SANO5-3 668 &
CONF—200243-~ |

A Strategic Surety Roadmap for High
Consequence Software

Guylaine M. Poilock

Sandia National Laboratories, MS 1109

RECEIVED

Computer Science Department

P.O. Box 5800
Albuquerque, NM 87185-1109
505-845-7463

JAN 16 1996
OSTI

gmpollo@cs.sandia.gov

Larry J. Dalton
Sandia National Laboratories, MS 0535 -

Command and Control Software Department
P.O. Box 5800
Albuquerque, NM 87185-0535
505-844-2520
ljdalto@sandia.gov

Abstract—A strategic surety roadmap for high
consequence software systems developed
under the High Integrity Software (HIS) Pro-
gram at Sandia National Laboratories is pre-
sented. Selected research tracks are identified
and described detailing current technology and
outlining advancements to be pursued over the
coming decade to reach HIS goals.

TABLE OF CONTENTS

INTRODUCTION

MOTIVATION

HIGH INTEGRITY SOFTWARE WEB
ROADMAP TRACKS

CONCLUSION

N W=

1. INTRODUCTION

The development of software for use in high-
consequence systems mandates rigorous (for-

DISTRIBUTION OF THiS DCCUMENT 18 U’NLM?ED&{.

mal) processes, methods, and techniques to
improve the safety characteristics of those sys-
tems. To address this need, research efforts.
must progress in several areas over the next
few decades to allow us to reach, with greater
certainty, the higher levels of reliability
required by software used in high-consequence
systems. This paper describes a strategic surety
roadmap developed for high-consequence soft-
ware under a new initiative at Sandia National
Laboratories (SNL)}—to identify how we will
develop ultra-reliable software in the 2010
time frame.

This initiative, the High Integrity Software
Program (HIS), is tasked with guiding strategic
investments in the development of new capa-
bilities and technologies in the domain of high
consequence software at SNL. The initiative
has focussed initial efforts on the development

. of aroadmap to form the foundation for strate-

gic decision making. The roadmap also pro-
vides a framework for characterization of the
High Integrity Software (HIS) problem in San-

dia’s context and identifies key technologies of
importance to the development of high integ-
rity software through the next ten to. fifteen
years.

We will summarize and present the most perti-
rent aspects of the roadmap and identify and
discuss the most relevant technology tracks.
Specifically we will describe each of the
selected technology tracks and identify why it
is important, what is the current state of that
technology and what advancements should be
pursued over the current(1-3 years), near term
(3-5 years), and long term (5-15 years) time-
frame to enhance factors affecting software
integrity.

Various tracks discussed herein include tracks
on: Predictive Measurement; Correct Specifi-
cation via Visualization, Synthesis, & Analy-
sis; Correct Implementation of Components;
and Sysiem Composability. The Predictive

Measurement track focuses on identifying key

areas for research and proposing various
projects that' complement each other in
advancing expertise in this area. In parallel,
research efforts in the Correct Specification via

Visualization, Synthesis & Analysis frack .

focus on the exploration of new and innovative
methods for the capture, synthesis, simulation,
evaluation and verification of the behavior of
modeled software systems; while the Correct
Implementation of Components track exam-
ines ways to improve capabilities to automati-
cally derive programs from specifications
through the use of program transformations
that have been formally verified to preserve
correctness. Finally, the System Composability
track addresses the ability to build systems out
of components with known properties with the
ability to state something about the surety
properties of the resultant system.. (Other
tracks not discussed in this paper include Visu-
alization of Abstract Objects, and Architecting
& Design using Surety Principles & Risk
Assessment. These tracks will be discussed at

“doubling every two years

a later time as they become more fully devel-
oped.)

Next, we review the motivation behind this
new program initiative, present the current sta-
tus of the High Integrity Software Web devel-
oped by the HIS Software Roadmap Team. and
explain how the roadmap tracks map back ro
the web. Afterwards, we proceed to a more
detailed description of the selected roadmap
tracks before concluding.

2. MOTIVATION

-

The High Integrity Software Program (HIS) at
Sandia National Laboratories was established
to provide a crucial role in guiding internal
research efforts to improve technologies that
enhance surety aspects of high-consequence
systems. Further, this program strives o
develop better technologies within the soft-
ware industry that will enable us to increase
our confidence in the correctness of high-con-
sequence systems, many of which may become
life-threatening if flawed.

Examining this industry in general, we see
software becoming more complex and being
relied upon more often for an ever-widening
variety of applications. In fact, our dependence
on software is exploding quietly—*The
amount of code in most consumer products is
... televisions may
contain up to 500 kilobytes of software; an
electric shaver, two kilobytes, The power trains
in new General Motors cars run 30,000 lines of
computer code.” [S}—and yet software is not
reliable in most systems. As a result, software
irregularities in some instances have taken or
degraded people’s lives in various system acci-
dents. '

Notwithstanding, new types of applicétions
continue to appear on the technological hori-

zon. generating continued cause for concern
regarding current abilities to evaluate software
surety. For example, Andy White the Director
of Los Alamos National Laboratories
Advanced Computing Laboratory, has stated
that an important goal for new software appli-
cations is to solve large problems (such as
heiping the Forest Service fight fires, helping
doctors figure out which flu vaccines to use,
and making sure that U.S. nuclear bombs do
not go off accidentally) that, in short, require
us 1o trust computers to predict the future. [1]

While some have encouraged expansion of
these types of applications, many others have
cited this proliferation as a potential powder-
keg for our society: “These days we adopt
innovations in large numbers, and put them to
extensive use, faster than we can ever hope to
know their consequences ... which tragically
removes our ability to control the course of
events” [6].

Even more alarming, this increase in numbers
and types of software applications has
increased our vulnerability as a nation to infor-
mation warfare. (This is a problem for other
nations as well.) In fact, last year the Joint
Security Commission stated that “The U.S.
vulnerability to infowar may be the major
security challenge of this decade and possibly
the next century” [3]. Not surprisingly, Penta-
gon officials have reported an attempt at such
warfare was actually suggested to U.S. adver-
saries during the Gulf war when a group of
Dutch hackers offered to disrupt the U.S. mili-
tary’s deployment to the Middle East for $1
Million. If current trends continue, this type of
vulnerability will only increase unless we
work to ameliorate our skills in assessing soft-
ware surety.

Clearly software integrity and surety (safety,
security, reliability) issues are a major concern
for U.S. industries; as such, they are also a
concern for Sandia National Laboratories.

Current surety technologies just are not good
enough for industries’ increasing needs.

Consequently, the HIS program initiative was
formulated to address high integrity and surety
software issues. Sponsors of the program
include the Strategic Surety Backbone of the
Defense Programs Sector and the Vice Presi-
dent of Defense Programs. The HIS objective
is to establish predictive confidence that a sys-
tem is safe, secure, and under control. Accord-
ingly, one of the first actions taken under this
program was the establishment of a steering
committee to guide research activities.

-

3. HIGH INTEGRITY SOFTWARE WEB

The formation of a steering committee for this
initiative was formed with members from vari-
ous groups including Sandia, Allied Signal
Inc., Microelecironics and Technology Center
in Columbia, MD, the Nuclear Regulatory
Commission, and the Software Engineering
Institute (SEI) at Carnegie Mellon University, :
The committee was established in March of -
1995.

Figure 1 depicts the high integrity software

- web that has been establisked to date by this

group. The HIS Web is used to identify the
attributes, strategies, .necessary technologies
and capabilities needed to achieve high integ-
rity software. Consequently, it forms the initial
framework for a strategic plan being developed
to broaden surety focus and understanding
through secure design, surety management,
ultra-reliable engineering, and predictive stew-
ardship.

The strategies identified by the web include:
Engineering for Change, Composing Systems,
Satisfying Surety Requirements, and Analyz-
ing and Predicting. Other strategies may be
identified later. We will briefly discuss each of

qoM oremijos AmiSojur STy

"1 2In31q

00D $50901]

UONBULIOJSUTL],

qunapatg

apohoap] .EoEET:wEoQ %.m::mE:v_m Funomyasy
ASojopoytey S_Hm%ﬂmgo zoﬁwwsz AR A M_“uwwwz
SaNIIqede’) %) SIISO[OUNo9],
11paId sjuourarinboyy SWNSAS o3uey)
» ozAeuy A1oIng A)sues asodwo)) 10y Ioauiduyg
EETHEY LA TN
EMM_MMMm sainjea £joIng MHMMMM_“MMMHM 9[qeuUrRIUTBI o[qepuaday

CEITI

[RiiAY

the specified strategies before continuing with
the roadmap tracks; however, the technologies
and capabilities identified in figure 1 should be
clear to the reader and thus will not be defined
further within this paper.

The first swrategy, Engineering for Change, is
important because many changes, especially
chznges uvpon changes, can produce fragile
systems. And unfortunately, changes are a fact
of life for most software systems—both from

the aspect of changing requirements and from

the aspect of correcting identified errors in the
code. While current lifecycle development par-
adigms do not deal well with changes, newer
paradigms such as model-based engineering
may have advantages for managing change.
Accordingly, research efforts should incorpo-
rate this strategy whenever possible.

The second strategy, Composing Systems,
focuses on ouilding systems out of corpo-
nents with known properties, so that one may
be able to characterize something about the
properties of the resultant system. In fact, there
are many issues involved with this approach.
For example, discovering properties to mea-
sure and compose, achieving the measurement,
modeling how the composition works, and
approaching domain modeling and system
architecture with reuse as a goal. Obviously,

incorporating COTS (commercial off the shelf) -

components will be a challenge.

The third strategy identified by the HIS Web is
Satisfying Surety Requirements. This clearly
is an important strategy to address in accom-

plishing the goals of HIS. But first we must

clarify what exactly is meant by the phrase
surety requirements. Sandia defines surety to
mean a system that is safe, secure, reliable, and
under conwol. Thus this phrase refers to any
requirements that affect system attributes relat-
ing to surety or integrity issues. Clearly, sys-
tem surety requirements need to be explicitly
specified znd satisfied. In doing so, there are

issues of trade-offs, residual risk, and the need
to understand the effects of system changes on
surety that must be examined. Further, there is
also an -aspect of ensuring that the system has
no unwanted effects to consider. In implement-
ing this strategy, there may be certain architec-
tures, or techniques that can be engineered nto
systems that have a positive impact on surety.

The fourth and last strategy currently included
in the web, Analyzing and Predicting, is
needed to provide the capability to model, ana-
lyze, and predict software behaviors in order to
produce reliable systems that implement
intended functionality, have known properties,
and remain under control. Selected behaviors
must be analyzed more rigorously in order to
understand characteristic responses for proper-
ties of interest. If a “watchdog” is to be able to
recognize unacceptable system behavior, for
example, one must define what behavioral
properties to watch. All four of these strategies
will be considered by research efforts reviewed.
in the next section:

| 4. ROADMAP TRACKS

After establishing the general framework of
the web identifying “the strategies, technolo-
gies, and capabilities needed for achieving
goals of improved software surety and integ-
rity, we began working to define stronger,
more specific guidelines to identify measur-
able milestones and produce specific products,
to meet our needs. Consequently, the steering
group identified a number of roadmap tracks
for development. Six different tracks have
been identified to date. (This is an on-going
process so we anticipate that additional tracks
may be identified in the future.)

Once a track was identified, appropriate staff
were assigned to aid in the further develop-
ment of that track. Please note, each track was

not expected to be a complete solution in and
of itself. The tracks complement one another
to .address a complex problem. Numerous
projects may be conducted with a particular
track. The roadmap tracks currently identified
are:

e Predictive Measurement;

» Correct Specification via Visualization,
Synthesis, & Analysis;

» Visualization of Abstract Objects;

e Architecting & Design using Surety Princi-
ples & Risk Assessment;

e Correct Implementation of Components;
and

+ System Composability.

These tracks are viable research directions that

will enable Sandia to reach a higher level of
software integrity by allowing surety to be
engineered into software systems. Research
efforts within the tracks will drive software
development to be a much more disciplined
engineering activity, supported with modeling
and measurement and reuse of proven compo-
nents. Several of the tracks are derived from a
vision of how software will be built, verified,
and understcod in the future as suggested by
Dalton. (His view is depicted in figure 2.) -

Each track encompasses a major area for
selected research, and must be refined into
subtracks representing different aspects,
approaches, features, or options within their
respective research areas. Some, but not all,
of that breakdown has occurred and is reflected
in the roadmap wack descriptions in this sec-
tion.

In order to save space, we will only present the
web mapping in full for the predictive mea-
surement track to illustrate what was done. In
actuality however, all of the tracks map back to
the web. This allows assessment of our organi-

zation’s coverage and strengths associated
with the necessary technologies and capabili-
ties that must be achieved to improve software
integrity. This method pinpoints areas where
additional efforts should be focused. In addi-
tion, these mappings still need to be rated to
establish each task’s level of impact on those
technologies and capabilities specified in the
web. Additional work needs 0 be done to map
specific tracks back to the strategies and
attributes. Each strategy may be accomplished
through a variety of approaches and the map-
pings are needed to assess the coverage
achieved by on-going projects.

Furthermore, as work progresses, we expect
further refinement to occur, new subtracks to
be identified, and some subtracks to be aban-
doned. We also expect that new tracks will be
identified in the future, and old tracks may

- split. Each track will have a champion, who

will keep the vision for that track alive. and
who will steer the “coming and going” of sub-
tracks to assure progress toward the vision.

A complete track definition consists of the fol-
lowing information—a track description, a list
of specific tasks and milestones for current (1-
3 years), near term (3-5 years), and long
term(5-15 years) timelines; the, expected bene-
fits of pursuing the track, critical needs for pur-
suing the track, and critical issues affecting the
success of the work.

Each of the tracks are in various stages of
development; therefore, we will only present
the information that is available for the tracks
that are discussed. We will discuss the follow-
ing tracks briefly: Predictive Measurement;
Correct Specification via Visualization, Syn-
thesis, & Analysis; Correct Implementation of
Components; and System Composability. The
two newest tracks—Visualization of Abstract
Objects, and Architecting & Design using
Surety Principles & Risk Assessment—will be
presented at a later. '

:om&@%« 2XeM)JOS [8I0], STH 'Z 9131

YISy Jo uoneznuend)
UWSSIsSSY Ajaing

(repus
-edxg ‘KoeSey ‘Kx0Istg)
ol GO.EQO: ﬁwﬁw®a

SaNSST [eINIOANIYIIY
so[ny A10Ing
uSrso(q

paseq
aAnIugo) R AqednAreuy

198
[00], sisATeuy yory yim
JUDUIUIOJAUF] | DAISIOWILUY,,

"

uoreal)oadg
BIPJUOLIDUIN] 1DALI0D),,

uoN|oS BIIUIN)
‘piing ‘canpemuely

uonejudwRdury
0} u3Isd(

agpajmoudy
11dxy TV ‘oseq sony
usisa(g yo uonedddy

/Saquyy
Jo Juawugissy

$19(q0 :e:za...u PPON

«VadD

Predictive Measurement

If software is to be used in high integrity appli-
cations, predictive measures that quantify the
risk associated with using software for specific
functions are highlv desirable. A key aspect of
work in this area :s determining which of the
many different aspescts and characteristics of
sofiware should be measured. For example, a
measure that predicts, estimates, and quantifies
the rate of failure occurrences in software

could be employed to begin to increase one’s

understanding of the associated functional
risks. This particular type of predictive mea-
surement is referred to as software reliability.

Increased understanding of reliability aspects
is a first step towards improving predictive
measurements for high integrity software;
however, other software properties clearly con-
tribute to the overall integrity of the software.
Thus, research in predictive measurement must
also consider and examine additional attributes
besides reliability. Some of the additional soft-
ware properties that contribute to high integrity
include performance, safety, and security
attributes. Ultumately, formal models will need
to be developed to assist in predicting these

software attributes. As the reliability of soft- .

ware contributes to the safety and security
“rating” of any particular system, and conse-
quently must be part of any models predicting
safety and security levels, we will focus our
subsequent discussion on the advancement of
reliability issues as the example framework for
initiating activities/research in this track.

Software reliability can be defined as the prob-
ability of failure-free operation of a computer
program for a specified time in a specified
environment [7]. To estimate or predict soft-
ware reliability, a model that accurately char-
acterizes the behavior of a software program
over time is required. This model is usuvally
derived from data collected about defects

detected during development testing. As
research efforts grow in this discipline, the
models should progress to providing informa-

- tion earlier in the development process, hope-

fully during the specification phase. Further,
there are many additional aspects such a mea-
sure/model must consider, including the
assessment of criticality for the types of fail-
ures that may occur.

Currently, software reliability models are
essentially reliability growth models. These
models are based on a test, find, and fix
approach. A computer program is tested until
it fails. The failure is investigated and the fault
is corrected. The program then undergoes fur-
ther testing to uncover the next failure. This
process repeats until sufficient data is available
to predict the reliability of the final “corrected”
program based on the observed failure data

- from the previous versions.

_Various models utilize different appreaches in

addressing the problem of reliability predic--
tion. However, most .assume that all software
faults are independent of others, and many are .
not advanced enough to differentiate between
the severity of failure classes. Work in this area
must increase our understanding of the types

-of failures within the various stages of the soit-

ware lifecycle process and their respective
consequential impacts. Furthermore, many
other questions need to be addressed. Typical -
kinds of questions that should be explored
include: “How do functional changes affect the
mode?,” “Is a software failure distinguished
from a requirements failure?,” “How are non-
function requirements considered?,” and “Are
all failures equivalent?.”

Despite the drawbacks of current models, soft-
ware reliability techniques are used by many

- commercial firms with reputations for produc-

ing high reliability systems. A few examples
include AT&T for the SESS Telephone Switch
System; Loral Federal Systems for the space

shuttle mission software, air traffic control sys-
tems, and data management systems for the
IRS and FBI; and Motorola cellular tele-
phones. These companies deliver software
with a predicted reliability to their users. [2]
provides an overview of work being done in
this area.

Application of the proposed software reliabil-
ity methodology to SNL Software develop-
ment projects can provide a baseline
assessment of the reliability of SNL software
products. Further, it can provide vital feedback
on the success of process improvement efforts.
Without a baseline reliability assessment mea-
sure, the cost versus benefit trade-off of addi-
tional process improvement or testing to
produce high reliability software cannot be
evaluated. Process improvements derived from
analysis of the software defects database may

yield a higher quality software that is less.

likely 'to fail in an unsafe mode. Accurate esti-
mates of reliability growth during test of soft-
ware provide additional assurance that the
software under operational conditions will
meet or exceed reliability expectations.

Track Timeline—The track for predictive mea-
surement focussing initially on a software reli-
ability methodology is provided in the six
main tasks described below. Three of the tasks,
Characterization of Software Integrity, Soft-
ware Defects Database and Root Cause Analy-
sis, are identified as current tasks, to be
accomplished in the next three years. The first
‘task is a planning task that essentially expands
the predictive measurement track into mea-
surement and prediction of selected character-
istics that contribute to overall software
integrity. Two tasks, Quantification of Reliabil-
ity and a Software Environment for Defects
Data Collection, are near term tasks. The final
two tasks, Correlation of Software Reliability
to Non-test Relaied Metrics, and Correlation
of Software Reliability to Safety/Security Met-
rics are long term research-oriented tasks.

These tasks establish a basic framework for
research in this area and identify the types of
projects that should be considered. Additional
projects may be considered as needed.

Current (1-3 years). Three tasks are proposed
for current efforis:

Task 0: Characterization of Software intecrity

This task is a planning effort focussed on iden-
tifying the various software characteristics and
aspects that contribute to software integrity.
The goal is to identify characteristics that
would benefit from a predictive measurement
model. -

» Subtask 1: Identify software issues, aspects,
and charac_teristics that contribute to soft-
ware integrity.

o Subtask 2: For each issue/characteristic/
aspect, identify the types of information that
must be gathered to measure or rank the
characteristic.

e Subtask 3: Rank the characteristics accord-
ing to their impact on the integrity of soft-
ware.

o Subtask 4: For each characteristic/aspect of
import, develop a schedule of tasks similar
to the following tasks (tasks 1-6) outlined in
detail for reliability with the goal of produc-
ing a similar predictive model for each
desired characteristic measurement model.

o Subtask 5: Initiate activities for as many of
the task schedules outlined in subtask 4 as
time and resources permit.

Task 1: Software Defects Database

Information about defects detected during soft-
ware development are to be collected into a
database for analysis. The Software Defects
Database is the most important task in the
Software Reliability methodology. - Task: 2

through 6 cannot be started without the defects
data collected during this task. This task is fur-
ther described by the five Subtask listed below.

» - Subtask 1: Identify the goals of the data col-
lection program, i.e. guantification of the
risk of software in a specific usage.

» Subtask 2: Identify critical core metrics and
the necessary data to be collected, such as,
mean time-between-failures, defect density,
customer reported problems, defect removal
effectiveness, etc.

e Subtask 3: Identify/enlist High Integrity
Software development programs for data
collection.

¢ Subtask 4: Identify/develop a software data-
base and supporting analysis tools.

e Subtask 5: Populate software defects data-
base with defects detected during high level
design inspections, low level design inspec-
tions, code inspections, unit tests, integra-
tion tests, systems tests, and field tests from
ongoing software development programs.
Also, collect available data from any opera-
tional usage.

Task 2: Root Cause Analvsis

A Root Cause Analysis examines software
defects detected during software development
to determine what are the underlying causes
for the defects. '

e Subtask 1: characterize software develop-
ment processes for the different SNL soft-
ware development programs from which
defects data are collected.

e Subtask 2: Examine defects to determine if

. any general trends for defect injection into
software products are indicated by the
defects data.

» Subtask 3: Identify/evaluate/implement cor-
rective actions to improve SNL software
development processes.

‘Near term (3-5 years). An additional two tasks
have been identified for the near term timeline:

Task 3: Quantification of Reliability for SNL
Software Products

A software reliability model is selected and
validated to assess/predict the reliability of
SNL software products.

* Subtask 1: Select/develop software reliabil-
ity models(s) from statistical analysis of the
defects data in the database.

e Subtask 2: Predict reliability for a SNL soft-
ware product that is being fielded.

¢ Subtask 3: Coilect field fatlure data for the
software. product. Compare reliability pre-
diction with field experience to validate reli-
ability prediction model(s).

o Subtask 4: Evaluate cost/benefit of applica- . .

tion of reliability prediction model(s).
e Subtask 5: Improve/refine reliability predic-

tion models and identify lessons learned. -

Task 4: Software Environment to Facilitate
Defect Data Collection

Based on lessons learned during the prior three
tasks, software tools to assist data collection,
data storage, and data analysis are developed/
procured. :

o Subtask 1: Identify impediments to defects
data collection based on lessons learned.

e Subtask 2: Explore techniques to automate/
simplify data collection process.

« Subtask 3: Develop/procure software tools

to assist in defects data collection, data stor--

age, configuration management, and data
presentation.

Long term (5-15 years). Two task were identi-
fied as long term activities:

Task 5: Correlation of Software Reliability to
Non-test Related Meirics

Software reliability models are based on test
data from the software product. Software is
expensive to test. A more cost effective
approach to reliability prediction could entail
predictive measures based on metrics that are
not test related. This task is to identify and
explore other factors that may influence soft-
ware reliability.

e Subtask 1: Analyze defects data to identify
factors that may influence final product reli-
ability.

. Subtas_k 2: Develop reliability prediction
model(s) that are not driven by test data.

e Subtask 3: Validate reliability prediction
model(s).

Task 6: Correlation of Software Reliability to
Safety/Security Metrics

Software reliability models should be incorpo-
rated into newer more expansive models that
examine and assess safety and security levels
of software in order to increase our abilities to
produce high integrity software with confi-
dence.

» Subtask 1: Examine defects data and soft-
ware reliability predictions for specific sys-
~ tems to identify factors that may influence
the safety/security attributes of a system.
Determine if higher reliability correlates
with enhanced safety/security.

e Subtask 2: Define metrics (qualitative and/
or quantitative) for the safety and security
attributes for the types of systems that San-
dia National Laboratories develops.

o Subtask 3: Define desirable or acceptable
levels of risk for systems in terms of the
metrics. :

e Subtask 4: Correlate the defects data to
quantifiable safety and/or security metrics.
Analyze the data to determine what pro-
cesses may enhance the safety/security
attributes of the system.

Benefits—Investment in this technology will
provide a number of benefits. Onlya few of the
most important are briefly outlined here.
These benefits are both internal and external
and provide advancements both in technical
and procedural aspects of the software lifecy-
cle.

From a iechnical aspect, advancements in this
area will allow users of the technology to
deliver a product with an expected reliability.
In addition, it will allow the evaluation of non-.
test related characteristics of software to pre-
dict reliability. This will allow an earlier
assessment of the reliability within the soft-
ware lifecyle, thereby improving potential cost
savings. Current models expect a 5% reduction

- 'in the cost of the overall project if these tech-

niques are applied. “We expect to see an
improvement in that figure if reliability assess-
ments can be made earlier in the lifecycle pro-
cess.

- Further, the improved ability to assess domain

specific attributes through objective data col-
lection and analysis will allow more software
decisions to be. made based on domain charac-
teristics and ultimately provide the basis for
leading edge research in reliability assessment
of critical software. With a strong historical
database, we will develop better metrics and
models for our domain that are more meaning-

ful, accurate, and easier to use; and the data-
base can also be used for more objective
benchmarking of alternative methodologies.

The tasks as outlined above in this predictive
measurement track will also provide advance-
ments for the overall software process. In par-
ticular, the database will provide for better
management of test assets and other resources
such as scheduling and cost issues. It will pro-
vide an objective opportunity for continued
process improvement; and, it will allow objec-
tive analysis of lessons learned. -

In the area of process improvement, successful
- completion of these tasks would provide inno-
vative and successful tools for the collection
and technical analysis of data. The established
metrics database would also provide a strong
testbed for support of future programs.

Table 1 (described in the next section) further
identifies the prospective benefits of each out-

lined task in relation to the High Integrity Soft- .

options for -
investment of resources within this track, tasks -
1 and 2 are minimum requirements. The Soft- .

-ware Web. In considering

ware Defects Database is a necessary founda-
tion for any substantive progress in the area of
predictive measurement. The actual scope of
the database may be revised initially according

to available resources. If a subset of the tasks

are pursued, a subset of the benefits will apply
and should be assessed accordingly when
determining investment focus.

Critical Competencies—The three main criti-
cal competencies related to this track include:
Software Engineering, Database Design, and

Statistical Analysis. (Other competencies are

needed for work in this track, but these three
are the most critical.) Expertise is needed in
each of these three areas to ensure successful
investment within this proposed track. First,
the various components and critical aspects of
software engineering must be clearly under-

stood in-order to drive the measurement tasks.
Second, the design of the database must sup-
port as yet undetermined analysis; therefore,
maximum functionality must be incorporated
into the design to support future studies requir-
ing critical knowledge of current architectures,
tools, and capabilities. Finally, the third critical
competency requires an excelient understand-
ing of statistical analysis. This is needed in
order o verify that appropriate assumptions

- are made and observed in collecting, process-

ing and analyzing the data. Otherwise, there
will be no technical validity to this work.

In addition to requiring competency in these
three areas, several other critical issues affect
work in this area. For instance, the selected
metrics must be germaine to the unique aspects
of the selected projects. These projects must be
judiciously hand-picked to meet specified

requirements. The database will be most useful

for the types of projects selected—thus the
need for careful seiection. {In other words, the
analysis will apply to the domains of the
selected projects, thus they must be character-
istic of the types of projects that will be utiliz-.
ing this technology.)

Considering further issues, staff must support
the collection process with rigorous compli-
ance. Spotty collection will invalidate all

efforts. Consequently, staff training should be

provided on how to use the statistical analysis
tools and proper collection procedures as they
are developed. This process may also help to
identify training deficiencies. Finally, contin-
ued analysis of the data must occur to reap the
benefits of the predictive process.Table 1 pro-
vides a mapping of the tasks described above
to the technologies and capabilities identified
in the High Integrity Software Web illustrated
in Figure 1. This mapping illustrates the edu-
cational needs associated with each task and
also illustrates the different technologies that
will benefit from successful completion of
each task.

TABLE 1. Mapping of Technologies and Capabilities to Tasks

» Task0 J Taskl | Task2 | Task3 | Task4 | TaskS | Task 6
Lifecycle X X X X
Process control
Methodology X X X X X X
V&V X X X X
Risk Management X X X X X
Estimating & X X X X
Predicting
System X X X X
Characterization

Critical Issues—The major critical issue to
this track is that it does not provide any short
term payoff to SNL software development pro-
cesses. For example, the defects database must
be established before objective analysis can
begin, and the process itself must be iterated
over several projects before some of the noted
process and technical benefits will occur.

Therefore, the SNL software development pro-
grams must implement the defects data collec-

tion as a minimum task, or this track cannot
progress. Some analysis can begin once data
has been collected for at least one project;
although the results will be stronger based on
the number of projects that are considered.

Also, the perceived benefit of this technology
is often not accurate as the defects coilection
requires an initial front end effort with the
expected benefit to occur at the end of the pro-
cess through reduced testing efforts to achieve
desired levels of predictive reliability. This
perception should improve as objective evi-
dence is obtained demonstrating validity of the
techniques. Other organizations have clearly
documented these improvements through such
methods [7].

Because the projects selected for defect data
collection are important for the domain charac-
terization, minimal control over the selection

of projects could significantly limit the analy-
sis process .and restrict the functionality (or
expected payoff) of the proposed work. The
critical issue here is that management must
support the defects collection on those projects
deemed to benefit most from the technology
even though the collection process may induce
additional schedule overhead.

In addition, corrective actions identified to
improve SNL software development processes .
may not be cost effective for all projects and .
may be domain specific in some cases. Further, -
ultra-high reliability levels (0.999999) cannot
be demonstrated with current reliability
growth model(s), and thus cannot be achieved
within the short term. Newer models will have
to be developed and tested based on the objec-
tive data obtained within the defect database.

Another ‘critical issue that could prohibit
advancement in this area would be the failure
to achieve staff compliance with the defect col-
lection process and analysis methods.Fre-

quently, staff view these activities as pointless

overhead. Efforts outlined in this track are
focussed on how to help staff improve the
integrity of the software they produce and thus,
staff should view these tasks as value-added
effort for their benefit with an expected time-
trade-off in reduced testing time. -

Finally, if the data collection effort is not prop-
erly controlled, statistical projections will be
false. And, we may not know today what infor-
mation needs to be collected for the proposed
predictive models. Therefore, careful consider-
ation needs to be taken in the early phases of

-the predictive measurement track to opdmize
the potential utility of the measured data.

Correct Specification via Visualization, Syn-
thesis, & Analysis

This track of Sandia National Laboratories
High Integrity Software (HIS) Initiative is to
develop a software/hardware system specifica-
tion, design, and implementation methodology
along with tools that will guide the developer
to intrinsically “sure” designs. Initial efforts by

Yakhnis and Yakhnis have identified the fol- -

- lowing goals for methodologies and tolls to be
developed within this track:

e The system specification will accurately
reflect the true customer intent; also, the
methodology will help the customer to
reveal and evaluate all of the information
included in his or her original idea;

» All system analysis and design documents
will have a precise semantics (e.g., as in the
Object-Oriented System Analysis(OSA)
model {4] or the Business Object Notation
(BON) model [8]). The semantics will serve
as a basis for prototyping and visualization
at every stage of system creation, from
requirements capture to design;

s The system will conform to the specifica-
tion and design via computer generated
mathematical proofs, so that each layer of
the design or code will conform to the ele-
ment of the design or specification posi-
tioned immediately above within the
specification/design hierarchy [11], [12];

* At each analysis of a design step, the cus- -
tomer will be provided with persuasive
demonstrations (e.g., via computer visual-
ization) that the system behaves as desired;

- o The system will maintain traceability of

requirements in the sense of an automated
ability to locate the respective customer
requirements for every element of the
design and/or code;

¢ Maintainability will be sound in the sense
that specification, design, and code will be
continuously maintained to be mutually
consistent; and .
» System surety (in respect to safety, security,
etc.) will be enhanced by guaranteeing pre-
determined system behaviors with respect
to a list of unusual circumstances provided
by the requirements (e.g., hardware mal-
functions). Specifically, the system will be
able to either undertake a protective action
or gracefully degrade its performance while -
giving sufficient warnings to users [10].

Yakhnis and Yakhnis have proposed that these
goals can be achieved via seamless (also see
[8)) integration of OOA, OOD, code genera-
tion, visualization, and automated correctness
proofs. Specifically, they suggest pursuing the
following steps: .

(A) Making specifications transparent and eas-
ily accessible:

Presently they distinguish three ways to repre-
sent a specification:

1. An informal specification in a natural lan-
guage. This approach stems directly from
the requirements, and thus, is at least par-
tially understood by the customer. However,
without conversion into the two other
forms, this method is usually not conducive
to systematic design and implementation;

2. A formal specification. This approach is
usually not understood by the customer;
although, this technique may be conducive
to automated development of correct sys-
tems; and

3. An object-oriented analysis model. This
tactic allows the specification to closely
model the real world, possibly serving as a
common ground for communication
between the customer and the developers.

Note that a non-hierarchical moderately com-
plex specification of any of the above kinds is
usually not understood in its entirety by either
the customer.or the developers. Thus, the fol-
lowing six actions are suggested for improved
specifications:

1. develop hierarchical specifications such that
each observable element will not contain
more than seven subordinate entities;

2. represent the specification as three docu-
ments that consist of: an informal specifica-
tion, a formal specification, and an object-
oriented analysis model;

3. for the object-oriented analysis model.
choose an object model {e.g., OSA or BON
which does not include any elements of
design [4], [8], [12]. Doing so will prevent
developers from distorting the requirements
analysis stage by making design decisions
too early;

4, make the hierarchical structure of the three
documents similar. For example, each
object within the object-oriented model
should correspond to its description within
the informal specification document;

5. provide hypertext-like links between corre-
sponding elements among the three specifi-
cation documents; and finally,

6. do not use the formal specification docu-
ment to communicate with the customer.

(B) Insuring that the specification captures the
original idea:

A “simultaneous iterative refinement” proce-
dure should be used to capture the specifica-
tion from the original customer requirements
(SIRC). The customer should have control
over the capture/extraction processed all times
since the feedback from the developers will be
provided in several transparent forms, includ-
ing visualization.

(C) Enabling the specification to govern the
design and implementation:

The “simultaneous iterative refinement” proce-
dure should be extended via the object-ori-
ented stepwise refinement process to obtain a
“simultaneous iterative refinement” procedure
of design (SIRD). Under this SIRD procedure,
each object is treated as a new system to be
analyzed and specified. Thus, the design is
viewed as a continuing application of methods
for analyzing requirements, albeit with smaller
granularity of objects.

The hardware and software should be devel-
oped jointly, with their separation only occur-
ring for appropriate granularity of objects
when needed. Further, at each step of the
design process, a mathematical proof, that the
internal design of each object.(i.e., subsystem)

- conforms to its exterral specification, will be

computer-generated [12]. Finally, a target code
that has been mathematically proven correct
will be automatically generated [9].

Correct Implementation of Components

This track focuses on achieving advancements
in program transformations to ensure correct
implementation of components. Program
transformation can be a means to formally and
correctly bridge the gap that exists between the

specification of a problem in some domain
specific language, and a realization of the
specification in some programming language.
Exactly what constitutes a domain specific lan-
guage and what constitutes a programming
language is more or less irrelevant from a theo-
retical point of view.

Given a specification, s, tha: is expressed in
some domain specific language, a transforma-
tion sequence T can be constructed that will
transform into s’ where s’ is an executable pro-
gram belonging to some previously selected
target language. Furthermore, if T has been
shown (through formal proof) to be “correct-
ness preserving”, then we can conclude that

the program s’ is correct with respect to the .

specification s.

Victor Winter has identified several goals for
this research area. The remainder of this track
is broken down into two sections. The first sec-
tion discusses short term and near term objec-
tives and the second section discusses long
term objectives.

Current and Near Term Goals—The “task
scheduling” problem will be investigated for
demonstration of our desired HIS methodol-
ogy. The specific instance of task scheduling
of interest to Sandia to be considered are the
algorithms found in the WALS and APP
projects for pit handling at Pantex.

Ideally, a correct formal specification, S, of the
problem would be produced by research
efforts under the correct specification via visu-
alization, synthesis and analysis track
described in the previous section. This formal
specification would be in a domain specific
language whose formal semantics would also
be defined. ‘

- It should be noted that the specification, S,
- might be in a language that is not directly exe-
cutable by a computer, or S might be ineffi-

ciently executable. At this stage,
transformations can be applied to S with the
goal of producing a program, satisfying S, that

- can be efficiently executed by a computer.

In order to accomplish this one needs to 1)
define the source and targe: language in a com-
mon semantic framework; 2) write a transfor-
mation sequence, 7, that is capable of
transforming S into a program P; and 3) prove
the correctness of the transformation séquence,
T.

A transformation system is suggested for this
effort. A suitable choice is TAMPR, created by
James Boyle at Argonne National Laboratory.
TAMPR is a transformation system that views
specifications, programs, and transformations
in terms of syntax derivation trees (SDT’s). In
this paradigm, a transformation is simply a
rewrite rule stating that one SDT should be
rewritten into another. ’

At Sandia, Victor Winter is currently investi-
gating environments and tools that will facili-
tate manipulating, constructing, -and reasoning -
about transformations. Because syntax deriva-
tion trees associated with transformations tend

- 10 be quite massive, he is looking at Pad++ as a

possible environment for presenting syntax
derivation trees in a form more amenable to
human understanding.

The correctness of a transformation sequence
can be proven with the assistance of an auto-

.mated reasoning system. Winter has developed

an approach that uses the automated reasoning
system OTTER created by Larry Wos and Bill
McCune. Based on his experience, Vic sug-
gests that an extension to the automated rea-
soning system OTTER is necessary in order to
make transformation proofs more manageable.

Currently, transformation proofs require sev-
eral passes, with each pass concerning itself
with providing a certain portion of the overall

proof. Search strategies and inference rules can
vary from one pass to the next. Ideaily the
overall strategy of a complex proof could be
defined within the automated reasoning system
itself, eliminating the need for separate passes.

Finally, a significant amount of research needs
to be done in order to expand the class of trans-
formations about which current methodologies
are capable of reasoning. These areas of
research are mostly near term (3-5 years)
goals. A list of the general areas with a brief
description of what is needed is given below:

» Automatic deduction of delta-functions.
Delta functions are essentially the semantic
manifestation of syntactic variables that can
occur within transformation schemas. It is
because of these variables that transforma-
tions obtain a general applicability. Reason-
ing about such variables requires
knowledge of their semantics. A delta-func-
tion captures the semantics of such vari-
ables; currently, these delta-functions are
constructed by the user, a situation that is
unacceptable if one desires to produce high
integrity software.

» Reasoning about subtransformations. A
subtransformation is a transformation
within the body of another transformation.
Research needs to be conducted on how
such information can be adequately
expressed and exploited in a correctness
proof.

e Formally deducing and incorporating pre-
conditions (canonical form properties).
Research in this area centers around the
development of a theory enabling one to
reason about properties other than correct-
ness that are established by transformations
and transformation sequences.

Long Term Goals—There are many areas that
need to be researched and further developed in
order to produce a usable production strength

methodology. With the present technology it is
quite difficult to prove the correctness of trans-
formations that introduce significant algorith-
mic - implementation decisions. Dramatic
improvements can (and need to) be made in -
this area.

Currently, Winter suggests further investiga-
tion of refinement caiculus. In addition, he
believes efforts to make algorithmic imple-
mentation decisions (to some extent) automati-
cally deducible by computer through
observation of human solutions to “example”
problem instances would be likely to improve
current technology.

-

Development of a methodology that is capable

of quantitatively computing the reliability of
arbitrary analysis techniques (e.g., risk analy-
sis, formal verification, etc.) will follow earlier
efforts. This idea is based on measuring the
resiliency of an analysis technique to typos and
other errors. Essentially, we will measure the
chaotic nature of the analysis technique, relat-
ing this work to the predictive measurement
track. - »

Critical Issues/Show Stoppers—In order for
this technology to succeed, a specification lan-
guage and a specification must be produced in
the track on correct specification via visualiza-
tion, synthesis, & analysis that is amenable to
the ransformation process. This requires a fre-
quent exchange of ideas between these two
tracks.

Further, it is extremely desirable, at some
future point, to be able to extend reasoning
about transformations to properties other than
correctness (e.g., safety); of course, those
properties need to be defined first. Currently,
some preliminary theoretical research has been
done with respect to reasoning about general
properties that are established by transforma-
tions- and transformation sequences. We envi-
sion that properties other than correctness

(e.g., safety) can be handled within this theo-
retical framework.

System Composability

System Composability is the ability to com-
bine components to achisve a specified func-
tionality and to understand properties of the
whole from the properties of the parts. Build-
ing and maintaining large systems becomes
much more manageable when systems can be
composed from well understood parts.

Interest in applying this approach to software
systems is evident in ARPA, the Component

Ware Consortium, the computer security com-

munity, and elsewhere. As software systems
have grown immensely in size and complexity,
methods of producing those systems have not
kept pace. Composability is a whole new
approach to producing systems. It works in the
hardware industry, and many are asking why
not for software too?

Our interest in System Composability is not
.just in the efficiency of producing systems, but
in how Composability can contribute to very
high integrity software. At one level, simply
re-using software modules that have been well
proven provides some benefit; but we need to
achieve a higher level of benefit, by under-

standing properties of the system architecture-

resulting from the composition.

For example, if modules have certain charac-
terizable security, safety, or correctness
attributes, is there a model that tells how to
characterize the system as a whole? (Note that
this is not the case for today’s security imple-
mentations: connecting a B1 system to a Bl
system does not yield a B1 network!) If not,
we need to map out an approach for develop-
ing such a model. We also wish to learn
whether there are architectures that can yield a

system with higher integrity than the parts it is
made of; this would be especially valuable
when using COTS products.

This track should address three situations:

« Within a mature application area where
domain models, architectures, and compo-
nents exist, the emphasis is to appropriately
adapt and reuse components, and to deter-
mine composite system properties from the
properties of validated components. It may
be possible to identify correctness preserv-
ing composition rules, or other desired
property preserving rules. The Correct
Implementation roadmap track’ may yield
some insights that apply here.

+ When “foreign” components, e.g., COTS or
modules from different domains, must be
integrated into an architecture, the emphasis

" is on understanding mismatched properties
and assumptions. Coraposing properties
becomes very challenging, as information
on component properties may not be in the
desired form, and mismatches may be hard
to remedy. '

+ When unproven components are used in a
system, the emphasis is on validating them,
and meanwhile protecting against them.
Runtime measurement and validation -
‘approaches would allow early use of such
compenents while confidence” is being
gained. Defensive architectures should also
be sought, such that the system can contain
the damage from an unproven component,
and essentially deliver higher system surety
than the “sum” of the components.

Benefits—One aspect of composability is-
building systems from parts, with the use of
COTS products and the reuse of software mod-
ules as goals. Of course, this has great effi-
ciency implications. Regardless, composability
is seldom achievable today because of mis-
matched functionality and unknown assump-

tions. Even if a system is initially built from
parts, maintaining the modular architecture in
light of changes and enhancements during the
maintenance phase is difficult.

Another aspect is understanding behaviors of
the parts and the whole. If the surety and integ-
rity properties for parts can be understood and
measured, then we also need a model of how to
compose those into a system measurement.
This track emphasizes the latter, while the
Measurement & Prediction track emphasizes
the former. If the goals of this track can be
achieved, the benefits will include:

o Efficiency in system development,

» leveraging the surety records of proven
components,

+ maintaining system surety in the face of low
integrity components,

¢ aintaining system sucety as parts of the
system evolve, and

e leveraging and amplifying the other road-
map tracks.

Critical Issues/Show Stoppers—The goal of
defining and composing characteristics of soft-
ware modules is very ambitious. Little is
known today about how to characterize soft-
ware properties (especially surety properties),
or what to measure about software, let alone
what might make sense to compose. The suc-

cess of this track depends on advances in the -

Web Technologies/Capabilities of domain
modeling, architecting, risk management, most
especially system characterization, and esti-
mating & predicting. Appropriate statistical
techniques must be developed with great care
paid to the appropriate assumptions that will
need to be made to in the development of mod-
els to guide in assessing system composability.
This effort will also be greatly influenced by
the success or difficulties encountered in the
other roadmap tracks.

5. CONCLUSION

We have presented the beginnings of a strate-
gic plan for high integrity software. We have
identified necessary attributes, strategies and
supporting technologies and capabilities
needed to achieve our goal of improved soft-
ware surety. Further, we have specified and
described several research tracks to accom-
plish our stated goals. Improvements will need
to be achieved within several different tracks to
attain success.

Our next step is to continue development of the
web, expanding it into a more complete strate-
gic plan containing specific goals, strategies
objectives and tasks. In addition, we need to
continue assessing the research tracks to deter-
mine project priorities and their expected
impact and contributions towards HIS goals.

ACKNOWLEDGMENTS

We wish to thank our colleagues at Sandia.
National Laboratories who have contributed to
the strategic surety roadmap. They include
Victor Winter, Alex Yakhnis, Viadimir Yakh-
nis, Sharon Fletcher, Elmer Collins and the

- Sandia ‘High Integrity Software Roadmap

Team.

REFERENCES AND NOTES

{11 Albuquerque Journal, Sunday November 12, 1995.

{2] Collins, Dalton, Peercy, Pollock, and Sicking, “A
Review of Research and Methods for Producing High-
Consequence Software”, 1995 IEEE Aerospace Appli-
catons Conference, Vol 1, January 1995, pp. 197-245.

(3] “Cyberware.” Time, August 21, 1995.

[4] Embley, D., Kurtz, B., Woodfield, S.;, Object-Ori-

ented Systems Analysis (A Model-Driven Approach).
Yourdon Press, 1992.

[5] Gibbs, W., “Software’s Chronic Crisis”, Scientific
American, September 1994.

{6] Lagedec, P., “Major Technological Risk”, Quoted in

Safeware. System Safety and Computers, Nancy Leve-
son, Univ. of Washington, Addison-Wesley, 1995.

{71 Musa, I.D., A. Iannino, K. Ckumoto, Software Reli-
ability: = Measurement, Prediction, Application,
McGraw-Hill, Inc., 1987

[8] Walden, K., Nerson, J., Seamless Object-Oriented
Software Architecture, Prentice Hall, 1995.

[9] Winter, V., Yakhnis, A., Yakhnis, V., High Integrity
Software: Automated Software Design via Refinement
Transformations, submitted to 8th Annual STC’96.

[10] Yakhnis, A., Yakhnis, V., High Integrity Software:
Capture and Analysis of Requirements on Safety via
Strategic Multiagent Approach, submitted to the 8th
Annual STC’96.

[11] Yakhnis, V., Farrell, J., Shultz, S., Deriving Pro-
grams Using Generic Algorithms, IBM Systems Jour-
nal, vol. 33, no. 1, pp. 158-181, 1994,

[12] Yakhnis, V., Yakhnis, A., A Model of Object-Ori-
ented Analysis and Design Tailored Toward Stepwise
Refinement, to appear as Mathematical Sciences Insti-
tute, Cornell University technical report.

Guylaine M. Pollock, a
Senior Member of the
Technical Staff at San-
dia National Laborato-
ries, received a Ph.D. in
Computer Science from
Texas A & M University
and a BS in Computer
Science and Mathemat-
ics from East Texas
State University, graduating with Academic
Distinction and Highest Honors. She has
served on Software Capability Evaluation
Teams for the Battle Management Defense

Teams for the Battle Management Defense
Organization of the Department of Defense.
She has investigated software reliability for
massively parallel codes and is a member of
the Sandia Reliability Working Group. Dr. Pol-
lock is a member of the Board of Governors of
the IEEE Computer Society and currently is
serving as Treasurer and has previously lec-
tured with the Distinguished Visitors Pro-
gram for the society. She has received several
awards including the Richard E. Merwin
Scholarship and Notable Women of Texas.

Larry J. Dalton holds a
BS in Applied Mathe-
matics and an MS in
Electrical Engineering
from the University of
New Mexico. Larry has
spent the past 18 years
at Sandia National Lakb-
oratories in Albuquer-
que, New Mexico
engaged in high-consequence systems develop-
ment. He has developed personnel entry
control systems for DOE high value facili-
ties, and Aircraft Monitor and Control
System for gravity nuclear weapons on board
the B-52, high performance airborne multipro-
cessing systems for advanced concepts demon-
strating and gravity nuclear - weapons
programmers. He currently manages the Com-
mand and Control Software Department at
Sandia that develops software and systems
safety solutions for high-consequence opera-
tions. These activities span nuclear weapons,
biomedical applications, transportation, and
information security.

This work was supported by the United States Depart-
ment of Energy under contract DE-AC04-94A1.85000.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United State‘s
Government. Neither the United States Government nor any agency theref)f, nor any of the{r
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any informzftlon, apparatus3 product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof.

