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do not work for charged-particle beams. It is hoped, however, that the methods presented here
provide some progress toward a multidimensional, deterministic electron-transport capability.

Coupled electron-photon transport capability is needed for an ever-increasing number of appli-
cations, including the response of electronics components to space and man-made radiation envi-
ronments, medical radiation therapy, industrial curing, and food sterilization. Currently, powerful
Monte Carlo codes are available for electron transport?. While some problems are well suited for
a Monte-Carlo approach, other problems are more efficiently solved with a deterministic method,
e.g. computing distributions, modeling deep penetration, and low-probability events.

Deterministic electron transport capability has been available for one-dimensional geometries,
with the CEPXS/ONELD code package®. Unfortunately, the CEPXS/ONELD approach is not eas-
ily extendable to multidimensional geometries. Bill Filippone and his students at the University of
Arizona developed the multidimensional, deterministic charged-particle code, SMARTEPANTS®.
This code is presently under active development.

The work presented here combines the CEPXS/ONELD and SMARTEPANTS approaches,
resulting in SMARTEPANTS-like cross sections that are compatible with production discrete-
ordinates codes. The resulting cross sections have a number of desirable properties: 1) positivity,
2) much smaller than the true interaction cross sections, 3) low-order Legendre expansion, 4) and
not tied to a particular quadrature set. These desirable properties will be further explained, with
limitations given, later in this article.

I1. BOLTZMANN-FOKKER-PLANCK OPERATOR

The Boltzmann operator, L, describing the distribution in space, direction, and energy of a field
of either charged or neutral particles is defined by’

L‘I)(I‘, Q, E) =—Qe V(I)(I', 0, E) - Ut(r> E)CI)(I" Q, E)
+ / / oo(r, ¥ — @, E' — E)3(r, ¥, E')dQYdE". (1)

The scattering cross section, g4(r,¥' — Q,E’ — E), is the probability per unit energy and solid
angle that a particle of energy E' moving in direction §2' will be scattered to energy E in direction
Q. The total cross section is g4(r, E'). For neutral-particle applications, the Boltzmann equation
is normally solved by expanding the scattering cross section in a low-order Legendre polynomial
expansion and the discretizing the spatial, energy, and angular dependence of the fluence.

For scattering that is highly forward peaked, which is characteristic of charged-particle scat-
tering, the Legendre polynomial angular expansion of the cross sections that is normally used
in discrete ordinates codes is inadequate. The Boltzmann-Fokker-Planck (BFP) operator is an
approximation to the Boltzmann-transport operator for scattering interactions that are highly
forward peaked.

In order to model electron transport with a BFP formulation, the scattering cross section is sep-
arated into three components, 1) the elastic-scattering part (for directional change without energy




loss), 2) a soft inelastic-scattering part (for energy loss without significant directional change), and
3) a hard inelastic-scattering part (for both energy loss and directional change). The soft-inelastic
portion of the scattering cross section is approximated by Continuous-Slowing-Down (CSD) theory,
so that the Boltzmann-Fokker-Planck operator is®

a

Lorpd(r, 2, E) = —Q ¢ V(r, 2, E) — (0u + 0b) 8(r, 2, E) + 35159
+ / oa(r, po, E)®(r, ¥, E)dSY + f / ot (r, o, E' — E)®(r, ¥, E')dSYdE, 2)
where the stopping power is defined by
E+6
S(r,E)= [ dE'o}(x,B' > B)(E - E), (3)
E

where § is the energy boundary (artificial) between soft and hard scattering.

The inelastic-scattering cross section is separated into two components by specifying an artificial
energy and directional boundary separating the two components. For energy loss greater than
the artificial boundary value, the inelastic-scattering cross section is handled with a standard
multigroup-Legendre expansion, requiring that this part of the cross section not be too anisotropic.
For energy loss less than the artificial boundary, the inelastic-scattering cross section is modeled by
the continuous-slowing-down theory, requiring that the angular change be negligible. In the CEPXS
code®, down scattering to an adjacent group is treated with CSD theory and, down scattering
beyond an adjacent group is treated with the standard multigroup-Legendre expansion.

III. THE GOUDSMIT-SAUNDERSON OPERATOR

The Goudsmit-Saunderson operator® includes 1) the elastic-scattering part (for directional

change without energy loss), and 2) the soft inelastic-scattering part (for energy loss without
significant directional change), and neglects 3) the hard inelastic-scattering part (for both energy
loss and directional change). The Goudsmit-Saunderson formulation solves the infinite-medium
problem. The value of the Goudsmit-Saunderson equation is that it can be solved exactly. The
Goudsmit-Saunderson operator is '

Lcs‘b(ﬂ, E) = —Uelq)(ﬂ, E) + / O'el(ﬂlo, E)q)(ﬂ’, E)dﬂ' + a%[S'i)] (4)

The Goudsmit-Saunderson solution is based upon the expansion of the angular fluence and
elastic-scattering cross section in infinite Legendre-polynomial expansions. The elastic-scattering
cross section is extremely forward peaked and, therefore, requires a huge number of Legendre
expansion coefficients for accurate modeling (typically ~200). If the angular fluence and the
elastic scattering cross section are expanded in infinite Legendre-polynomial series, the source-free
Goudsmit-Saunderson equation becomes
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where ¢" and o} are the Legendre moments of the fluence and elastic-scattering cross section,
respectively.

Multiplying by P,(u), integrating over u, and integrating from energy E to energy an upper-
energy bound Eg, the angular fluence is

Bq [ e0,(E) =0T (E))

S(E)@(u, E) = iozn; : / Pu(p)e ( o ) " Pu)S (BB, o). (6)

Eq. (6) is the basis for computing SMART multigroup-Legendre cross sections. The success of the
method depends on: 1) accurately relating the boundary fluences to the multigroup fluences, and
2) the exponential term introducing enough anisotropy into the scattering such that the Legendre
expansion converges with a small number of terms.

IV. MULTIGROUP-LEGENDRE CROSS SECTIONS

The multigroup-Legendre form of the Goudsmit-Saunderson equation is

Lol+1

0u9®a(w) = Y= [ Pl Pl )2y ()W (7)
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There are a number of possible ways to relate Eqs. (6) and (7). The manner in which this is
done has a profound effect on the resulting cross sections, and we present two methods here. The
first method results in cross sections that are all positive, which is certainly a desirable property.
The second method results in cross sections that may be negative, but results in more accurate
solutions.

A. Method 1: Relate boundary fluence to adjacent multigroup fluences

Integrating Eq. (6) over energy group g+1 and dividing by the group width results in

- [ ) o (3257)
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where the upper energy bound, Eo, has been replaced by E, +35 the energy boundary between

groups g and g+1. For uniform group widths, the multigroup and boundary fluences are approxi-

mately related by
~ So®q(1) + Sg1189+1(1) '

Sg+%¢(#’ Eg+-%) = OAE (9)

Substituting Eq. (9) into Eq. (8) and multiplying by 2,
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where the Legendre expansion has been truncated at order L. Multigroup-Legendre cross sections
are determined by comparing Eq. (10) with Eq. (7). The total cross section is

25,

Otg = '—"AE (11)
The zero moment scattering cross sections are
S,
o _ 0 _ Mg
Tg-9 = Y9941 = A g (12)
and the higher-order self-scatter cross sections are
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and the higher-order down-scatter moments are
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To ensure particle balance, an absorption term is added to the lowest-energy group

Sg

G = AL (15)
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B. Method 2: Linear-continuous differencing

A slightly different relationship!® between the multigroup and boundary fluences results in more
accuracy but generates negative cross sections. The multigroup fluence is approximated by

Sg+%¢(/.1/, Eg+-%) + Sg—%(ﬁ(p’a Eg——%)

16
2AE, (16)
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Substituting Eq. (16) into Eq. (8) results, after some manipulation, in the following cross sections.
The total cross section is

(Tt’ =< (17)
9 AE,
and the self-scatter cross sections are zero. The zero-moment down scatter cross sections are
S,
oy = A1 (18)



and the higher-order down-scatter moments are

0 !
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To ensure particle conservation, an absorption is added

S
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V. SUMMARY

The Goudsmit-Saunderson approach combines the elastic scattering and CSD terms in a single
downscatter cross section. By averaging over energy groups, self-scatter and down-scatter cross sec-
tions are determined that are much less forward peaked than the true cross sections they represent
and are, in certain circumstances, amenable to a low-order Legendre-expansion approximation. We
now demonstrate good agreement with experiment and Monte Carlo results for 1-MeV electron
beams incident on a variety of materials.

VI. COMPARISON WITH LOCKWOOD DATA

Lockwood, et al.!! have performed a series of careful measurements of energy deposition profiles
for 1-MeV electrons normally incident on range-thick materials. The experimental uncertainties
are less than a few percent. Fig. 1 shows the excellent agreement between calculation and mea-
surement. Fig. 1 compares dose-depth profiles for electrons on beryllium, aluminum, tantalum,
and a composite of aluminum/gold/aluminum.

Electron cross sections were computed with a modified version of the CEPXS® code and the
transport was performed with the ONELD?® discrete ordinates code. ONELD is designed to accept
negative cross sections, so the more-accurate linear-continuous difference method was used to
generate the cross sections. Table 1 shows the number of energy groups and Legendre expansion
order necessary for accurate solution.

Material | Energy Groups | Quadrature Order | Legendre Order
beryllium 40 32 17
aluminum 50 32 11
tantalum 80 32 5
al/au/al 80 32 15

Table 1: Parameters required for discrete ordinates modeling of Lockwood data.



VII. COMPARISON WITH MONTE CARLO

Fig. 2 shows energy-deposition distributions for a 1-MeV electron beam normally incident on
a bar of aluminum that is about a half-range thick. The figure compares results from the Monte
Carlo code ACCEPT* with those from TWODANT?. The agreement is very good. The Monte
Carlo results are less-smooth, due to the statistical nature of the solution. The discrete ordinates
results exhibit some numerical straggling, which tends to spread out the beam a bit too quickly
with penetration, but this is not too serious for this problem. '

Table 2 compares runtimes of the Monte Carlo and discrete ordinates solutions. The Monte
Carlo results are listed with corresponding statistical uncertainty ranges over the 1,600 cells used
to compute the energy-deposition distributons. The timing of the Monte Carlo runs is very much
dependent upon the accuracy in the resulting solution, especially off the beam axis where the
result is small. The Monte Carlo times are also strongly dependent on the number of cells used
to compute the energy-deposition distribution. Times for the TWODANT results are compared
with corresponding runs with DORT. The DORT results are not shown, but also agree well with
Monte Carlo.

VIII. SUGGESTIONS FOR FUTURE WORK

The SMART multigroup-Legendre cross sections should work well in adjoint calculations, as
they do in forward calculations, although this has not been thoroughly tested as yet. The cross
sections should also be effective in multigroup Monte Carlo calculations.

The SMART multigroup-Legendre cross sections have been demonstrated to work over a wide
variety of problems. However, there are some problems for which the cross sections have not
worked so well. For high-energy electron beams on water (of importance in radiation oncology
studies) a very high-order Legendre expansion is required. For these types of problems some type
of first-collision source technique may prove effective!?. For high-energy electron beams on high-Z
materials a large number of energy groups is required to reduce numerical straggling. Allowing for
non-uniform electron energy group widths would improve the modeling, in some cases.

This work was supported by the U.S. Departement of Energy Contract DE-AC04-94-AL85000.

Fractional | Single-Processor
Standard | SPARC1000 CPU
Code Method Deviation (minutes)
ACCEPT Monte Carlo 0.01 to 0.24 38
ACCEPT Monte Carlo 0.0 to 0.05 620
DORT Discrete Ordinates na 41
TWODANT | Discrete Ordinates na 88

Table 2: Timing comparisons: discrete ordinates vs. Monte Carlo.
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Figure 2: Comparison of ITS Monte Carlo and CEPXS/TWODANT calculations

for 1-MeV electron beam normally incident on aluminum bar.
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ABSTRACT

A method is described for generating electron cross sections that are compatible with standard
discrete ordinates codes without modification. There are many advantages of using an established
discrete ordinates solver, e.g. immediately available adjoint capability. Coupled electron-photon
transport capability is needed for many applications, including the modeling of the response of
electronics components to space and man-made radiation environments. The cross sections have
been successfully used in the DORT, TWODANT and TORT discrete ordinates codes. The cross
sections are shown to provide accurate and efficient solutions to certain multidimensional electron-
photon transport problems.

I. INTRODUCTION

This article describes the extension of neutral-particle discrete ordinates codes for electron
transport applications. Electron cross sections are computed that are compatible with standard
discrete ordinates codes without modification. To the extent that these cross sections approximate
the physics of the electron interactions, neutral-particle codes, such as DORT!, TWODANT? and
TORT?, are able to model electron and coupled photon-electron-positron transport.

The advantages of such an approach are many. Adjoint capability is immediately available.
Standard codes have undergone extensive benchmarking and quality assurance (QA). From a user
standpoint, using the same transport code to model neutron, photon, and charged particle trans-
port is efficient. Acceleration techniques that have been developed for neutral-particle transport
apply to a certain extent to charged-particle transport.

There are also some problems involved with using a neutral-particle code for charged-particle
transport. Production discrete ordinates codes are unable to model é-function downscattering,
which is inherent in the continuous slowing down approximation (CSDA) describing charged par-
ticle transport. Furthermore, because the charged-particle interaction cross sections are generally
much larger than their neutral-particle counterparts, traditional first-collision source techniques

DISTRIBUTION OF THIS DOCUMENT 15 UNLIIT E?%/

74V




