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Abstract

The use of the SDDS (Self-Describing Data Sets) file protocol, together with the UNIX op-
erating system and EPICS (Experimental Physics and Industrial Controls System), has proved
remarkably powerful during the commissioning of the APS (Advanced Photon Source) accelerator
complex. The SDDS file protocol has permitted a tool-oriented approach to developing applica-
tions, wherein generic programs are written that function as part of multiple applications. While
EPICS-specific tools were written for data collection, automated experiment execution, closed-loop
control, and so forth, data processing and display are done with the SDDS Toolkit. Experiments
and data reduction are implemented as UNIX shell scripts that coordinate the execution of EPICS-

specific tools and SDDS tools. Because of the power and generic nature of the individual tools and

- of the UNIX shell enviroment, automated experiments can be prepared and executed rapidly in
response to unanticipated needs or new ideas. Examples are given of application of this method-

ology to beam motion characterization, bea,m-posmon-momtor offset measurements, and klystron -

characterization.

1 'The SDDS Protocol and Toolkit

The Self-Describing Data Set file protocol and program toolkit are an essential part of accelerator
experiments at APS. The usefulness of SDDS stems less from the data protocol itself than from the

large number of existing generic SDDS-compliant programs, referred to collectively as the “SDDS |

Toolkit.” The file protocol and the toolkit are described in detail in the references [1, 2]. :

Self-describing data (SDD) are data that are referred to and accessed by name only. SDD
usually have metadata that are available, again by name only. We believe the limited application
of SDD to date is related to attempts to achieve excessive generality. With increasing generality
. comes increasing difficulty in application development and use, and longer development times. An
overly general protocol makes it difficult to create generic tools, losing the principle motivation for
SDD.

SDDS protocol is general enough to be useful, but simple enough to be usable. The data model
permits an arbitrary number of “data pages” of homogeneous structure. The structure defines an
arbitrary collection’ of parameters (i.e., single values), multidimensional arrays, and a data table.
Each page is an instance of this structure. The various elements of the page are available via calls
to a library of C routines, as is metadata about the elements (e.g., units, data type, number of
array entries). Various data types (e.g., string, floating-point, integer) are supported.

SDDS files may be either binary or ASCII format. The ASCII variant is simple enough that
input data can be readily created “by hand” when required. Data from non-compliant programs
can often be converted with the addition of a simple file header. '

While the SDDS protocol is able to store most data conveniently, using it would not be advan-
tageous if there were no tools available to operate on the data. The SDDS Toolkit is a group of
over 40 independent programs that accept SDDS files as input. Almost all of the programs also
create SDDS files as output. This means that complicated data processing sequences can be created
by combining the function of several programs, without worrying about whether one program can
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use the output of another or create output suitable for another. Such sequences may use interme-
diate files or they may be constructed as pipelines. Applications are made more independent of
each other, in that the presence of additional data in a data stream will not break an application.
Further, applications can verify the validity of the data they are given, e.g., by checking for the
presence of data, checking units, or checking the data type.

Using SDDS, individuals may add programs for use in their own sequences without restriction.
Individuals may create shell scripts of data processing sequences, and combine these scripts without
restriction. Centralized control of such activity is neither required nor desirable, in contrast to the
‘now common all-in-one approach to data processing applications.

For a summary of many of the currently-available SDDS Toolkit programs, the reader may
consult reference [2]. Some of the following sections assume the reader is familiar with this reference.

2 SDDS-Compliant EPICS Tools

The Experimental Physics and Industrial Control System{3] (EPICS) is used at APS and at a
number of other accelerator facilities. At APS, with very few exceptions, SDDS is used for collection
and processing of all commissioning data, both from EPICS and from other sources.

For example, SDDS is used for the following controls applications: saving, restoring, and com-
paring machine configurations; configuring composite knobs; storing magnet conditioning instruc-
tions; saving and restoring GPIB device configurations; storing data from digital oscilloscopes and
spectrum analyzers; archival data logging; collection of data during automated experiments; and
configuration data for generalized feedback on process variables (e.g., orbit correction).
~ Using the same philosophy as for the SDDS Toolkit, we have developed generic programs that
interact with EPICS while using SDDS files for input and output. That is, while the tools take
data from EPICS, they are configured by SDDS files and produce SDDS files as output. Hence, we
have not needed to write any EPICS-specific data processing or display programs, but have simply
used the SDDS Toolkit. _

For a summary of many of the currently-available SDDS-Compliant EPICS tools, the reader
may consult reference [2]. Some of the following sections assume the reader is familiar with this
reference. '

'3 Using SDDS, EPICS, and UNIX for Experiments

All of the SDDS programs can, of course, be executed from the commandline. They can also be
executed via a button-push in, for example, a Tcl/Tk {4] GUI application. More importantly, script
languages such as csh and tclsh provide a ready-made environment within which experimenters
can combine the power of many programs. This provides the capability of making complicated data
collection and processing scripts on demand. Any particular script may make use of other scripts
as component commands. Scripts may invoke any of the multitude of powerful UNIX commands
(e.g., grep, tr), and they may make use of built-in features of the script language, such as flow
control and mathematical expression evaluation.

For APS commissioning, SDDS-compliant EPICS tools provide generic data gathering and
control functions. Instrument-specific SDDS-compliant tools provide for control and integration of
data from “off line” sources such as portable oscilloscopes or spectrum analyzers. Data analysis
involving all of these sources is performed using the SDDS toolkit. Frequently, these capabilities
are incorporated into scripts written on-the-fly by experimenters on shift. For a basic introduction
to working with SDDS within the EPICS and UNIX framework, see reference [5].




The following is a list of some of the accelerator physics experiments and observations that have
been done to date using only UNIX scripts and the SDDS tools: response matrices for closed orbits
and trajectories; dispersion and chromaticity measurement by variation of rf frequency; integer tune
measurement from difference orbits; beam motion characterization (see below); transverse tunes
vs beam current; lifetime and vacuum system response to variations in bunch pattern and beam
current; rf voltage calibration using the synchrotron tune; longitudinal acceptance measurements;
beam-excited higher-order-mode searches of rf cavities; injection kicker pulse shape measurement
using beam and a fluorescent screen; pulsed power supply amplitude stability .and jitter; beam
lifetime vs current, scraper position, and bump height; beam-position-monitor (BPM) offset mea-
surements (see below); automated determination of bad BPMs; klystron gain characterization (see
below); linac efficiency optimization scans; linac bunch length measurement using back-phasing;
linac energy gain calibration vs input power, temperature, and frequency; linac emittance measure-
ments.

There is a trend in control systems toward using graphical user interfaces (GUIs), which is clearly
desirable for routine operations. However, for experimental work, GUIs can be a serious impediment
when used exclusively. There are several reasons for this, which motivated our approach.

First, such work is by definition open-ended, while GUIs almost by definition confine the user
to.preconceived choices. Second, experimental work is often procedural, whereas GUI applications
are user-driven; a GUI that permits designing and executing general procedural experiments is
essentially a script composition tool, the power of which is dependent entirely on the capability
of the script language and the power of individual commands. Third, GUI applications usually
cannot be coordinated, as the user is required to provide direction to each GUI using the mouse. -
Ideally, one shouldn’t need to run a particular GUI interface in order to use a particular algorithm
(e.g., orbit correction). The algorithm should be available conveniently through a script language,
and not simply through a subroutine call in a compiled program.

In the following sections, we provide several detailed case studies that illustrate our approach.
These are arranged in order of increasing complexity. The reader should note how data is taken
through multiple stages of processing, with each stage frequently reusing the programs invoked in

- early stages for different specific tasks. Note also how the distinct applications use many of the
same basic tools. Everything that is discussed in the examples is done entirely using UNIX scripts
and SDDS tools; there are no manual steps in any of the data processing.

4 Example: Beam Motion Characterization

Since the APS has a tight tolerance for the electron beam oscillatory ,motion, it is important
to first characterize the beam motion and then locate any sources of such motion. These are
typically magnet power supply ripple and magnet girder excitation. Rather than manually screening
every power supply and girder with portable instruments, one can obtain information from beam
observations and experimentation. At APS, we gather raw beam position monitor (BPM) data,
then process the data down to its essentials with UNIX shell scripts of SDDS commands, all in a
few minutes. In this section we will describe how scripts and SDDS tools were used in the course
of identifying and locating a 6.5-Hz beam motion in the storage ring.

We use the raw BPM data obtained by the “slow” BPM history modules. These modules
collect up to 4080 readings at a 60-Hz rate, each reading being the average of 2048 turns. Forty
synchronized BPM histories, one from each of 40 storage ring sectors, can be acquired in this
way. A script prepares the BPM history modules and the local input/output controllers (I0Cs) for
the acquisition, sends a trigger signal to all IOCs simultaneously, waits for the 4080-point history
buffers to fill, and downloads the history buffer waveforms to an SDDS file using sddswmonitor.




The script makes heavy use of some channel access commandline tools, such as cavput, which
assigns values to lists of process variables, and cawait, which waits for process variable values to
fulfill specified conditions before executing specified actions. Since these channel access tools don’t
deal with files, they are not SDDS tools, but they have become indispensable in automating data
acquisition. Acquiring 40 BPM histories and downloading them to a file takes about 100 seconds.
To do all 360 BPMs, the script repeats the acquisition nine times, once for each BPM in a sector,
producing nine files, and taking about sixteen minutes.

The data from the slow beam histories is processed in several ways, among which are the
following:

¢ Calculation of the standard deviation, (o), of each BPM history: Each raw data file contains
a data column corresponding to a BPM history. After using sddssmooth to determine and
remove the slowly-varying components, one can use sddsprocess to create for each BPM data
column a new parameter whose value is equal to the standard deviation of the corresponding
column. The sequence of the commands sddscollapse, sddstranspose, and sddsconvert,
with appropriate options, transforms the file containing parameters into a new file of one string
and one double data column named BPM and StdDev, for instance, which can be plotted with
sddsplot.

It is useful to plot the quantity o./+/B;, where 3, is the horizontal beta function obtained
from an optics modeling program output file. With the use of sddsxref, the data column (3,
is transferred from the optics program output file to the file with the columns BPM and StdDev
mentioned in the previous paragraph; sddsxref is able to match the BPM names from the
measurement and the optics program in order to get the correct value of 8, for each BPM.
Once this is done, the new column for ¢./+/B; is computed using sddsprocess. Plotting
this result revealed a function that was constant around the ring, a sure indication of many
sources of beam motion.

¢ Calculation of the beam motion spectrum for each BPM: The BPM raw da.ta file is Fourier
analyzed with the sddsfft command. The output file contains one FFT data column per
BPM. Each spectral peak corresponds to a source frequency. A spectrograph plot of the
power spectral density (PSD) as a function of BPM is produced using sddscontour to reveal
a pattern in the peaks; such a plot is shown in Figure 1. One can see the ubiquitous 6.5-Hz
motion, plus a hint of 12-Hz motion due to a girder resonance. Continuing the analysis, the
PSD within various frequency bands is summed for each BPM’s FFT using sddsprocess,
and then plotted as a function of BPM name using sddsplot. When the power in the band
from 5.5-7.5 Hz is normalized to 1/4/B; as per the previous paragraph, the data shows the
6.5-Hz line is also caused by many sources.

As the 6.5-Hz frequency of the dominant horizontal motion did not correspond to any known
girder resonance, we investigated power supply sources. Power supply readbacks were acquired
and analyzed using sddsstatmon at a hardware-limited 1-Hz rate. The output file contained one
standard deviation data column for each supply monitored. A list of worst offenders was drawn
up by sorting the rows of the file with sddssort according to the value of the standard deviation.
Some of the worst supplies were analyzed locally with a spectrum analyzer, revealing 6.5-Hz lines
in some sextupoles.

Before making any modifications to these supplies, we performed a series of before-and-after
experiments using the BPM histories. In each case we were able to determine within a few minutes
whether the beam motion changed due to, say, turning off a family of sextupoles. Figures 2 and 3
show plots of the reduced data from one of the experiments, revealing that the sextupole magnet
convertors were the sources of the 6.5-Hz beam motion.
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Figure 1: PSDs of orbit motion at one BPM per sector with 6.5-Hz motion present.

5 Example: Linear Accelerator Klystron Gain Measurement and
Analysis

The purpose of this application is to measure the gain of the APS linear accelerator (linac) klystron
high power amplifiers and determine from the data an empirical formula relating the klystron
parameters. The klystron amplifier transforms a low-power rf signal at its input to a high-power rf
signal at its output. In addition, the output power level depends on the tube voltage applied between
the klystron cathode and anode. The application consists of using sddsexperiment to measure
the klystron output power as a function of input power for various tube voltages. Subsequent data
analysis is carried out using the SDDS Toolkit.

Data analysis consists of fitting an appropriate function to the measured output power data for
a given tube voltage. The chosen fitting function,

Poyt = a3 + age~%Fin (1)

reproduces the variation of output power with input power at a given tube voltage. For each tube
voltage V, the fit will be slightly different and the fit coeficients in equation 1 can be considered
functions of the tube voltage V. Each coefficient is then fit according to a simple linear function
with a slope and intercept. In this way, equation 1 yields an empirical formula for the klystron
output power as a function of input power and tube voltage.

Data acquisition was done using sddsexperiment. The program used EPICS process variables
for drive and input power as well as tube voltage defined for each klystron. The experiment was
done using two loops, where the tube voltage setpoint was varied in the outer loop and the input
power was varied by an inner loop. A complication arises in this measurement because the input
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.Figure 2: rms orbit motion as a function of BPM around the ring for two lattice configurations.

power is actually indirectly adjusted via a programmable attenuator. A C-shell script was written
to manually adjust the attenuator until a given target drive power was reached. sddsexperiment
invokes the script in the inner loop as a subprocess to vary the drive power.

Figure 4 shows the data taken for the “sector L4” klystron as well as the best fit to the data
using equation 1. The voltage shown in the legend is actually the pulse forming network voltage
(PFN) that controls the tube voltage. The PFN voltage is stepped up by a scale factor of seven to
the full tube voltage by a transformer.

Data analysis is performed according to the following procedure using various Toolkit programs
in a C-shell script: 1. Sort the data according to increasing PFN voltage V,, using sddssort. 2.
Break the data into pages using sddsbreak according to changes in V,. 3. Compute the average
V, for each gain curve in Figure 4 using sddsprocess. 4. Perform the exponential fit given by
equation 1 using sddsexpfit. 5. Remove outlier data points beyond two standard deviations
from the best fit line using sddsoutlier. Eliminated data is apparent from gaps in Figure 4. 6.
Perform an exponential fit on the data remaining after outlier elimination. 7. Use sddsxref and
sddscollapse to collect the fit coefficients and PFN voltages into two data columns in an SDDS
file. 8. Perform a linear fit to the coefficient vs V,, data using sddspfit.

Figure 5 shows the coefficient a3 as a function of V,, along with a linear fit. The slope and
intercept of the fit are displayed on the figure using sddsplot’s ability to display string parameters
from files as part of plot labels. The other two coefficients show a similar linear dependence. The
slope and intercept for each coefficient curve along with equation 1 yields the desired empirical
relationship between the klystron output power, input power, and tube (PFN) voltage.
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Figure 3: FFT of orbit motion at one BPM for two lattice configurations.

6 Example: BPM Offset Measurements

In order to obtain optimum performance from a third-generation light source like the APS, it is
important to accurately center the beam in the magnetic elements. Many APS beam position
monitors (BPMs) are located close to quadrupoles; hence, we calibrate the centers of such BPMs
relative to the centers of adjacent quadrupoles. Initially, the beam is steered to center it in the
BPMs as well as possible. If it passes off-center through a quadrupole magnet due to a position
offset in a BPM, a small quadrupole strength change will produce an orbit shift at every BPM, the
shift being linear in the change and in the offset. By finding the beam position: for which no shift
occurs, one determines the quadrupole-center-to-BPM-center offset.

We found that taking a single measurement of the orbit change for a single quadrupole change
was very noise-sensitive. Instead, we varied a beam bump centered on the quadrupole of interest,
which varies the effect of quadrupole strength changes. Taking data for several bump positions
permitted inferring the offset from a set of linear fits.

The measurement script takes as an argument the name of the quadrupole for which the offset
is desired. While the entire experiment could be done within a single sddsexperiment run, it is
convenient to break it into two nested runs, since this allows testing and use of the inner loop in
stand-alone fashion. In the outer loop, the beam position in a quadrupole is varied by ~ +2.5mm
in five steps. In the inner loop, the quadrupole strength is varied by ~ +2% in 11 steps. The outer
loop is implemented as a script that prepares input for sddsexperiment and executes it. This
sddsexperiment run in turn repeatedly executes another script, which itself prepares input for a
second sddsexperiment run and executes it, thus implementing the inner loop. It is in the inner
loop that BPM data are collected. For each of the 55 points on the two-dimensional experimental
grid, 20 readings are averaged for each of 80 BPMs spaced around the ring, meaning that 88,000
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Figure 4: Measurements and fits for klystron output power vs input power for various PE'N voltages.

readings go into each offset result.

The data processing script uses sddsslopes to find, for each bump height, the slope of the orbit
change at each BPM with respect to the change in quadrupole strength; we call these the “quad
slopes.” After using sddscombine, sddscollapsé, and sddstranpose to collate and reorganize
the data, the script then applies sddsslopes again to fit lines to the quad slopes as a function of
measured bump height. sddsprocess is then used to compute 80 estimates of the offset (one for
each of the BPMs used) and an error estimate for each. The script performs outlier elimination on
the offsets using sddsoutlier, then uses sddsprocess to compute the error-weighted mean offset .
(from the accepted data) and an estimate of its error.

The script also produces several graphics, allowing the experimenter to evaluate the qua.hty of
the data. Figure 6 shows one of these, a histogram of the offsets derived from each BPM, along with
a title giving the mean offset; the title text is composed by sddsprocess in the same invocation
that computes the results, then extracted from the file by sddsplot for display with the data.
Figure 7 shows another, a display of the individual quad slopes along with the corresponding offset
errors; this illustrates that, as expected, BPMs with quad slopes that are larger in magnitude have
smaller errors. Using the ability of sddsprocess to evaluate complicated user-defined equations
involving data in a file, it was possible to compute the error-weighted mean offset, which makes use
of even the less certain data to provide an improved result.

Once many offsets are measured, they are collated into a single data file using sddscombine
and sddscollapse. This permits analyzing the final measured offsets as a group, or sending them
to the controls system for subtraction from BPM readings.
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Figure 5: Exponential decay constant of fit as a function of PFN voltage.
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Figure 6: Histogram of particular BPM-to-quadrupole offset as estimated from numerous BPMs.
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