo Correa-Baena, Kedar Hippalgaonkar, Jeroen van Duren, Shaffiq Jaffer,
Vijay R Chandrasekhar, Vladan Stevanovic, Cyrus Wadia, Supratik Guha, and
Tonio Buonassisi. 2018. Accelerating materials development via automation,
machine learning, and high-performance computing. Joule 2, 8 (2018), 1410–
1420.

[17] Dask Development Team. 2016. Dask: Library for dynamic task scheduling. https:
//dask.org

[18] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J
Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira Da Silva, Miron Livny,
et al. 2015. Pegasus, a workflow management system for science automation.
Future Generation Computer Systems 46 (2015), 17–35.

[19] EwaDeelman, Karan Vahi, Mats Rynge, Gideon Juve, RajivMayani, and Rafael Fer-
reira da Silva. 2016. Pegasus in the cloud: Science automation through workflow
technologies. IEEE Internet Computing 20, 1 (2016), 70–76.

[20] Matthieu Dorier, Justin MWozniak, and Robert Ross. 2017. Supporting task-level
fault-tolerance in HPC workflows by launching MPI jobs inside MPI jobs. In
Proceedings of the 12th Workshop on Workflows in Support of Large-Scale Science.
ACM, 5.

[21] Lei Dou, Daniel Zinn, Timothy McPhillips, Sven Köhler, Sean Riddle, Shawn Bow-
ers, and Bertram Ludäscher. 2011. Scientific workflow design 2.0: Demonstrating
streaming data collections in Kepler. In 2011 IEEE 27th International Conference
on Data Engineering. IEEE, 1296–1299.

[22] Peter Eastman, Jason Swails, John D Chodera, Robert T McGibbon, Yutong Zhao,
Kyle A Beauchamp, Lee-Ping Wang, Andrew C Simmonett, Matthew P Harrigan,
Chaya D Stern, et al. 2017. OpenMM 7: Rapid development of high performance
algorithms for molecular dynamics. PLoS computational biology 13, 7 (2017),
e1005659.

[23] Borko Furht (Ed.). 2008. Workflow Computing. Springer US, Boston, MA, 991–992.
https://doi.org/10.1007/978-0-387-78414-4_266

[24] Mu Gao, Peik Lund-Andersen, Alex Morehead, Sajid Mahmud, Chen Chen, Xiao
Chen, Nabin Giri, Raj S. Roy, Farhan Quadir, T. Chad Effler, Ryan Prout, Subil
Abraham, Wael Elwasif, N. Quentin Haas, Jeffrey Skolnick, Jianlin Cheng, and
Ada Sedova. 2021. High-Performance Deep Learning Toolbox for Genome-Scale
Prediction of Protein Structure and Function. In 2021 IEEE/ACM Workshop on
Machine Learning in High Performance Computing Environments (MLHPC). 46–57.
https://doi.org/10.1109/MLHPC54614.2021.00010

[25] Angel E Garcia, Henry Herce, and Dietmar Paschek. 2006. Simulations of tem-
perature and pressure unfolding of peptides and proteins with replica exchange
molecular dynamics. Annual Reports in Computational Chemistry 2 (2006), 83–95.

[26] Jens Glaser, Josh V Vermaas, David M Rogers, Jeff Larkin, Scott LeGrand, Swen
Boehm, Matthew B Baker, Aaron Scheinberg, Andreas F Tillack, Mathialakan
Thavappiragasam, et al. 2021. High-throughput virtual laboratory for drug
discovery using massive datasets. The International Journal of High Performance
Computing Applications (2021), 10943420211001565.

[27] Pablo Herrera-Nieto, Adrià Pérez, and Gianni De Fabritiis. 2020. Characterization
of partially ordered states in the intrinsically disordered N-terminal domain of
p53 using millisecond molecular dynamics simulations. Scientific Reports 10, 1
(jul 2020), 1–8. https://doi.org/10.1038/s41598-020-69322-2

[28] Gerhard Hummer. 2005. Position-dependent diffusion coefficients and free en-
ergies from Bayesian analysis of equilibrium and replica molecular dynamics
simulations. New Journal of Physics 7, 1 (2005), 34.

10

https://doi.org/10.1016/j.sbi.2014.04.002
https://doi.org/10.1145/3449726.3459573
https://doi.org/10.1145/3449726.3459573
https://doi.org/10.1145/3377929.3398147
https://doi.org/10.1145/3377929.3398147
https://dask.org
https://dask.org
https://doi.org/10.1007/978-0-387-78414-4_266
https://doi.org/10.1109/MLHPC54614.2021.00010
https://doi.org/10.1038/s41598-020-69322-2

[29] Anubhav Jain, Shyue Ping Ong, Wei Chen, Bharat Medasani, Xiaohui Qu, Michael
Kocher, Miriam Brafman, Guido Petretto, Gian-Marco Rignanese, Geoffroy Hau-
tier, et al. 2015. FireWorks: a dynamic workflow system designed for high-
throughput applications. Concurrency and Computation: Practice and Experience
27, 17 (2015), 5037–5059.

[30] Weile Jia, Han Wang, Mohan Chen, Denghui Lu, Lin Lin, Roberto Car, E Weinan,
and Linfeng Zhang. 2020. Pushing the limit of molecular dynamics with ab initio
accuracy to 100 million atoms with machine learning. In SC20: International
conference for high performance computing, networking, storage and analysis. IEEE,
1–14.

[31] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna
Potapenko, et al. 2021. Highly accurate protein structure prediction with Al-
phaFold. Nature (2021), 1–11.

[32] Shankar Kumar, John M Rosenberg, Djamal Bouzida, Robert H Swendsen, and
Peter A Kollman. 1992. The weighted histogram analysis method for free-energy
calculations on biomolecules. I. The method. Journal of Computational Chemistry
13, 8 (1992), 1011–1021.

[33] Hyungro Lee, Matteo Turilli, Shantenu Jha, Debsindhu Bhowmik, Heng Ma,
and Arvind Ramanathan. 2019. Deepdrivemd: Deep-learning driven adaptive
molecular simulations for protein folding. In 2019 IEEE/ACM Third Workshop on
Deep Learning on Supercomputers (DLS). IEEE, 12–19.

[34] Agnese Marcato, Gianluca Boccardo, and Daniele Marchisio. 2021. A compu-
tational workflow to study particle transport and filtration in porous media:
Coupling CFD and deep learning. Chemical Engineering Journal 417 (2021),
128936.

[35] Andre Merzky, Matteo Turilli, Manuel Maldonado, and Shantenu Jha. 2018. De-
sign and performance characterization of radical-pilot on Titan. arXiv preprint
arXiv:1801.01843 (2018).

[36] John Ossyra, Ada Sedova, Arnold Tharrington, Frank Noé, Cecilia Clementi, and
Jeremy C Smith. 2019. Porting adaptive ensemble molecular dynamics workflows
to the summit supercomputer. In International Conference on High Performance
Computing. Springer, 397–417.

[37] John R Ossyra, Ada Sedova, Matthew B Baker, and Jeremy C Smith. 2019. Highly
interactive, steered scientific workflows on hpc systems: Optimizing design
solutions. In International Conference on High Performance Computing. Springer,
514–527.

[38] Sam Partee, Matthew Ellis, Alessandro Rigazzi, Scott Bachman, Gustavo Marques,
Andrew Shao, and Benjamin Robbins. 2021. Using machine learning at scale in
hpc simulations with smartsim: An application to ocean climate modeling. arXiv
preprint arXiv:2104.09355 (2021).

[39] Robert M. Patton, J. Travis Johnston, Steven R. Young, Catherine D. Schuman,
Don D. March, Thomas E. Potok, Derek C. Rose, Seung-Hwan Lim, Thomas P.
Karnowski, Maxim A. Ziatdinov, and Sergei V. Kalinin. 2018. 167-PFlops Deep
Learning for Electron Microscopy: From Learning Physics to Atomic Manipu-
lation. In Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage, and Analysis (Dallas, Texas) (SC ’18). IEEE Press,
Piscataway, NJ, USA, Article 50, 11 pages. http://dl.acm.org/citation.cfm?id=
3291656.3291723

[40] Robert M. Patton, J. Travis Johnston, Steven R. Young, Catherine D. Schuman,
Thomas E. Potok, Derek C. Rose, Seung-Hwan Lim, Junghoon Chae, Le Hou,
Shahira Abousamra, Dimitris Samaras, and Joel Saltz. 2019. Exascale Deep
Learning to Accelerate Cancer Research. In 2019 IEEE International Conference
on Big Data (Big Data). 1488–1496. https://doi.org/10.1109/BigData47090.2019.
9006467

[41] Iman Pouya, Sander Pronk, Magnus Lundborg, and Erik Lindahl. 2017. Coperni-
cus, a hybrid dataflow and peer-to-peer scientific computing platform for efficient
large-scale ensemble sampling. Future Generation Computer Systems 71 (2017),
18–31.

[42] Sander Pronk, Iman Pouya, Magnus Lundborg, Grant Rotskoff, Björn Wesén,
Peter M Kasson, and Erik Lindahl. 2015. Molecular simulation workflows as
parallel algorithms: The execution engine of Copernicus, a distributed high-
performance computing platform. Journal of Chemical Theory and Computation
11, 6 (2015), 2600–2608.

[43] Matthew Rocklin. 2015. Dask: Parallel computation with blocked algorithms and
task scheduling. In Proceedings of the 14th python in science conference, Vol. 130.
Citeseer, 136.

[44] Brian Sanders, Suman Pohkrel, Audrey Labbe, Irimpan Mathews, Connor Cooper,
Russell Davidson, Gwyndalyn Phillips, Kevin Weiss, Qiu Zhang, Hugh O’Neill,
Manat Kaur, Lori Ferrins, Jurgen Schmidt, Walter Reichard, Surekha Suren-
dranathan, Desigan Kumaran, Babak Andi, Gyorgy Babnigg, Nigel Moriarty,
Paul Adams, Andrzej Joachimiak, Colleen Jonsson, Soichi Wakatsuki, Stephanie
Galanie, Martha Head, and Jerry Parks. 2021. Potent and Selective Covalent
Inhibitors of the Papain-like Protease from SARS-CoV-2. Research square (oct
2021). https://doi.org/10.21203/rs.3.rs-906621/v1

[45] Eric O Scott and Kenneth A De Jong. 2015. Understanding simple asynchro-
nous evolutionary algorithms. In Proceedings of the 2015 ACM Conference on

Foundations of Genetic Algorithms XIII. 85–98.
[46] Renan Souza, Vítor Silva, Daniel Oliveira, Patrick Valduriez, Alexandre AB Lima,

and Marta Mattoso. 2015. Parallel execution of workflows driven by a dis-
tributed database management system. In ACM/IEEE Conference on Supercomput-
ing, Poster.

[47] Chuan Tian, Koushik Kasavajhala, Kellon A.A. Belfon, Lauren Raguette, He
Huang, Angela N. Migues, John Bickel, Yuzhang Wang, Jorge Pincay, Qin Wu,
and Carlos Simmerling. 2020. Ff19SB: Amino-Acid-Specific Protein Backbone
Parameters Trained against Quantum Mechanics Energy Surfaces in Solution.
Journal of Chemical Theory and Computation 16, 1 (jan 2020), 528–552. https:
//doi.org/10.1021/acs.jctc.9b00591

[48] Matteo Turilli, Mark Santcroos, and Shantenu Jha. 2018. A comprehensive
perspective on pilot-job systems. ACM Computing Surveys (CSUR) 51, 2 (2018),
43.

[49] E Weinan, Weiqing Ren, and Eric Vanden-Eijnden. 2002. String method for the
study of rare events. Physical Review B 66, 5 (2002), 052301.

[50] Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan Williams, David
Withers, Stuart Owen, Stian Soiland-Reyes, Ian Dunlop, Aleksandra Nenadic,
Paul Fisher, et al. 2013. The Taverna workflow suite: designing and executing
workflows of Web Services on the desktop, web or in the cloud. Nucleic Acids
Research 41, W1 (2013), W557–W561.

[51] Thomas B Woolf and Benoit Roux. 1994. Conformational flexibility of o-
phosphorylcholine and o-phosphorylethanolamine: a molecular dynamics study
of solvation effects. Journal of the American Chemical Society 116, 13 (1994),
5916–5926.

[52] Justin M Wozniak, Timothy G Armstrong, Michael Wilde, Daniel S Katz, Ewing
Lusk, and Ian T Foster. 2013. Swift/T: Large-scale application composition via
distributed-memory dataflow processing. In 2013 13th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing. IEEE, 95–102.

[53] Steven R Young, Derek C Rose, Travis Johnston, William T Heller, Thomas P
Karnowski, Thomas E Potok, Robert M Patton, Gabriel Perdue, and Jonathan
Miller. 2017. Evolving Deep Networks Using HPC. In Proceedings of the Machine
Learning on HPC Environments. ACM, 7.

[54] Li Zhong, Dennis Hoppe, Naweiluo Zhou, and Oleksandr Shcherbakov. 2021.
Hybrid workflow of Simulation and Deep Learning on HPC: A Case Study for
Material Behavior Determination. In 2021 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 698–704.

11

http://dl.acm.org/citation.cfm?id=3291656.3291723
http://dl.acm.org/citation.cfm?id=3291656.3291723
https://doi.org/10.1109/BigData47090.2019.9006467
https://doi.org/10.1109/BigData47090.2019.9006467
https://doi.org/10.21203/rs.3.rs-906621/v1
https://doi.org/10.1021/acs.jctc.9b00591
https://doi.org/10.1021/acs.jctc.9b00591

	Abstract
	1 Introduction
	2 Background
	2.1 Workflow management software
	2.2 Scientific Workflows on HPC Systems
	2.3 Workflow Needs for Evolutionary Algorithms
	2.4 Workflow Needs in Computational Biosciences
	2.5 Workflow Needs in Computational Chemistry and Materials Science
	2.6 Software Considerations for HPC Workflows

	3 Using Dask to support large scientific workflows
	3.1 Two Dask-supported HPC Scientific Workflows
	3.2 Encountered Dask issues and their solutions

	4 Performance Testing of Dask Workflows at Scale
	4.1 Deployment at Scale for Molecular Dynamics Simulations

	5 Discussion and Conclusions
	Acknowledgments
	References

